
HAL Id: hal-04715942
https://inria.hal.science/hal-04715942v1

Submitted on 1 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A unified approach to the evaluation of a class of
replacement algorithms

Erol Gelenbe

To cite this version:
Erol Gelenbe. A unified approach to the evaluation of a class of replacement algorithms. [Research
Report] IRIA-RR-005, IRIA. 1972, pp.34. �hal-04715942�

https://inria.hal.science/hal-04715942v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

<*> 4^.'

\m

i

:'£w^X;S'

WÊÊÊ

fffut de Recherche
d'Informatique

et d'Automatique

laboratoire de recherche
en informatique
et automatique

A Unifiée! Approaeh
to the Evaluation of
a Class of

Replacement Algorithms

Erol Gelenbe
SH f

Rapport de Recherche n°5

décembre 1972

A UNIFIED APPROACH TO THE EVALUATION OF
REPLACEMENT ALGORITHMS*

E. Gelenbe

ABSTRACT

The replacement problem arises in computer system management

whenever the exécutable memory space available is insufficient to con-

tain ail data and code which may be accessed during the exécution of an

ensemble of programs. An example of this is the page replacement

problem in virtual memory computers. The problem is solved by

using a replacement algorithm which selects code or data items which

are to be removed from exécutable memory whenever new items must

be brought in and no more free storage space remains. An automaton

theoretic model of replacement algorithms is introduced for the class

of "random, partially pre-loaded" replacement algorithms, which con-

tains certain algorithms of practical and theoretical interest. An

analysis of this class is provided in order to evaluate their performance,

using the assumption that the references to the items to be stored are

identically distributed independent random variables. With this model,

it is shown that the well-known page replacement algorithms FIFO and

RAND yield the same long-run page fault rates.

*
To Appear in IEEE Transactions on Computers.

1. Préfacé

The replacement problem is basic to certain situations in

which a limited number of resources are multiplexed among a larger

number of users. The problem may be stated as follows. Consider

a set of users U = {upUg, . . . , un} and a set of identical resources
R={ri,r9, ...,r } with m < n. At each instant of timeL 1' <*' ' mJ —

t t ttp Ig, • • • , Ljp • • •

exactly one of the users requests and utilizes a re source without con-

suming it. At that time, one may discover that ail of the resources

have already been allocated, so that if our policy is to systematically

satisfy each request we shall have to de-allocate a resource from one

of the users. A replacement algorithm is applied at such times to

select the user who is going to lose his resource, and the replacement

problem is to select an algorithm based upon certain criteria and to

evaluate the performance of the algorithm. Various generalizations

of this problem may be imagined; one may consider several types of

resources, for instance.

A typical application of this problem is to computations carried

out with limited memory space. Suppose that the set of resources

corresponds to a set of memory units of equal size from which instruc¬

tions can be executed, and let the set of users be an ensemble of data

1

2

items (ail of equal size) which are stored normally on some peripheral

memory unit and brought into a memory unit (one data item per memory

unit) at exécution time. In such a situation, the replacement algorithm

is selected so as to reduce the number of time s data items have to be

transferred to and from the peripheral memory since this is usually

a time consuming opération.

A class of replacement algorithms of interest are the random

partially pre-loaded algorithms we shall study here. One may imagine

that in many cases it is imperative that certain users never lose their

resources, or that certain data items never be removed from their

memory units. A random partially pre-loaded algorithm maintains

the resources allocated to these users, and selects the user who will

lose his re source at random from the remaining one s with equal

probability. This class of algorithms is also of particular interest

on theoretical grounds, as will be seen below.

The mathematical model we shall use to describe and evaluate

this class of algorithms is a stochastic automaton [6]. These automata

have appeared in the literature primarily as models of communication

channels and sequential machines with random failures, as well as to

represent adaptive or learning automata.

In the sequel, we shall discuss the problem using the terminology

of storage allocation problems [1] both to simplify the discussion and to

provide motivation for the reader. It should be stressed, however, that

we consider the problem as being of broader interest.

3

In some virtual memory computer Systems [1] , a program's

address space is divided into equal size blocks called pages.

Similarly, primary memory space is divided into page frames

each of which may contain a page of some program. At a given

instant of time, not ail of a program's pages need résidé in memory

so that when the program references a page not in memory, a page

fault occurs suspending computation until the referenced page can

be brought in.

Suppose that a program's set of pages is N = (p1}p9,* ° • ,P)
et n

and that exactly m of these can be kept in memory. Then, if m <n,

each time a page fault occurs one of the pages currently in memory

must lose its page frame to accommodate the incoming page. An

algorithm which selects the page to be removed from memory when

a page fault occurs is called a page replacement algorithm (PRA).

Since a high page fault rate will cause a détérioration of system

performance, it is of great interest to détermine, the page fault rate

caused by various PRA [2] .

The class of random partially pre-loaded (RPPL) PRA con-

tains both RAND 2 which selects the page to be replaced at random

with equal probability among the pages in memory, and A which

was shown in 4 to be the "optimal" algorithm if program references

are represented as a sequence of independent identically distributed

random variables. RAND is used as a benchmark [2] since no PRA

4

used in practice should have a worse performance than RAND. The

class of RPPL PRA contains

m-1

Z 0
i=0

algorithms, and the évaluation presented in this paper gives us a

single expression for the long run page fault rate for any algorithm

in this class, based on a model of the page reference string.

Any theoretical évaluation of a PRA requires a mathematical

model of the reference string. The model we shall use here is the

same as the one used by King [3], namely the independent identically

distributed model. This model captures the fact that programs do

not refer to their pages with the same frequency; i. e. some pages

are referred to more frequently than others. It does not capture the

corrélations which exist between successive page references or any

time-varying behaviour which may exist. Thus this model is of interest

over relatively short lengths of program activity; a detailed discussion

of its région of validity is given by Denning and Schwartz [7]. Since

replacement algorithms are of more général interest than in their

applications to virtual memory machines, the independent reference

model yields an évaluation which is more universal than a more realis-

tic but more restricted représentation of the reference process.

5

2. Introduction

In this section we shall define some concepts of use to us.

Subséquent sections will contain the results of this paper.

Définition 1 A page reference string is a sequence of symbols

from N, the set of pages. It represents the sequence of pages

referenced by the program during exécution.

Définition 2 A memory state s is an m-element subset of N.

There are distinct memory states, where m is fixed and

1 < m < n. Sm is the set of ail memory states.

We will now define formally a page replacement algorithm.

Before doing that, however, let us describe informally what it

does. A PRA is a control mechanism which examines the page

reference string and the memory state, and with this information

(and other information which it may store) changes the memory

state with the following constraints:

(a) If the last page referenced is in memory, the new

memory state will still contain it.

(b) If the last page referenced is not in memory, the new

memory state will contain it.

This notion of a PRA maybe generalized to randomized algorithms

in which memory and control state transititions are probabilistic,

6

A probability distribution on the finite set V = (v^, v^ • ° °, v^)
is the row vector a = {a^a^, > • • ,ot^)

where

ai ^ 1 5 1 ^ f> and
f

È «i = 1
i=l

This is interpreted as follows. Let v be a random variable taking

values in V. Then

a. = Prob [v = v.]

We say that a is degenerate if for some j, 1 < j < f, <2. = 1„

Définition 3.

A PRA is the System

B = (S, Q, M, s0, qQ, {M(r)})

where

S is a non-empty | S | ^ - element subset of S ,

Q is a finite |QI - element set of control states,

N is an n-element (n>m) set of pages,

s is the initial memory state, s e S.
o ' o

q is the initial control state, q e Q„^o ' ^o

1) |x 1 is the cardinaiity of the finite set X.

7

o

{M(r)} is an n-element set of stochastic matrices each
of which is | S | • | Q ! by | S MQ i, and contains a

matrix M(r) for each pr e N.

Each pair (s,q) e SxQ is called a configuration, To each distinct

configuration (s,q), we assign a distinct integer i = g(s,q)-,

1 < i < IsMQl, with the restriction that g(so,qo) = 1. The set
{M(r)} is interpreted as follows. For any p^ e N, let m^(r) be the
i-th row, j-th column entry of M(r), where 1 < i < |s|° |Q|,
1 < j < 1S 1 • |Q|o Then m„(r) is the probability that when the

program references page p^ and B is in configuration (s,q), the
new configuration will be (s',qT), where i = g(s,q) and j = g(s',q')°

Let

X = p p '"'P p
rl r2 rk rk+l

be a page reference string. The PRA B responds to x by passing

through a sequence of configurations

y y ° • • v v » » •

1' 2' ' k' k+1'

where

and

Prob {g(Y1)= j I (so,qQ), p } = mlj(r1) <x)

Prob fe(Yk+1) = j I g(Yk) = i, p } = (2)
K+1

2) A matrix is stochastic if each of its entries is non-negative,
and the sum of the entries along each row is 1.

8

for any 1 < i, j < IS | • | Q |, and k > 1 .

We say that a PRA is deterministic if for each e N, m„(r)

is either 0 or 1 for ail 1 < i, j < |S | » |Qf „
In Définition 3, S is a subset of S to indicate that certain PRA' m

(such as Aq [2]) keep the memory state in a proper subset of S .

The raodel of program behavior under which we will evaluate

a PRA is identical to the one defined by King [3] . Let |3 = (/3^, (3g, •0 e
be a probability distribution on N, the set of pages» We shall assume

that for any page reference string

p p • • • p p
rl r2 rk rk+ 1

the following properties hold

(I) Prob [rk=i] = ^ for any k > 1 and 1 < i < n.

(II) For any k jP > 1, k > 1, the event [r^ = i]
is independent of the event [r^ = j] for any
1 < i, j < n,

(III) j3i ^ 0, for each 1 < i < n.

This simple model is known as the independent reference model

of program behaviour. Henceforth, it will be understood that the

page reference string constitutes a random process governed by

rules (I), (II), and (III) above. Let
Y Y • • • Y Y
1' 2' » k' k+1'

9

be the sequence of configurations the PRA B passes through in

response to a page reference string. Due to property (II) of the

page reference string and (1), (2) we have that

Prob {g(Yk+1) = jl g(Yk) = i, Yk_p • » •, Y2,Y^, (sQ,qo)}

= Prob {g(Yk+1) = j I g(Yk) = i}
so that the sequence (1) is a Markov chain [5] » The states of this

chain are the configurations of B and the transition probabilities are

easily obtained as follows; let c^ be the probability of transition
from the configuration numbered i to that numbered j, 1 <i, î< IS |* IQ|.
Then

c.. = Prob {g(Yk+1) = j |g(Yk) = i }

= E (r) (3)
r = 1

and we dénoté by C the matrix whose i-th row, j-th column entry

is c^. Evidently C is a stochastic |S | * |Q| by |s|* |Q| matrix.
Définition 4.

A PRA is said to be a dem and paging algorithm if for any

i = g(s,q), j = g(s',q') such that mi.(r) ^ 0 and p^ / s we have that
Pr is the only element in s' which is not in s, That is, only the

10

page which has been demanded is loaded into memory.

In a demand paging PRA, a transition from configuration (s,q)

to (s',q') is called a page fault transition if s^rs'.
Ail PRA studied in this paper are demand paging algorithme.

Now let us turn to the performance measure for a PRA which

we will use in this work, This too is identical to the one used by

King [3] o

Again, consider the sequence of configurations

V Y o « o Y Y •••Y • • o
1' 2' ' k' k+1' >xw»

which the PRA produces in response to a page ref erence string.

Let Yq = (s0,q0) and define fk(s,q), k> 1, as follows:

fk(s,.q) = ^
1, if the transition from Yk ^ to Yk is a page

fault transition, and Yk = (s,q), (4)

0, otherwise.

for any configuration (s,q)0 Let

w

Nw(s»^) = S fk(s,q)W
k = l K

Définition 5

The expected long-run page fault rate for the PRA B is

F(B) = Z
ail

(s.q)eSxQ

lim E
W-QO m

(5)

11

if the limit exists.

For the class of algorithms studied in this paper, the limit in

Définition 5 always exists.

Let C* be the matrix obtained by multiplying C by itself t times.

We say that the Markov chain is irreducible and aperiodic if there

exists a natural number t such that each entry in cf is non-zero

for ail t > t . This is équivalent to stating that the probability of

transition from any one configuration to any other one (including

itself) in t steps is non-zero for ail t >t . A chain with this

property is also called regular [5]. Regular chains have useful

properties, sorae of which will be applied here since we will be

dealing with PRA for which the chain with transition matrix C is

regular. The following is a well known theorem.

Theorem 1 [5] „ Let the Markov chain with transition matrix C be

regular. An |s|° !Q1 - element stochastic row vector £ exists such

that

! 0 C = £

The i-th entry of £ , denoted by | (i), i = g(s,q), is the long run

probability of finding the chairi in configuration (s,q), for any

(s,q) e SxQ. | is unique.

A form of F(B) which i s more convenient for our purposes is

given in the following lemma whose proof can be found in Appendix 1.

12

Lemm a 1 . Let T(i) be the set of integers

T(i) = {j |i = g(s,q), j = g(s',q') and the transition from (s,q) to

(s',qf) is a page fault transition }

Then if the chain with matrix C is regular, for any initial configuration

Isl-jQl
F(B) = L ?(i) Z c

i = 1 ail 13
JeT(i)

for any demand paging PRA B and the independent reference model

of program behaviour.

This lemma simply states that if C is the transition matrix of a

regular Markov chain, then the expected long run page fault rate

is merely the probability of a page fault occurring at steady state.

3. Random, Partially Pre-Loaded Algorithms

In this section we introduce the class of PRA which are the subject

of our study. A theorem giving the expected long run page fault rate

for this class is stated. As an application of this theorem, we obtain

F(Aq), and show that it is equal to the expression for Aq derived by
King [3] by other methods.

Définition 6.

For 0 < k < m - 1, let ^ by any k-e!ement subset of N; i//q is the
empty subset. A random, partially pre-loaded (RPPL) PRA is the

13

System B of Définition 3 with the following restrictions:

(a) S = {s| se Sm and ^ c s} so that 1S | =

(b) Q = {qQ}, hence |Q| = 1 and each M(r) is |s| by 1S i„
(c) For any s, s' e S; any pr e N, i = g(s,qQ), j = g(s',qo),

m..(r) =

1 if i = j and pr e s0

~~if p e s', p ds, and p is the onlym-k *r ' ^r * ' *r J

page in s' which is not in s„

0 otherwise.

Note that for each k there are ^ distinct RPPL algorithme
A RPPL algorithm always maintains in memory, where

has been chosen on the basis of some décision external to the algorithm,

Each time a page fault occurs the page to be replaced is chosen with

equal probability among those pages in memory which are not in \]y .

Clearly, a RPPL algorithm is a demand paging algorithm.

With the following theorem we obtain an expression for the

expected long run page fault rate of any RPPL PRA.

14

Theorem 2„ Let B be a RPPL PRA with ^ = (p1,p2, * ° °, P^ such
that j3 = (|31, |30, •00, (3) is the probability distribution on the set1 ù n

N = (p^,P2> * • • ,Pn). (No spécial relation among the (3., l<i<n, is
implied by this choice of i/^). Then

F(B) =

L /3t & . » o ^ Yi P ç
ail k+1 k+2 m p d g
se S SL

l h 0" %
ail k+1 k+2 m

se S

where s = (PVP9,0o*,Pk,Pi , Pi ,**°,Pi) if 1 < k< m-1,12 K *k+l *k+2 ^
and s = (p. ,p ,000,Pi) if k = 0„

ll 2 m

Theorem 2 is proved in Section 4„ The rest of this section is

devoted to an application.

The PRA Aq[4] maintains the m-1 pages whose probability
of being referencedis highest^constantly in memory. King [3]

obtained F(Aq); we obtain the same resuit here as a corollary to
Theorem 2.

Définition 7.

Let the relationship ^ > Pn hold. Then Aq is the
RPPL PRA with k = m-1, ^m_1 = (?i'?2'° ° °'Pm-1^ 311(1

So = (P1,P2,---,Pœ.rPm>-

15

Theorem 3„

F(AQ) -

E % E.
ail m p. ^ s
se S

lh
ail m

se S

where S = {s | s e Sm and <^m_^ cs}, and any se S is of the form
s = (VVV2>°"> Pm_!»Pi)» m<im<n-

m

F(Aq) in Theorem 3 may be rewritten as
n n

E a ,E f>i
J=m

F(Ao) =

i=m

Mi

n

]=m

since m < im < n, and because p ^ s implies that m < l < n .

But then

F(Ao) -

n 1

E
n

^ ;
]=m]J

z
]=m

n

E A
3=m

which is equal to the expression obtained by King [3]

16

4, Proof of Theorem 2,

Let C be the transition matrix defined by équation (3) of Section 2.

The proof of Theorem 2 consists of the following parts.

(A) The entries of C will be obtained.

(B) It will be shown that C is the transition matrix of a regular

Markov chain.

(C) The stochastic row vector £ satisfying

will be obtained.

(D) F(RPPL) will be derived using Lemma 1.

PART (A) By Définition 6, C is |S ! by |s|„ Let u = g(s,qQ),
v = g(sT,qQ); s, s' e S. Then by (3) and (c) of Définition 6 we have

n

cuu = Prmuu(r)

- I
ail

Pres

^r
c = —r , if p i s, p es', and p is the
uv m-k ' ' r f ' ^r ' *r

only page in s' which is not in s.

c = 0 , in ail cases not covered by
uv ' J

(6) and (7).

17

PART (B) To show that C is regular, it must be shown that the

probability of reaching any configuration w = g(s", qQ) from any
u = g(s,qQ) in t steps is non-zero for any t > t , and tQ fixed.
This is easily proved» Let s" contain y pages not in s; let these

pages be

Evidently y < m-k. Then w = g(s",qo) is reached from u = g(s ,qQ) with
no more than m-k transitions of the type whose probability is given

in (7). Since ^ 0, 1 < i <n, by property(ill)of the independent refer-

ence model of program behaviour it follows that the probability of

this y step transition is non-zero since it can be no smaller than

The probability of reaching w from u in more than y steps is

also non-zero since an arbitrary finite number transitions of the

type whose probability is given in (6) can be used as well.

Therefore C is regular and t < m-k.

PART(C)„ For any s e S, recall that without loss of generality

we write

(9)
(m~k)^

(10)

18

if k > 1 and ^ = {p1, p2, •0 0 ,Pkl, and

s = (p. , p. , • •0 ,Pj) U1)
A1 2 m

if k = 0 (since ^ is empty). Further, note that for 0 < k < m-1,

p. £ (12)
k+j

for any 1 < j < m-k. Let (s,q), (s',qo) be two configurations of
the RPPL algorithms so that u = g(s,qQ) and v = (s',qo)c By
Theorem 1 and PART (B) of this proof , there exists an |s|-dimen-
sional row vector £ whose u-th entry £ (u), 1 < u < |s|, is the

long run probability of finding the Markov chain C whose entries

are given by (6), (7)} (8), in configuration (s, qQ) where u = g(s, qQ).
Furthermore, £ satisfies

and

« • C m (13)

IS |
Z É(u) = 1 (14)
u=l

Equation (13) may be written as |S1 équations of the form (for each

l<u < |S|, u = g(s,qo), s e S)

LS>
S (u) = Z ?(v) cyu

V=1

19

which, using -(6), (7) , (8) becomes

3.
m-k î^.,.

î(»)-Ï(») E S E (M ■ m
ail] = 1 ail
Pr e s v e R(u,j)

where B(u, j) is the set of ail v * g(s%qo) such that if sT is the
memory state when the program references page p. , for some

lk+j
j, 1 < j < m-k, then a page fault will occur and the new memory

state will be s with probability (from (7))

c = (16)
vu m-k '

Thus, each s' may be expressed as

s' = s U{p } - {p. } (17)
Tc+j

where pa / s, if v = g(s', qQ) e R(u, j).
We shall show that for each u, 1 < u < |S | ,

3- 3; o 0 o 3i
^ u s k+1 k+2 m£(u)= — (18)

ail k+1 k+2 1m
se S

satisfies (15), where u = g(s,qQ) and s is given in (10).
By (17), (18):

«(v)=3T~ Ê<u) (19)
^+ 1

Let the right-hand side of (15) be called Q. To show that | (u) in (18)

satisifies (15), it suffices to prove that by substituting (19) in Q we still

obtain

Q M (u)

20

Substituting (19) in Q we get that

Q = !(u) E (V m2k E ea 4^all j = 1 ail a m K
Pre s veR(uJ)

But, for each pa ^s, R(u, j) contains exactly one v and |R(u, j) | = m-n,
independently of j. The refore

Q= l(u) Z /3r + "zk Z £r (20)
ail] = 1 ail
V 8 prf

But | (u) (in (18)) is independent of j, therefore

s

Q= 5(U) Z P- + «M Z pr (21)
ail ail r
Pres pr(s

= l(u)

so that the proof that £ (u) in (18) satisfies (15) and (13) is complété .

The vector | defined by (18) is stochastic since its entries sum

to unity. This complétés Part (C) of the proof.

21

PART (D). By Lemma 1, and PART (B) of the proof, for any

RPPL PRA, independently of the initial configuration,

|S|
F (RPPL) = Z i;(u) Z C (22)

u= 1 ail
ve T(u)

Let u = g(s,q) and let pr ^ s» If the RPPL PRA is in configuration
(s,qQ) when the program references page p^, the PRA may enter any
one of (m-k) configurations of the form (s',qo);v = g(s',qo), where
s'=sU{p }-{p. } for any 1 <] < m-k, with probabilityr ht+j
(see (7))

m-k

Evidently, each such v is in T(u). Since this is true for each s,

we have

Z cuv - Z (m-k). ^
ail ail

ve T(u) pr^s
■ Z s

al

pr*
ail r <23>

22

Turning to équation (22), we see that it may be rewritten as

F(RPPL) = 2 | (u) E Pr (24)
ail ail

se S p^s

using (23) and the fact that for each 1 < u < |S | there is a unique

s e S such that u = g(s,qQ), and vice-versa. When (20) is used in
(24) we obtain

F (RPPL) =

Z Pi Z Pr
ail k+1 *k+2 *m ail r
Se S Pr^s
Z Pi Pi • • ° Pi
ail k+1 k+2 m

se S

which complétés the proof of Theorem 2„

5o The Algorithms RAND and FIFO

It is the purpose of this section to define and examine the algorithm

RAND and to show that the expected long run page fault rate of RAND

and of the well known PRA FIFO [3] are equal for the independent

reference model of program behaviour.

RAND is, in some sense, the most trivial PRA. Whenever a

page fault occurs, RAND chooses the page to be replaced at random

among the pages in memory so that the probability of being removed

is equal for ail pages in memory. Thus any PRA being used should

23

have a page fault rate which is at least no worse than RAND's,

and RAND is useful as a basis for comparison.

FIFO (First-In-First-Out), on the other hand, always replaces

the page which was first to enter memory among the pages currently

in memory. FIFO is briefly discussed in [2] » King [3] has

obtained F (FIFO) under the independent reference model of program

behaviour.

Définition 8.

RAND is the RPPL PRA with k = 0 (so that is the empty subset

of N and S = S).'
nr

As an immédiate conséquence of Theorem 2 and Définition 8 we have

Theorem 4. The expected long run page fault rate of RAND is

r

F (RAND)

E Pi Pi • ° * Pi E P
ail 1 2 m ail
se S pr£s

E Pi • ° • Pi
ail 1 2 m

se S

where s = (p. ^p. ^...^p,) for any s e S.
h l2 Xm

From King's paper [3] we have an expression for F(FIFO) which

we will presently show to be identical to F(RAND). But first let

us describe the PRA FIFO.. Informally, FIFO keeps a marker on that

24

page which was first to enter memory among ail pages currently

in memory „ Whe.n a page fanlt occurs, the marked page is re-

moved from memory and the marker is updated. Thus, FIFO

is a deterministic PRA with S = S ; whenever s = (p. ,p. , • • • ,p.)m I4 1a 1
12 m

is the memory state, the control state is q = (p. ,p. , * * *p.) where
h J2 3m

(jl,j2i',,im) is a permutation of (i^ig, * * ' ,im) so that p. ,p
1 2

is the ordering of the members of s from left to right in order of

first entry into memory (i.ec p. is the First-In, etc.) If now the

program references pff s causing a page fault, the new memory

state is

s' = s U{pJ - {p. }

and the new control state is

q' = (p, , p, , • » •, pi , pJ
2]3 3m a

Thus, for each memory state thereare m! possible control states,

For a formai treatment of FIFO the reader is referred to [3] .

Theorem 5. (King |" 3]) The expected long run page fault rate of

FIFO under the independent reference model of program behaviour is

l 13, 13, •■■13. (1-0 -0 -..-13)
ail J1 J2 m J1 J2 m

F (FIFO) = -9^-
ail \ Pj * •*
qeQ 1 2 m

where

q = (Pi ,P, r-,Pj)•
J1 J2 m

25

When the control state is q of Theorem 4, the memory state is

s = (pt ,Pi ,"'Pi) where (j1 ,j • • »,j) is a permutation of
12 m

(il' i2' ' * ' im) so that

Tj & /3. = (m!) 2 P,
ail H ^2 m ail 1 2 m

qe Q se S

Furthermore

so that

Z 0r = (H3, -P, -"-0.)
ail J1 J2 Jm
prfs

Z Oi ^ ••• % Z 0r
ail 12 m ail.
se S p„ i s

F (FIFO) = *
S^i/iail 12 m

se S

and since S = S for both FIFO and RAND, we have
m '

Theorem 6. F(FIFO) = F (RAND)

26

Appendix 1

Proof of Lemma 1

It is to be shown that if the Markov chain with transition

matrix C, given by (3), is regular for the PRA B under the

independent reference model of program behaviour;then the

expected long run page fault rate F(B) defined in Définition 5

is given by:
IS1° 1Q |

F(B) = X ÉW h (1-1)
i= 1 ail XJ

j e T(i)

where | (i) is the i-th entry of the vector £ of Theorem 1, and

is an entry of the matrix C defined by (3).

Let u = g(s,q), v = g(s',qT), for any two configurations (s,q),

(s',qT). Let

Yl> Y2> •••' Yk'""

be the sequence of configurations the PRA B passes through in

response to a page reference string; B is started in = (s0>^0)«
Define the function

1 if g (Y,) = u,

hk(u)= (1.2)
0 otherwise,

27

for ail k> 0, and

w-1

Mw(u) = 2 bfcfr) (1-3)
k = 0

We will need the following theorem known as the law of large

numbers for regular Markov chains.

The Law of Large Numbers (Theorem 4. 2.1 of [5"!)

Let C be the transition matrix of a regular chain with stochastic

vector £ satisfying

£C = £

Then, for any initial state (in this case "configuration") it follows

that

jM (u)
lina E (—^| (u)
w-co ^

and for any £ > 0

f M (u)
lim Prob < | —^— - |(u)|>£^ = 0
W-oo 1

28

For any v = g(s',q'), k > 1, let

1 if g(Yk_x) = u and g(Yfe) = v,

XfcKv): 'I 0, otherwise (1.4)
and

w

2 xk (u>v)
e <u,v) = E ' k=1wx ' ' w

=

» k?i E {Xk<U>V)} U-5)
But quite simply, by (1.4),

ElX^.v)} = Prob {X^u.v) = 1} (1.6)

and by Bayes' rule and (1.2)

Prob { ^ (u,v) = 1} = Prob { v = g(Yfe) I u = g(Yk_1)}

. Prob {hk_1(u) = 1}
But since

Y y • » • Y •••

1' 2' k'

29

is a Markov chain, we have that

cuv = Prob {v = g(Yk) I u = g(Yk_1)}

independently of k, so that by (1. 5) and (1.6) we-obtain

1 ^
e (u,v) = - E c Prob {h, ^u) = 1 }wv ' ' w , uv L k-lv ' Jk=l

But then

i w:l
ew(u'v)= w °uv A Prob {Vu) = 1}K=U

and by (1. 2)

Prob {hj,(u) = 1} = E^fu)}

therefore using (1.3) we obtain

e u.v = c E \ >wv * ; uv | w /

so that by the Law of Large Numbers,

lim e (u,v) = £ (u) cwv ' ' s v ; uv
W-00

30

for any u, v. In particular, this is true if the transition from

(s,q) to (s^q') is a page fault transition, u = g(s,q), v = gls^q'),

With reference to (4) of Section 2 and (1.4), notice that f, (s',q') =1
XV

if and only if X^(u,v) = 1 for any (s,q) such that the transition from
(s,q) to (s^q') is a page fault transition,, Therefore from (5):

w

Nw(s''«'' " 2 2 xk(u>v) (1-9)
k=l ail u

such that
v e T(u)

so that by (1.5)

,Nw(s',qTe {—s—y = 2 ew(u.v> d-io)
ail u

such that
v e T(u)

By (1. 8) and (1. 10)

fN (s',q') |
llm E = 2 «<»> cuv (1.1D
w-co ^ J ail u

such that
v e T(u)

Finally from (1.11) and Définition 5 we obtain

N (s',qT)
F(B) = J lim Ey W

ail w-oo

(s', q')e SxQ

w

ISHQI
2 X l(u) C
v= 1 a

such that
v e T(u)

II u uv

The two summations in the above expression are used to sum | (u)cuv

31

over ail pairs (u,v) such that v e T(u). Therefore we may rewrite

this as

IsLlQl
F(B)= l z

u = 1 ail
v e T(u)

completing the proof.

32

REFERENCES

B. Randell and C. J. Kuehner, "Dynamic storage allocation
Systems", Commun. Ass. Comput. Mach., Vol. 11, No. 5,
May 1968, pp. 297-305.

L. A. Belady, "A study of replacement algorithms for a virtual
storage computer", IBM Systems Journal, Vol. 5, No. 2, July
1966, pp. 78-101.

W. F. King III, "Analysis of paging algorithms", IBM Research
Report RC 3288, March 1971.

A. V. Aho, P. Denning, andJ. D. Ullman, "Principles of
optimal page replacement", Journal Ass. Comput. Mach., Vol.
18, No. 1, Jan. 1971, pp. 8CP$3:
J. G. KemenyandJ. L. Snell, Finite Markov Chains, Van
Nostrand, Princeton, N. J., 1960.

T. L. Booth, Sequential Machines and Automata Theory, New
York: Wiley, "15FT

P. J. Denning and S. C. Schwartz, "Properties of the working
set model", in ACM Third Symposium on Operating Systems
Principles, pp. 130-140, Oct. 1971.

