
MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 1

Enabling Homomorphically Encrypted Inference
for Large DNN Models

Guillermo Lloret-Talavera, Marc Jorda, Harald Servat, Fabian Boemer, Chetan Chauhan,
Shigeki Tomishima, Nilesh N. Shah, and Antonio J. Peña

Abstract—The proliferation of machine learning services in the last few years has raised data privacy concerns. Homomorphic
encryption (HE) enables inference using encrypted data but it incurs 100x–10,000x memory and runtime overheads. Secure deep
neural network (DNN) inference using HE is currently limited by computing and memory resources, with frameworks requiring
hundreds of gigabytes of DRAM to evaluate small models. To overcome these limitations, in this paper we explore the feasibility of
leveraging hybrid memory systems comprised of DRAM and persistent memory. In particular, we explore the recently-released
Intel® Optane™ PMem technology and the Intel® HE-Transformer nGraph® to run large neural networks such as MobileNetV2 (in its
largest variant) and ResNet-50 for the first time in the literature. We present an in-depth analysis of the efficiency of the executions with
different hardware and software configurations. Our results conclude that DNN inference using HE incurs on friendly access patterns
for this memory configuration, yielding efficient executions.

Index Terms—Privacy-Preserving Machine Learning, Deep Learning, Homomorphic Encryption.

F

1 INTRODUCTION

MACHINE learning (ML) enables solving problems that
are infeasible with traditional techniques in fields

like computer vision or speech recognition. Although the
available computational power is ever-increasing, most ML
projects are still relatively highly compute-intensive. Data
scientists and commercial ML deployments often resort to
third-party providers to speed up training and inference
tasks. For instance, mobile-based voice recognition is fre-
quently implemented as a cloud service.

Practical homomorphic encryption (HE) implementa-
tions emerged recently and enable computations directly
on encrypted data; the (encrypted) result is correct as if
it were produced by the traditional method (decryption,
computation, and encryption) and may be decrypted using
the secret key. HE is not exempt from drawbacks that
render it currently impractical in many scenarios: the size
of the data increases fiercely when encrypted, whereas the
computation time is considerably higher than that over un-
encrypted data. HE requires the selection of several param-
eters; ensuring high security level, such as post-quantum,
requires large memory and runtime overheads [1]. Values
for this overhead vary depending on the security param-
eters, usually being in the order of 100x for compute and
100x–10,000x for data size. There are clear use cases for

• G. Lloret-Talavera, M. Jorda, and A. J. Peña are with the Barcelona
Supercomputing Center (BSC).
E-mail: {guillermo.lloret,marc.jorda,antonio.pena}@bsc.es

• H. Servat, F. Boemer, C. Chauhan, S. Tomishima, and N. N. Shah are with
Intel Corporation.
E-mail: {harald.servat,fabian.boemer,chetan.chauhan,shigeki.tomishima,
nilesh.n.shah}@intel.com
© 2021 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

deep neural network (DNN) model and dataset encryption,
such as intellectual property or sensitive data protection.
While customary RAM, based on DRAM technology, is
far from able to entirely host production-sized homomor-
phically encrypted DNNs or associated datasets, out–of–
band algorithms will suffer from intrinsic data movement
overheads, apart from the added code complexity. Only
reduced-size homomorphically encrypted DNN inference
cases have been reported, on top of DRAM, while training
is considered too time-consuming [2].

Recently, dual in-line memory modules (DIMMs) based
on new technologies have become commercially avail-
able. One of these alternatives to traditional DRAM is
the Intel® Optane™ PMem product line [3]. Besides non-
volatility, it offers a much larger capacity than DRAM, with
up to 512 GB of memory in a single DIMM. However, the
access latency for the persistent memory is considerably
higher than that of DRAM, especially when storing data.
With respect to DRAM, its latencies increase 2x–6x for reads
and 6x–30x for writes depending on the access pattern,
whereas bandwidth decreases around 75% for reads and
90% for writes. To palliate this large gap with DRAM
performance, which is exacerbated at non-sequential access
patterns due to large access block sizes, DRAM and PMem
are usually combined on a hybrid memory system. This
technology may be an enabler for large DNNs to be run
using HE in a single machine; however, prior to this work, it
was unclear how Intel Optane PMem latency characteristics
would affect performance.

In this work, we present, for the first time in the
literature, an exhaustive performance analysis of an HE
framework running on a system with hybrid DRAM +
persistent memory subsystems. We present the results of
our experiments including different DRAM capacities, but
also the largest DNNs reported to date on an HE inference
framework (namely MobileNetV2 on its largest variant and

ar
X

iv
:2

10
3.

16
13

9v
2

 [
cs

.C
R

]
 2

9
A

pr
 2

02
1

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 2

ResNet-50), as enabled by the use of persistent memory
technology. We have analyzed the performance of Intel
Optane PMem to determine its viability for this specific
use case. Our results reveal that HE inference yields a
friendly access pattern to Intel’s implementation of persis-
tent memory technology, hence enabling for the first time
the execution of large DNN models leveraging HE.

In summary, the contributions of this article are: (1) We
report the largest DNN models run to date using HE; (2) We
report for the first time the use of persistent memory tech-
nology to enable large DNN inference leveraging HE; and
(3) We provide the corresponding novel in-depth analysis
of the viability of using persistent memory technologies for
this specific use case.

The rest of the document is structured as follows. Sec-
tion 2 provides the necessary background. Section 3 dis-
cusses related work in the literature. Section 4 describes
the testbed used in our experiments. Section 5 presents our
results and their analysis. Section 6 reviews the conclusions
of this work.

2 BACKGROUND

This section is intended to provide readers with the neces-
sary background information to understand the rest of the
manuscript. First we introduce HE. Next, we discuss the
main features of the persistent memory implementation we
leveraged in this study.

2.1 Homomorphic Encryption

HE is a type of encryption that enables limited computation
on the ciphertext, without use of the secret key. This feature
allows data to remain confidential when being processed in
an untrusted environment.

HE was proposed in 1978 [4]. Over the next 30 years,
researchers discovered a variety of partial HE (PHE)
schemes—supporting a single operation, such as addition or
multiplication; somewhat HE (SHE) schemes—supporting
several operations, such as both addition and multiplication,
but on only a subset of circuits; and leveled HE (LHE)
schemes—supporting arbitrary circuits, up to a limited
size or depth. In our work, we focus on the CKKS LHE
scheme [5].

The security of many HE schemes, including CKKS, is
based on the ring learning with error (RLWE) problem [6],
whose security derives from the hardness of the shortest
vector problem (SVP) in lattices. The RLWE problem uses
polynomials inRq := Zq[X]/(XN+1), where the polynomial
modulusN is typically a power of two and the coefficient mod-
ulus q is a prime number. Concretely,Rq contains polynomi-
als of degree N − 1 whose coefficients are integers modulo
q. Addition and multiplication in Rq may be performed via
regular polynomial addition and multiplication, followed
by reduction by XN + 1, and coefficient-wise reduction
modulo q. Given polynomials ai(x), s(x) drawn uniformly
at random from Rq , and ei(x), drawn from a small error
distribution, typically a discrete Gaussian, the RLWE prob-
lem is to determine the secret polynomial s(x) given several
samples (ai, ai · s + ei). The choice of N and q determine
the security level λ of the RLWE problem. A security level

of λ bits indicates ∼2λ operations are required to break the
decryption, with typical values of λ ∈ {128, 192, 256}.

The presence of the noisy polynomials ei(x) yields noisy
HE operations. Furthermore, the noise grows as additional
HE operations are performed. Once the noise has reached
a certain threshold, the homomorphism between encrypted
and plaintext operations breaks down and decryption yields
an inaccurate result. Noise growth is a fundamental diffi-
culty in scaling use of HE in practice.

In 2009, Gentry discovered a bootstrapping procedure,
which removes noise from the ciphertext. By applying boot-
strapping to an LHE scheme, Gentry constructed the first
fully homomorphic encryption (FHE) scheme, supporting
an unlimited number of additions and multiplications [7].
Using polynomial approximations, it became possible to
compute arbitrary functions on encrypted data. While ini-
tial implementations of bootstrapping could last several
minutes for a single ciphertext, recent HE schemes [8], [9]
operating on Boolean circuits, rather than arithmetic circuits,
enable bootstrapping on the order of milliseconds. However,
performing addition and multiplication in Boolean circuits
requires several Boolean operations, creating additional
overhead.

LHE schemes such as CKKS often employ the residue
number system (RNS) representation to efficiently perform
arithmetic on large integers. Using RNS representation, the
coefficient modulus q is factored into several primes, q =∏L−1
i=0 qi for some depth L. For convenience, we denote q =
{blog2(q0)c, blog2(q1)c, . . . , blog2(qL−1)c}, that is, q as a list
of bit-widths of each coefficient modulus. CKKS also uses
approximate arithmetic, such that Dec(c1 · c2 + c3) ≈ m1 ·
m2 +m3 for ciphertexts ci = Enc(mi). As a result, the RNS
form of the CKKS scheme [10] features superior arithmetic
circuit performance compared to the BFV scheme [11], [12].

2.2 Intel® Optane™ PMem

Recently, in Q2 2019, Intel released a non-volatile, byte-
addressable memory in the form of DIMMs, named
Intel® Optane™ Persistent Memory or Intel® Optane™

PMem1, which is compatible with 2nd Generation Intel®

Xeon® Scalable processors. This type of memory sits be-
tween memory and storage, delivering the best of two
worlds through the convergence of memory and storage
product traits. The persistent memory modules may co-
exist with traditional DDR4 DRAM DIMMs on the same
platform, and run up to 2,666 MT/s while operating at 12,
15, or 18 W. As of time of this writing, Intel offers persistent
modules in sizes from 128 GB to 512 GB, which allows 2-
socket platforms to store up to 6 TB of data.

Systems equipping Optane PMem feature two operating
modes: Memory Mode and App Direct Mode. Memory
Mode aims at exposing a system with a huge volatile
memory capacity while being completely transparent to
applications and operating systems, and hence the persis-
tence attribute is lost. In contrast, in App Direct mode, the
software sees the DRAM and the persistent memory as two
distinct memory pools and may choose what data to place
into each tier.

1. Formerly known as Intel® Optane™ DC Persistent Memory.

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 3

In Memory Mode, DRAM is managed by the CPU
memory controller as a direct-mapped write-back cache.
Consequently, and as expected, data locality plays a relevant
role in terms of performance, because access latency is the
same as DRAM when an access hits, but it has to pay for
the cost of accessing DRAM and persistent memory when
the access misses in DRAM. The access to the Intel Optane
PMem is optimized for 256 byte transfers and since the CPU
requests data in chunks of 64 bytes, the DIMM controller
integrates a media prefetch buffer of the recently accessed
256 bytes to rapidly respond to the CPU if data is already
found in this buffer.

Compatible CPUs integrate new performance counters
for the analysis of Intel Optane PMem-enabled software
at different architectural levels [13]. The core counters are
able to identify which data addresses have been referenced
and which part of the memory system (including PMem)
provided the data. The uncore counters provide information
such as the traffic volume observed by the CPU memory
controllers on the different memory types. The SMART
counters may be used to determine the locality of the
software media access patterns.

3 RELATED WORK

Privacy-preserving machine learning (PPML) has gained
interest in recent years. Given a machine learning model
M , and input data x, typically owned by separate parties,
one goal of PPML is to perform inference, i.e. compute
M(x), while reducing the data leakage among parties. Pre-
vious work typically uses one or more of several privacy-
preserving primitives, including secure multi-party compu-
tation (MPC), HE, differential privacy, and more recently,
functional secret sharing [14]. Differential privacy seeks to
minimize the leakage of M or x resulting from observing
the result M(x). In contrast, cryptographic techniques such
as MPC and HE seek to minimize the data leakage during
the computation process.

MPC-based DNN inference includes SecureML [15],
XONN [16], SecureNN [17], ABY3 [18], PySyft [19], TF-
Encrypted [20], and CrypTFlow [21]. HE-based DNN infer-
ence was introduced by the seminal CryptoNets paper [22],
which performed inference on a 5-layer network on the
MNIST dataset. Subsequent work has improved the perfor-
mance, scaled to larger networks, and integrated with DNN
compiler technologies [2], [23], [24], [25], [26]. While, due
to DRAM limitations, the largest model reported to date
running inference using HE is MobileNetV2 (a lightweight
network with a small number of parameters) reduced by
an expansion factor of 0.35 from the original size [23], we
report results running MobileNetV2 on its largest expansion
factor plus, for the first time in the literature, a fully-featured
DNN: ResNet-50. Several works also combine multiple
privacy-preserving primitives, such as HE with MPC [27],
[28].

One difficulty in using HE for DNN inference is the
choice of plaintext packing, which enables encoding of
multiple scalars into a single plaintext. HE operations on
the plaintext, as well as the encrypted ciphertext, apply
to each scalar, in a single-instruction multiple data (SIMD)

manner. Given a tensor of shape N × C × H × W , batch-
axis packing encodes the tensor as a C × H ×W -ciphertext
tensor, each storing N scalars. Inter-axis packing uses a
different encoding scheme, for instance as an N -ciphertext
tensor, each storing C × H ×W scalars. In general, batch-
axis packing attains high throughput at the cost of high
latency and high total memory requirement, whereas inter-
axis packing attains low latency and memory usage at the
cost of low throughput. Previous work has used both batch-
axis packing [2], [22], [23] and inter-axis packing [27], [29],
[30]. The choice of batch-axis packing requires hundreds
of gigabytes of memory for MobileNetV2 [23], preventing
scaling to larger networks on conventional DRAM systems.

A number of recent software efforts to develop and
optimize HE primitives on top of different architectures ex-
ist [31], [32], [33], [34]; however, only a few very recent DNN
frameworks are known supporting HE [2], [23], [26], [35]
and these are tuned for DRAM-friendly access patterns. To
date, no previous report exists of DNN inference leveraging
HE on top of non-DRAM memory technology.

4 EXPERIMENTAL SETUP

In this section, we describe the technical details of our exper-
imental setup, including our testbed system, the inference
engine we used, and the neural network models that served
as our use cases.

4.1 Testbed
Our experiments are performed in a dual socket system
using Intel® Xeon® Platinum 8260L processors, with 24 cores
on each socket running at a nominal frequency of 2.30 GHz.
For all experiments involving persistent memory, twelve
512 GB Intel Optane PMem DIMMs were used. Each of these
modules features a theoretical bandwidth of 7.3 GB/s for
read accesses and 2.4 GB/s for write accesses [36]. For the
Memory Mode (MM) experiments, we have worked with
two different configurations. The first configuration (MM32)
uses four 8 GB DRAM DIMMs, while the second (MM96)
uses twelve DIMMs. For the DRAM-only experiments (DO),
we have used twelve 16 GB DRAM DIMMs. Figure 1 shows
an overview of the MM32, MM96 and DO configurations.
Both DRAM DIMM models use DDR4 and feature a theo-
retical bandwidth of 21.3 GB/s.

Equipping reduced DRAM space and bandwidth on the
MM32 configuration, we demonstrate the viability of our
target use case on an energy-friendly memory configuration,
being the energy consumption per byte of DRAM about 10
times higher than that of the Optane PMem (375 mW/GB
vs. 35 mW/GB).

Our system runs Fedora 27 (Workstation Edition) with
kernel version 4.18.8. All the software used was compiled
from sources using GCC 7.3.1 targeting the native architec-
ture.

4.2 Inference Engine
Intel® HE-Transformer for nGraph™ [23] is an HE back-
end to the Intel nGraph Compiler [37], a graph compiler
and runtime for artificial neural networks. This backend
supports the CKKS encryption scheme and relies on the

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 4

CPU 1 CPU 2

16G
B D

R
AM

 1

16G
B D

R
AM

 2

16G
B D

R
AM

 3

16G
B D

R
AM

 4

16G
B D

R
AM

 5

16G
B D

R
AM

 6

16G
B D

R
AM

 7

16G
B D

R
AM

 8

16G
B D

R
AM

 9

16G
B D

R
AM

 10

16G
B D

R
AM

 11

16G
B D

R
AM

 12

127.8 GB/s 127.8 GB/s

(a) DRAM-only, 192 GB DRAM (DO)

CPU 1 CPU 2

8G
B D

R
AM

 1
512G

B O
ptane 1

8G
B D

R
AM

 2
512G

B O
ptane 2

8G
B D

R
AM

 3
512G

B O
ptane 3

8G
B D

R
AM

 4
512G

B O
ptane 4

8G
B D

R
AM

 5
512G

B O
ptane 5

8G
B D

R
AM

 6
512G

B O
ptane 6

8G
B D

R
AM

 7
512G

B O
ptane 7

8G
B D

R
AM

 8
512G

B O
ptane 8

8G
B D

R
AM

 9
512G

B O
ptane 9

8G
B D

R
AM

 10
512G

B O
ptane 10

8G
B D

R
AM

 11
512G

B O
ptane 11

8G
B D

R
AM

 12
512G

B O
ptane 12

127.8 GB/s 127.8 GB/s

Read: 43.8 GB/s
Write: 14.4 GB/s

Read: 43.8 GB/s
Write: 14.4 GB/s

(b) Memory Mode, 96 GB DRAM + 6 TB Intel Optane (MM96)

CPU 1 CPU 2

8G
B D

R
AM

 1

8G
B D

R
AM

 2

8G
B D

R
AM

 3

8G
B D

R
AM

 4

512G
B O

ptane 1

512G
B O

ptane 2

512G
B O

ptane 3

512G
B O

ptane 4

512G
B O

ptane 5

512G
B O

ptane 6

512G
B O

ptane 7

512G
B O

ptane 8

512G
B O

ptane 9

512G
B O

ptane 10

512G
B O

ptane 11

512G
B O

ptane 12

42.6 GB/s 42.6 GB/s

Read: 43.8 GB/s
Write: 14.4 GB/s

Read: 43.8 GB/s
Write: 14.4 GB/s

(c) Memory Mode, 32 GB DRAM + 6 TB Intel Optane (MM32)

Fig. 1. Logical view of the DO and MM memory configurations.

simple encrypted arithmetic library (SEAL) [31] for the im-
plementation. Operations that involve comparison (ReLU,
MaxPool, etc.) are not supported natively in the CKKS
scheme. To perform these operations, HE-Transformer uses
a client-aided protocol in which the server sends the en-
crypted data to the client, which decrypts the data, performs
the operation, encrypts the output, and sends it back to
the server. This approach acts as a bootstrapping process
to refresh the ciphertext noise, while also performing the
comparison operation. However, it may leak the model
weights to the client. This leakage may be mitigated using
garbled circuits [28] but this approach currently suffers from
an even higher runtime overhead, so we do not consider
it in this work. HE-transformer enables data scientists to
train networks on the hardware of their choice, then easily
perform inference on encrypted data using popular deep
learning frameworks such as TensorFlow.

In our experiments we have used HE-Transformer v0.6.0,
which features the following dependencies: TensorFlow
v1.14.0, nGraph v0.25.0, nGraph-bridge v.0.18.0, and SEAL
v3.3.1.

We use the same encryption parameters as [23] in all of
our experiments, namely:

• Polynomial modulus degree: N = 4096
• Security level: λ = 128
• Coefficient modulus: q = {30, 22, 22, 30}

As in [23], we consider the use case of a plaintext model
and encrypted data.

4.3 Neural Network Models
We make use of two well-known neural network models as
our use cases: MobileNetV2 and ResNet-50.

4.3.1 MobileNetV2
MobileNetV2 [38] is a neural network model that uses
depth-wise separable convolution to reduce the model size
and complexity. Thanks to these layers, MobileNetV2 re-
quires roughly 9 times less computation than comparable
neural networks, making it ideal for use in mobile and
embedded systems. This efficiency makes it particularly
suitable for HE, since the main disadvantage of this type
of encryption is its high overhead. The MobileNetV2 archi-
tecture features two modifiable parameters:

• Width Multiplier: The number of channels in each
layer with respect to the original model.

• Input Resolution: Size of width and height of the
square image received by the network.

We denote a specific MobileNetV2 architecture with a tuple:
(width multiplier, input resolution). The higher the param-
eter values, the greater the accuracy obtained but at the
cost of larger memory footprint and longer computation
time. Different configurations of both parameters have been
tested in our experiments.

4.3.2 ResNet-50
Residual Network (ResNet) is a popular family of convo-
lutional neural networks used for many computer vision
applications [39]. These networks are easier to optimize than

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 5

traditional DNNs, which translates into shorter training
times. ResNet-50 is 50 layers deep and may classify images
with a resolution of 224 × 224 pixels into 1,000 different
categories. In the ImageNet dataset [40], it attains a top 1
accuracy of 75% and a top 5 accuracy of 92%.

4.4 Profiling Tools
We have leveraged two profiling frameworks to confirm
whether the application is using the PMem efficiently: Ex-
trae [41]/Paraver [42], and Intel® VTune™ Platform Pro-
filer [43]. Extrae is a library that monitors parallel appli-
cations (using OpenMP, MPI, and pthread, among others)
and emits an activity record on a Paraver trace-file. Paraver
is a post-mortem visualization tool for qualitative and quan-
titative analysis. Intel VTune Platform Profiler, on the other
hand, is both the collector and visualizer for a system-wide
profiling tool that allows obtaining a holistic view of system
behavior including CPU, memory, network, and disk usage.
While both tools collect PMem-related metrics through the
CPU performance counters, they have some fundamental
differences. Extrae/Paraver are targeted to explore a single-
application performance by means of instrumentation and
sampling, which enables a precise characterization, leading
the resulting trace-file size to depend on the application
activity. Intel VTune Platform Profiler samples system ac-
tivity periodically, which allows monitoring longer runs
independently of the application activity, but the tool does
not attribute performance to specific routines.

5 EXPERIMENTAL ANALYSIS

In this section, we present and analyze the results of our in-
depth performance evaluation. We first focus our attention
on the MobileNetV2 model. Next, we discuss the ResNet-50
network.

5.1 MobileNetV2
We have used the pre-trained MobileNetV2 models offered
by TensorFlow2, which vary in the width multiplier (0.35,
0.5, 0.75, 1.0, 1.3, and 1.4) and input resolution (96, 128, 160,
192, and 224). For the two largest width multiplier settings
only the 224 input resolution is available.

We performed experiments with all possible configu-
rations to determine the memory consumption and the
accuracy (top 1 and top 5) of each network when leveraging
HE. We chose a batch size of 2,048 because it is the maxi-
mum possible value for the chosen encryption parameters.
Figure 2, Figure 3, and Figure 4, show the results of these
executions. As expected, both the memory footprint and the
obtained accuracy increase with larger models. The largest
model attains a top 1 accuracy of 75.1% and top 5 accuracy
of 91.6%, requiring 1.2 TB of memory. Large models have
not been feasible to be run in discrete systems so far because
of these memory requirements. Thanks to recently-emerged
persistent memory technology, now we have the amount of
memory required for this task; however, the feasibility of
running inference on top of the added latency this technol-
ogy poses remained to be seen.

2. https://github.com/tensorflow/models/tree/master/research/
slim/nets/mobilenet

TABLE 1
MobileNetV2 time comparison (MM vs. DO)

Model Memory
Usage (GB)

Time (s)
DO

Time (s)
MM96

Time (s)
MM32

(0.35, 96) 71 650 675 714
(0.35, 128) 125 1,158 1,183 1,262
(0.50, 96) 80 842 867 923
(0.50, 128) 144 1,503 1,537 1,653
(0.75, 96) 153 1,393 1,452 1,545
(1.00, 96) 157 1,621 1,691 1,833

We have obtained the run times as an average of ten
repetitions. The maximum relative standard deviation is
3.2%. Figure 5 shows the times with the MM32 configu-
ration. The DO configuration has been used as a baseline,
although only the six smallest models fit within 192 GB
of RAM, starting at 71 GB. Table 1 shows the execution
times of these models. The DO configuration (using 192 GB
DRAM) is merely up to 4% faster than MM96 (using 96 GB
DRAM as cache) and 11% faster than MM32 (using 32 GB
DRAM as cache), despite the considerable raw performance
difference of the main memory subsystem leveraged by
the latter with respect to DRAM. The MM32 configuration
populates only 2 of the 6 available DRAM DIMMs, yielding
a third of the bandwidth compared to the DO configuration,
which is fully populated. In a memory–bandwidth–bound
application, we would expect the execution times to be
further impacted. However, the executions with the fully
populated system are only about 10% faster, which indicates
that memory bandwidth is not the main bottleneck, being
a positive first indicator of the feasibility of leveraging
persistent memory technologies as an enabler for large DNN
inference with HE.

The additional latency incurred by the memory con-
troller to manage the cache in MM is also part of this time
difference. We have evaluated the latency incurred by the
memory controller when in MM through Intel® MLC3) and
observed that local and remote socket accesses experience
10% and 6% overhead, respectively.

5.1.1 Analysis with Paraver
Since HE-Transformer exploits parallelism through
OpenMP [44] to deploy the most time-consuming parts
of the library, we benefit from the Extrae abilities to
automatically instrument this runtime to monitor the
application behavior. We have additionally instrumented
manually a number of functions of interest, such as:
convolution, multiplication, reshape, etc. We correlate with
Paraver the instrumented functions in HE-Transformer
with several performance metrics, including CPU hardware
counters. We have collected the following performance
counters to analyze the performance of the Intel Optane
PMem in Memory Mode:

• MEM LOAD RETIRED.LOCAL PMM: Retired load
instructions with local persistent memory as the data
source and the data request missing L3 and DRAM
cache.

3. https://software.intel.com/content/www/us/en/develop/
articles/intelr-memory-latency-checker.html

https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 6

 40
 50
 60
 70
 80
 90

 96 128 160 192 224

Ac
cu

ra
cy

 (%
)

Input Resolution

0.35
0.50
0.75

1.00
1.30
1.40

Fig. 2. Top 1 accuracy.

 40

 50

 60

 70

 80

 90

 96 128 160 192 224

A
c
c
u
ra

cy
 (

%
)

Input Resolution

0.35
0.50
0.75

1.00
1.30
1.40

Fig. 3. Top 5 accuracy.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 96 128 160 192 224

P
e
a
k

M
e
m

o
ry

 U
s
e
 (

G
B

)

Input Resolution

0.35
0.50
0.75

1.00
1.30
1.40

Fig. 4. Memory footprint.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 96 128 160 192 224

In
fe

re
n
c
e
 T

im
e
 (

s)

Input Resolution

0.35
0.50
0.75

1.00
1.30
1.40

Fig. 5. Inference time (MM32).

• MEM LOAD L3 MISS RETIRED.REMOTE PMM:
Retired load instructions with remote persistent
memory as the data source and the data request
missing L3 and DRAM cache.

• MEM LOAD L3 MISS RETIRED.LOCAL DRAM:
Retired load instructions whose data sources missed
L3 but were serviced from local DRAM.

• MEM LOAD L3 MISS RETIRED.REMOTE DRAM:
Retired load instructions whose data sources missed
L3 but were serviced from remote DRAM.

Despite using sampling mechanisms, the long running
times of the largest models generate overwhelmingly large
traces. For this reason, only three small models have been
profiled in-depth for MobileNetV2: (0.35, 96), (0.35, 128), and
(0.75, 96).

Table 2 shows the result of the largest MobileNetV2
model profiled (0.75, 96) on the MM32 configuration. Since
the values for the local and remote sockets were balanced,
these are grouped in the table with a value that aggregates
the number of accesses across the sockets. We have only
explored the operations of the inference phase for the time
measurement. As we will discuss in Section 5.1.2, there is
an initialization phase at the beginning of the network exe-
cution in which HE-transformer executes a number of opti-
mization passes. Consequently, we have decided to exclude
this phase because in a production scenario it would be
executed once, while the inference phase would be invoked
multiple times.

The main difference between the smallest and largest
models is the absolute number of accesses to DRAM and
PMem spaces. The percentage of DRAM accesses for Convo-
lution decreases slightly (46%) in the smallest model while
the percentage for the BoundedRelu increases (49%). The
ratios of PMem accesses, the main focus of our study, are
very similar to the smallest models using the same DRAM
configuration.

The most time-consuming operation is Convolution, rep-
resenting almost 92% of the execution, although it only
accounts for 14% of the PMem accesses. Convolution only
accesses PMem every ∼59 DRAM accesses, which indicates
that DRAM caches the working set efficiently and therefore
the PMem is not limiting the execution time of this opera-
tion.

The second most time-consuming operation is Bounde-
dRelu, representing 3.7% of the execution. This operation is
not supported by the encryption scheme and in a production
scenario it would be performed by a remote trusted machine
using the client-aided protocol discussed in Section 4.2. With
the current setup, the operation is performed on the same
machine, which has to: decrypt, operate, and encrypt the
result. The encryption/decryption processes are strongly
dependent on modified Fast Fourier Transform (FFT) op-
erations, which feature non-sequential memory accesses.
This explains the high number of accesses to PMem in
BoundedRelu when compared to the remaining operations.
To evaluate that this approach was not impacting the over-
all behavior of the application, we conducted an analysis

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 7

TABLE 2
Extrae metrics running MobileNetV2 (0.75, 96) on the MM32 configuration

Function Time (s) DRAM (K-Loads) PMem (K-Loads) DRAM/PMem

Add 26,605 0.78% 6,333 2.23% 1,345 6.02% 4.75
AvgPool 1,077 0.03% 80 0.03% 10 0.05% 7.65
BoundedRelu 125,401 3.70% 88,402 30.90% 17,198 76.92% 5.14
Concat 10,578 0.31% 115 0.04% 5 0.03% 20.29
Constant 24,898 0.73% 664 0.23% 32 0.15% 20.46
Convolution 3,113,888 91.76% 187,003 56.37% 3,152 14.10% 59.32
Multiply 9,652 0.28% 1,841 0.64% 489 2.19% 3.76
Reshape 51,041 1.50% 870 0.30% 103 0.46% 8.39
Result 40 0.00% 117 0.04% 0.5 0.00% 207.42
Slice 30,338 0.89% 576 0.20% 19 0.09% 30.11

Total 3,393,517 286,066 22,358 12.79

of the operations immediately following the invocation of
BoundedRelu. We observe that the values of cache misses
in these operations are similar to those of the functions
of the same type prior to a BoundedRelu. In a production
scenario, we expect this value to be slightly lower because
not performing the operation would not invalidate as many
cache entries as we are currently observing. However, there
would be a higher latency in the unsupported operations
because of the need to communicate the data over the
network.

We also found that Add and Multiply operations expe-
rience a ratio between DRAM and PMem accesses below 5,
which is notably low. However, these only account for 1%
of the total time; hence, this low ratio does not significantly
affect the overall execution.

5.1.2 Analysis with Intel® VTune™ Platform Profiler
We used the Intel® VTune™ Platform Profiler to further
confirm whether the workload used the underlying memory
architecture efficiently. The tool provides independent per-
formance reports for each socket (among other components)
but for the sake of brevity we only show the profiling data
from the socket that performs the application initialization.

Figure 6 depicts the metrics when the system runs the
application and the results evidence two execution phases.
The first phase corresponds to the initialization and opti-
mization of the computation graph that describes the model.
This phase executes in a single core, which relates to the
low overall activity observed during this phase. The second
phase corresponds to the inference, which in contrast to
the initialization, runs mostly in parallel on all processor
cores. In the inference phase, and according to the profiling
results, the workload is fairly balanced among the sockets.
We present the results for the MobileNetV2 (1.4, 224) ar-
chitecture, which are highly similar to those of the smaller
models.

Figure 6a shows that the inference phase starts a behav-
ior corresponding to mostly sequential accesses. As we de-
scribed earlier, Intel Optane PMem is optimized for 256-byte
media operations and the PMem modules feature a media
prefetch buffer that stores contiguous bytes. In sequential
access patterns, we expect a 0.75 hit ratio because the first
data access causes a miss in the prefetch buffer but the three
subsequent accesses hit on the buffer. Again, the sequential
access pattern exposed by the workload favors the memory
accesses and matches with the metrics reported by Paraver.

Sequential access patterns are justified in further detail in
Section 5.3.

To assess whether the persistent memory implementa-
tion poses a bandwidth limitation, we have used the MM32
configuration. In this situation, each DRAM DIMM features
an individual bandwidth circa 21 GB/s and since there are
two DIMMs per socket populated, the bandwidth per socket
is close to 42 GB/s (see Figure 1c). Our profiling reveals that
the average memory bandwidth in one socket is 2.02 GB/s
for reading and and 2.15 GB/s for writing with peaks of
around 20 GB/s (Figure 6b). A similar behavior is observed
in the sibling socket (but not shown in the figure). Each
PMem module, on the other hand, yields an individual
bandwidth of 7.3 GB/s for reading and 2.4 GB/s for writing
and since each socket is fully populated with six DIMMs,
the bandwidth per socket is close to 43.8 GB/s for reading
and 14.4 GB/s for writing. Figure 6c illustrates that neither
writing nor reading bandwidth attain the maximum value.

These results are aligned with those exposed in Sec-
tion 5.1.1 and reinforce our statement that Intel Optane
PMem yields efficient executions for this type of workloads.

5.2 ResNet-50

With our setup, we have been able to perform, for the first
time, inference using the ResNet-50 model, hence becoming
the largest neural network ever run using HE. Leveraging
a batch of 2,048 (the maximum value possible using the en-
cryption parameters mentioned in Section 4.2) the complete
execution lasts over 63 hours. Figure 7 shows the behavior of
the CPU throughout the execution. We observe the alterna-
tion of parallel functions (which use the 48 available cores)
with sequential functions, following the expected fork-join
model. Since we are leveraging the use case of plaintext
models (and encrypted data), despite ResNet-50 being much
more computationally demanding than the considerably
smaller MobileNetV2 (1.4, 224) model, the former requires a
slightly smaller amount of memory than the latter. Figure 8
shows that the ResNet-50 peak memory consumption stands
below 900 GB.

Due to the length of the execution, it has been impossible
for us to profile it with any of the the tools at our reach.
Since the predominant function in this type of networks is
convolution, and the access pattern for this function remains
invariant with the input size, we reasonably postulate that
ResNet-50 leverages our persistent-memory-based memory

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 8

(a) Optane cache hit ratio

(b) DRAM traffic

(c) PMem traffic

Fig. 6. Platform Profiler relevant data for MobileNetV2 (1.4, 224) in MM32.

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 9

 0

 1200

 2400

 3600

 4800

 0 10 20 30 40 50 60

C
P

U
 U

s
e
 (

%
)

Time (h)

Fig. 7. ResNet-50 CPU usage.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60

M
e
m

o
ry

 U
se

 (
G

B
)

Time (h)

Fig. 8. ResNet-50 memory use.

setup as efficiently as MobileNetV2. This postulate applies
to any other convolution-dominated model.

5.3 Discussion: Access Sequentiality

Sections 5.1 and 5.2 show Intel Optane PMem yielding
execution efficiency for large HE models, due to cache-
friendly sequential memory access patterns, particularly in
the Convolution operation. The Convolution operation is
dominated by ciphertext–plaintext addition and ciphertext–
plaintext multiplication, each of which features sequential
memory accesses, implemented in SEAL [31]. Note that
we do not consider the CKKS rescaling operation here,
since its runtime impact is minimized by the use of lazy
rescaling [23]. SEAL represents a ciphertext in RNS form
as a 2 × L × N -length vector of unsigned 64-bit integers.
However, ciphertext–plaintext operations require only one
of the two ciphertext polynomials. The plaintext argument
in SEAL is represented as an L×N -sized vector of unsigned
64-bit integers. We use the optimization from nGraph-
HE2 [23], in the case where the plaintext encodes a single
scalar, such that the plaintext argument is an L-length
vector.

5.3.1 Ciphertext–Plaintext Addition
CKKS ciphertext–plaintext addition in RNS form requires
element-wise addition followed by modular reduction of
two polynomials in which each sum is reduced with respect
to the coefficient modulus q`.

The following algorithm shows the pseudocode for
ciphertext–plaintext scalar addition. The ciphertext argu-
ment is arranged in memory such that the two-dimensional
memory accesses are sequential.

1: function ADD CIPHER-PLAIN SCALAR(c ∈ ZL×N , p ∈
ZL, q ∈ ZL)

2: for ` = 1 to L do
3: tmp← p[`]
4: for n = 1 to N do
5: c[`][n]← (c[`][n] + tmp) mod q[`]
6: end for
7: end for
8: end function

5.3.2 Ciphertext–Plaintext Multiplication

CKKS ciphertext–plaintext multiplication in RNS form re-
quires element-wise multiplication followed by modular
reduction of two polynomials in which each product is
reduced with respect to the coefficient modulus q`. As
in SEAL [31], nGraph-HE2 [23] uses Barrett reduction for
efficient modulus reduction. The following algorithm shows
the pseudocode for ciphertext–plaintext scalar multiplica-
tion, in the case where the coefficient modulus is less than 32
bits, as in our setting. The ciphertext argument is arranged
in memory such that the two-dimensional memory accesses
are sequential.

1: function MULTIPLY CIPHER-PLAIN 32-BIT(c ∈
ZL×N , p ∈ ZL, q ∈ ZL, r ∈ ZL)

2: for ` = 1 to L do
3: tmp← p[`]
4: for n = 1 to N do
5: uint64 z ← c[`][n] ∗ tmp
6: c[`][n]← BarrettReduction64(z, q[`], r[`])
7: end for
8: end for
9: end function

These algorithms show that the ciphertext accesses are
sequential in memory. This yields the high ratio of cache
hits seen in Figure 6a and supports the high efficiency
experienced using Intel Optane PMem.

6 CONCLUSIONS

In this article we report running inference for the largest
DNN models to date leveraging HE. For the first time in
the literature, we use recently-emerged persistent memory
technology as an enabler for such large memory footprints.
Our novel analysis reveals that DNN inference leveraging
HE features memory access patterns that yield efficient use
of the Intel Optane PMem in Memory Mode. Sequential data
accesses in the most common operations enable the accessed
data to be efficiently cached in the DRAM, but also to make
efficient use of the hardware prefetch buffers in the PMem.
We propose a memory configuration with reduced DRAM
size that is cost-efficient, equipping 1/3 of the DRAM band-
width while reducing merely 10% performance with respect
to a fully-populated system.

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 10

ACKNOWLEDGMENTS

We would like to thank Jesus Labarta from BSC and Steve
Scargall from Intel for their insightful and productive com-
ments.

REFERENCES

[1] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
J. Hoffstein, K. Lauter, S. Lokam, D. Moody, T. Morrison et al.,
“Security of homomorphic encryption,” Tech. Rep., 2017. [Online].
Available: HomomorphicEncryption.org

[2] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “nGraph-
HE: A graph compiler for deep learning on homomorphically
encrypted data,” in Proceedings of the 16th ACM International Con-
ference on Computing Frontiers, 2019, pp. 3–13.

[3] “Intel(R) Optane(TM) Persistent Memory,” https://www.
intel.com/content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html, 2020.

[4] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks
and privacy homomorphisms,” Foundations of Secure Computation,
vol. 4, no. 11, pp. 169–180, 1978.

[5] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2017, pp. 409–437.

[6] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2010, pp. 1–23.

[7] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[8] L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic
encryption in less than a second,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2015, pp. 617–640.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
packed homomorphic operations and efficient circuit bootstrap-
ping for TFHE,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2017,
pp. 377–408.

[10] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS
variant of approximate homomorphic encryption,” in International
Conference on Selected Areas in Cryptography. Springer, 2018, pp.
347–368.

[11] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical GapSVP,” in Annual Cryptology Confer-
ence. Springer, 2012, pp. 868–886.

[12] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[13] “perfmon for CLX processors,” https://download.01.org/
perfmon/CLX, 2020.

[14] T. Ryffel, D. Pointcheval, and F. Bach, “ARIANN: Low-interaction
privacy-preserving deep learning via function secret sharing,” in
34th Conference on Neural Information Processing Systems (NeurIPS),
Vancouver, Canada, 2020.

[15] P. Mohassel and Y. Zhang, “SecureML: A system for scalable
privacy-preserving machine learning,” in IEEE Symposium on Se-
curity and Privacy (SP). IEEE, 2017, pp. 19–38.

[16] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar, “XONN: XNOR-based oblivious deep neural net-
work inference,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1501–1518.

[17] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: Efficient and
private neural network training,” IACR Cryptol. ePrint Arch., vol.
2018, p. 442, 2018.

[18] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework
for machine learning,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 35–
52.

[19] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueck-
ert, and J. Passerat-Palmbach, “A generic framework for privacy
preserving deep learning,” in Privacy Preserving Machine Learning
(NeurIP Workshop), 2018.

[20] M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud,
I. Livingstone, J. Patriquin, and G. Uhma, “Private machine
learning in TensorFlow using secure computation,” 2018. [Online].
Available: https://arxiv.org/abs/1810.08130

[21] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “CrypTFlow: Secure TensorFlow inference,” in 41st
IEEE Symposium on Security and Privacy, 2020.

[22] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying neural networks to en-
crypted data with high throughput and accuracy,” in International
Conference on Machine Learning, 2016, pp. 201–210.

[23] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski,
“nGraph-HE2: A high-throughput framework for neural network
inference on encrypted data,” in Proceedings of the 7th ACM Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography,
2019, pp. 45–56.

[24] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep
neural networks over encrypted data,” 2017. [Online]. Available:
https://arxiv.org/abs/1711.05189

[25] C. Boura, N. Gama, and M. Georgieva, “Chimera: A unified
framework for B/FV, TFHE and HEAAN fully homomorphic en-
cryption and predictions for deep learning,” IACR Cryptol. ePrint
Arch., vol. 2018, p. 758, 2018.

[26] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “CHET: An optimizing com-
piler for fully-homomorphic neural-network inferencing,” in Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2019, pp. 142–156.

[27] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
1651–1669.

[28] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and
H. Yalame, “MP2ML: A mixed-protocol machine learning frame-
work for private inference,” in International Conference on Availabil-
ity, Reliability and Security (ARES), 2020.

[29] C. Jin, A. Al Badawi, J. L. Balagopal Unnikrishnan, C. F. Mun,
J. M. Brown, J. P. Campbell, M. Chiang, J. Kalpathy-Cramer,
V. R. Chandrasekhar, P. Krishnaswamy et al., “CareNets: Efficient
homomorphic CNN for high resolution images,” in NeurIPS Work-
shop on Privacy in Machine Learning (PriML), 2019.

[30] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency
privacy preserving inference,” in Proceedings of the 36th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 97, Long Beach, California,
USA, Jun. 2019, pp. 812–821. [Online]. Available: http:
//proceedings.mlr.press/v97/brutzkus19a.html

[31] “Microsoft SEAL (release 3.3),” https://github.com/Microsoft/
SEAL, Jun. 2019, Microsoft Research, Redmond, WA.

[32] W. Dai and B. Sunar, “cuHE: A homomorphic encryption ac-
celerator library,” in International Conference on Cryptography and
Information Security in the Balkans. Springer, 2015, pp. 169–186.

[33] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and
L. Fei-Fei, “Faster cryptonets: Leveraging sparsity for real-
world encrypted inference,” 2018. [Online]. Available: https:
//arxiv.org/abs/1811.09953

[34] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“FPGA-based high-performance parallel architecture for homo-
morphic computing on encrypted data,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2019, pp. 387–398.

[35] T. van Elsloo, G. Patrini, and H. Ivey-Law, “Sealion: A framework
for neural network inference on encrypted data,” in Proceedings of
the 36th International Conference on Machine Learning, Long Beach,
CA, 2019.

[36] “Analyzing the performance of Intel Optane DC Persistent Mem-
ory in App Direct mode in Lenovo ThinkSystem servers,” https:
//lenovopress.com/lp1083.pdf, 2020.

[37] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba,
M. Brookhart, A. Chakraborty, W. Constable, C. Convey, L. Cook,
O. Kanawi, R. Kimball, J. Knight, N. Korovaiko, V. Kumar, Y. Lao,
C. R. Lishka, J. Menon, J. Myers, S. A. Narayana, A. Procter,
and T. J. Webb, “Intel nGraph: An intermediate representation,
compiler, and executor for deep learning,” 2018.

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” 2018.

HomomorphicEncryption.org
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://download.01.org/perfmon/CLX
https://download.01.org/perfmon/CLX
https://arxiv.org/abs/1810.08130
https://arxiv.org/abs/1711.05189
http://proceedings.mlr.press/v97/brutzkus19a.html
http://proceedings.mlr.press/v97/brutzkus19a.html
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://arxiv.org/abs/1811.09953
https://arxiv.org/abs/1811.09953
https://lenovopress.com/lp1083.pdf
https://lenovopress.com/lp1083.pdf

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 11

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp.
248–255.

[41] “BSC Extrae,” https://tools.bsc.es/extrae, 2020.
[42] “BSC Paraver,” https://tools.bsc.es/paraver, 2020.
[43] “Intel(R) VTune(TM) Platform Profiler,” https://software.

intel.com/content/www/us/en/develop/documentation/
vtune-help/top/analyze-performance/platform-analysis-group/
platform-profiler-analysis.html, 2020.

[44] L. Dagum and R. Menon, “OpenMP: An industry standard API
for shared-memory programming,” Computational Science & Engi-
neering, IEEE, vol. 5, no. 1, pp. 46–55, 1998.

Guillermo Lloret-Talavera is a Jr. Research En-
gineer at the Barcelona Supercomputing Center
(BSC), working in the Accelerators and Com-
munications for HPC team. His interests include
performance tuning for heterogeneous memory
systems and deep learning frameworks.

Marc Jorda is a Research Engineer at the
Barcelona Supercomputing Center (BSC), work-
ing in the Accelerators and Communications for
HPC team. His interests include performance
tuning for heterogeneous memory systems,
GPU-enabled applications, and deep learning
frameworks.

Dr. Harald Servat is an HPC system enthu-
siast with strong knowledge in monitoring sys-
tems, parallel programming models, compilers
and computer architecture. He currently works at
Intel Corp. on code modernization topics for the
next generation HPC systems. Before that, he
was the maintainer of the instrumentation library
for the BSC performance tools suite (Extrae)
while adapting it to new technologies and pur-
suing large scalability. In 2015, he received his
Ph.D. in providing instantaneous metrics com-

bining coarse-grain instrumentation and sampling techniques. During
his research, he explored the performance of several in-production ap-
plications and applied code transformations to increase the application
performance.

Fabian Boemer is a research scientist at Intel
Corporation. He received his Master’s degree
from Stanford University in Computational and
Mathematical Engineering in 2018. Fabian’s in-
terests lie in privacy-preserving machine learn-
ing, in particular homomorphic encryption (HE).
Fabian maintains the nGraph-HE software li-
brary (ngra.ph/he), which enables deep learning
on homomorphically encrypted data.

Chetan Chauhan is Optane Component Ar-
chitect in Intel’s Nonvolatile Memory Storage
Group. His focus is on developing/simulating
power and performance models for pathfinding
new system architecture for Optane. He is very
interested in exploring how Optane can help AI
use cases like homomorphic encryption. He has
received his Master’s in Computer Engineering
from Syracuse University.

Dr. Shigeki Tomishima received his B.S. and
M.S. degrees in Solid State Physics and his
Ph.D. degree in Electric Engineering from Os-
aka University, Osaka, Japan in 1988, 1990
and 2002, respectively. After 20 years of DRAM
memory array and architecture research in
DRAM industry, he joined Intel Corporation to
work on the embedded DRAM project. In 2014,
he joined Intel Labs/Memory Architecture Lab
to start working on advanced memory architec-
ture research for future computing systems, the

emerging memory technology including Compute-Near-Memory and
Compute-In-Memory concepts. He has authored and coauthored more
than 15 international conference papers, 10 journal papers, 15 invited
talks, and holds 129 issued U.S. patents. He received Best Paper
Reviewer Award from IEEE CAS in 2016 and serves as TPC member on
A-SSCC, VLSI-DAT, ISQED, and as a paper reviewer on JSSC, SSC-L,
TVLSI, MICRO, ISCA, AICAS, and ISCAS.

Nilesh N. Shah directs Computational Storage
at Intel’s Nonvolatile Memory Storage Group’s
Data Center division and likes hacking privacy
preserving machine learning code for fun. He is
specially interested in homomorphic encryption,
federated deep learning and mixing and match-
ing storage technologies with heterogeneous ac-
celerators.

https://tools.bsc.es/extrae
https://tools.bsc.es/paraver
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/platform-analysis-group/platform-profiler-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/platform-analysis-group/platform-profiler-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/platform-analysis-group/platform-profiler-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/platform-analysis-group/platform-profiler-analysis.html

MANUSCRIPT ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTERS 12

Dr. Antonio J. Peña holds a BS+MS degree in
Computer Engineering (2006), and MS and PhD
degrees in Advanced Computer Systems (2010,
2013), from Universitat Jaume I de Castelló,
Spain. He is currently a Sr. Researcher at
the Barcelona Supercomputing Center (BSC),
where he leads the “Accelerators and Commu-
nications for HPC” team. Antonio is a former
Marie Sklodowska-Curie Fellow and Juan de la
Cierva Fellow. He is a recipient of the 2017 IEEE
TCHPC Award for Excellence for Early Career

Researchers in HPC. His research interests in the area of runtime sys-
tems and programming models for HPC include resource heterogeneity
and communications.

	1 Introduction
	2 Background
	2.1 Homomorphic Encryption
	2.2 Intel® Optane™ PMem

	3 Related Work
	4 Experimental Setup
	4.1 Testbed
	4.2 Inference Engine
	4.3 Neural Network Models
	4.3.1 MobileNetV2
	4.3.2 ResNet-50

	4.4 Profiling Tools

	5 Experimental Analysis
	5.1 MobileNetV2
	5.1.1 Analysis with Paraver
	5.1.2 Analysis with Intel® VTune™ Platform Profiler

	5.2 ResNet-50
	5.3 Discussion: Access Sequentiality
	5.3.1 Ciphertext–Plaintext Addition
	5.3.2 Ciphertext–Plaintext Multiplication

	6 Conclusions
	References
	Biographies
	Guillermo Lloret-Talavera
	Marc Jorda
	Dr. Harald Servat
	Fabian Boemer
	Chetan Chauhan
	Dr. Shigeki Tomishima
	Nilesh N. Shah
	Dr. Antonio J. Peña

