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Abstract

Existing drug discovery process follows a reductionist model of “one-drug-one-gene-one-disease,” 

which is inadequate to tackle complex diseases involving multiple malfunctioned genes. The 

availability of big omics data offers opportunities to transform drug discovery process into a new 

paradigm of systems pharmacology that focuses on designing drugs to target molecular interaction 

networks instead of a single gene. Here, we develop a reliable multi-rank, multi-layered 

recommender system, ANTENNA, to mine large-scale chemical genomics and disease association 

data for prediction of novel drug-gene-disease associations. ANTENNA integrates a novel tri-

factorization based dual-regularized weighted and imputed One Class Collaborative Filtering 

(OCCF) algorithm, tREMAP, with a statistical framework based on Random Walk with Restart 

and assess the reliability of specific predictions. In the benchmark, tREMAP clearly outperforms 

the single-rank OCCF. We apply ANTENNA to a real-world problem: repurposing old drugs for 

new clinical indications without effective treatments. We discover that FDA-approved drug 

diazoxide can inhibit multiple kinase genes responsible for many diseases including cancer and 

kill triple negative breast cancer (TNBC) cells efficiently (IC50 = 0.87 μM). TNBC is a deadly 

disease without effective targeted therapies. Our finding demonstrates the power of big data 

analytics in drug discovery and developing a targeted therapy for TNBC.
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1 Introduction

The cost of bringing a drug to market has risen to approximately 2.6 billion dollars (Tufts 

Center for the Study of Drug Development, 2015), and the failure rate is daunting: only 

about one-third of drugs in phase III clinical trials reach the market. The limited success of 

the conventional drug discovery process is largely attributed to the wide adoption of a 

reductionist model of “one-drug-one-gene-one-disease” [1], [2], [3]. As a matter of fact, the 

onset and progress of many complex diseases such as cancer is a systematic process that 

involves multiple interacting genes. Thus, it is necessary to design drugs that target gene 

interaction networks instead of a single gene. Moreover, drug repurposing that reuses 

existing safe drugs to treat new diseases has emerged as a new paradigm to accelerate drug 

discovery and development. As the safety profile of existing medicines has already been 

well documented, the cost of clinical trials can be significantly reduced.

Recent advances in high-throughput technologies have generated abundant chemical 

genomics data on drug actions and disease genes. These big, complex, heterogeneous data 

sets provide unprecedented opportunities for identifying genome-wide drug-gene-disease 

associations, thereby facilitating multi-targeted drug design and drug repurposing. However, 

several challenges remain in mining chemical genomics and disease association data for 

drug discovery. Firstly, chemical genomics data from high-throughput screening campaigns 

are not only extremely large but also highly noisy, biased, and incomplete. Many existing 

data mining algorithms cannot be directly applied to model chemical genomics data. 

Secondly, drug action is a complex process. It starts with drug-gene interactions at the 

molecular level, and manifest clinical outcomes through biological network. A single 

genomics data set can only capture one part of whole drug process. Thus, it is necessary to 

integrate multiple data sets for chemical-gene interactions, gene-disease associations, and 

chemical-disease associations to model the drug action on a multi-layer. Finally, one of the 

fundamental problems in biomedical data mining has not been fully addressed: how to 

assess the individual reliability of a specific prediction from a data mining agent under a 

rigorous statistics framework. The reliable and unbiased assessment of the prediction quality 

for an individual instance is critical for cost-sensitive drug discovery process. For example, 

the selection of a novel chemical that is structurally different from patented drugs as a lead 

compound from a ranked list of candidate chemicals is a billion-dollar decision. Information 

on the individual predictive reliability of a novel chemical entity based on its weak chemical 

similarity to existing drugs in terms of bioactivity is invaluable. Most existing data mining 

tools can only provide an average predictive accuracy based on the population of training 

data, but not reliability for a specific new case. For example, in a ranking system, it is not 

straightforward to determine what the threshold is to select top-ranked hits. For a specific 
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case, the top-first ranked hit could be a false positive. In another scenario, the top-N (N>1) 

ranked hits could all be true positives.

2 Contributions of This Work

To address challenges in the predictive modeling of drug-gene-disease associations as well 

as unmet needs in the treatment of complex diseases such as cancer, this work makes 

contributions to both methodology development and translational medicine.

On the side of methodology development, our contribution is twofold. First, we have 

developed a novel algorithm tREMAP based on tri-factorization to optimize matrix 

completion problem in which row and column have significantly different ranks. tREMAP 

formulates the chemical-gene predictions as a multi-rank dual-regularized weighted and 

imputed One Class Collaborative Filtering (OCCF) problem. Under the formulation of 

OCCF, negative data is not needed for the training, which is sparse and even unavailable. By 

using element-specific weights and imputation, tREMAP can handle noisy chemical 

genomics data in which the label is often uncertain. Finally, unlike conventional OCCF 

algorithm that applies a single rank to all layers, tREMAP assigns a different rank to a 

different layer. It is important since different layers can have dramatically different 

dimensions thus optimal ranks. For example, the dimension of a chemical layer is in the 

order of millions, while the dimension of a gene layer is only thousands. Our benchmark 

studies clearly show that tREMAP outperforms single-rank OCCF method. Second, to tailor 

the nature of chemical-gene-disease association data sets where observed chemical-disease 

associations are far sparser than known chemical-gene interactions and few three-way 

chemical-gene-disease associations exist, we have developed a multi-rank, multi-layered 

framework ANTENNA for inferring novel chemical-gene-disease associations. ANTENNA 

has three main components. (1) ANTENNA integrates multiple chemical genomics and 

disease association data set, and links them as a multi-layered network [4], as shown in Fig. 

1. (2) ANTENNA uses tREMAP to infer genome-wide novel chemical-gene associations. 

(3) Based on the genome-wide chemical-gene association, ANTENNA applies Random 

Walk with Restart (RWR) and a statistics framework, Enrichment of Topological Similarity 

(ENTS) [5], to predict chemical-disease associations and assess their reliabilities.

Arguably, the most important contribution of this work is to discover a potentially safe and 

effective targeted therapy for triple negative breast cancer (TBNC). Using ANTENNA, we 

predicted that an FDA-approved drug diazoxide may inhibit multiple kinase genes. The 

malfunction of kinases is associated with many diseases such as cancer and Alzheimer’s 

disease. Among the kinases with the highest percentage of inhibition by diazoxide, one gene 

TTK is specifically over-expressed in the patients with TNBC [6], [7]. Thus, we 

hypothesized that diazoxide may kill TNBC cells. Our predictions were supported by 

multiple experimental evidence. TNBC is a subgroup of breast cancers, which is associated 

with the most aggressive clinical behavior. No targeted therapy is currently available for the 

treatment of TNBC. Our finding has a great potential for developing a targeted therapy for 

the effective treatment of TNBC.
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3 Relevant Works

In principle, tensor factorization is a powerful method to infer three-way relationships. 

However, observed three-way chemical-gene-disease relations are extremely sparse. 

Majority of observed chemical-gene pairs are not associated with any diseases. Thus, the 

tensor factorization may be not the best option for this work. OCCF has been applied to a 

bipartite graph for predicting drug-target interactions [8], but not to inferring multiple drug-

gene-disease associations. Moreover, existing OCCF algorithm is mainly based on the 

formulization of matrix factorization that only allows a common rank for both row and 

column. FASCINATE is an algorithm that can jointly infer missing links from a multi-

layered network model [4]. However, FASCINATE is based on the formulation of a single 

rank collective OCCF. Moreover, it can only rank predicted relations [4]. There is no 

reliability information associated with each individual prediction. This work will address the 

drawbacks in matrix factorization, OCCF, and FASCINATE when applied to inferring 

chemical-gene-disease associations.

4 Experimentall and Computational Details

4.1 Overview of Computational and Experimental Procedure

Our primary purpose is to mine chemical genomics and disease association data to identify 

novel targeted therapies for unmet biomedical problems such as the treatment of TBNC. As 

shown in Fig. 2, the input of ANTENNA is the existing chemical genomics, drug, and 

disease databases including DrugBank [9], ZINC [10], ChEMBL [11], and CTD [12]. We 

first integrate these data sets into a multi-layered chemical-gene-disease network, MULAN. 

Then we apply tREMAP, a multi-rank dual-regularized weighted imputed OCCF algorithm, 

to infer novel chemical-gene associations. Next, we used ENTS to predict drug-disease 

association and to assess the reliability for each inferred association. The output of 

ANTENNA is a list of ranked drug-disease associations ranked by their statistical 

significance. Finally, we experimentally validate the top-ranked predictions.

4.2 Construction of Multi-Layered Chemical-Gene - Disease Network (MULAN)

We integrated heterogeneous data sets from genomics into a multi-layered network model, 

MULAN. In the MULAN, each node is a chemical entity (drugs and other chemicals), a 

biological entity (genes or proteins that it encodes), or a phenotypic entity (disease and side 

effect). Nodes in the same entity class are linked together by similarities (e.g., chemical-

chemical similarity) or interactions (e.g., protein-protein interactions). Nodes that belong to 

different entity classes reside in different network layers and are linked by known 

associations (e.g., drug-target interactions, disease-gene associations). Integration of 

genomics data into a bipartite graph is of a proven value [13]. The MULAN can be 

considered as the unification of multiple bipartite graphs; thus, our new method is likely to 

be more robust than traditional approaches.

Chemical-gene associations including drug-gene associations were obtained from the ZINC 

[14], ChEMBL [15] and DrugBank [9] databases. To obtain reliable chemical-gene 

association pairs, binding assays records with IC50 (concentration of the chemical needed to 

Wang et al. Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhibit 50% of the activity of the target protein) information were extracted from the 

databases, and the cutoff IC50 value of 10 μM was used where applicable. Chemical-gene 

pairs were considered associated if IC50≤10 μM (active pairs), unassociated if IC50>10 μM 

(inactive pairs), ambiguous if records exist in both ranges (ambiguous pairs), and 

unobserved otherwise (unknown pairs). A total of 198,712 unique chemicals and 3,549 

unique genes were obtained from the combination of ChEMBL and ZINC with 228,725 

unique chemical-gene active pairs, 76,643 inactive pairs, and 4,068 ambiguous pairs. Of the 

198,712 chemicals, 722 were found to be FDA-approved drugs. Furthermore, drug-gene 

relationships were extracted from the Drug-Bank and integrated into the ZINC_ChEMBL 

dataset above. A total of 199,338 unique chemicals and 6,277 unique genes were obtained 

from the combination of ZINC, ChEMBL, and DrugBank with 233,378 unique chemical-

gene active pairs. Drug-disease and gene-disease associations were directly obtained from 

the Comparative Toxicology Database (CTD) [12].

Chemical-chemical similarity scores are one of the required inputs of tREMAP. Although 

there are a number of metrics developed for chemical-chemical similarity, a recent study 

showed that Jaccard index-based similarity is highly efficient for fingerprint-based similarity 

measurement [16]. The fingerprint of choice in this study is the Extended Connectivity 

Fingerprint (ECFP), which has been successfully applied to chemical structure-based target 

prediction method, PRW [17]. Jaccard index is used to calculate a similarity score between 

two chemicals, c1 and c2.

Gene-gene similarity scores are also one of the required inputs for tREMAP. The similarity 

between two proteins encoded by genes was calculated based on their amino acid sequence 

similarity using NCBI BLAST [18] with an e-value threshold of 1 × 10−5 and its default 

options. A similarity score for query protein p1 to target protein p2, dbit (p1,p2), was 

calculated by the ratio of a bit score for the pair compared to the bit score of a self-query. To 

be specific, for the query protein p1 to the target protein p2, protein-protein similarity score 

was defined such that T(p1,p2) = dbit (p1,p2)/dbit (p1,p1).

Disease-disease similarity is required for tREMAP to infer chemical-disease associations 

and can be calculated using distributed word representations [19]. In this work, we do not 

infer the chemical-disease association directly using tREMAP, since only less than 0.4% of 

chemicals have observed associations with one or more diseases. Instead, we use ENTS and 

target binding profile of a chemical, which is derived from tREMAP, to infer the chemical-

disease associations.

4.3 tREMAP Algorithm

Our prediction method tREMAP is based on a tri-factorization one-class collaborative 

filtering algorithm. In the case of chemical-gene association, it assumes that similar 

chemicals will interact with similar genes, and unobserved associations are not necessarily 

negative. Assuming that a fairly low number of factors (i.e. smaller number of features than 

the number of total chemicals or genes) may capture the characteristics determining the 

drug-gene associations, two low-rank matrices, F (drug side) and G (gene side), were 

approximated such that ∑i
n∑ j

m{R − (F · S · G′)} is minimized where R is the matrix for known 
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drug-gene interactions and G′ is the transposition of the gene side low-rank matrix G. The 

two low rank matrices, Fn×r1 with the rank of r1 and Gm×r2 with the rank of r2, and their 

connectivity matrix Sr1×r2 are obtained by iteratively minimizing the objective function.

min
F, S, G ≥ 0

∑(u, i)W(u, i) R(u, i) + P(u, i) − (FSG′)(u, i)
2 + λr(‖F‖2 + ‖S‖2 + ‖G‖2) + λFtr(F′

(DM − M)F) + λGtr(F′(DN − N)G)

(1)

Here, W(u,i) is the penalty weight on the observed and unobserved associations which 

indicate the reliability of the assigned probability of true association, P(u,i) is the imputed 

value (i.e. the probability of unobserved associations as real associations), M and N is the 

symmetric chemical-chemical similarity matrix and gene-gene similarity matrix, 

respectively. DM and DN are the degree matrix of M and N, respectively. λr is the 

regularization parameter to prevent overfitting, λF is the importance parameter for chemical-

chemical similarity, λG is the importance parameter for gene-gene similarity, and tr(A) is the 

trace of matrix A. The weight and imputation values can be determined by a priori 
knowledge or from the prediction of other machine learning algorithms. The first term in (1) 

forces the approximation FSG′ to be close to the observation matrix R The second term is 

regularization term preventing overfitting. The third and fourth terms force the low-rank 

feature vectors close to each other according to their chemical-chemical or protein-protein 

similarity score. Thus, the optimal low-rank matrix F was obtained after minimizing the sum 

of Euclidean distances for each row weighted by the chemical-chemical similarity score. 

The derivation of the formula can be found in [20].

Similar to the bi-factorization problem in [20], the optimization problem defined in (1) is 

non-convex. Thus, we seek to find a local optimum by the block coordinate descent method. 

In (1), DM, M, DN, and N are non-negative matrices. The derivative of (1) with regard to F, 

G, and S with the non-negativity constraint has a fixed-point solution. To scale up tREMAP 

in terms of both time and storage, we propose efficient multiplicative updating rules as 

follows:

F(u, r) F(u, r)
[(1 − wp)RGS′ + wp1m × nGS′ + λFMF](u, r)

[(1 − w)R1GS′ + wF(SG′GS′) + λrF + λFDMF](u, r)
(2)

G(i, s) G(i, s)
[(1 − wp)R′FS + wp1n × m(FS) + λGNG](i, s)

[(1 − w)R1(FS) + wG(S′F′FS′) + λrG + λGDNG](i, s)
(3)
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S(r, s) S(r, s)
[(1 − wp)F′RG + wp(F′(1m × n)G)](r, s)

[(1 − w)F′R1G + wF′(FSG′)G](r, s) + λrS
(4)

Where w and p are weighted and imputed value, respectively. They are either set based on a 

priori knowledge (e.g. the false positive rate of high-throughput screening experiments) or 

can be tuned as hyper-parameters. R1(u, i) is the sparse matrix in which the value of elements 

is predicted by F and G on the observed cases Θ in R, i.e.

R1(u, i) =
FSG(u, i)′ if (u, i) ∈ Θ

0 otherwise
(5)

We use a block-coordinate descent algorithm to iteratively update F, G, and S.

The raw predicted score for the ith chemical to bind the jth protein can be calculated by 

P(i, j) = F(i, : ) · S · G( j, : )′ . Also, the matrix Fn×r1 is referred to as a low-rank drug profile since 

its ith row represents the ith drug’s behavior in the drug-gene association network as well as 

drug-drug similarity spaces compressed to r1 number of features.

4.4 ENTS Algorithm

The rationale of ENTS is that when clusters of instance share common features, a cluster 

ranked closely together is more likely similar to the new instance than a cluster ranked 

randomly or spread out across the ranking. In addition, network topological similarity 

provides more robust and accurate global ranking across an entire hypothesis space than 

pairwise similarity does. Unlike conventional local ranking (e.g., k-nearest neighbors), 

global instance ranking can support statistical enrichment analysis because it draws valuable 

information on the ranking for all instances in a cluster from lower, non-randomly ranked 

cases.

4.4.1 Classification or clustering of database instances—To initialize ENTS, part 

or all of the instances in the database (training set) are classified based on target feature T. In 

ANTENNA, the T is the disease associated with a drug. If database instances are not pre-

classified, clusters of training data are assembled using T features under unsupervised 

clustering techniques [21] such as k-means [22], mean-shift [23], affinity propagation [24], 

or p-median model [25] etc. After the classification or clustering, each instance cluster will 

be assigned with a unique label (i.e. a specific disease in ANTENNA). These instance 

clusters are applied to the next step. It is noted that the instance clusters are not necessarily 

disjointed. They can overlap.

4.4.2 A weighted graph represents training instance similarity by T-features—
After the initialization, ENTS builds a database instance graph; a weighted graph with one 

node for the T-feature of each training instance and an edge between two nodes only if their 
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pairwise similarity exceeds a certain threshold. The threshold depends on the features and 

the pairwise similarity metric. Any similarity metric (e.g. Euclidean distance, Jaccard index, 

Hidden Markov Model, kernel-based similarity etc.) can be applied here. In ANTENNA, we 

use cosine similarity of low-rank profile of drugs to measure the distance between drugs.

4.4.3 Network topological similarity—Given a query with known K-feature and the 

goal to predict its unknown T-feature, ENTS first links the query to all nodes in the training 

instance graph, where new edges are not found in the training instance graph. The weights of 

these new edges are only based on K-feature similarity. Then Random Walk with Restart 

(RWR) is applied to perform a probabilistic traversal of the instance graph across all paths 

leading away from the query, where the probability of choosing an edge will be proportional 

to its weight. The algorithm will output a list of all instances in the graph, ranked by the 

probability that a path from the query will reach the node. In this way, RWR can capture 

global relationships that may be missed by pair-wise similarity [26].

We modified the RankProp algorithm [27], a variant of RWR. The graph is represented as an 

adjacency list to save memory and speed up the iterative algorithm. The current 

implementation is scalable to a graph with millions of nodes and hundreds of millions of 

edges.

4.4.4 Statistical significance of network topological similarity—A network 

topological search only ranks instances based on their similarity but gives no information on 

the reliability of the ranking. To assess the statistical significance of the ranking of an 

instance cluster Ci generated previously, ENTS compares the score distribution of the cluster 

Ci with that of a randomly drawn cluster of the same size. When the mean of global 

topological similarity scores X̄ in a cluster is used as the statistic, an efficient random-set 

method is used for the parametric approximation of the null distribution [28]. The random-

set method compares an enriched cluster of size m with all other distinct clusters of size m 

drawn randomly from a case graph on N nodes. The exact distribution of X̄ is intractable, 

but can be approximated with the normal distribution with mean and variance as follows:

μ = 1
N ∑ j = 1

N p j

σ2 = 1
m

N − m
N − 1

1
N ∑

j = 1

N
p j

2 − 1
N ∑

j = 1

N
p j

2

Where pj is the global topological similarity score of the structure j in the graph to the query. 

The enrichment score of the cluster Ci is then normalized with Z = (X̄ − μ)/σ.

A p-value and Benjamini-Hochber adjusted false discovery rate (FDR) is then calculated for 

each Z-score.

4.5 Combining tREMAP and ENTS to Predict Drug - Disease Association

In ANTENNA, we firstly use tREMAP to generate chemical-side low rank matrix F and 

gene side low-rank matrix G. The ith row of F contains the gene association profile for the ith 
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drug. Then, we calculated drug-drug cosine similarities based on the matrix F, and construct 

a drug-drug similarity graph. For each row of F for FDA approved drugs, the cosine 

similarity of drug c1 and drug c2 can be calculated by, Scos, (c1, c2) =
Uc1

· Uc2
∣ Uc1

∣ ∣ Uc2
∣ . To 

search for possibly undiscovered uses of the drugs, we focus on drugs that are found to have 

high cosine similarity but low chemical structural similarity (< 0.5). Finally, we cluster drugs 

based on their directly or indirectly associated diseases annotated in CTD database [12], and 

use ENT to assess and rank the statistical significance of novel drug-disease associations. 

The final output of ANTENNA is the ranked list of predicted drug-disease association based 

on FDR.

4.6 Experimental Validation

4.6.1 Kinase binding assay—Kinase is an enzyme that catalyzes the transfer of a 

chemical group phosphate to another biomolecule. It functions as a molecular switch in 

many biological processes. The malfunction of kinases is responsible for many diseases such 

as cancer. There are more than 400 kinases in the human genome, which is termed as 

kinome. To rigorously validate the performance of ANTENNA, we employed a competition 

binding assay to detect the binding of selected drugs to a set of 438 kinases (human kinome). 

The proprietary KinomeScan™ assay was performed by DiscoverX (CA). The assay tested 

the capacity for a drug to disrupt the binding of each DNA-tagged kinase to a support which 

one was in turn bound to the kinase’s known ligand. If binding between the kinase and its 

known ligand was disrupted in the presence of the drug, this indicated that the drug either 

competed directly with the known ligand or allosterically altered the kinase’s ability to bind 

to that ligand. DMSO was used as a positive control and a pico-molar kinase inhibitor was 

used as a negative control. Binding levels were quantitated by performing real-time 

polymerase chain reaction (qPCR) on the DNA tag of the ligand-bound kinases. The qPCR 

is a molecular biology technique to amplify a single copy or a few copies of DNA segment 

in several orders of magnitude and to measure the reaction in a real time. The tests were 

performed at 100 μM concentration of tested drug, and results were reported as %Control, 

calculated as follows, where a lower %Control score indicates a stronger interaction.

(test compound signal − positive control signal)
(negative control signal − positive control signal) × 100

4.6.2 Cancer cell viability assay—MCF-7 cells from ATCC® and MDA-MB 468 cells 

(a gift of Dr. R Sullivan from Queens Community College, the City University of New York) 

were used for this study. MCF-7 is breast cancer cell line. MDA-MB 468 is triple negative 

breast cancer cell line which does not express estrogen receptor (ER), progesterone receptor 

(PR), and human epidermal growth factor receptor (Her2/neu). Cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) (Thermo Fisher Scientific) supplemented 

with 10% fetal bovine serum (Thermo Fisher Scientific) and 50 μg/ml gentamicin (Thermo 

Fisher Scientific) at 37°C 5% CO2 incubator.
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Cell viability was determined by neutral red assay which is based on the lysosome uptake of 

neutral red dye [29]. Briefly, cells (2 × 104 cells per well) were plated onto 96-well plate in a 

total volume of 200 μl on the day before chemical treatments. Chemicals were dissolved in 

dimethyl sulfoxide (DMSO) to obtain 0.1 M stock solution 15 minutes before chemical 

treatments. Then, various concentrations (0.1–150 μM) of chemicals were prepared in fresh 

media. The final concentration of DMSO in each well was equal to or less than 0.15% which 

is considered non-toxic to cells [30].

After 24 hours of chemical treatments, 20 μl of 0.33% Neutral Red Solution (Sigma Aldrich) 

was added onto wells. After 2 hours incubation at 37°C 5% CO2 incubator, dye solution was 

carefully removed and cells were rinsed with 200 μl Neutral Red Assay Fixative (0.1% 

CaCl2 in 0.5% formaldehyde) (Sigma Aldrich) twice. The absorbed dye was then solubilized 

in 200 μl of Neutral Red Assay Solubilization Solution (1% acetic acid in 50% ethanol) 

(Sigma Aldrich) for 10 minutes at room temperature on a shaker. Absorbance at 540 nm and 

690 nm (background) was measured by BioTek Synergy Mx microplate reader.

Each concentration in each experiment was done in at least triplicate. Multiple experiments 

were done to obtain IC50 values for each drug and each cell line. The viability was 

determined based on a comparison with untreated cells which were set as 100% cell 

viability. The IC50 values which represent the chemical concentration needed to inhibit 50% 

cell proliferation were calculated from the dose-response curve.

5 Results and Discussions

5.1 Performance evaluation of tREMAP

In our published study [8], single rank REMAP outperformed state-of-the-art methods: a 

chemical similarity-based method (PRW [17]), the best performed matrix factorization 

methods so far (NRLMF [31] and KBMF with twin kernels (KBMF2K) [32]), combination 

of WNN and GIP (WNNGIP [33]), and another type of collaborative filtering algorithm 

(Collaborative Matrix Factorization (CMF) [34]). Here we compare the performance of 

tREMAP with that of REMAP using two benchmarks. The first benchmark includes 3,494 

chemicals, 25 G-protein coupled receptors (GPCRs), and 4,494 observed chemical-GPCR 

associations. The second benchmark includes 33,684 chemicals, 31 Cytochrome P450 

enzymes (CYP450), and 51,699 observed chemical-CYP450 associations.

As shown in Fig. 3, tREMAP clearly outperforms REMAP when evaluated by both 

benchmarks. tREMAP identifies around 96% and 87% true associations ranked on the top 3 

for GPCR and CYP450, respectively, while REMAP can only identify around 78% and 60% 

true hits ranked on top 3 respectively.

When evaluated by the application to sequence-structure similarity search, ENTS is superior 

to Hidden Markov Model and RWR [5].

5.2 Time complexity of tREMAP

Empirically, the running time of tREMAP is linearly dependent on the number of chemicals 

and genes, as shown in Fig. 4. When evaluated in a machine with 2 cores of 2.18 GHz CPU. 
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It takes around 1,000 seconds for a matrix with 15,000 chemicals, 200 genes, chemical-side 

rank of 1,000, and gene-side rank of 200 to converge.

5.3 ANTENNA Predictions

By combining tREMAP with ENTS, ANTENNA predicted that 21,921 novel drug-disease 

associations with Benjamini-Hochberg adjusted false discovery rate (FDR) less than 0.02. 

We selected a drug-disease pair for further experimental evaluation based on the following 

criteria. First, the drug was predicted to bind kinases, as the genome-wide binding assay for 

kinases is accessible. Second, the associated disease does not have effective therapy, so that 

the repurposed drug will have the biggest clinical impact. Third, the cell-based disease 

model is available, so that we can evaluate the efficacy of the drug.

Based on above criteria, diazoxide, a safe FDA-approved drug for hypertension, was 

selected. Diazoxide was predicted to interact with protein kinases. Furthermore, ANTENNA 

predicted that diazoxide was associated with Triple Negative Breast Cancer (TNBC) with 

Benjamini-Hochber adjusted false discovery rate (FDR) of 0.0108. Thus, diazoxide may be 

repurposed for the treatment of TBNC which is the most aggressive type of breast cancer 

and cannot be treated by any existing targeted therapy. It notes that the FDR of predicted 

diazoxide-TNBC association is not particular statistically significant. If this prediction is 

experimentally validated, we will have more confidence in predictions with lower FDRs.

5.4 Kinase Binding Assay

We validated the binding of diazoxide to kinases using KinomeScan™ assay. Fig. 5 displays 

the binding profile of diazoxide across 438 kinases (kinome). Diazoxide has the highest 

percentage inhibition of kinases DRYK1A, IRAK1, and TTK with 7.0%, 8.9%, and 15.0% 

control. It is noted that the lower %Control, the higher inhibition of kinase activity.

As shown in Table 1, the malfunction of DYRK1A, IRAK1, and TTK is associated with 

multiple diseases, especially cancers and Alzheimer’s disease. To verify our predictions, we 

tested the effect of diazoxide on breast cancer cells.

5.5 Cancer cell viability assay

The cytotoxicity of diazoxide was determined by neutral red cell viability assay. The IC50 

values obtained from Estrogen positive breast cancer MCF-7 cells and TNBC MDA-

MB-468 cells treated with chemicals for 24 hours were shown in Table 2. Diazoxide was 

much more effective in inhibiting the cell proliferation of TNBC cancer MDA-MB 468 cells 

as compared to MCF-7 breast cancer cells with the values of IC50 0.87 ± 0.39 μM and 130.0 

± 70.0 μM, respectively. The IC50 is the concentration of diazoxide that inhibits the cell 

proliferation of 50% cancer cells. The smaller the IC50 value is, the stronger anti-cancer 

activity diazoxide has. It is accepted that a chemical compound is active when the IC50 is 

less than 10 μM. Thus, diazoxide could be a highly effective targeted therapy for the 

treatment of TNBC at a low concentration.
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6 CONCLUSIONS

In summary, we have developed a reliable and accurate multi-rank, multi-layered 

recommender system ANTENNA. Using ANTENNA, we predicted that FDA-approved safe 

medicine diazoxide could bind to kinases whose malfunction is associated with TNBC. 

KinomeScanTM assay confirmed the kinase binding of diazoxide. Cancer cell viability 

assay further validated that diazoxide is highly effective in inhibiting the proliferation of 

TNBC cancer cells. These findings suggest that diazoxide can be repurposed as an effective 

targeted therapy for the treatment of TNBC. Furthermore, diazoxide may be effective in the 

treatment of other diseases such as hepatocellular carcinoma and Alzheimer’s disease. We 

are carrying out experiments to verify these predictions. This study demonstrates that big 

data analytics provides new opportunities for accelerating drug discovery and development, 

and realizing the full potential of precision medicines.
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Fig. 1. 
Illustration of Multi-Layered Network Model (MULAN) that integrates multiple genomics 

data sets.
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Fig. 2. 
Workflow of drug discovery process using ANTENNA, a multi-layered recommender 

system.
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Fig. 3. 
Performance comparison of tREMAP with REMAP for GPCR (top) and CYP450 (bottom), 

respectively. Performance is measured by the recall at the top rank K.
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Fig. 4. 
Running time of tREMAP vs the number of items. The computational time was measured 

using 2 cores of 2.18 GHz CPU, for a matrix with 200 genes and varied number of 

chemicals. The ranks for chemical and gene are fixed as 1,000 and 200, respectively
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Fig. 5. 
Binding profile of FDA-approved drug diazoxide (100 μM) on 438 kinases determined by 

KinomeScan™ assay.
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Table 1

Gene-disease Associations of three kinases having highest inhibition percentage by diazoxide

Kinase KinomeScan™ %Control Gene-Disease Association

DYRK1A 7.0 Multiple cancer drug-resistance, Alzheimer’s disease

IRAK1 8.9 Breast cancer metastasis, herpesvirus lymphoma, Alzheimer’s disease

TTK 15 TNBC, Hepatocellular Carcinoma
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Table 2

IC50 values of diazoxide on cancer cells

Cell line IC50 (Mean ± SEM)

MCF-7 (ER positive) 130.0 ± 70.0 μM

MDA-MB-468 (TNBC) 0.87 ± 0.39 μM
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