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Abstract

Common copy number variations (CNVs) [1] are small regions of genomic variations at the same

loci across multiple samples, which can be detected with high resolution from next-generation

sequencing (NGS) technique. Multiple sequencing data samples are often available from genomic

studies; examples include sequences from multiple platforms and sequences from multiple

individuals. By integrating complementary information from multiple data samples, detection

power can be potentially improved. However, most of current CNV detection methods often

process an individual sequence sample, or two samples in an abnormal versus matched normal

study; researches on detecting common CNVs across multiple samples have been very limited but

are much needed. In this paper, we propose a novel method to detect common CNVs from

multiple sequencing samples by exploiting the concurrency of genomic variations in read depth

signals derived from multiple NGS data. We use a penalized sparse regression model to fit

multiple read depth profiles, based on which common CNV identification is formulated as a

change-point detection problem. Finally, we validate the proposed method on both simulation and

real data, showing that it can give both higher detection power and better break point estimation

over several published CNV detection methods.
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I. Introduction

Genetic factors play an important role in the development of a disease. It has been reported

that there are tens of thousands of genetic disorders (http://www.ncbi.nlm.nih.gov/Omim/

mimstats.html). Among various mutations of human genomes, the copy number variation

(CNV) is a sort of structural variation (SV) frequently observed in genomes. CNV is

generally referred as a duplication or deletion of DNA sequence of length larger than 1 kbp

[2]. Similar duplication and deletion events also occur in somatic cells, which are termed

copy number alterations in oncology. There are evidences that CNV can convey human

phenotypes from sporadic diseases [3]. It is believed that, when a CNV region harbors a

dosage-sensitive segment, the gene expression level varies, and consequently leading to an

abnormal phenotype [4].

Fluorescence in situ hybridization, and more recently, array comparative genomic

hybridization (aCGH) techniques have been widely used to detect CNVs, but with a low

resolution of about 5~10 Mbp and 200 bp to 10~25 kbp [5], [6], respectively. In the last few

years, next generation sequencing (NGS) technologies allow the screening of human

genomes at an unprecedented resolution. NGS platforms produce millions or billions of

short reads from shotgun sequencing, and these short reads can be used for de novo

assembly [7], single nucleotide polymorphism (SNP) calling [8], SV detection [9], etc.

Since the work of Korbel et al. [10], Mills et al. [11], great efforts have been made to

develop CNV detection methods from NGS data [5], [12]–[22]. We recently conducted a

comparative study of several prominent CNV detection methods [23], and proposed a robust

detection method with a novel sparse regression model [24]. The CNV detection methods

from NGS can be mainly divided into four categories [25]: depth of coverage (DOC)- or

read depth (RD)-based, paired-end mapping (PEM)-based, split read-based, and assembly-

based methods. The canonical procedure of DOC-based method usually consists of the

following seven steps: 1) Map (or align) sequencing reads (singled end or paired end) to a

reference genome (e.g., NCBI37/hg19) by using short sequencing mapping tools, e.g.,

Bowtie [26], MAQ [27]. These mapping tools usually output SNP and short indel callings as

byproducts. Mapping loci, as well as mapping quality, are stored in a SAM file, or a

compacted BAM file. 2) Calculate the so-called RD signal. RD is the read count within a

fix-sized nonoverlapping bins [5], [12], or a sliding window [13]. 3) Normalize the RD

signal. For example, a GC-content correction is usually performed [28] to reduce bias. 4)

Segment normalized RD signal into regions with different depths. Because NGS is

characterized by short-gun sequencing, RD reflects copy number status. Most of RD loci are

in normal regions; a plateau in RD profile reflects the copy gain status, while a basin reflects

the copy loss status. Classical segmentation algorithms, such as the circular binary

segmentation (CBS) [29] and hidden Markov model have been employed [14], [20]. 5)

Determine copy number status of each segment by a statistical hypothesis testing, e.g.,

event-wise testing (EWT) [5]. A hypothesis testing assumes that an RD obeys the Poisson

[30] or negative-binomial distribution [20]. 6) Merge consecutive segments that share the

same copy number status [12]. 7) Call CNVs, including CNV type (gain or loss), starting

locus and length, copy number status. We note that not each aforementioned step is

necessary. For example, for those methods that detect CNVs from only one sample [5], [21],
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Step 3) is necessary, but for those case-control methods [12], [13], i.e., both abnormal and

matched normal samples, Step 3) is not needed. CNV-seq and EWT [5] do not use Step 4),

i.e., segmentation algorithms.

RD signals are very noisy because of several factors: sequencing error, mapping error

(multiple mapping, mismatching), and the presence of SNPs and indels. Therefore, most of

the aforementioned methods, which focus on detection from single sample, or two samples

as in aCGH platforms, achieve low power and high false positive rate. A simple approach to

improve detection power is to increase the sequencing coverage. However, this approach

will be at greater sequencing cost; an alternative cost-efficient study design is to sequence

large samples with a medium or low coverage [8]. With the continuous decrease of

sequencing cost, sequencing multiple times or with multiple platforms will be increasingly

used. Multiple sequencing can reduce the system error introduced by an individual sample

or platform, with the potential to improve the detection power [31]. In addition, it was

reported that different complex diseases might share the same common CNVs [32], which

could be detected with multiple sequencing data. To this end, the detection of common

CNVs from multiple sequencing data is much needed, promising to give higher detection

power.

In this paper, we propose a novel method to detect CNVs from multiple sequencing data.

The proposed method first fits multiple RD profiles from several samples using an ℓ-0

penalized least-square regression model. Then, CNV detection is obtained with a statistical

testing. The objective function used in the regression model consists of two terms. The first

is a data fitting term, i.e., the least squares of fitting error, and the second is a penalty term,

i.e., the ℓ-0 norm of change-points of the RD signal. Different from our previous work [33],

the new objective function explores the concurrency of common CNVs by using a block-

wise ℓ-0 norm. So, if a CNV at the same locus shows up across multiple sequencing data, a

block-wise sparse vector (regressor) will be obtained in the regression model.

In order to validate and evaluate the performance of our model, we tested it on simulated

data and compared with cn.MOPS [30], a method recently proposed to detect CNVs from

multiple samples. We also tested our method on real data, and compared it with two other

methods: CNVnator [21] and EWT [5]. The real data include a 17 replication raw

sequencing dataset of a HapMap sample, a mapped dataset from multiple sequencing

platforms, and a mapped dataset of a family trio from a pilot study of the 1000 Genomes

Project.

II. Methods

A. Modeling

After preprocessing, we have an array of signals yj = [y1j, y2j, …, yMj]T, j = 1, …, N, i.e., the

RD profile of the jth sample, where M is the number of bins. In the following, we model the

CNV detection as a change-point detection problem, similar to our previous work based on

aCGH platform [34]. “From statistical point of view, a change-point is defined as a point

(either an index or a spatial location) before which a random sequence follows a distribution

with certain parameter(s), and after which the random sequence follows another distribution
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[or the same distribution as before but with different parameter(s)]” [34]. Specifically, for

our problem, the copy number status can be reflected by the RD signal, where the regions

with different copy numbers follow different distributions (especially the means). Therefore,

we define a change-point as the locus where the mean of RD signal changes significantly. In

other words, a change-point corresponds to the boundary of a CNV region.

To detect change-points from these RD signals, we use the linear combination of a set of

step functions (A) to approximate yj (see Fig. 1)

(1)

where A is an Heaviside dictionary, consisting of a set of step functions defined at different

loci

(2)

and xj reflects the amplitudes of change-points. Because there is a limited number of

change-points (boundary of CNVs) in the genome, xj is assumed to be a sparse vector, i.e.,

most entries of xj are zeros. The ℓ-0 norm, ||xj||0, has been widely used to measure the

sparsity of a vector. Therefore, the detection of CNVs from yj can be modeled as [35]

(3)

where the penalty parameter λ controls the tradeoff between the data fitting and the

regularization term. The regularization or penalty term incorporates prior knowledge about

data into the model [24]. It is obvious that large λ yields less number of change-points, and

vice-versa.

The sparse model (1) for finding CNVs from individual sample can be generalized to

multiple samples Y = [y1, y2, …, yN] as follows:

(4)

where X = [x1, x2, …, xN] contains the coefficients of all N samples, and its element xij

corresponds to the amplitude of the change-point at ith locus in jth sample. ||X||0 is the row-

wise λ-0 norm of matrix X (see Fig. 1), which is defined as

(5)
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(6)

The entries of x̃i reflect the amplitudes of change-points. If all samples have a change-point

at the locus i, x̃i should be a nonzero vector. Therefore, ι(x̃i) = 1 indicates that there is a

change-point at ith locus, while ι(x̃i) = 0 indicates no change-points. By introducing the

row-wise ℓ-0 norm, we force the change-points from multiple samples to be aligned at the

same locus.

B. Optimization Algorithm

The problem in (3) can be solved approximately with greedy algorithms such as matching

pursuit [36], orthogonal matching pursuit (OMP) [37], and orthogonal least squares (OLS)

[38]. However, when matrix A is highly correlated, OMP- and OLS-based methods might

fail. Therefore, we propose the single best replacement (SBR) algorithm that we developed

[39] to solve the problem in (3). To solve the more general problem in (4), in this paper, we

extend the algorithm and develop a continuation block-wise SBR (CBSBR). The

acceleration issue is discussed in Appendix A.

1) Estimating a Solution When λ is Fixed—First, we introduce an active set  ⊆ {1,

2, …, M }, which indicates the activity status of the columns of matrix A. The presence of an

index i in the active set indicates that the ith column of A is used to fit the data Y, and the ith

row of X is set to be nonzeros (see Fig. 1). If the active set  is known, we can have the

extracted submatrix  = {ai |i ∈ }, and the least-square solution

(7)

where  is the Moore–Penrose inverse [40] of . X can be

reconstructed from  by inserting zeros into nonactive rows. Because the least-square

solution  normally has no zero row, ||X||0 is equal to the cardinality of , i.e., the number

of elements in , which is denoted by k. In summary, given  with k elements, we

consecutively have  of size M × k,  of size k × N, and the equivalent cost function

(8)

where

(9)

To have a better fitting quality, more columns are needed to be active, suggesting larger k.

Therefore, the basic idea of the proposed algorithm is to include/exclude an index into/from

 iteratively, which is called a single replacement
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(10)

We initialize the block-wise SBR (BSBR) algorithm with  = ∅. Then, at each iteration, we

test all possible M single replacements, and find the “best” update in a deepest decent

manner, i.e., the replacement that can most reduce cost function . The iteration terminates

when there is no single replacement that can further reduce the cost function. Since the

number of possible single replacement in BSBR algorithm is finite, it terminates after a

finite number of iterations, and converge to a local minimum [39]. Table I summarizes the

BSBR algorithm, and the acceleration is discussed in Appendix A. Since the total number of

single replacement increases linearly with respect to M, the computation complexity is

proportional to M. For the sample size N, Equations (26) and (30) in Appendix A show that

N has very limited impact on the computational complexity.

2) Model Selection—Since the penalty parameter λ controls the tradeoff between the

data-fitting and penalty term in the problem of (4), it is of great importance to have a good

estimate of λ. When the prior knowledge of a system is known, λ could be estimated from

system parameters [39]. When the prior knowledge is unknown, classical model selection

methods can be used. Since different models correspond to different sets of active columns,

direct estimation of λ could be replaced by the selection of candidate models. Therefore, we

have to estimate a set of candidate models first.

A simple method to estimate a set of candidate models is to solve the problem (4) at a

uniform or logarithm grid of λ. However, this method is not efficient, since the solution is a

set of piecewise constant [41] with respect to λ. When the grid is too fine, we may find the

same candidate model at several different λ’s; when the grid is too coarse, we may miss

some candidate models. We adopt the idea that we proposed in [41] to find the critical

values of λ. Then, with the calls of BSBR algorithm at these critical λ’s, all candidate

models can be obtained.

We note that X(+∞) = 0 and X(0) = A+ Y. Inspired by the homotopy algorithm [42]–[44],

the proposed CBSBR algorithm starts with λ = +∞, and then decreases λ adaptively. At

each critical λ, BSBR is called to estimate current solution, and next λ is calculated

according to current solution. Specifically, if at current λq active set is , then the next

maximal λq + 1 < λq at which the active set changes [41] should satisfy

(11)

Up to a few manipulations of (8) and (11), the value of λq + 1 is

(12)

Table II summarizes the procedure of the CBSBR algorithm. The stopping condition could

be either the least-square error  or sparsity level k reaches some predefined value.
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Once all possible models are known, we could use classical model selection methods such as

cross-validation [45], L-curve [46], Akaike information criterion [47], and Schwarz

information criterion (SIC) [48]. Since the SIC has been proven to deliver robust estimate as

shown in our previous work [34], [49], we use the SIC in our experiments.

For a candidate model X(λq), its SIC is defined as

(13)

where k is the row-wise ℓ-0 norm of X(λq) as introduced in Section II-A, and  is the

variation of noise in Y, which can be estimated from non-CNV regions. The best candidate

model can be obtained with the lowest SIC, giving the optimal tradeoff between fitting

quality and model complexity k.

After the best model is selected, CNVs can be detected from the recovered RD signal

AX(λq*) by thresholding with upper and lower cutoff values, where q* is the index of best

model. These cutoff values can affect sensitivity and specificity, so we employ the

histogram (or distribution) of the RD signal to estimate them. Since sequencing may have

different coverages, we estimate the two cutoff values (upper and lower) for each RD signal,

such that the portion of tail areas is lower than a predefined value.

We briefly summarize the proposed method. First, we use the CBSBR algorithm, which

calls BSBR algorithm iteratively, to estimate a set of solutions with respect to continuous

change of penalty parameter λ. Second, we use the SIC method to select the best model from

this set of solutions. Finally, the regions of the smoothed RD signal that are above upper

threshold or below lower threshold are considered to be duplications or deletions of CNV

regions, respectively.

III. Results

In order to test the performance of the proposed method, we compared it with three

published methods, i.e., CNVnator [21], EWT [5], and cn.MOPS [30]. The first two are

dedicated to detect CNVs from single data sample, while the last one focuses on the

detection from multiple data.

We tested the performance of the proposed method on both simulated and real data from

human subject studies. In simulations, we tested in terms of sensitivity, specificity, and

break point locus estimation, with respect to different dispersion level, sample size, and the

CNV frequency across samples. In real-data processing, we tested three real datasets. The

first dataset consists of raw data of a HapMap TSI human subject, whose genome was

sequenced 17 times repeatedly; the second dataset consists of mapped data of a HapMap

YRI human subject with three popular sequencing platforms; and the third dataset consists

of mapped data of a family trio in the 1000 Genomes Project pilot study.
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All computations were carried out on a PC with a dual-core 2.8-GHz x86 64-bits processor

and 8-GB memory, and the computational time to screen a whole genome with the

resolution of 1 kbp is approximately 10 h with a peak memory usage of 700 MB.

A. Simulations

First, we tested the robustness of the proposed method with respect to different dispersion

level. Because of the presence of SNPs, indels, base pair calling error, alignment error, as

well as the randomness of shotgun sequencing, RD signals are often poorly modeled to be

the Poisson distribution, where the mean and variance are assumed to be equal. Instead, the

negative binomial distribution was proposed [20], [50], where a positive dispersion

parameter d is introduced to tune the variance to mean ratio (see Appendix B). When d is

close to 0, the negative binomial distribution approaches to the Poisson distribution

asymptotically; when d increases, the variation to mean ratio increases accordingly,

indicating higher dispersion level. Fig. 2 presents an example when the dispersion level d is

0.1. The RD signals are displayed with blue dots, and the smoothed signals are shown as red

curves.

The simulated RD signals consist of N signals generated with bin size of 100 bp, and with

average RD of 200. Since the CNVs of large sizes are relatively easy to detect, we simulated

nine artificial CNVs of small sizes ranging from 1 to 4 kbp, with copy numbers 0, 1, 3~6

(see Fig. 2). Note that the copy number 1 (heterozygous deletion) and 3 (heterozygous

duplication) are especially challenging to detect, since they are close to normal copy number

2 [17].

A number of dispersion parameter d = 0.001, 0.01, 0.1, 0.5, 1 with sample size N = 6 were

tested. At each dispersion level, 1000 random’s Y were simulated to follow the negative

binomial distribution, and the mean was fixed to 200. Then, the proposed method was

employed to process each data. The detected CNVs were compared with the ground truth,

yielding the receiver operating characteristic (ROC) as shown in the left panel of Fig. 3. An

ROC shows the tradeoff between sensitivity and specificity, where each point represents the

average of 1000 replications under a given dispersion level. A point in the ROC shows the

true positive rate (TPR, equivalent to sensitivity or recall) versus false positive rate (FPR,

equivalent to 1-specificity). TPR and FPR are defined in unit of base pair (bp). The TPR is

the ratio between number of base pairs in the detected CNVs that overlap with the ground

truth, and those in the ground truth; The FPR is the ratio between number of base pairs in the

detected CNVs that do not overlap with the ground truth, and those not in the ground truth.

It is shown in the left penal of Fig. 3 that with an increase in dispersion level, the detection

quality degenerates, especially when the dispersion level is greater than 0.1. Further, studies

show that, when the dispersion level is greater than 0.1, nearby CNVs are difficult to be

distinguished, which are considered to merge together. As a result, FPR increases

significantly.

To further evaluate the performance of detection, we tested the precision of detecting break

points. For two overlapping CNVs (i.e., one is from the detection output, while the other is

from the ground truth), the differences between the left and right loci are calculated as the
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break point estimation error. The mean and standard deviation are calculated after 1000

replications. As shown in the right panel of Fig. 3, the accuracy of break point estimation

improves with the decrease of the dispersion level. As mentioned previously, when the

dispersion level is greater than 0.1, nearby CNVs merge together; so the quality of break

point estimation degenerates greatly. For this reason, the right panel of Fig. 3 only displays

the estimation error with the dispersion level of 0.1, 0.01, and 0.001.

To test the effect of sample size N on the FPR, TPR and break point estimation, datasets

consisting of 1, 2, 4, 6, and 8 samples were simulated, with the dispersion level being fixed

to 0.1. Both the ROC and error bar for the estimations of break points are plotted in Fig. 4.

The results indicate that multiple samples can improve detection power, decrease false

detection rate, and improve break point localization. To keep the detection power above 0.9,

in other simulations, the sample size N is fixed to 6.

The cn.MOPS method was recently developed to discover CNVs from multiple samples.

However, it could only detect variations when the copy numbers at the same loci are

different across samples. So in the previous simulations, where the copy number status

across multiple samples is the same, cn.MOPS detected no variations. In order to compare

the performance of the proposed method with that of cn.MOPS, a Bernoulli parameter p is

introduced to denote the CNV frequency across multiple samples. Therefore, the previous

simulations correspond to the case where p = 1. In the following simulations, data with p =

0.2, 0.5, and 0.8 were generated. Fig. 2 presents an example when the Bernoulli parameter p

is 0.8. Fig. 5 presents the ROC plots, which summarizes the results of this comparative

study. For the proposed method, when the dispersion level is relatively high (d > 0.1), the

detection power decreases significantly. But when d ≤ 0.1, the influence of p on the

detection power is very limited. When d(≤0.1) is fixed, p = 0.8, 0.5, 0.2 yields the lowest,

second lowest, and highest FPR, respectively. For cn.MOPS, p = 0.5 yields higher power

when compared with p = 0.2 and 0.8. Note that at each fixed configuration (p, d), the

proposed method always yields higher TPR than that of cn.MOPS, while at the cost of

increased FPR.

B. Real Data Processing

1) Multiple Sequencing Data From a Single Individual—The genome of a HapMap

TSI sample (NA20755) was sequenced 17 times by a Solexa Genome Analyzer II with low

coverage ranging from 0.13 to 0.21, and with read length 37 bp [51]. We downloaded this

dataset from the FTP of DNA Data Bank of Japan at http://www.ddbj.nig.ac.jp/, and then

mapped pair-end reads to the NCBI36/hg18 reference genome with Bowtie [26], allowing

no more than two mismatches with “best” option on. RD signals were extracted from the 17

alignment BAM files using the tool in cn.MOPS package, yielding 23 data matrices,

corresponding to 22 autosomes and X chromosome. To have an average of read counts

around 100, the bin size was set to 25 kbp. The RD bias caused by GC-content was

corrected by using the method introduced by Abyzov et al. [21], with the GC-content profile

of RDXplorer [5]. The final step of normalization is to correct biases caused by the coverage

difference, so each RD signal was scaled such that the mean of read counts is 100.
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Since the 17 sequencing data are from the same sample, at a given bin normalized RD

signals should have no significant difference, that is, copy numbers should be equal. So, we

designed the following analysis procedure. Each autosome was processed with three

replications. In each replication, we randomly implanted three CNVs of size 75, 150, and

200 kbp into the chromosome. For non-CNV regions, RD signals from the autosome were

used; while for CNV regions, RD signals from X chromosome were used according to the

copy number. A CNV could be either a gain (copy number 3) or a loss (copy number 1) with

equal probability. For a gain (or loss) CNV, the copy number could be either 3 (or 1) or 2

with a frequency of 0.9 and 0.1, respectively.

Data matrices were processed by both cn.MOPS and the proposed method. For cn.MOPS,

the upper and lower cutoff values were set to 0.5 and −0.5 respectively; the minimum

number of segments, a CNV should span was set to 3. The CBS [29] was used as the

segmentation algorithm; and other parameters were set as default. For the proposed method,

five percent of tail area was used to determine the cutoff values, the minimal size of a

segment was set to 3 bins, and the noise variance  in (13) was estimated along whole

genome, since the portion of CNV regions is negligible with respect to whole genome.

The results are listed in Table III, where the TPR and FPR for cn.MOPS are 0.49 and 8e-4,

while for the proposed method they are 0.68 and 5e-4, respectively. We also repeated

experiments, with the Bernoulli parameter p = 0.5 and 0.2 (the probability of copy number 3

or 1, versus 1 − p the probability of copy number 2). As shown in this table, for the proposed

method, the TPR/FPR increases/decreases with the increase of p. For cn.MOPS, it performs

well with p = 0.5, where the variation of copy numbers across samples reaches the peak

value.

2) Sequencing Data From Multiple Platforms—The 1000 Genomes Project ([51],

http://www.1000genomes.org/) provides data acquired from multiple sequencing platforms.

We downloaded the mapped sequencing data (BAM files) of a YRI sample with Corelli/

HapMap ID NA19240, with the platforms of Roche 454, Illumina SLX, and ABI SOLiD.

The short reads were mapped already by using SSAHA2 [52], MAQ [27], and Corona lite

[53], respectively.

The RD signals were extracted from BAM files by using the SAMtools [27]. Bin size was

set to 1 kbp, yielding mean RD 13 for 454, 84 for SLX, and 220 for SOLiD, respectively.

Since the coverage is significantly different, each RD signal after the GC-content correction

was scaled such that the mean value is 100.

CNVnator [21] and EWT [5] were used to process the three data one by one. The bin size of

CNVnator is set to 300 bp, and the consecutive window number of EWT is set to 8. The

detected CNVs are displayed in the first two panels in Fig. 6. Since data from the three

platforms are complementary, the union of the three platforms was calculated for both

CNVnator and EWT. The intersection of two unions (i.e., CNVnator and EWT union) is

displayed in the right panel of Fig. 6 with the label “CNVnatorEWT.”
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The overlaps of CNVs from the three methods (CNVna-torEWT, cn.MOPS, and the

proposed one) are displayed in the right panel of Fig. 6. The overlap is measured in the unit

of 100 bp. If two units share more than one base pair overlap, it counts for one overlapped

unit. It is shown that the detection power of cn.MOPS and the proposed method is 73% and

88%, respectively. The detection powers of CNVnator with 454, SLX, and SOLiD platforms

are 72%, 73%, and 64%; and those of EWT are 58%, 65%, and 85%, respectively. The

result demonstrates that the detection power is increased with multiple platforms over single

one.

3) Sequencing Data From Multiple Individuals—We downloaded the aligned

sequencing data of chromosome 21 of a CEU family trio from the 1000 Genomes Project

pilot study. This family trio has European ethnicity, and consists of NA12891 the father,

NA12892 the mother, and NA12878 the daughter.

We used the same procedure with the same settings as in the previous study to analyze data.

Fig. 7 shows the comparison of CNVs detected by the proposed method, EWT, and

CNVnator, respectively. In the first row, three Venn diagrams are displayed with respect to

three samples. It is shown that, on average 70% of detected CNVs with the proposed method

overlap with at least one alternative method (CNVnator or EWT). For CNVnator and EWT,

this value is 52% and 43%, respectively, suggesting that the proposed method can detect

CNVs with higher consistency. In the second row, three diagrams are displayed with respect

to different methods. On average, 82% CNVs detected by the proposed method show up at

least twice among the three CEU samples; this value is 65% for CNVnator, and 32% for

EWT. These results suggest that the proposed method can detect more common CNVs.

Fig. 8 shows the comparison of CNVs detected by the proposed method and cn.MOPS. The

“proposed(1)/(2)/(3)” represents CNVs detected with the proposed method that show up at

least once/twice/three times among three samples, respectively. It is shown that 82% CNVs

detected by the proposed method show up at least twice among three samples, and 63%

among all three. It is also shown that 36% overlaps with the result of cn.MOPS.

Further study shows that, among the CNVs that show up twice in the three family members,

11% are shared by the father and mother, 22% by the father and daughter, and 67% by the

mother and daughter. Interestingly, the Venn diagrams in Fig. 7 labeled with “CNVnator”

and “proposed” show that the daughter (NA12878) shares more CNVs with her mother

(NA12892) than her father (NA12891), suggesting that the daughter is ge-nomically closer

to her mother than her father. This is consistent with the results of Magi et al. [54], and ours

reported before [55].

IV. Conclusion and Discussion

In this paper, we proposed a method to detect common CNVs from multiple NGS data,

which are often measured with different experimental replications, multiple platforms, and

multiple individuals. By introducing the row-wise ℓ-0 norm in the regression model, the

concurrency of CNV across multiple samples can be captured. We also proposed a novel

numerical method, i.e., CBSBR algorithm to solve the regression model and further used the
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model to fit multiple RD signals, based on which CNVs can be inferred. We note that

CBSBR can be used to other applications where matrix A might have other structure than

the Heaviside dictionary used in this paper.

We tested the performance of the proposed method on both simulated and real data. The

simulation results show the performance of detection in terms of the dispersion level and the

CNV frequency across samples. It suggests that the detection power, false positive rate, and

break point loci estimation can all be improved with the increase of sample size. For real-

data processing, we analyzed the 17 replication data from a single individual and multiple

datasets from three popular sequencing platforms. The results indicate that by integrating

multiple datasets with complementary information, the proposed method outperforms

single-sample-based methods. We also used the data from a family trio, suggesting that the

proposed method can be used to discover genetic ethnicity in terms of CNVs.

From both simulation and real data analysis, we found that CNVs with a high frequency

across samples can be detected with the proposed method, which falls into our expectation.

Since the proposed method is based on the concurrency of CNVs across multiple samples,

higher the frequency that a CNV shows up, easier will it be detected. On the contrary, CNVs

with a moderate frequency of presence can be detected by cn.MOPS by capturing the

variation of copy number across samples. However, if copy numbers are the same across

samples, these CNVs can be missed by cn.MOPs. So, when data are highly redundant (i.e.,

replication data), we recommend the use of the proposed method. When data are from

different samples, we recommend that these two methods should be combined to take full

advantage of both approaches.

Both DOC and PEM signature can provide useful and complementary information [5], [54]:

the DOC-based methods can detect large-size events, while the PEM-based methods can

detect small-size events with better precision of finding break point locus. Therefore, some

approaches were proposed to combine both methods. For example, CNVer [15] and

cnvHiTSeq [50] combined both DOC and PEM signatures to improve break point detection.

He et al. [56] used discordant read pairs and unmapped reads that span break points to detect

CNVs, and the precision of detecting CNV break point can reach as high as base pair level.

So our future work will consider the incorporation of multiple signatures into the model,

which could further improve the CNV detection accuracy.

The MATLAB code of the proposed CBSBR algorithm can be downloaded at http://

www.mathworks.com/matlabcentral/fileexchange/36518-continuation-block-wise-sparse-

approximation. Other codes are available upon request.
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Appendix A. Acceleration of the CBSBR Algorithm

At each iteration of CBSBR, we have to calculate the least-square solution (7) repeatedly.

Since the computational complexity of the inverse of matrix  is (k3), where k is the

column dimension of , computational burden is heavy when considering large number of

single replacements. In this Appendix, we present an acceleration algorithm, which is based

on the iterative solution of nested least-square problems [57].

The main idea is to calculate the increment of the cost function  −  without explicit

calculation of the inverse of  in inclusion cases, or  −  without the inversion of 

in exclusion cases.

To be specific, given  and l ∉ , let’s define
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From (7) and (9), up to a few manipulations, we have

(14)

(15)

(16)

From Schur complement lemma [40], we have

(17)

with

(18)

(19)

(20)

(21)

Furthermore,

(22)

1. For inclusion cases, calculate  −  when  is known: From (14), (16), and (22)
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(23)

(24)

(25)

(26)

2. For exclusion cases, calculate  −  when  is known

From (18), we have

(27)

By substituting  and l′ with  ∪ l and l, respectively, from (25) and (19), we have

(28)

(29)

(30)

Finally, the acceleration version of the BSBR algorithm can be summarized as follows: 1)

test all replacements with the help of (26) for inclusion cases and (30) for exclusion cases,

then find the best, or deepest-descent one. 2) Update ϕ with the help of (22) for inclusion

cases or (27) for exclusion cases.
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Appendix B. Negative Binomial Distribution and Dispersion Parameter d

The negative binomial distribution describes the probability distribution of the number of

successes S in a sequence of Bernoulli trials before f number of failures occurs. If b denotes

the probability of success in each trial, we say the number of successes S follows the

negative binomial distribution with parameter f and b, with probability mass function

(31)

The mean and variance of S are  and , respectively. For fixed μNB and

, we have estimate . The dispersion parameter d is defined as the reciprocal

of f, i.e., . So for fixed μNB, the variance to mean ratio  could

be tuned by dispersion parameter d.
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Fig. 1.
Schematic demonstration of the approximation of the RD signals Y with a sparse vector X
and a set of step functions. The columns of Y and A (step functions) are displayed in wave

forms. Red color indicates active status. The row-wise ℓ-0 norm of matrix X is 2. In this

case, there are two nonzero rows in X corresponding to the loci of two change-points in Y.
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Fig. 2.
Example of CNV detection by the proposed method. Blue dots are RD signals with

dispersion level d = 0.1 and Bernoulli parameter p = 0.8, red thin lines are smoothed signals,

and red thick lines are detected CNV regions.
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Fig. 3.
ROC (left) and error bar (right) plot with different dispersion level. It is shown that with the

decrease of dispersion level, FPR decreases, while TPR increases, and break point loci

estimation improves.
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Fig. 4.
ROC (left) and error bar (right) plot with different sample size. It is shown that with the

increase of sample size, FPR decreases, while TPR increases, and break point loci

estimation improves.
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Fig. 5.
ROC plots with different Bernoulli parameter p and dispersion level d with the proposed

method (left) and cn.MOPS (right). It is shown that the proposed method achieves higher

detection power compared with cn.MOPS.
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Fig. 6.
Venn diagrams of three platforms. The first two panels show the overlapping of CNVs (in

the unit of 100 bp) detected by CNVnator (left) and EWT (middle). In the last panel, the set

labeled with “CNVnatorEWT” is the intersection of CNVs detected with CNVnator and

EWT.
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Fig. 7.
Venn diagrams of the CEU family trio. The top three depict the overlaps of CNVs detected

from three CEU samples; the lower three depict the results from CNVnator, EWT, and the

proposed method.
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Fig. 8.
Comparison with cn.MOPS. “Proposed(1)/(2)/(3)” represents the CNVs detected by the

proposed method that show up at least once/twice/three times among the three CEU

samples.
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TABLE I

BSBR Algorithm

Input: A, Y, λ and 

Step1: Initialization: k = 0, calculate  according to (8).

Step2: For iteration k > 0, test all single replacement,

 find the best lk = arg mini , update  and .

Step3: Iterate Step2 until cost function  no longer decreases.

Step4: Calculate  and  according to Eq. (7) and (9).

Output: X, .
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TABLE II

CBSBR Algorithm

Input: A, Y.

Step1: Initialization λi = +∞,  = ∅

Step2: For iteration q > 0,

 [X(λq), ] = BSBR(A, Y, λq, ),

 update  according to X(λq),

 calculate λq+1 according to Eq. (12).

Step3: Iterate Step2 until stopping condition.

Output: {X(λq)}, {λq}.
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Table III

TPR and FPR Performance of the Sequencing Data of NA20755

Cn.MOPS Proposed

TPR FPR TPR FPR

p=0.9 0.49 8e-4 0.68 5e-4

p=0.5 0.62 35e-3 0.61 1.2e-3

p=0.2 0.50 3.6e-3 0.59 3.3e-3
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