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Solving Inverse Computational Imaging Problems
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Abstract—Signal reconstruction is a challenging aspect of
computational imaging as it often involves solving ill-posed
inverse problems. Recently, deep feed-forward neural networks
have led to state-of-the-art results in solving various inverse
imaging problems. However, being task specific, these networks
have to be learned for each inverse problem. On the other
hand, a more flexible approach would be to learn a deep
generative model once and then use it as a signal prior for
solving various inverse problems. We show that among the
various state of the art deep generative models, autoregressive
models are especially suitable for our purpose for the following
reasons. First, they explicitly model the pixel level dependencies
and hence are capable of reconstructing low-level details such
as texture patterns and edges better. Second, they provide an
explicit expression for the image prior which can then be used for
MAP based inference along with the forward model. Third, they
can model long range dependencies in images which make them
ideal for handling global multiplexing as encountered in various
compressive imaging systems. We demonstrate the efficacy of
our proposed approach in solving three computational imaging
problems: Single Pixel Camera (SPC), LiSens and FlatCam. For
both real and simulated cases, we obtain better reconstructions
than the state-of-the-art methods in terms of perceptual and
quantitative metrics.

Index Terms—Inverse problems, compressive image recovery,
deep generative models, lensless image reconstruction, autore-
gressive models, MAP inference.

I. INTRODUCTION

COMPUTATIONAL imaging systems enable us to extract
much more information out of the visual world as com-

pared to the traditional imaging systems. This is achieved by
jointly designing optics, to encode the desired signal informa-
tion, and algorithms to reconstruct the signal back from those
measurements. Signal reconstruction corresponds to inverting
the forward model used in acquiring the measurements. Hence,
reconstruction algorithms for different computational imaging
devices amount to solving different inverse problems. Solving
these inverse problems becomes challenging as they are often
ill-posed. For compressive imaging setups such as Single
Pixel Camera (SPC) [2], [3], high speed imaging [4], [5]
and compressive hyper-spectral imaging [6], the reconstruction
becomes ill-posed as the number of measurements is quite less
than the signal dimension.
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Generally, for solving an ill-posed problems, we need to
incorporate the prior information about the signal to be re-
constructed. Traditionally these priors are either analytically
derived or hand-crafted based on the observations. For exam-
ple, sparsity of image gradients [7], sparsity of coefficients
in wavelet and DCT domain [8] etc. have been used for
solving inverse imaging problems. However, the underlying
data distribution may not precisely follow these analytic priors
leading to poor solutions in challenging scenarios. Dictionary
learning [9] methods being data driven are an improvement
over these analytic priors. However, being limited by patch
size they cannot account for long range dependencies which
are necessary for handling global multiplexing in case of
compressive image reconstruction.

On the other hand, deep learning based reconstruction al-
gorithms recently have led to state-of-the-art results in solving
such ill-posed problems in computational imaging [10], [11]
[12] [13]. These approaches typically learn an inverse mapping
from measurements to the signal by minimizing reconstruction
loss on a set of training examples. However, this kind of
training, popularly known as discriminative learning, makes
the network task specific. Furthermore, we need to retrain
the network for various parameter settings of the forward
model. For example, for every new setting of measurement
rate and sensing matrix in SPC, we need to relearn the network
parameters. Instead of having to design/retrain a different
network for each task and parameter setting, it would be more
efficient to have a generalized framework which can be used
for solving various inverse problems.

A more flexible approach would be to learn the natural
image statistics using a generative model and use it for solving
various inverse problems. Recently, deep generative models
especially using autoregressive framework [14], [15], [16]
have led to state-of-the-art performance in modeling natural
image manifold. Autoregressive models factorize the image
distribution as a 2D directed causal graph and hence model
it as a 2-D sequence where current pixel’s distribution is
conditioned on the causal context. By employing deep neural
networks for summarizing the causal context, autoregressive
models excel at capturing long range dependencies in images.
Also, being a pixel level model it explicitly accounts for
higher order correlations like texture patterns, sharp edges,
etc. within a neighbourhood. Thus, these models are capable
of generating visually convincing and crisp images [14].
Examples of deep autoregressive image models are recurrent
image density estimator (RIDE) [15], pixel recurrent neural
networks (PixelRNN) and its CNN equivalent (PixelCNN) [14]
and PixelCNN++ [16].
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Fig. 1. An overview of our approach. We employ a single deep autoregressive model learned on natural images for solving multiple inverse problems. From
the zoomed in patch of the reconstructed image in the inset it is evident that our approach has better pixel-level consistencies as compared to existing latent
representation based models like OneNet [1].

We show that deep autoregressive generative models are
ideally suitable for solving various computational imaging
problems for the following reasons. First, it explicitly mod-
els the distribution of each pixel in relation to its causal
neighbor. Thus, when used as an image prior, this explicit
pixel dependency modeling helps it to better reconstruct low
level details without artifacts (see Figure 1). Second, this
framework gives us an explicit expression for the image prior,
which can be used for doing MAP inference. Moreover, the
entire framework is differentiable, which is amenable for
gradient based inference. Third, its ability to capture long
range dependencies in images makes them ideal for handling
global multiplexing in compressive imaging setups. Given
these advantages with deep autoregressive models, we use it
for solving various computational imaging problems such as -
Single Pixel Camera (SPC) [2], Line Sensor (LiSens) [3] and
lensless imaging - FlatCam [17]. Our results demonstrate that
we perform better than the current state-of-the-art methods in
both traditional and learning based approaches.

In summary we make the following contributions:

• We propose a versatile approach which employs the same
learned prior model for solving various computational
imaging problems.

• We propose to use a deep autoregressive model, Pixel-
CNN++, as an image prior. The autoregressive nature of
this prior ensures pixel-level consistencies in the recon-
struction and hence provides better quality than using
latent representation based models such as OneNet [1]
as shown in Figure 1.

• We utilize back-propagation to the inputs for obtaining
tractable estimates of the prior gradients and employ them
for solving inverse problems using MAP inference.

• We observe that randomly dropping the gradient updates
for a certain percentage of pixels at every iteration

helps in reconstructing the texture better. We analyze
the effect of this pixel dropout ratio on the quality of
reconstructions.

• We demonstrate better reconstructions than the existing
state-of-the-art methods for three computational imaging
problems: Single Pixel Camera, LiSens, and FlatCam.

II. RELATED WORK

Compressive imaging Single Pixel Camera (SPC) [2] is
a classic example of compressive imaging. It uses a pro-
grammable digital micro-mirror device (DMD) array to mul-
tiplex the scene on to a single photodetector. Using different
settings on the DMD, we can sequentially acquire a set of
measurements. Thus, scene at full resolution is reconstructed
from much less than 100% measurements. Compressive imag-
ing systems pose a viable solution for high resolution imaging
in non-visible parts of the spectrum where full frame sensors
are very expensive.

The measurement bandwidth of the SPC is limited by the
operating speed of the DMDs (Tens of kHz for commercially-
available units). With this speed, SPC cannot be extended for
high resolution video sensing. On one end, we have exorbitant
full frame sensors (Nyquist sampling) for high resolution
imaging in non visible bands, and on the other, we have
SPC, an inexpensive compressive sensing setup but with low
measurement rates. Wang et al. [3] propose LiSens - Line
Sensor based compressive camera which lies midway between
these two imaging extremes. Each pixel in the line sensor is
mapped to a row in DMD array. Thus, unlike SPC, where the
whole scene is multiplexed, here only rows of the scene are
multiplexed.

Lensless imaging FlatCam [17] and DiffuserCam [18] are
novel imaging systems which get rid of the conventional
lens optics. Instead, they use amplitude and diffuser mask
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respectively to encode light coming from different parts of
the scene onto the sensor. As a result, information localized
at a point in the scene gets spread throughout the sensor,
making priors essential for accurate recovery of the image.
These works use traditional reconstruction algorithms such as
Total Variation norm and Tikhonov regularization which are
quick but do not provide natural looking reconstructions.

Reconstruction with analytical priors Many algorithms
have been proposed for compressive image reconstruction.
Typically, reconstruction algorithms use l1 regularization, ex-
ploiting the sparsity of spatial gradients in natural images.
Total Variation (TV) minimization prior [7], [19] is the
most commonly used reconstruction algorithm based on this
sparsity. Chengbo et al. [20] propose an efficient augmented
Lagrangian based TV minimization for CS reconstruction.
Recent approaches involving compressive architectures such as
fpa-cs [21], LiSens [3], and video CS [22], demonstrated suc-
cessful results with TV minimization prior. However, at lower
measurement rates, reconstructions suffer from the piece-wise
smooth modeling of TV prior and results tend to be blocky, as
is noted by recent works [10], [23]. Metzler et al. [24] propose
a denoiser based CS reconstruction algorithm. Specifically,
use a Gaussian denoiser with approximate message passing
algorithm (D-AMP). At very low measurement rates, the
denoiser tends to result in overly smooth images as is recently
shown by Dave et al. [23], Kulkarni et al. [10].

Data driven CS reconstruction Duarte et al. [25] propose
an approach for simultaneous learning of the sensing matrix
and dictionary atoms. Due to the small patch size of the
atoms, their usage for compressive image reconstruction is
limited to local multiplexing, unlike the actual SPC involving
global multiplexing of the scene. Reconstruction algorithms
using convolutional neural networks (CNNs) typical take input
as measurements from an image patch and try to output the
image back by minimizing the reconstruction loss. Kulkarni
et al. [10] proposed ReconNet, Yao et al. [11] proposed DR2-
Net having residual connections for reconstruction. Although
these approaches lead to a non-iterative and hence faster
inference, being task specific, they only work for the fixed
settings of the sensing matrix and measurement rates used
for training. Changing the settings requires retraining the
architecture which is not very appealing. Also, being patch-
wise, they also fail to account for global multiplexing in SPC.

Deep generative models With the success of deep neural
networks, there have been multiple works proposing deep gen-
erative models, which explicitly or implicitly try to model the
distribution of natural images. For example, latent represen-
tation models like adversarial networks, GAN by Goodfellow
et al. [26], variational auto-encoders by Kingma et al. [27]
and autoregressive models like RIDE by Theis et al. [15],
PixelRNN/CNN by Oord et al. [14], PixelCNN++ by Salimans
et al. [16]. GANs learn to transform samples from a Gaussian
distribution to a sample in the natural image manifold via
a generator network, which is trained with an adversarial
learning framework involving a discriminator network. VAEs
are a probabilistic framework of autoencoders that learn to
encode and decode the images from a distribution.

Autoregressive models factorize an image as a 2D directed

graph by conditioning the current pixel xi’s distribution on
the pixels before it as in a raster scan x<i. Modeling this
conditional density is analogous to sequence modeling and
initial methods proposed to use spatial 2D recurrent neural
networks, given their efficacy in modeling sequences. RIDE by
Theis et al. [15] uses 2D Long Short Term Memory (LSTM)
units called Spatial-LSTMs for modeling the causal context
x<i, and GSMs for parametrizing the distribution. PixelRNN
by Oord et al. [14] uses a much complex architecture using
LSTMs and residual connections to better handle the causal
context. Importantly, it models the conditional density as
a discrete distribution with xi ∈ {0, 1, . . . 255}. PixelRNN
has resulted in state-of-the-art negative loglikelihood (NLL)
scores. However, due to the sequential nature of distribution
modeling, both training and sampling are computationally
demanding with the runtime as O(N), where N is the total
number of pixels. Oord et al. proposed PixelCNN which is a
convolutional version of PixelRNN. This led to an improve-
ment in the training time by a large factor at the cost of
slight loss in the accuracy as with convolutions we can now
only capture bounded context. Salimans et al. [16] proposed
PixelCNN++, which builds on PixelCNN by employing a dis-
cretized mixture of logistics for modeling the distribution, and
using drop-out regularization, and additional skip connections.
It improves on the NLL score over PixelRNN on the CIFAR
dataset leading to state-of-the-art results.

Deep image priors When solving linear inverse problems
using the alternating direction method of multipliers (ADMM)
algorithm, Venkatakrishnan et al. [28] observed that it results
in two decoupled optimizations. The first one enforces the data
prior while the second enforces data fidelity to the observation.
The first step can be thought of as a denoising problem, thus,
a denoiser can be employed to solve this step thereby avoiding
the need for an explicit image prior. Venkatakrishnan et al. [28]
use denoisers like BM3D [29] in ADMM setting for image
restoration. Inspired by this, recent methods propose learning-
based proximal operators for the denoising step of ADMM.
OneNet by Chang et al. [1], CNN denoiser by Zhang et al.[30],
Meinhardt et al. [31] . In this work, we compare our explicit
natural image prior based MAP inference with the learned
proximal operator of OneNet. Our evaluations show that our
results are superior to OneNet. It is important to note that
OneNet’s proximal operator uses adversarial loss [26] which
is known to result in sharper recovery of details.

In this paper, we extend upon our previous work, Dave et
al. [23] (RIDE-CS), where we used recurrent image density
estimator (RIDE) for CS reconstruction. We observed that
the sequential nature of recurrent networks in RIDE makes
it too slow for inference and training (computational cost is
proportional to the image size). Also, in our experiments, the
two layer RIDE fails to yield results comparable to recent
approaches like OneNet [1]. Here, we explore sophisticated
deep autoregressive models which are order faster than RIDE-
CS for both training and inference. We apply the deep au-
toregressive model based inference to recent frameworks in
computational imaging like LiSens [3] and FlatCam [17]. We
enhance the inference algorithm by incorporating the aug-
mented Lagrangian method when necessary. In addition, we
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improve texture recovery using pixel-wise stochastic gradient
updates.

III. INFERENCE WITH DEEP AUTOREGRESSIVE MODELS

A. Problem Formulation

Consider X to be a n×n matrix corresponding to a natural
image and f to be a linear transformation corresponding to the
forward model of a computational camera. The measurements
obtained Y can be written as Y = f(X). Our goal is to
reconstruct back the image X from the measurements Y.

Discriminative networks learn the inverse mapping X̂ =
g(Y) by modelling g as a deep neural network and mini-
mizing the reconstruction error on a set of training examples
{Xi,Yi}. Hence, the inverse mapping is implicitly dependant
on the forward model f . Dealing with reconstructions for mul-
tiple forward models would require learning separate networks
for each model which can be expensive.

For our generative approach, we model the distribution of
natural images p(X) using a deep autoregressive model. We
formulate the inverse problem as MAP inference. Hence, the
estimated image X̂ can be written as

X̂ = arg max
X

log(p(X|Y)) (1)

= arg max
X

(log(p(Y|X)) + log(p(X))) (2)

The likelihood term p(Y|X) varies for different imaging
systems based on the forward model but the image prior p(X)
remains the same. Thus, we need to learn the prior only once
for all the problems.

B. Forward Models

Let the n2 × 1 column vector x represent the rasterized
version of the n×n image matrix X i.e. x , vec(X) by taking
pixels row by row. The forward models that we consider in
this work are as follows:

1) Randomly Missing Pixels: Here, we randomly set certain
number of pixels in an image to by missing, by setting their
values to zero. Hence, y i.e. the vectorized version of the
resultant image can be written as

y = m ◦ x (3)

where ◦ denotes the Hadamard product and m is a Bernoulli
random vector. The above equation can also be expressed in
a matrix-vector multiplication form as :

y = Mx (4)

where M is a sub-sampling matrix.
2) Single Pixel Camera: In SPC [2], the DMD array

optically multiplexes the scene onto a single pixel sensor. By
changing the orientation of the array, we will get different
multiplexing patterns, which results in different measurements.
If y is the vector of m single pixel measurements from SPC
and Φ is the m×n2 compressive sensing matrix, then we have
the forward model as:

y = Φx. (5)

3) LiSens: In Lisens [3], the 2D image of the scene formed
on the DMD plane is mapped onto a 1D line-sensor which
essentially captures the 1D integral of the 2D image (along
rows or columns). If Y is the m×n matrix formed by stacking
m line sensor measurements from Lisens and Φ is the m× n
sensing matrix, then we have

Y = ΦX (6)

4) FlatCam: FlatCam [17] replaces the lens system by
a coded amplitude mask close to the sensor. For ease of
calibration, this mask is designed to be separable, i.e., it can
be written as an outer product of 2 one dimensional patterns.
Neglecting the diffraction effects, it was shown in [17] that
using such a mask, the m×m measurements Y obtained on
the FlatCam sensor can be written as

Y = ΦLXΦT
R (7)

where ΦL and ΦR are m × n matrices corresponding to 1-
D convolution of the scene X along the rows and columns
respectively.

C. Deep autoregressive model

Here we model the dependencies between pixels using a
directed probabilistic chain. The pixel xi depends on all the
pixels before the index i in x, which we denote as x<i.
Hence the joint distribution over the pixels in the image can
be factorized as

p(X) = p(x1, x2, . . . , xn2) =

n2∏
i=1

p(xi|x<i) (8)

In this work, we use state-of-the-art autoregressive generative
model, PixelCNN++ [16]. Here, the context x<i for the
conditional distribution of each of the pixels is modelled using
a deep convolutional neural network with residual connections.
The convolution kernels are masked appropriately to ensure
that the context of a pixel does not depend on the pixels after
it. The conditional distribution is then modelled as a mixture of
logistic distributions, where the parameters of the distribution
depend on the context. This model is then learned on RGB
images using maximum likelihood training.

Once the model is trained, it can be used to solve different
inference tasks, as we describe below. Sampling from autore-
gressive models is slow because of their sequential nature
which limits their utility. However, for our approach, we
only require the gradients of the density p(X) with respect
to the image X . This can be computed efficiently using
backpropagation to the inputs.

IV. OPTIMIZATION METHODS FOR DEEP AUTOREGRESSIVE
INFERENCE

In this section, we discuss inference methods for various
forward models discussed earlier. We want the desired solution
to have higher likelihood (lower NLL) under the image prior
and at the same time satisfy the constraints specified by
the forward model. For this, we perform projected gradient
descent. We divide our approach into three categories based
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on the amount of noise and the kind of forward model. Hard
constraint (equality) method is used when there is less or
no measurement noise (Section IV-A). For certain imaging
models like FlatCam, there is no closed form for the projection
operator. We instead use the Augmented Lagrangian Method
(ALM), see Section IV-B. For the cases of high noise, the
measurements deviate significantly from the forward model,
and the soft constraint method (inequality) is used (Section
IV-C). Further, in Sections IV-D and IV-E, we describe two
implementation hacks which have proved useful for our ap-
proach.

A. Hard constraint method

We first analyze the case when the measurement is directly
obtained using the imaging model without any noise. Y is
then a deterministic function of X and hence the likelihood
term would correspond to constraints. The problem can be
formulated as

X̂ = arg max
X

(log(p(X)) such that Y = f(X) (9)

where f is provided by the imaging model. The signal prior
model is the learned autoregressive model with parameters θ.
Also, we constrain the intensity of the image to be between 0
and 1. Thus our problem is given by:

X̂ = arg max
X

(log(pθ(X)) s.t. Y = f(X), 0 ≤ Xij ≤ 1

(10)

Let C1 and C2 denote the constraint sets {X : Y = f(X)}
and {X : 0 ≤ Xij ≤ 1 ∀i, j} respectively.

We use projected gradient descent to solve this constrained
optimization, which involves performing the following steps
iteratively:

Hk = Xk + α∇Xlog(pθ(Xk)) (11)
Jk = ΠC1(Hk) (12)

Xk+1 = ΠC2(Jk) (13)

where ΠC1 and ΠC2 are projection operators to the constraint
sets C1 and C2 respectively. For Eq. 11 backpropagation to the
inputs is used to get the data gradients. For Eq. 13, pixels in
the image are clipped between 0 and 1 in every iteration.

ΠC1 is different for different imaging problems. For the
randomly missing pixels case,

jk = (1−m) ◦ hk + (m) ◦ y (14)

where 1 is an n2 vector of ones. This implies that we should
only be updating the missing pixels and leave the other pixels
the same, which is intuitive.

For Single Pixel Camera we have,

jk = hk − ΦT
(
ΦΦT

)−1
(Φhk − y) (15)

where jk and hk are vector representations of matrices Jk and
Hk respectively. We consider row-orthonormalized matrices
for compressive sensing, hence ΦΦT is an identity matrix.

For LiSens case, similar to SPC, we have

Jk = Hk − ΦT
(
ΦΦT

)−1
(ΦHk −Y) . (16)

B. Augmented Lagrangian method

For the case of FlatCam reconstruction, the matrices
ΦLΦL

T and ΦRΦR
T are ill-conditioned and can’t be in-

verted. A closed form solution for projection operator doesn’t
exist. So, we consider the augmented Lagrangian correspond-
ing to C1, with a dual parameter λ.

L(X,λ) = −log(pθ(X)) + ρ‖Y − ΦLXΦTR‖2F
+ 〈λ,Y − ΦLXΦTR〉F (17)

However, instead of minimizing the Lagrangian with respect
to the primal variable in each iteration, we just take one step of
gradient descent. We further separate the gradient descent into
two steps, one entirely depends on the prior while the other
entirely depends on the imaging model. The update steps are
as follows.

Hk = Xk + α∇Xlog(pθ(Xk) (18)

Jk = Hk + ΦTL(λk − ρ(Y − ΦLXkΦTR))ΦR (19)
Xk+1 = ΠC2(Jk) (20)

λk+1 = λk + ρ(Y − ΦLXkΦTR) (21)

C. Soft constraint method

Consider the case when the sensor has measurement noise,

Y = f(X) + η (22)

Assume the measurement noise η to be Gaussian distributed,
i.e.

η ∼ N (0, σ) (23)
Y ∼ N (f(X), σ) (24)

The MAP estimation problem can hence be reduced to

X̂ = arg max
X

(log(pθ(X)) + λ‖Y − f(X)‖2) (25)

where λ has to be estimated if we do not know the standard
deviation of the measurement noise. Since the constraints
are not exact here, we replace the step to project to the
constraint space by instead taking a step towards minimizing
the likelihood. Hence, we replace Eq. 12 by gradient descent
over likelihood,

Jk = Hk − αf ′(Hk)(Y − f(Hk)) (26)

D. Stochastic gradients using pixel dropout

We observe that if we update all the pixels in the gradient
update (Eq. 11), then we get washed out reconstructions.
The autoregressive prior directly models correlation between
neighbouring pixels. Hence it tends to assign same values to
neighbouring problems. We combat this problem by randomly
selecting a certain amount of pixels to update in each step.
Hence, not all pixels get updates at every step. We call
this pixel dropout, and for incorporating that, we replace the
gradient in Eq. 11 by stochastic gradients, i.e.,

Hk = Xk + αM ◦ ∇Xlog(pθ(Xk)) (27)
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where M is a random binary mask with the percentage of
zeros determined by the pixel dropout ratio. This is analogous
to the case of training deep neural networks, where Stochastic
Gradient Descent (SGD) helps in escaping from sharp local
minima [32]. Here, the washed out reconstructions correspond
to sharp local minima owing to the strong correlation between
pixels. We demonstrate the effect of the amount of pixel
dropout on the reconstructions in Section VI-D1.

E. Splitting and Stitching

Our prior model is trained on 64 × 64 patches, hence the
input for pθ(X) has to be 64 × 64. While we perform the
likelihood step on the entire image, our approach is designed
such that the prior gradient update, projection, and clipping
steps are separate. Before the prior gradient update, we split
the image into a batch of 64× 64 patches. Before performing
the likelihood step, we stitch the patches back into original
dimensions.

Our approach is summarized as follows:

Algorithm 1: Our image reconstruction algorithm
Data: Simulated or real measurements Y, Simulated

or calibrated imaging matrix Φ, Learned
autoregressive prior model pθ(X)

Result: Reconstructed N ×N image X
1 Initialization: Xij ∼ U(0, 1) ∀ pixels i, j while

iterations < max iter do
2 Split X into a batch of 64× 64 patches for

Gradient ascent w.r.t pθ(X) do
3 Obtain ∇Xpθ(X) via back-prop to inputs
4 Apply pixel dropout mask and update X (Eq.

27)
5 end
6 Stitch X back into N ×N image
7 for Satisfying constraints do
8 Clip Xij between 0 and 1 ∀ i, j
9 Project the solution to the constraint space

specified by the forward model and inference
method appropriately (Eq. 14,15,16,19 or 25)

10 end
11 if method is augmented Lagrangian then
12 Update dual variable λ (Eq. 21)
13 end
14 end

V. IMPLEMENTATION DETAILS

A. Our Approach

We train PixelCNN++ on the downsampled 64 × 64 Im-
ageNet data as introduced in [14] for 6 epochs. Batch size
is kept as 36 and the number of filter channels as 100. The
rest of the parameters are same as the ones used for training
PixelCNN++ on 32 × 32 ImageNet in [16]. We obtain a
negative log likelihood score of 3.66 on test data and 3.5 on
train data which is consistent with the numbers reported in
[16] for similar data.

With this learned model, we use our proposed algorithm
as described in Algorithm 1, for the experiments described
below. An initial image is sampled from a uniform random
distribution. However, we observe that starting with different
initial images doesn’t have much effect on the final converged
reconstruction. We use momentum in the gradient update for
faster convergence, with its value set to 0.9. Step size α, max-
imum iterations, likelihood weightage ρ for each experiment
are mentioned in the subsequent section.

For reconstructing color images, we consider multiplexing
along individual color channels. Hence, we have separate Φ
matrices for all the three channels and obtain three separate
measurement vectors Y for each channel.

We have made the code of our implementation for the task
Single Pixel Camera reconstruction available online1.

B. One Network to solve them all

We use the original implementation of [1] available online2

with certain modification as mentioned below.
For simulating color Single Pixel Camera, the original

implementation rasterizes the entire N × N × 3 image into
a single vector and creates one Φ matrix to compress this into
a single measurement vector. We believe that this might not
be feasible to implement in a real system. Hence, we modify
their implementation to instead simulate separate Φ matrices
for each channel as in Section V-A.

While simulating SPC measurements on large images, the
original implementation only deals with local multiplexing. It
breaks them down into patches of 64 × 64 and compresses
each of these patches separately. We modify this to deal with
the more challenging case of global multiplexing, where we
compress the entire image.

We extend the original implementation for LiSens and
FlatCam as well, by considering the above modifications and
incorporating the respective forward models.

We use model provided which was trained on 64 × 64
Imagenet for 2 epochs for testing the results. We found that
the results were very much dependent on the alpha parameter
(penalty parameter) which had to be tuned for each image to
get the best solution.

C. TVAL3

For comparisons with TVAL3 ( TV minimization by Aug-
mented Lagrangian and ALternating direction algorithms )
[20], we use the MATLAB implementation3 with the default
parameters. The number of iterations is set to 80. For color
image reconstruction, we update each channel separately using
TVAL3.

VI. EXPERIMENTS

In this section, we present the reconstructions from our
approach and compare them with the existing state-of-the-
art approaches. To being with, we illustrate the ability of an

1https://github.com/adaveiitm/deep-pixel-level-prior
2https://github.com/rick-chang/OneNet
3http://www.caam.rice.edu/ optimization/L1/TVAL3/
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Original image Masked image

80% missing pixels

OneNet

30.71 dB, 0.909

Ours

33.61 dB, 0.971
Fig. 2. Random pixel inpainting with 80% missing pixels. Our approach reconstructs the finer edges better and has more consistency among neighbouring
pixels, as compared to OneNet. Note the details around the text shown in zoomed patch. The difference between the two reconstructions can be perceived by
further zooming into the images. The numbers reported in this and the subsequent figures are PSNR (in dB) followed by SSIM.

autoregressive prior in reconstructing pixel level details using
an example of missing pixel inpainting in an image. For this,
we randomly mask out pixels from the image and use our prior
to reconstruct these missing pixels. We perform by keeping
the observed pixel values as same and update missing pixels
to maximize the the prior loglikelihood. Specifically, we take
an image of size 384x512 and mask 80% of the pixels in the
initial image as could be seen in Figure 2. We compare our
results with that of OneNet [1], and we can observe details
in our reconstruction much better like the text outlines, also
quantitatively in terms of PSNR and SSIM. We use a step size
of 75 and run for approximately 1000 iterations.

For all the three imaging setups of SPC, Lisens and Flat-
cam we perform reconstructions on both simulated data and
real measurements. In case of simulation we compare our
reconstructions with TVAL3 [20] and OneNet [1]. In case
of reconstructions from real measurements, we compare our
results with TVAL3. OneNet experiments failed to converge to
a stable point in this case hence we could not provide compar-
ison with this approach. For real Lisens at 66% measurements,
although OneNet converges, results obtained were very poor
compared to other approaches.

A. Single Pixel Camera

1) Simulation case: We show quantitative and qualitative
comparisons of simulated SPC reconstruction results on im-
ages of sizes 128×128 and 256×256 respectively as shown
in Table I and Figure 10 respectively. Measurement rates
considered are 10% and 25% for 128×128 and 5% and
10% for 256×256. Similar to RIDE-CS [23], we generate
the φ matrix as a random Gaussian with orthonormal rows.
We perform gradient descent and projection operation on the
compressed image for 2000 iterations in the case of 25%
measurement rate and for 2500 iterations in case of 10%
measurement rate. We use a step-size of 7.5 and the hard
constraint projection method. In all cases, we intialize with
random image from uniform distribution. We compare our
results to [1] and we are able to show significant improvement
in reconstruction results in terms of PSNR and SSIM values.
Our reconstructions have better edges and textures compared
to the reconstructions from OneNet.

2) Real Case: We show our real SPC reconstruction results
in Figure 4. Data for this experiment is provided to us by the

(a) bird (b) building (c) cat (d) flower (e) parrot

Fig. 3. Test images of 128× 128 size chosen randomly for simulated SPC
and LiSens reconstructions.

TABLE I
COMPARISONS OF RECONSTRUCTIONS FROM SIMULATED SPC

MEASUREMENTS AT DIFFERENT MEASUREMENT RATES FOR THE IMAGES
SHOWN IN FIGURE 3. OUR APPROACH OBTAINS BETTER PERFORMANCE

THAN ONENET AND TVAL3 BY MODELLING PIXEL-LEVEL
CONSISTENCIES. SEE FIGURE 10 FOR QUALITATIVE COMPARISONS

Name M.R.
TVAL3 OneNet Ours

PSNR SSIM PSNR SSIM PSNR SSIM

bird
10 23.67 0.91 23.92 0.93 29.52 0.97
25 29.67 0.97 26.89 0.96 32.96 0.98

building
10 18.81 0.61 23.85 0.86 25.93 0.88
25 22.72 0.79 24.06 0.87 32.05 0.96

cat
10 23.27 0.72 25.15 0.82 26.68 0.85
25 26.87 0.85 26.60 0.88 31.23 0.94

flower
10 20.07 0.68 23.39 0.84 26.22 0.89
25 24.84 0.86 25.13 0.90 31.05 0.96

parrot
10 18.49 0.64 25.82 0.89 27.59 0.90
25 23.67 0.84 26.79 0.91 32.18 0.95

mean
10 20.86 0.72 24.43 0.87 27.19 0.90
25 25.55 0.86 25.74 0.90 31.89 0.96

authors of [3]. We obtain the real SPC sensor measurements
at 30% and 15% measurement rate respectively. The images
we reconstruct in this case are grey scale images. Here also,
we use the Hard constraint projection method for inference.
We compare our results with TVAL3 and RIDE-CS [23]. Our
method performs better than both RIDE-CS and TVAL3 in
terms of PSNR and SSIM values. Apart from these measures,
we observe that our method produces a sharper reconstruction.
We use the same hyperparameters and training procedures as
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15
%

M
.R

.
Original image TVAL3

28.24 dB, 0.862

RIDE-CS

30.70 dB, 0.910

Ours

31.65 dB, 0.913

30
%

M
.R

.

Original image TVAL3

32.17 dB, 0.922

RIDE-CS

36.96 dB, 0.972

Ours

36.85 dB, 0.970
Fig. 4. Reconstructions from real Single Pixel Camera measurements at different measurement rates. Our approach recovers the low level details much better
than TVAL3. Though the performance of RIDE-CS, which is also a deep autoregressive model, is similar to ours in this case, its computational complexity
is much higher. Also in other simulation experiments we found RIDE-CS does not preserve fine details, see Figure 9.

in the simulated case.

B. LiSens

1) Simulation case: The reconstruction in case of simulated
LiSens is done at 25% and 40% measurement rates. Our
LiSens experiments, similar to SPC experiments, have been
done on both 128x128 and 256x256 images as shown in Table
II and Figure 11 respectively. We compare our reconstructions
with that obtained using OneNet. Our method provides better
results in terms of visual perception as well as PSNR and
SSIM values. Our reconstructions have well-defined bound-
aries of different objects in the image and do not produce
artifacts which are observed in case of OneNet. We have used
hard constraint case for the simulated LiSens reconstruction
for approximately 2000 iterations with a step-size of 7.5.

2) Real measurements: The real LiSens experiments have
been done at 16% and 33% measurement rates obtained at
a resolution of 768 × 256 , as provided by the authors of
[3]. We compare our real Lisens with TVAL3 as in Figure
7. Our method performs better reconstruction with respect
to low level details in the image. Our proposed methods
reconstruction has little or no blur compared to TVAL3 and the
reconstruction is sharper in terms of object boundaries in the
image. We use Hard constraint method for reconstruction with
25% dropout in pixel-wise update. We use an update step of
7.5 and 2000 iterations for reconstruction, similar to simulated
experiment.

C. FlatCam

1) Simulation case: The matrices ΦL and ΦR in the Flat-
Cam imaging model are estimated based on the calibration

TABLE II
COMPARISONS OF RECONSTRUCTIONS FROM SIMULATED LISENS

MEASUREMENTS AT DIFFERENT MEASUREMENT RATES FOR THE IMAGES
SHOWN IN FIGURE 3.OUR APPROACH OBTAINS BETTER PERFORMANCE

THAN ONENET AND TVAL3. SEE FIGURE 11 FOR QUALITATIVE
COMPARISONS

Name M.R.
TVAL3 OneNet Ours

PSNR SSIM PSNR SSIM PSNR SSIM

bird
25 24.59 0.95 24.98 0.82 27.13 0.96
40 29.34 0.98 27.52 0.96 34.14 0.99

building
25 18.72 0.67 21.16 0.79 30.87 0.95
40 23.41 0.82 22.41 0.84 35.06 0.98

cat
25 23.41 0.67 27.27 0.89 29.95 0.94
40 25.83 0.87 29.03 0.92 34.65 0.97

flower
25 21.00 0.72 27.85 0.91 26.54 0.88
40 23.66 0.83 30.79 0.95 30.21 0.93

parrot
25 15.27 0.65 26.02 0.90 30.17 0.94
40 19.75 0.85 27.99 0.93 32.35 0.96

mean
25 20.60 0.73 25.45 0.89 28.93 0.94
40 24.40 0.87 27.55 0.92 33.28 0.97

procedure mentioned in [17]. As we want to deal with RGB
images, separate ΦL and ΦR matrices are calibrated for each
of the R, G and B channels with the help of a Bayer color filter
array on the sensor. We compare our results with OneNet and
L2 regularisation, on two 256x256 images as shown in Figure
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Original image L2 Reg.

12.79 dB, 0.71

OneNet

20.11 dB, 0.84

Ours

20.22 dB, 0.85

10.77 dB, 0.59 19.52 dB, 0.81 25.08 dB, 0.83
Fig. 5. Reconstructions (256 × 256) from simulated FlatCam measurements using L2 regularization, OneNet and our approach. Note the suppression of
vignetting effect in our results which is clearly visible in the house image.

Original Image L2 regularization Ours
Fig. 6. Qualitative comparisons of reconstructions obtained from real FlatCam
measurements using calibrated ΦL and ΦR using L2 regularization and our
approach. Real reconstructions are not good because of calibration error and
separability assumption in the forward model.

5. Our method shows better PSNR, SSIM, and perceptually
better quality samples. Our method produces the least blurry
solution and objects in the image has well defined boundaries.
We use 25% pixel dropout and perform 1000 iterations of
augmented Lagrangian method with the step size α as 60.0
and ρ as 10.

2) Real measurements: We use the data provided by the au-
thors of [17]. The original images were displayed on a monitor
and captured using FlatCam. Using a Bayer color filter on the
sensor, separate measurements for the three color channels
can be obtained. We compare our reconstructions with L2
regularization as shown in Figure 6. Our reconstructions are
more accurate in terms of brightness, boundaries and sharpness
of the image. We use soft constraint case for reconstruction

Reconstructions with 16% M.R.

Reconstructions with 33% M.R.

Gradient L2 reg. TVAL3 Ours
Fig. 7. Qualitative comparisons of reconstructions from real LiSens measure-
ments at different measurement rates. Reconstructions using our method are
sharper and preserve the overall structure.

and use the same hyperparameters as in the simulation case.
We observe that reconstructions from real FlatCam are not

qualitatively as good as with real SPC and LiSens measure-
ments. This is because the forward model assumed in this case
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is erroneous. Firstly, there are calibration errors in estimating
the ΦL and ΦR matrices. Secondly, the forward model in [17]
relies on the separability assumption leading to model error.

D. Ablation Experiments

1) Effect of pixel-wise dropout: In this experiment, we vary
the amount of pixels not updated in each iteration and observe
its effect on the reconstructed image, see Figure 8. When the
dropout ratio is zero, the area in the image having texture
is over smooth. With considerable dropout ratio (25%), the
texture is reconstructed better amounting to a higher PSNR and
SSIM. However, on increasing it further, the reconstructions
appear noisy with a reduction in quality. Thus, for all our
experiments, we used 25% dropout.

Original image 0% pixel dropout

26.34 dB, 0.826

25% pixel dropout

27.93 dB, 0.887
50% pixel dropout

26.82 dB, 0.856

75% pixel dropout

25.87 dB, 0.820
Fig. 8. Effect of varying the amount of pixel dropout for SPC reconstruction
at 15% measurement rate. By not updating a certain amount of pixels every
iteration, the texture is reconstructed better and the image has a higher quality.
However, on increasing this dropout ratio more than a certain level, the
reconstructions become noisy and the quality reduces.

2) Comparison with Ride-CS - grayscale SPC: While we
train our model on colored Imagenet data, we observe that in
practice this approach works well on reconstructing grayscale
images as well. We compare our reconstruction with that of
RIDE-CS [23], which uses the autoregressive model RIDE
[15] as image prior. In Figure 9, we compare the reconstruction
of a grayscale image from Single Pixel Camera measurements
using our approach and RIDE-CS for 15% measurement
rate. The reconstruction obtained from our approach is better
than that of RIDE-CS. This is because we use PixelCNN++
which is a deeper network than RIDE and hence has better
representation power. Also, the running time of our approach
(∼ 5 minutes ) is much less than that of RIDE-CS (∼ 30
minutes). Our approach is CNN based and hence can be
parallelized over multiple GPUs while RIDE-CS relies on a
network of spatial LSTMs which are tough to parallelize.

3) Comparison with OneNet in their original setting: Till
now we have performed all the experiments with different
Φ matrix for each color channel. However in OneNet [1],
the authors have considered one Φ matrix that multiplexes

Original image RIDE-CS

23.01 dB, 0.697

Ours

25.91 dB, 0.865
Fig. 9. Comparison with Ride-CS on reconstruction of grayscale image from
simulated Single Pixel Camera measurements at 15% measurement rate. Our
reconstructions have a higher quality and are perceptually more closer to the
true image.

across the three color channels, which might not be feasible
to implement in a real system. For this ablation experiment,
we consider the original setting as used in [1] and compare
their reconstructions with ours for 10% SPC reconstruction
on the 9 test ImageNet images mentioned in the [1]. PSNR
and SSIM values for the same are mentioned in Table III. Our
approach performs better than OneNet.

TABLE III
COMPARISONS OF COMPRESSIVE IMAGING RECONSTRUCTIONS FOR
IMAGES PROVIDED IN [1] WITH THEIR SETTING OF MULTIPLEXING

ACROSS COLOR CHANNELS. HOWEVER, THIS WAY OF MULTIPLEXING
ACROSS THE COLOR CHANNELS MIGHT NOT BE FEASIBLE IN A REAL

SYSTEM.

Figure Name
OneNet Ours

PSNR SSIM PSNR SSIM

ball 24.696 0.9023 26.656 0.9300
dalmatian 20.650 0.8314 21.812 0.8518

dog 26.873 0.8734 28.552 0.8952
field 26.470 0.9112 29.017 0.9149
man 29.152 0.9460 31.787 0.9540

mountain 25.484 0.8821 28.993 0.8912
table 19.397 0.8083 20.955 0.6662

woman 25.512 0.8518 27.321 0.8906
wolf 25.976 0.8839 28.355 0.9061

VII. DISCUSSION AND CONCLUSION

We demonstrate the efficacy of deep pixel level image prior
for ill-posed reconstruction in different computational imaging
problems. Among the three proposed approaches for inference,
hard and soft constraint based and ALM based, overall, soft
constraint-based method works well and can handle noisy
measurements by appropriately varying the tuning parameter,
λ. However, when there is no noise or less noise in the
measurements, the hard constraint-based method performs as
good as soft constraint case with an additional advantage of
being parameter free and hence is preferable. In fact, for
our real experiments on SPC (Figure 4) and Lisens (Figure
7), we use hard constraint-based inference, which produces
reasonable results. For cases such as Flatcam, non-invertibility
of ΦΦT prevents the use of hard-constraint based inference.
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Our approach enjoys the versatility of image priors and rich
feature representation of deep neural networks. Being pixel
level, it explicitly accounts for pixel level correlations resulting
in consistent texture and edges. We show our evaluations on
both the simulation of forward models and data from real
setups. In all cases, both quantitative and qualitative metrics
suggest that our approach performs better than traditional
methods and current state-of-the-art learning based methods.
An interesting line of work would be to incorporate deviations
from the forward model, due to calibration and model errors, in
our approach to further improve the quality of reconstruction
for FlatCam.
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Fig. 10. Qualitative comparisons of 256 × 256 images reconstructed from simulated Single Pixel Camera measurements using TVAL3, OneNet and our
approach. Even when the measurement rate is low, our method reconstructs the sharp and promiment structures in the image better. Moreover, there are no
visible artifacts in our reconstructions as the autoregressive prior ensures the nearby pixels to be consistent. This is not the case with TVAL3 and OneNet
leadning to poor performance.
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Fig. 11. Qualitative comparisons of images reconstructed from simulated LiSens measurements using TVAL3, OneNet and our approach. Reconstructions
from our approach have minimal artifacts and are closer to the original image.


