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Abstract

Objective—Recent studies utilizing fetal magnetocardiography have demonstrated the efficacy of 

corrected QT interval (QTc) measurement for in utero diagnosis and prognosis of long QT 

syndrome, a leading cause of sudden death in early life. The objective of the study was to 

formulate and test a novel statistical estimation method to detect the end of the fetal T-wave and 

thereby improve the accuracy of fetal QT interval measurement.

Methods—To detect the end of the T-wave we apply a sequential composite hypothesis test to 

decide when the T-wave has returned to baseline. The method uses the generalized likelihood ratio 

test in conjunction with a low-rank spatiotemporal model that exploits the repetitive nature of 

cardiac signals. The unknown model parameters are determined using maximum likelihood 

estimation.

Results—In realistic simulations, the detector was shown to be accurate to within 10 ms (95% 

prediction interval), even at noise-to-signal ratios as high as 6. When applied to real data from 

normal fetuses, the detector agreed well with measurements made by cardiologists (−1.4 ± 6.9 

ms).

Conclusions—The method was effective and practical. Detector performance was excellent 

despite the continual presence of strong maternal interference.

Significance—This detector serves as a valuable adjunct to traditional measurement based on 

subjective assessment.
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I. Introduction

THE heart rate-corrected QT interval, QTc, is among the most important cardiac parameters 

of well-being. QTc prolongation is common in a number of serious medical conditions, 

including cardiomyopathy, coronary artery disease, diabetes, hypothyroidism, and a host of 

ion channelopathies [1], [2], [3]. In recent years, QTc has received increased attention 

because many drugs have been found to lengthen QTc, increasing the risk of malignant 

arrhythmias. The Food and Drug Administration now requires nearly all pharmaceuticals to 

be evaluated for their effect on QTc [4]. In addition, ion channelopathies have become an 

area of intense research due to rapid advances in genetic testing. QTc prolongation is a 

defining characteristic of most ion channelopathies, such as long QT syndrome (LQTS), and 

is associated with increased risk of sudden death [5].

The QT interval is defined as the time from the beginning of the QRS complex to the end of 

the T-wave. While the beginning of the QRS complex can be precisely resolved due to the 

high amplitude and abrupt onset of the QRS complex, the end of the T-wave is often 

ambiguous because it is gradual and easily obscured by interference and noise. Various 

methods have been proposed to automatically detect the T-wave end in the ECG. These 

include methods based estimation of the amplitude [6] and first-derivative [7] of the T-wave 

termination, the T-waveform area under a sliding window [8], wavelet transformations [9], 

and mathematical models of the T-wave [10]. Detection based on assessment of the first 

derivative appears to have achieved the most popularity [7], [11]. This method assumes that 

the derivative is non-zero in the presence of and zero in the absence of the T-wave. It has 

been applied to automatically detect the T-wave end and measure the QT interval of each 

beat.

The QT interval has been investigated far less in the fetus than in the adult due to the 

inability to reliably record the fetal ECG; however, recent studies utilizing fetal 

magnetocardiography (fMCG) have demonstrated the efficacy of the QT interval for in utero 

diagnosis and prognosis of LQTS [12]. Cuneo and co-workers showed that fetal QTc > 490 

ms diagnosed fetal LQTS with 89% accuracy and 89% specificity, and that fetal QTc> 620 

ms predicted Torsade des Pointes. Furthermore, they showed that Torsade des Pointes could 

be effectively treated in utero using anti-arrhythmic drugs. The significance of these findings 

is underscored by recent evidence that LQTS accounts for approximately 10% of 

unexplained fetal demise [13]. This implies that the ability to diagnose and treat LQTS in 

utero can save many lives.

Assessment of QTc is considerably more difficult in the fetus than in the adult. Not only is 

the overall amplitude of the fMCG much smaller than that of the postnatal MCG, the T-

waves are noticeably flatter, having lower T/QRS amplitude ratios and more gradual 

terminations than T-waves after birth. Assessment of fetal QTc is further confounded by 
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interference from the maternal MCG and other forms of biological and environmental 

interference. Lastly, the amplitude of the fMCG is a strong function of gestational age, and 

becomes vanishingly small at gestational ages earlier than about 18 weeks.

In this paper, we present a novel statistical estimation method to detect the end of the fetal T-

wave and thereby improve the accuracy of fetal QT interval measurement. Whereas 

automated measurement of the adult QT interval is largely a matter of convenience, the 

difficulty of measuring the fetal QT interval makes an automated detector a virtual necessity. 

Our method utilizes the generalized likelihood ratio test (GLRT) in conjunction with a 

spatiotemporal model that exploits the repetitive nature of cardiac signals and the 

considerable spatial information available in large sensor array recordings to achieve optimal 

performance. In section II, we motivate and describe the use of the GLRT for this 

application. In section III, we summarize the results of several assessments of detector 

performance. The performance of the detector is evaluated on simulated data and real patient 

data. In Section IV, we identify key attributes of the method that make it well suited for fetal 

application. Superscripts T and −1 denote matrix transpose and inverse, respectively, while 

boldface type represents matrices.

II. Methods

We approach T-wave termination estimation as a sequential composite hypothesis test. The 

test is sequential because we use a series of sample-by-sample tests to decide when the T-

wave has returned to baseline. The test is composite because parameters such as the T-wave 

shape are unknown. Optimal procedures generally do not exist for composite hypothesis 

tests [14], so we use the generalized likelihood ratio test (GLRT). The GLRT performs 

hypothesis testing using a likelihood ratio in which unknown parameters are replaced by 

their maximum likelihood estimates (MLE). The asymptotic or large data record 

performance of the GLRT is known [14]. MLE has been applied to estimation of evoked 

responses in electro- and magneto-encephalography (EEG / MEG) [15], [16]. In particular, 

we have previously shown that MLE is effective at estimating spatially low rank, low 

bandwidth, repeated MEG signals [17] while the GLRT is effective at detecting the presence 

of T-wave alternans [18]. The present approach is motivated by the success of these prior 

formulations.

A. T-wave Termination Detection Based On a Sequential Hypothesis Test

We assume that the T-wave is locally smooth, and can be approximated as linear over a 

small time window of N time samples. We assume N is odd for notational convenience. A 

line with N uniformly-spaced points may be represented using the rows of the matrix

That is, a vector of values representing uniformly-spaced values of a line with an intercept a 
and slope b may be expressed as:
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(1)

We assume the temporal shape of the T-wave in the vicinity of the current sample is 

described by Eq. 1. Furthermore, we assume there are M spatial channels and that the T-

wave lies in a rank P spatial subspace spanned by the P columns of the M-by-P matrix H. If 

we assume that the T-wave in each spatial component is approximately linear, then a space-

time model for N samples of the jth beat (epoch) of the measured data in the window under 

consideration is analogous to [17], [18]:

(2)

Here Nj is an M × N matrix of N noise samples in the time window. The noise is assumed to 

be temporally white (independent from sample to sample) and Gaussian distributed with 

unknown spatial covariance matrix R. The P-by-2 matrix Θ contains intercept and slope 

parameters for each spatial component in the first and second columns, respectively. 

Concatenating all the J epochs for analysis of a length-N time window gives the model for 

the M-by-JN measured data as

(3)

where DT = [CT CT … CT ] is 2-by-J N .

T-wave termination is determined by sliding the length N data window X through the post 

QRS interval until we detect a return to baseline. That is, until Θ = 0. Hence, we define the 

null hypothesis as the presence of non zero slope and/or intercept.

(4)

Define X(k) as the length N segment of the measured data for post QRS time samples k, k
+1, … , k+N−1. The end of the T-wave is declared (H1) when the generalized likelihood 

ratio ℓ(k) exceeds a threshold r, that is

(5)

where pHi(.) denotes the probability density function (PDF) of the data under hypothesis Hi. 

The symbols  denote the MLEs of the noise covariance estimated under hypothesis Hi. 

The PDF of the data under hypothesis H0 is expressed as
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(6)

where R0, the spatial covariance matrix of the noise, is unknown. The MLEs for the 

unknown noise covariance and T-wave parameters under H0 are well-known [15], [16], [17], 

[18], [19]. The MLE for R0 is expressed as a function of the unknown  and 

(7)

Substitution of  into the PDF reveals that the MLEs  and  are obtained by minimizing 

the determinant of the  as shown in [18].

Under hypothesis H1, since Θ = 0, the respective PDF is simply:

(8)

with

(9)

Substituting the sample covariance matrix estimates into the exponential in each probability 

density function results in the exponential terms being independent of the data, and the 

GLRT is expressed as :

(10)

It can be shown that  with equality when  and thus ℓ′(k) ≤ 1.

We evaluated two methods of automatically determining the termination time, based on the 

behavior of the GLRT test statistic, ℓ′(k), in the vicinity of the T-wave termination. The test 

statistic is approximately the ratio of the noise variance to the total (signal plus noise) 

variance. Ideally, as the T-wave terminates, the test statistic increases rapidly and approaches 

unity at the termination; however, noise and interference within the signal subspace or 

temporal smearing of the signal due to bandpass filtering can cause the test statistic to peak 

at less than unity. Typically, the termination of the T-wave is seen to coincide with a local 

minimum in the second derivative of the test statistic around the time that the test statistic is 
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near its maximum; however, several local minima of the second derivative may be present in 

the vicinity of the termination. We therefore evaluated two methods of selecting local 

minima of the second derivative: 1) the one corresponding to the largest test statistic value 

and 2) the one corresponding to the minimum product of the the second derivative and the 

test statistic. Both methods bias the detector toward second derivative minima corresponding 

to higher values of the test statistic. The methods were compared using synthetic data.

B. Synthetic data

The sets of synthetic data were comprised of three components: fetal MCG signal, maternal 

MCG interference, and white noise. The fetal signal and maternal interference were based 

on templates of fMCG and maternal MCG waveforms obtained from real data with very 

high SNR and a well-defined fetal QT interval (Fig.1a). To model the spatial variation of the 

fMCG signal, we assumed it arose from a current dipole source located below the sensor 

array. The forward solution for a current dipole source in a half-plane was used to scale the 

template according to the position and orientation of each channel. The positions and 

orientations of the 21 channels corresponded to those of a Tristan 624 Biomagnetometer 

(Tristan Technologies, Inc., San Diego), which is the only fMCG device with FDA 

clearance. The dipole was located 0.12 m below the center channel, and was offset laterally 

0.05 m in order to produce a realistic, nonsymmetrical topography. The maximum-to-mean 

amplitude ratio was 3. The maternal MCG, which typically shows low spatial variation, was 

assumed to be spatially uniform. For each channel, a 100 s time series with sampling period 

1 ms was generated by replicating the fetal template 238 times at intervals of 0.42 s. The 

maternal QRS complexes had variable RR interval with mean 0.7 s and standard deviation 

0.02 s. The signals were filtered using a 1-30 Hz passband. We also simulated the data with 

0.3 Hz baseline wander, and this case was filtered using a 0.2-30 Hz pass-band. These 

passbands are narrower than the 1-100 Hz bandwidth typically used to record the ECG, but 

are appropriate here because the T-wave has much lower bandwidth than the other ECG 

components.

We assessed detector performance as a function of white noise amplitude for various levels 

of maternal interference. The white noise-to-fetal signal ratio (N/F) was defined as the root-

mean square amplitude of the white noise with respect to the fetal T-wave amplitude. The 

maternal-to-fetal QRS ratio (M/F) was defined as the amplitude of the maternal QRS 

complex with respect to the fetal QRS complex in the channel with largest fetal signal. The 

simulation was performed 350 times, regenerating the white noise between repetitions.

We also investigated the effect of two types of interference designed to mimic maternal 

breathing artifacts: sinusoidal signal amplitude modulation and sinusoidal baseline wander 

[20]. These interferences were based on a sine wave of frequency 0.3 Hz, the approximate 

frequency of maternal breathing. The amplitude ratios of the baseline wander with respect to 

the fetal T-wave in the channel with largest fetal signal ranged from 10 to 120. The percent 

signal amplitude modulation ranged from 10 to 90. Various levels of white noise-to-fetal 

signal ratio were used. The maternal-to-fetal QRS ratio was 3.
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The search for the T-wave termination was confined to a 70 ms interval, approximately 

centered about the ground truth termination time. The test statistic was computed every 2.5 

ms, using data in a 5 ms (5-point) time window.

The second order derivatives were approximated by the second order difference, using a 2nd 

order central difference approximation.

C. Real data

We further evaluated the detector performance by applying it to 21 normal subjects at 

gestational ages 21.3-37.4 weeks, studied in a total of 30 sessions (Appendix I). The fMCG 

data for these patients was recorded with a 37-channel (Magnes, 4D Neuroimaging, Inc., 

San Diego, CA, USA) or 21-channel (Tristan 624 Biomagnetometer, Tristan Technologies, 

San Diego) SQUID magnetometer. At least twenty minutes of data were taken from each 

subject. The detector was applied to a segment of the recording, during which the fetal heart 

rate was stable and near baseline. On average, the segment was 67 s in length. The T-wave 

termination time determined by the detector was compared with that determined by a fetal 

cardiologist based on an averaged waveform computed from the same data. We further 

evaluated the detector performance by applying it to two fetuses with LQTS who showed 

QTc prolongation. The same procedures were used. The mother of one of these fetuses had 

an implantable cardioverter defibrillator (ICD) implanted above her heart that produced a 

large pulsation artifact. This artifact nearly obscured the fetal signal.

III. Results

Below we present results obtained using simulated and real data, and describe the behavior 

of the test statistic in various circumstances.

A. Synthetic data

Figure 2 shows the results of the simulations designed to determine the best method of 

choosing the termination time. The lowest weighted local minimum of the second derivative 

was clearly superior. This method was applied to obtain all subsequent results.

The main simulation results are presented in Fig. 3, which shows the mean error and 

standard deviation for various levels of noise and interference. In practice, the precision with 

which the QT interval can be estimated is approximately 10 ms. In comparison, the mean 

errors are relatively small. Notice, however, that the standard deviations become much larger 

than the mean errors as the amplitude of the noise and interference increases. In this 

situation, the standard deviation more accurately reflects detector performance. To attain 

95% prediction interval (approximate twice the standard deviation) ≤ 10 ms, we require 

noise-to-signal ratio < 6, nearly independent of the level of maternal interference. In the 

presence of amplitude modulation, we require amplitude modulation < 30% and noise-to-

signal < 5. Very high levels of baseline wander can be tolerated for noise-to-signal ratio ≤ 5.
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B. Real data

For the normal subject data, the agreement between the detector and the cardiologist 

measurements is shown in the Bland-Altman plot and histogram in Fig. 4. The limits of 

agreement (1.96 * standard deviation) was 13.4 ms. Details of the normal subject results are 

presented in Table 1 of the Appendix. On average, the termination times determined by the 

detector and cardiologist differed by 1.4 ± 6.9 ms. Again, the mean error is small, and the 

standard deviation is a better indicator of performance. The levels of noise and maternal 

interference present in the real data are low compared to levels present in the simulations. 

Although the detector did not perform as well as would be predicted by the simulations, the 

performance was still excellent.

For the two fetuses with LQTS, the detector agreed with the cardiologists to within 10 ms. 

The detector performed well even for the case in which the recording was contaminated by 

large ICD artifact (Fig. 5 - 6).

IV. Discussion

In this study, we successfully demonstrated a new statistical detector that facilitates 

measurement of the fetal QT interval. In realistic simulations, the detector was shown to be 

accurate within 10 ms, even at noise-to-signal ratios as high as six. When applied to real 

data, the detector agreed well with measurements made by cardiologists.

A distinguishing feature of our approach is the incorporation of a low-rank spatiotemporal 

model which utilizes data from all of the channels to formulate a true multi-channel detector. 

Most prior methods have been based on detectors that operate on a single ECG lead. The 

multi-lead method of Laguna and coworkers, for example, performs detection on one lead at 

a time and then applies a detection rule to select the overall onset and end time [7]. Their 

method requires the use of a threshold parameter that is determined empirically, which may 

be problematic in cases of non-stationary noise. In our method, the unknown model 

parameters are determined using MLE, which also allows accurate estimation of the noise 

statistics. Unlike conventional whitening, which would be difficult to apply here because it 

requires signal-free data, MLE is able to use all of the data vectors to compute the noise 

covariance and thereby obtain a more stable estimate. This significantly improved detector 

performance. The method was applied to real data containing maternal MCG interference 

and performed well.

Ideally, the test statistic approaches unity at the end of the T-wave. In practice, however, 

residual interference and noise lying in the signal subspace may cause the test statistic to 

plateau at lesser values. Also, if the T-wave overlaps the P-wave of the following cycle, then 

the increase in the test statistic due to the termination of the T-wave may be followed by a 

fall due to the onset of the P-wave, resulting in a peak. In such cases it may not be possible 

to accurately determine the T-wave end, but the QT interval will almost certainly be 

prolonged. The detector still provides a lower bound on QT interval and may allow 

resolution of the P-wave onset, which manifests as an abrupt decrease in the test statistic.
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The effectiveness of the detector is not significantly affected by morphology variation due to 

gestational age, disease conditions, or other factors, except that the performance is degraded 

by a low signal-to-noise ratio at the T-wave end due to a flat T-wave and/or low signal 

amplitude. The detector, however, assumes that the signal is stationary throughout the 

segment of data used to estimate the termination time. Fetal movement and other causes of 

transient morphology variation are problematic. The algorithm, therefore, should be applied 

during periods of fetal quiescence.

Our method can be applied to detect the onset and termination of other waveform 

components, such as the P-wave and QRS complex. Typically, these events can be 

adequately resolved using subjective assessment; however, our detector may prove useful for 

low SNR data, especially for determination of the P-wave onset. A modest adjustment of the 

spatial basis or time-window length, N , may be needed to achieve optimal performance, but 

in most cases the procedures implemented here for the T-wave should work well for the 

other components. Because the size of the fetal heart ( ≤ 2 cm) is smaller than the source-to-

sensor distance (5-10 cm), the dipole approximation is valid. This implies that the fMCG 

signal should be approximately rank two, and that the signals of all of the fMCG waveform 

components should lie in approximately the same rank two subspace. When choosing the 

length of the time-window, the first requirement is that it must be sufficiently narrow that the 

onset/end is approximately linear within the time-window. A further consideration is the 

trade-off between the detectors temporal resolution and the reliability of signal estimation as 

the time-window length is varied.

V. Conclusion

Our method addresses a critical need for an objective and optimal means of detecting the T-

wave end in fMCG data. It can serve as a valuable adjunct to subjective assessment, 

especially when the T-wave end is ambiguous due to low SNR.
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Appendix

TABLE I

NORMAL SUBJECT DATA. GA=GESTATIONAL AGE, QRS=QRS AMPLITUDE, QRS/T=QRS/T 

AMPLITUDE RATIO, N/F= ROOT-MEAN-SQUARE NOISE TO FETAL QRS AMPLITUDE RATIO, M/F=MATERNAL 

QRS TO FETAL QRS AMPLITUDE RATIO, QT= QT INTERVAL, Δtend= DIFFERENCE BETWEEN T-wave 

termination time for detector versus cardiologists, SD=STANDARD DEVIATION

# GA (wks) QRS (fT) QRS/T N/F M/F QT (ms) Δtend (ms)

1 25.7 498 8.8 0.3 1.46 200 5.8

2 22.6 851 44.2 0.3 1.92 221 13.4

30.4 1000 8.0 0.2 1.14 277 −13.4

34.3 1175 7.4 0.3 1.40 296 1.9
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# GA (wks) QRS (fT) QRS/T N/F M/F QT (ms) Δtend (ms)

37.4 1359 18.2 0.3 1.63 394 −1.9

3 37.0 3035 17.2 0.2 0.65 369 1.9

4 33.4 1170 10.0 0.3 0.91 228 −5.8

21.6 671 18.1 0.3 1.77 223 3.8

5 26.9 977 8.1 0.3 1.62 230 −5.8

34.1 3621 6.4 0.2 0.60 267 −3.8

6 37.0 953 9.4 1.1 1.91 234 3.8

7 28.4 4687 13.9 0.2 0.54 234 −5.7

8 21.9 790 14.8 1.6 2.76 313 −3.8

9 24.0 566 12.9 1.0 8.06 227 −9.6

35.4 813 15.8 0.5 3.85 267 −15.4

10 24.1 1236 28.1 1.1 6.28 225 0.0

28.9 1566 12.0 0.7 3.06 255 5.8

11 31.6 697 6.6 0.5 2.73 217 −7.7

12 30.0 692 6.9 1.1 2.67 319 1.9

13 35.0 862 10.0 0.5 4.46 246 −11.5

14 34.7 1140 10.2 1.1 1.59 250 1.9

15 35.3 2618 14.2 0.2 1.67 267 −1.9

30.3 591 11.4 0.6 2.56 315 −1.0

16 36.3 396 8.3 0.5 6.95 243 0.5

17 33.7 3028 7.5 0.2 1.06 282 1.9

18 22.0 286 10.4 0.4 6.20 240 7.5

19 21.3 508 21.4 0.2 1.29 263 11.5

26.4 827 13.8 0.2 1.27 254 −3.8

20 35.1 2034 16.0 0.2 1.57 200 −7.7

21 27.0 747 8.9 0.4 2.22 326 −5.8

Mean ± SD 30.1 ± 5.4 1313 ± 1055 13.3 ± 7.7 0.5 ± 0.4 2.5 ± 2.0 263 ± 47 −1.4 ± 6.9
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Fig. 1. 
Simulation result showing a) averaged fMCG waveform and b) test statistic, ℓ′(k). The 

simulated data was formed by embedding 100 high SNR fetal templates in white noise and 

maternal interference. In this example, the ratio of the root-mean square (rms) amplitude of 

the white noise with respect to the fetal T-wave was 4. The ratio of the amplitude of the 

maternal QRS complex with respect to the fetal QRS complex in the channel with largest 

fetal signal was 1. The ground truth T-wave termination is indicated by the arrows.
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Fig. 2. 
Mean detector error and standard deviation (SD) for two methods of choosing the 

termination time: local minimum of the second derivative with highest test statistic 

(asterisks) and lowest local minimum of the product of the test statistic and the second 

derivative (squares). The synthetic data included white noise and maternal interference. The 

maternal-to-fetal QRS amplitude ratio was 1. Each data point represents the accumulated 

result of 300 simulations
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Fig. 3. 
Mean detector error and standard deviation (SD) as a function of the white noise-to-fetal 

signal amplitude (N/F) for three levels of maternal-to-fetal QRS amplitude (M/F; a, d), the 

percent signal modulation for four N/F ratios (b, e), and the baseline wander amplitude for 

four N/F ratios (c, f). Each data point represents the accumulated result of 350 simulations.
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Fig. 4. 
a) Bland-Altman plot showing the agreement between the detector and the cardiologist 

measurements of QT interval in normal subjects and b) histogram of the detector errors 

relative to the cardiologist measurement.
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Fig. 5. 
Example of fetus with long QT syndrome. a) Test statistic, b) weighted second derivative of 

test statistic, and c) averaged fMCG waveform, showing late-peaking T-wave typical of fetal 

LQTS. The termination time chosen by the cardiologist was 10 ms earlier than the time 

chosen by the detector (vertical line).
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Fig. 6. 
Example of fetus with long QT syndrome, in which QT assessment is confounded by artifact 

from the mothers implantable cardioverter defibrillator (ICD). a) fMCG tracing from a 

channel with barely visible fetal signal (arrows), b) fMCG tracing from a channel with 

strong, periodic pacemaker artifact, c) test statistic, d) weighted second derivative of the test 

statistic, e) averaged fMCG waveform where independent component analysis was used to 

separate the fetal signal from the interference. The termination time chosen by the 

cardiologist was the same as the time chosen by the detector (vertical line).
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