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Optimal Scheduling of Multiple Sensors over Lossy

and Bandwidth Limited Channels
Shuang Wu∗, Kemi Ding†, Peng Cheng‡, Ling Shi∗

Abstract—This work considers the sensor scheduling for mul-
tiple dynamic processes. We consider n linear dynamic processes.
The state of each process is measured by a sensor, which transmits
its local state estimate over one wireless channel to a remote
estimator with certain communication costs. At each time step,
only a portion of the sensors are allowed to transmit data
to the remote estimator and the packet might be lost due to
unreliability of the wireless channels. Our goal is to find a
scheduling policy which coordinates the sensors in a centralized
manner to minimize the total expected estimation error of the
remote estimator and the communication costs. We formulate the
problem as a Markov decision process. We develop an algorithm

to check whether there exists a deterministic stationary optimal
policy. We show the optimality of monotone policies, which
saves the computational effort of finding an optimal policy and
facilitates practical implementation. Nevertheless, obtaining an
exact optimal policy still suffers from curse of dimensionality
when the number of processes is large. We further provide an
index-based heuristic to avoid brute force computation. We derive
analytic expressions of the indices and show that this heuristic
is asymptotically optimal. Numerical examples are presented to
illustrate the theoretical results.

Index Terms—Kalman filtering; Sensor scheduling; lossy net-
work; monotone policy; Markov decision process; index policy

I. INTRODUCTION

The development of device, sensing and communication

technologies enables wide range of applications of wireless

sensor networks. After the pioneering work on event-based

sensor data scheduling proposed in [1], a variety of studies

has been done to balance the estimation performance and the

communication overhead in [2]–[4].

A large number of works on sensor scheduling focused on

remote estimation of a linear time-invariant (LTI) dynamic

process. There are also some other works addressing static pro-

cesses and nonlinear models. However, the static models [5],

[6] are special cases of LTI systems and nonlinear models

either involve approximation of a linear system [7], [8] or

the solution method requires numerically solving a partially

observable Markov decision process, which is computationally

inefficient [9]–[11]. A few works [12], [13] considered control
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problems with transmission constraints, which can also be

transformed into sensor scheduling problems as they prove

the separation between optimal controls and optimal transmis-

sions.

The sensor scheduling problems have been modeled in dif-

ferent frameworks. A number of works modeled it as a Markov

decision process (MDP), which is a framework for optimal

stochastic control problems. Obtaining an optimal solution

of an MDP involves stochastic dynamic programming-based

numerical algorithms such as a value iteration and a policy

iteration, which prohibits solving large-scale problems due to

the curse of dimensionality. Therefore, most works only use

MDP to deal with a single process [3], [14], [15]. When there

is only one dynamic process, an approximation of the optimal

sensor scheduling policy can also be obtained by analyzing a

modified algebraic Riccati equation (MARE), which charac-

terizes the dynamics of the remote estimation error. Zhao et

al. [16] studied the asymptotic behavior of the MARE and

showed that the optimal policy can be approximated by a

periodic one. Orihuela et al. [17] further showed that a pe-

riodic policy is optimal under a myopic criterion. Some other

works modeled the sensor scheduling problem as static sensor

selection problems, resulting in an optimization problem in an

Euclidean space with integer constraints. They either found a

convex approximation of the original problem [18] or used

some greedy based heuristics to find a suboptimal policy

with theoretical performance bound [19]. Although efficient

algorithms can be developed from approximated models, the

gap between the approximated policy and the optimal policy

can be significant.

The framework for a sensor scheduling problem depends on

the information available for scheduling. If there is only offline

information, such as system parameters, open loop scheduling

is enough. The sensors transmit data based on system clock

and predetermined timing. The periodic policy [16], [17] and

static sensor selection [18], [19] aforementioned are in this

category. Besides offline scheduling, a large number of works

were devoted to optimal online scheduling. Since additional

online information is available, an online scheduling policy

may yield better performance than an offline one. Neverthe-

less, analysis and design an online policy is nontrivial.

Online information can be further categorized into two

classes: system state information and holding time informa-

tion. System state information refers to the actual system

state if the state is fully observable, or the innovation of the

measurements if the state observation is noisy. Once the size

of the system state is greater than a threshold value, a sensor

will be scheduled to transmit data. Therefore, these scheduling
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policies are also termed as data-driven or event-based. Works

on data-driven scheduling mostly focus on the single sensor

case [20]–[23]. Scheduling of multiple sensor with the system

state poses significant challenges in light of coordination. Xia

et al. [24] showed that, if no coordination of the sensor trans-

missions is considered, the potential transmission collisions

will cause an online policy to perform worse than an offline

policy. Molin and Hirche [12] considered LQG control with

fully observable states of multiple systems under a commu-

nication rate budget, which is inapplicable if the number of

allowable channels is limited at every time step. Gatsis et

al. [13] considered transmission power minimization under a

system stability constraint. This cannot be applied if we aim

to minimize the estimation error. Holding time information is

the time elapsed since the remote estimator receives data from

the sensors. In telecommunication society, this concept attracts

a growing interest and is termed as the age of information

(AoI) [25]. In this work, we shall see that there is a one-

to-one correspondence between the holding time information

and system performance if the sensors are able to conduct

local computations. This facilitates design and analysis as the

holding time only takes values in the set of positive integers.

Leong et al. [3] utilized this property to study the optimal

scheduling for one dynamic system over a lossy channel. If

there is no packet dropout in the communication channel, the

holding time becomes offline information as the packet arrival

sequence is available before actual transmissions. In this case,

the online problem is reduced to the offline one.

In this work, we consider multiple sensor scheduling using

online holding time information of multiple dynamic pro-

cesses, which is an extension of previous works [26], [27]. In

these works, only unstable processes over a reliable channel

were considered. We generalize the results to a setup where

both stable and unstable processes exist over lossy channels.

We use MDP to formulate the problem. Although the frame-

work has been studied, the analysis fails to work for stable

processes as mentioned in [27]. If there are no packet dropouts,

the state space can be restricted to be finite as done by [27]. If

the channel is lossy, however, the existing approach of [27] no

longer works. In addition, we take the costs of communication

into consideration, which has not been addressed previously

since the one-stage cost becomes more complicated. We show

the optimality of a monotone deterministic stationary policy.

Furthermore, we use the celebrated Whittle’s index [28] to

develop a heuristic policy, which can be written in a closed-

form and is asymptotically optimal.

The contribution of our work is multi-fold.

(1) We develop an algorithm-based sufficient condition for

existence of a deterministic stationary optimal policy, which

generalizes the approaches in previous works (e.g., [26], [27]).

We formulate the multi-sensor scheduling problem as an

average cost Markov decision process (MDP) over an infinite

horizon. As the communication channel is lossy, the state

space of an MDP over an infinite horizon is infinite and there

may not be an optimal policy in the class of deterministic

stationary policies. We develop Algorithm 1 and show that

deterministic stationary optimal policies indeed exist if the

output of the algorithm is greater than the number of available

channels.

(2) We show the optimality of monotone policies

(Theorem 2), which sheds light on the structure of optimal

policies. In particular, if it is optimal to schedule a sensor

in one state, it is also optimal to schedule this sensor when

the state of this sensor increases while others remaining

unchanged. Although dynamic programming can be used as

a general approach to tackle MDPs, only numerical solutions

can be obtained and no design insights of an optimal policy

can be acquired. The monotone structure seems intuitive, but

its proof is not straightforward.

(3) We use the Whittle’s index [28] to develop an index-

based heuristics for the scheduling policy (Theorem 3) instead

of solving the problem via brute-force numerical algorithms.

The index-based policy provides an asymptotically optimal

policy without using brute force numerical algorithms to

solve the MDP. Although such heuristics have been adopted

in several problems in an MDP setup, e.g., [25], [29]–[31]

computing the Whittle’s index generally requires an iterative

algorithm. We derive analytic expression of these indices in

this work, which reduces computation overhead significantly

and facilitates online implementation.

The remainder of this paper is organized as follows. In

section II, we present the mathematical formulation of the

problem of interest. In section III, we present the MDP

formulation and the optimality of a monotone deterministic

stationary policy. In section IV, we construct a Whittle’s

index-based suboptimal heuristics. The numerical examples in

section V are provided to demonstrate the monotone policies

and performance of the index-based policy. We summarize the

paper in section VI. We leave all proofs in the Appendix.

Notation: Denote N and R as the set of nonnegative integer

numbers and real numbers, respectively. The symbol Xn stands

for the n-th order Cartesian product of a set X. Inequalities

(i.e., <,>,≤,≥) between two vectors are interpreted an

element-wise. For a matrix X , let Tr(X), X⊤ and ρ(X)
represent the trace, the transpose and the spectral radius of

X , respectively. The symbol I stands for an identity matrix of

appropriate size. Let Pr(·) and Pr(·|·) stand for the probability

and conditional probability for certain events. Denote E[·] as

the expectation of a random variable. The composition of two

mappings f and g is denoted by g ◦ f and the composition of

a mapping f for t times is denoted by f t := f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

t

with f0 being the identity mapping. A Lyapunov operator is

defined as hi(X) := AiXA⊤
i +Qi.

II. SYSTEM SETUP AND PROBLEM FORMULATION

A. System Setup

Consider the remote estimation system in Fig. 1. We illus-

trate each component as follows.

Processes. There are n independent discrete-time linear

dynamic processes whose states are measured by n sen-

sors, respectively. This type of system configuration can be

implemented with the WirelessHART protocol in industrial
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Fig. 1. Architecture of the remote estimation system.

applications [32]. The dynamics of the sensor system is as

follows:

x
(i)
k+1 = Aix

(i)
k + w

(i)
k , y

(i)
k = Cix

(i)
k + v

(i)
k ,

where i ∈ {1, . . . , n}, x(i)
k ∈ Rni is the state of the i-th system

at time k and y
(i)
k ∈ Rmi is the noisy measurement taken by

sensors. For all processes and k ≥ 0, the state disturbance

noise w
(i)
k , the measurement noise v

(i)
k and the initial state

x
(i)
0 are mutually independent Gaussian random variables,

which follow Gaussian distributions as w
(i)
k ∼ N (0, Qi),

v
(i)
k ∼ N (0, Ri) and x

(i)
0 ∼ N (0,Σx

i ). We assume that Qi and

Σx
i are positive semidefinite, and Ri is positive definite. We

assume that, for every i ∈ N , the pair (Ai, Ci) is detectable

and the pair (Ai,
√
Qi) is stabilizable.

Sensors. Each sensor is assumed to be equipped with

computation unit and memory capacity. After taking the mea-

surement, the sensor computes x̂local,k, the local minimum

mean squared error estimate of the state x
(i)
k at each time

step based on the Kalman filter [33]. After computation, the

sensor transmit the local state estimates if the remote estimator

delivers a transmission order to it through a feedback channel.

Communication channels. The communication bandwidth

is considered to be limited. At each time step, the remote

estimator can only receive data from m out of the n sensors

through a forward channel. Let a
(i)
k ∈ {0, 1} denote whether

the i-th sensor is scheduled to transmit data at time k. This

command is sent from the remote estimator to the sensor

through the feedback channel. If the remote estimator decides

to ask for data of sensor i at time k, a
(i)
k = 1; otherwise,

a
(i)
k = 0. We also consider the unreliability of the channel.

Let η
(i)
k ∈ {0, 1} denote whether the packet is successfully

received by the remote estimator through the forward channel.

Let η
(i)
k = 1 stand for successful transmission, and η

(i)
k = 0

for failure. Similar to the setting in [34], the channel condition

is assumed to be independently distributed and E[η
(i)
k ] = λi,

for any k ≥ 0. For the feedback channel, similar to other

references in the literature [35], the transmission is assumed

to be reliable since the remote estimator is typically able to

transmit signal with greater power.

Remote estimator. Let the random variable ξ
(i)
k = a

(i)
k η

(i)
k

denote whether a local estimate of sensor i is received by

the remote estimator. According to [36], since (Ai, Ci) are

detectable and (Ai,
√
Qi) are stabilizable, the a posteriori

estimation error covariance P
(i)
local,k converges exponentially

fast to a steady state P
(i)

, usually in a few steps. We assume

that the system operates in the steady state. Based on this fact,

the optimal estimate of each process for the remote estimator

is as follows:

x̂
(i)
k =

{

x̂
(i)
local,k, if ξ

(i)
k = 1,

Aix̂
(i)
k−1, if ξ

(i)
k = 0.

Define the time elapsed since the last received packet of the

i-th sensor at time k:

τ
(i)
k = min

t
{0 ≤ t ≤ k : ξ

(i)
k−t = 1}. (1)

The estimation error covariance matrices at the remote esti-

mator are thus as follows:

P
(i)
k =

{

P
(i)
, if ξ

(i)
k = 1,

hi(P
(i)
k−1), if ξ

(i)
k = 0.

The estimation error covariance of the remote estimator can

be compactly written as

P
(i)
k = h

τ
(i)
k

i (P
(i)
). (2)

According to [26, Lemma 3.1], the operator hℓ
i(X) is mono-

tonically increasing with respect to ℓ, i.e., ∀i ∈ N , if ℓ1 ≤ ℓ2
for ℓ1, ℓ2 ∈ N, hℓ1

i (P
(i)
) ≤ hℓ2

i (P
(i)
). Moreover, ∀ℓ ∈ Z+,

Tr(P
(i)
) < Tr(h(P

(i)
)) < · · · < Tr(hℓ(P

(i)
)).

B. Problem Formulation

From (2), the expected estimation error covariance is a

function of τ
(i)
k and is independent of the realization of

x̂
(i)
local,k. As the remote estimation error covariance now has

a one-to-one correspondence with τ
(i)
k , we denote the cost

associated with the remote estimation error as

c(i)e (τ
(i)
k ) = Tr(P

(i)
k ).

We also take energy consumption of the sensors into con-

sideration. If sensor i transmit data, an energy cost c
(i)
c is

incurred for sensor i. Our objective is to find a scheduling

policy {a(i)k : i = 1, 2, . . . , n; k = 0, 1, 2, . . .} to minimize

the expected time-averaged trace of the remote estimation error

and the normalized energy cost over all sensors as follows.

Problem 1

min
{a

(i)
k

}

lim
T→∞

1

T + 1

T∑

k=0

n∑

i=1

E[c(i)e (τ
(i)
k ) + c(i)c a

(i)
k ]

s.t.

n∑

i=1

a
(i)
k ≤ m, ∀k ≥ 0.

The feasibility of Problem 1 requires that there exists a

policy such that the objective function is bounded. A necessary

condition is imposed as follows.

Assumption 1 maxi ρ
2(Ai)(1− λi) < 1.

This assumption ensures that the estimation error covariance

of each process is bounded if every sensor is allowed to
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transmit simultaneously at each time step. This assumption

is only a necessary condition to ensure the existence of a

solution to the problem as the constraint on the number of

simultaneous sensor transmissions is neglected. We develop a

sufficient condition in Theorem 1 in the next section.

III. STRUCTURAL PROPERTIES OF AN OPTIMAL POLICY

In this section, we first formulate Problem 1 as a Markov

decision process (MDP) with average cost over an infinite hori-

zon. We then present an algorithm-based sufficient condition

to guarantee the existence of a deterministic stationary optimal

policy for the MDP. We show that there exist monotone

structures in an optimal stationary policy, which extends the

threshold structure of single sensor scheduling to a multiple-

sensor case.

A. MDP Formulation

The form of Problem 1 can be taken as an MDP with

an infinite time-averaged cost which consists of a quadruple

(S,A, Pr(·|·, ·), c(·, ·)). Each element is explained as follows.

1) The state space S contains all possible states s :=
[τ (1), . . . , τ (n)]⊤ ∈ Nn, where τ (i) is a shorthand notation

for τ
(i)
k defined in (1) by omitting the time index k. This

can be done because we are going to discuss the transition

between two successive time steps, where the time index k is

not necessary.

2) The action space A contains all allowable scheduling

actions, i.e., A := {a = [a(1), . . . , a(n)] ∈ {0, 1}n : a(i) ∈
{0, 1}, ∀i = 1, . . . , n,

∑n

i=1 a
(i) ≤ m}, where a(i) = 1 stands

for scheduling the i-th sensor and 0 otherwise.

3) At time k, suppose the state is in sk = s. After taking

action ak = a, the state will transit to another state s+ in the

next time step by following a time-homogeneous transition

law as follows.

Pr(s+|s, a) =
n∏

i=1

Pr
(i)(τ

(i)
+ |τ (i), a(i)), (3)

where

Pr
(i)(τ

(i)
+ |τ (i), a(i)) =







λi, if τ
(i)
+ = 0, a(i) = 1,

1− λi, if τ
(i)
+ = τ (i) + 1, a(i) = 1,

1, if τ
(i)
+ = τ (i) + 1, a(i) = 0,

0, otherwise.

(4)

4) The one-stage cost is defined as c(s, a) :=
∑n

i=1 c
(i)
e (τ (i)) + c

(i)
c a(i).

Let (s0:k, a0:k−1) = (s0, a0, . . . , sk−1, ak−1, sk) stand for

the history up to time k. A policy is a sequence of mappings

from the history to a probability distribution of the scheduling

actions, i.e., {πk}∞k=0, where πk : (s0:k, a0:k−1) 7→ Pr(ak).
Let Π denote the set of all feasible policies. The goal of an

MDP is to minimize the expectation of a time-averaged cost

over an infinite horizon as

min
{πk}∞

k=0∈Π
lim

T→∞

1

T + 1

T∑

k=0

n∑

i=1

E[c(i)e (τ
(i)
k ) + c(i)c a

(i)
k ].

B. Existence of Deterministic Stationary Policy

The general policy class Π requires the information of the

whole history and could be random, which hinders practical

scheduling implementations. In this work, we consider deter-

ministic stationary policies with the form

ak = π(sk)

where π = πk for any k ≥ 0. These policies are more

desirable, as the actions are deterministic and the mappings

are stationary (independent of time k).

We introduce Algorithm 1, the output of which determines

whether optimal policies can be found in the set of determin-

istic stationary ones. Let G(u) := {G(u)[i] : ρ(AG(u)[i]) ≥ 1}
be the set of the indices of all unstable processes. Given

the necessary condition (Assumption 1), Algorithm 1 gives

the least number of channels such that all the processes are

stabilizable.

Algorithm 1 Feasibility of Multiple Sensor Scheduling

1: Initialize the group number counter k ← 1 and the first

group G1 ← {G(u)[1]}
2: for Process i = G(u)[2] : |G(u)| do

3: for j = 1 : k do

4: if Process i and process in Group Gj satisfy

max
i′∈Gj

⋃
{i}

ρ2(Ai′) max
j′∈Gj

⋃
{i}

(1 − λj′ ) < 1

then

5: Gj ← Gj

⋃{i} and break

6: end if

7: end for

8: if process i has not been put in any group then

9: k← k+ 1, k← {G(u)[i]}
10: end if

11: end for

12: Output k

The following theorem characterizes a sufficient condition

for existence of a deterministic stationary optimal policy for

the MDP formulation.

Theorem 1 If the output in Algorithm 1 is less than or equal

to m, there exist a constant J ⋆, a function V ⋆(τ), and a

deterministic stationary policy π⋆ : S 7→ A that satisfy the

following Bellman optimality equation

J ⋆ + V ⋆(s) = min
a∈A

[

c(s, a) +
∑

s+∈S

V ⋆(s+)Pr(s+|s, a)
]

and

J ⋆ + V ⋆(s) =

[

c(s, π⋆(s)) +
∑

τ+∈S

V ⋆(s+)Pr(s+|s, π⋆(s))

]

.

In addition,

J(π⋆) = min
π∈Π

J(π) = J ⋆.

This theorem shows that it is nontrivial to establish the

existence of a regular optimal policy for the multiple sen-

sor scheduling problem if packet dropouts occur. Roughly
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speaking, if the channel bandwidth is sufficient, there exists a

deterministic stationary optimal policy. In previous works [26],

[27] on scheduling of multiple linear dynamic processes, a

perfect channel is assumed. Our problem, however, considers

a lossy channel. As a result, the number of the feasible

consecutive packet loss cannot be restricted to be finite as

it was done in [27]. Therefore, proving the existence of a

deterministic stationary policy is challenging. Furthermore, our

result holds when there are stable processes. This extends the

results of [27], which only considered unstable processes and

cannot be extended to stable processes.

C. Structure of an Optimal Policy

One can directly obtain an optimal policy through relative

value iteration or policy iteration for (12). This, however,

cannot provide more insights of the structure of the problem.

One can observe that the one-stage cost c(s, a) and the state

transition law possesses certain monotone structure, which,

leads to optimality of monotone policies.

Theorem 2 There exists an optimal deterministic stationary

policy π⋆ with a monotone structure. In particular, if τ (i) ≤
τ ′(i) with τ (j) = τ ′(j) for j 6= i and the i-th component of

π⋆(τ) is one, then the i-th component of π⋆(τ ′) is also one.

This result shows that, if it is optimal to schedule sensor i
at state s, it is also optimal to schedule sensor i at state s′,
where τ (i) ≤ τ ′(i) and τ (j) = τ ′(j) for j 6= i. In particular,

if m = 1 and n = 2, there exists a switching curve between

scheduling or not scheduling one sensor in the state space.

Examples can be found in the numerical example section.

The benefits of the monotone structure of the optimal policy

are two-fold. Firstly, the structure policy reduces the storage

space for online implementation. After obtaining the optimal

scheduling policy, only the boundary state is needed to be

stored for policy implementation. Secondly, by leveraging the

monotone structure, we can reduce computation overhead of

solving (12) compared with brute force numerical schemes

such as relative value iteration or policy iteration. Following

the idea in [37], the standard relative iteration can be revised as

follows. The original relative value iteration iterates between

the following two updates

Vk+1(s) = min
a∈A

[

c(s, a) +
∑

s+∈S

Vk(s+)Pr(s+|s, a)
]

, (5)

Vk+1(s) = Vk+1(s)− Vk+1(so),

where so ∈ S is a fixed state. For each k, we can associate an

optimal policy policy by letting

π⋆
k(s) = argmin

a∈A

[

c(s, a) +
∑

s+∈S

Vk(s+)Pr(s+|s, a)
]

(6)

for each state s. In the revised version, before we compute (5),

instead of minimizing for all state s ∈ S, we first check

whether there are s′ ≤ s and a ∈ A such that π⋆
k(s

′) = a,

and then let

π⋆
k+1(s) = a,

Vk+1(s) = c(s, a) +
∑

s+∈S

Vk(s+)Pr(s+|s, a)

for the state s, if such s′ and a exists. If such s′ and a fail to

exist, we execute the original update (5) for s and calculate

π⋆
k+1(s) via (6). This revision removes the brute-force search

over A in (6) by leveraging the monotone structure. According

to Theorem 2, the revised algorithm converges to the same

policy as the original one. Similar revision can also be done

for policy iteration. Details can be found in [37].

Scheduling multiple sensors is complex by its nature. When

n is large, storing the switching boundaries in n-dimensions

is still intense. Moreover, although searching space of the

relative value iteration and policy iteration has been reduced,

the computation complexity is still exponential in n. In the

next section, we present an index-based heuristics for the

scheduling policy to further reduce computation overhead and

to simplify the scheduling decisions.

IV. INDEX-BASED HEURISTICS

To obtain the optimal solution of the MDP, one needs to

resort to a dynamic-programming-based numerical algorithm.

Suppose that each process is approximated by N states.

There are Nn states in total, which grows exponentially as n
increases. Meanwhile, the action space is

∑m
i=0

(
n
i

)
. The large

state space and action space make the brute force numerical

methods prohibitive.

We construct an index-type heuristics based on the Whittle’s

index [28] to obtain a suboptimal scheduling policy. The index

policy maps the each state of a sensor to a real number and

determines which sensor to transmit based on the order of

these real numbers. The mapping is calculated for sensors

separately, which significantly reduces computation overhead.

As mentioned in Whittle’s seminal paper [28], several

conditions are needed to ensure that the index policy can be

constructed, which are known as indexability. The indexability

requires case-by-case analysis. Generally, computation of the

indices raises a significant challenge. Researchers use ad hoc

approaches to tackle specific problems. We show that the index

of the sensor scheduling in this model can be written in closed-

form, which makes the index easy to compute and facilitates

online implementation. In addition, this suboptimal policy is

asymptotically optimal as the number of sensors and channels

goes to infinity.

A. Overview of the Index policy

The derivation of the Whittle’s index is based on regu-

larization, which relaxes the hard constraint on simultaneous

transmissions at each time step. This leads to decoupled sensor

scheduling problems. We schedule sensors with the top m
largest indices if these indices are positive. Therefore, the

actual index policy will still meet the hard constraint.
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We start the analysis by transforming the hard constraint in

Problem 1
n∑

i=1

a
(i)
k ≤ m, ∀k ≥ 0

into a relaxed time-averaged form as

lim
T→∞

1

T + 1

T∑

k=0

n∑

i=1

E[a
(i)
k ] ≤ m. (7)

We transform Problem 1 into an unconstrained one by incor-

porating relaxed constraint in the objective functional with an

extra penalty for transmission w, i.e.,

min
π

lim
T→∞

1

T + 1

T∑

k=0

n∑

i=1

E[c(i)e (τ
(i)
k ) + c(i)c a

(i)
k + wa

(i)
k ].

This problem has a separable structure which can be further

decoupled into n independent scheduling problems

min
πi

lim
T→∞

1

T + 1

T∑

k=0

E[c(i)e (τ
(i)
k ) + c(i)c a

(i)
k + wia

(i)
k ] (8)

for each i. This leads to n decoupled MDPs. Note that

we further relax w to wi for each i. By using the MDP

framework in the last section, we have n independent

MDPs (Si,Ai, Pr(·|·, ·), c(i)(τ (i), a(i))) with c(i)(τ (i), a(i)) =

c
(i)
e (τ (i)) + c

(i)
c a(i) + wia

(i), and the optimal policy for each

i can be characterized by the following Bellman optimality

equation

J ⋆
i +V ⋆

i (τ
(i)) = min

a(i)∈Ai

[

c(i)e (τ (i)) + c(i)c a(i) + wia
(i)

+
∑

τ
(i)
+ ∈Si

V ⋆
i (τ+)Pr

(i)(τ
(i)
+ |τ (i), a(i))

]

. (9)

An optimal policy determines whether a(i) = 1 or a(i) = 0
for each state τ (i) and varies for different w. For each given

state τ (i), there exists a wi(τ
(i)) such that both a(i) = 1 and

a(i) = 0 minimize the term inside the bracket in the right hand

side of (9). We can thus interpret wi(τ
(i)) as the importance

of τ (i). Whittle calls these wi(τ
(i)) indices. Whittle’s original

index policy runs as follows. Suppose that, for each i, the

corresponding process is indexable (see more details later). At

each time step, we first sort the index of each sensor according

to their current state τ (i) and then schedule the m sensors with

largest indices.

B. Derivation of the Index policy

The key component of adopting the index policy is comput-

ing Whittle’s index. Generally, this is computationally intense

as the index wi(τ
(i)) is coupled in the Bellman optimality

equation and we need to solve the equation for each state.

In our problem, however, it turns out that we can obtain

a closed-form expression of wi(τ
(i)) which tremendously

reduces computation overhead. Before we proceed to the

computation, we clarify that our problem indeed meets the

assumption made by Whittle.

The applicability of the Whittle’s index policy requires that

each decoupled MDP in (8) is indexable. Denote Ui(w) := {t :
π⋆
i (t) = 1, wi = w} as the set of states where transmission is

optimal when the extra penalty is w.

Definition 1 A decoupled MDP is indexable if Ui(w) mono-

tonically decreases from the whole state space Si to the empty

set as the extra cost wi increases from −∞ to +∞.

The sensor scheduling problem is indeed indexable, which is

based on the optimality of threshold policies and monotonicity

of the threshold with respect to wi.

Lemma 1 1) There exists a constant θ⋆i (wi) depending on

wi such that the threshold policy of the form

π⋆
i (t) =

{

1, if t ≥ θ⋆i (wi),

0, if t ≤ θ⋆i (wi).

achieves the minimization in (9) with w = wi.

2) The thresholds satisfy θ⋆i (wi) ≤ θ⋆i (w
′
i) if wi ≤ w′

i.

We conclude from Lemma 1 that the indexable condition

indeed holds. As a threshold policy is optimal, we can obtain

Ui(wi) = {t : t ≥ θ⋆i (wi)}. From the monotonicity of the

threshold, we can further obtain Ui(wi) ⊂ Ui(w
′
i) if wi ≥ w′

i.

Moreover, since wi = −∞ and wi = +∞ lead to Ui(wi) = Si

and Ui(wi) = ∅, we verify that the decoupled MDP for sensor

i is indexable.

Before we proceed to the closed-form expression for the

Whittle’s index, we need the following lemma to compute the

averaged estimation error under a threshold policy.

Lemma 2 The time-averaged communication rate under a

threshold policy with threshold τ (i) is

lim
T→∞

1

T + 1
E

[ T∑

k=0

a
(i)
k

]

=
1

λiτ (i) + 1
.

The time-averaged estimation error J
(i)
e (τ (i)) under the same

threshold policy is

J (i)
e (τ (i)) =






λi Tr(SP
(i)) + (1− λi)Tr(SQi

), if τ (i) = 0,
[

Tr(S
hτ(i)

i
(P

(i)
)
) + 1−λi

λi
Tr(SQi

)

+
∑τ (i)−1

t=0 c
(i)
e (t)

]

· λi

λiτ (i)+1
, if τ (i) > 0,

where S
P

(i) and SQi
are the solutions of

S = (1 − λi)AiSA
⊤
i + P

(i)

and

S = (1 − λi)AiSA
⊤
i +Qi,

respectively.

This lemma implies that, under a threshold policy, the time-

averaged communication rate and the estimation error can be

efficiently computed for each sensor i. This helps us develop

an analytic expression of the Whittle’s indices in the following.
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Theorem 3 The Whittle’s index as a function of the time

elapsed since the last successful transmission from sensor i
is

wi(τ
(i)) =

λi(λiτ
(i) + 1)

1− λi

·
[

(τ (i) + 1)J (i)
e (τ (i))−

τ (i)
∑

t=0

c(i)e (t)
]

− c(i)c , (10)

where J
(i)
e (τ (i)) is the expected time-averaged estimation

error of sensor i under a threshold policy with threshold τ (i).

Theorem 3 gives an analytic expression of Whittle indices.

Significant computation overhead is thus reduced compared

with numerical algorithms such as value iteration and policy

iteration. Moreover, this facilitates online implementations. It

is worth noting that, apart from the extra penalty determined

by the Whittle’s index, every transmission will cause an energy

cost c
(i)
c . Therefore, the Whittle’s index can be negative. We

revise the Whittle’s index policy as follows. At each time step,

we first pick m sensors whose Whittle’s indices are the top m,

and then only schedule those sensors with positive Whittle’s

indices.

Weber and Weiss [38] proved that, if some conditions hold1,

the Whittle’s index policy is asymptotically optimal. The cost

of the original MDP is lower bounded by the minimal average

cost under a time-averaged constraint on its actions. As shown

in (7), the time-averaged constrained MDP is a relaxation

of the original MDP, in which only m out of n sensors are

scheduled at each time step. Meanwhile, as the Whittle’s index

policy meets the original constraint, it yields a performance

upper bound of the original MDP. These bounds can be written

as Crelax ≤ C⋆ ≤ CW , where Crelax stands for the minimal

cost under the relaxed MDP, C⋆ stands for the minimal cost for

the original MDP, and CW stands for the time-averaged cost

under the Whittle’s index policy. Webber and Weiss showed

that CW is asymptotically the same as Crelax as m and n go

to infinity with ratio m/n fixed. Because CW asymptotically

reaches Crelax, it also asymptotically reaches C⋆. In our

numerical examples, the performance of the Whittle’s index

policy outperforms other two celebrated heuristics.

V. NUMERICAL EXAMPLE

In this section, we present numerical examples to illustrate

the theoretical results. The first example is provided to show

the optimality of monotone policies (Theorem 2). The second

example is provided to show the performance of the Whittle’s

index policy.

We first consider the case when n = 2. The two processes

and their parameters are as follows:

A1 =

[
1.1 1
0 1

]

, C1 =

[
2 0
0 1

]

, Q1 =

[
1 0
0 1

]

, R1 =

[
1 0
0 1

]

;

A2 =

[
1 1
0 1.2

]

, C2 =

[
1 0
0 1

]

, Q2 =

[
1 0
0 1

]

, R2 =

[
1 0
0 1

]

.

1The asymptotic optimality holds if the fluid approximation to the index
policy has a globally asymptotically stable equilibrium point. The authors
claims that examples violating these conditions are extremely rare and the
suboptimality is expected to be minuscule.

τ
1

0 5 10

τ
2

0

5

10
schedule sensor 1
schedule sensor 2

(a) No transimission costs.

τ
1

0 5 10

τ
2

0

5

10
schedule sensor 1
schedule sensor 2

(b) With transmission costs.

Fig. 2. Visualization of the monotone policy when n = 2 and m = 1.

Moreover, the packet arrival rate of the two channels are

λ1 = 0.8 and λ2 = 0.9, respectively. We consider two

scenarios with zero or positive transmission costs, respectively.

For the positive costs, we let c
(1)
c = 20 and c

(2)
c = 10. We use

the relative value iteration to compute an optimal policy. The

monotonicity structure of the optimal policy is shown in Fig. 2.

Sub-figure (a) shows an optimal policy when c
(1)
c = c

(2)
c = 0,

and Sub-figure (b) shows an optimal policy when c
(1)
c = 20

and c
(2)
c = 10. The horizontal and vertical axes represent the

consecutive packet drops of sensor 1 and 2, respectively. It is

clear that there exists a boundary splitting the (τ1, τ2) plane

into two regions. The states in the left upper corner correspond

to scheduling sensor 2, while the states in the right lower

corner correspond to scheduling sensor 1. In addition, when

there are extra transmission costs, it may be optimal not to

schedule any sensor if τ (i) are small.

When n > 2, the monotone structure is hard to depict. We

consider a case with n = 3 and m = 2. The LTI processes

dynamics are as follows:

A1 =

[
1.1 1
0 1

]

, C1 =
[
1 0

]
, Q1 =

[
1 0
0 4

]

, R1 = 1;

A2 =

[
1.2 1
0 1

]

, C2 =
[
1 0

]
, Q2 =

[
1 0
0 2

]

, R2 = 1;

A3 =

[
1.1 1
0 1.3

]

, C3 =

[
1 0
0 1

]

, Q3 =

[
1 0
0 1

]

, R2 = I,

where I =

[
1 0
0 1

]

. The packet arrivals are set as λi = 0.9

for i = 1, 2, 3. Let the communication costs be c
(1)
c = 50,

c
(2)
c = 30, c

(3)
c = 40. There are seven feasible actions.

1) No schedule for any sensor;

2) Schedule one sensor: schedule sensor 1, schedule sensor

2, schedule sensor 3;

3) Schedule two sensors: schedule sensor 1 and 2, schedule

sensor 1 and 3, schedule sensor 2 and 3.

By following the same procedure when n = 2, we obtain an

optimal policy. For each sensor, either it is scheduled or not is

a feasible action. We plot optimal actions for each sensor with

respect to different states in Fig. 3. The region of scheduling

each sensor are shown in each sub-figure. We can observe

that there exists a switching surface between scheduling a

particular sensor and not scheduling this sensor. As there are

extra communication costs, we can see that it is optimal to

schedule no sensors when τ (i) are small.

Finally, we present the performance of Whittle’s index

policy. For comparison, we also simulate scheduling un-



8

10

τ
1

5
00

5

τ
2

5

10

0
10

τ
3

schedule sensor 1

10

τ
1

5
00

5

τ
2

5

10

0
10

τ
3

schedule sensor 2

10

τ
1

5
00

5

τ
2

0

5

10

10

τ
3

schedule sensor 3

Fig. 3. Visualization of the switching surface policy when n = 3, m = 2 and communication costs c
(1)
c = 50, c

(2)
c = 30, c

(3)
c = 40.

der two celebrated heuristics, maximum-error-first policy and

maximum-delay first policy. In the former, we choose the m

sensors whose expected errors Tr(h
(τ

(i)
k

)
i (P

(i)
)) are the m-

largest at time k. In the later, we choose the m sensors whose

delays τ
(i)
k are the m-largest. Since there are transmission

costs, the Whittle’s index may not be positive. We consider

two types of Whittle’s index policy, the original one and the

revised one we discussed in the end of the last section. We

randomly generate 40 first-order LTI systems:

x
(i)
k+1 = Ax

(i)
k + w

(i)
k , y

(i)
k = Cx

(i)
k + v

(i)
k ,

with system gains A drawn from a standard normal distribu-

tion, observation gains C drawn from uniform distribution on

the closed interval [1, 10], and the state disturbance covariances

E[w
(i)
k · w(i)

k ] and the observation disturbance covariances

E[v
(i)
k · v

(i)
k ] drawn from uniform distribution on the closed

interval [0, 100]. The transmission costs are randomly drawn

from the closed interval [5, 15]. We simulate five scenarios,

n = 20 with m = 8, n = 25 with m = 10, n = 30
with m = 12, n = 35 with m = 14, and n = 40 with

m = 16. The ratio m
n
= 0.4 in all scenarios. In each scenario,

we run Monte Carlo simulations of the scheduling process of

the four scheduling heuristics over a time-horizon with length

1000 for 100 times. We compute the averaged total costs

of each heuristics, which consist of the averaged estimation

error and the averaged transmission costs. The performance of

each heuristics is shown in Fig. 4, where “MaxError” refers

to the maximum-error-first policy, ‘MaxDelay” refers to the

maximum-delay-first policy, and “Index” and “cIndex” refers

to the original Whittle’s index policy and revised Whittles’

index policy, respectively. We observe that the two Whittle’s

index policies outperform the other two heuristics. The revised

policy in most cases performs better than the original one

as the costs of transmission are also considered. The average

percentage of active sensor nodes under the revised policy is

reported in Fig. 5. Note that the percentage of other three

policies is always one as they always schedule m sensors

simultaneously.

VI. CONCLUSION

We formulated the multiple sensor scheduling problem as

a Markov decision process (MDP) with an average cost over

an infinite horizon. An algorithm (Algorithm 1) was proposed

20 25 30 35 40
800

1000

1200

1400

1600

1800

2000

2200

MaxError
MaxDelay
Index
cIndex

Fig. 4. Performance comparison of heuristic policies.
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Fig. 5. The ratio between the average number of active sensors over the
allowed simultaneous transmissions m.

to check the existence of a deterministic stationary optimal

policy. We proved the optimality of monotone policies. The

monotone structure reduced the computation effort of finding

an optimal policy and facilitated online implementation. We

leveraged the structure of the problem to prove that each

process is indexable in the sense of Whittle’s. We adopted

Whittle’s index to construct an index heuristics with closed-

form expressions, which tremendously saved computation ef-

fort and facilitated online implementation. Numerical exam-

ples showed the empirical performance of the proposed index

policy outperforms other two common heuristics.

The current setup assumes that the channel condition is

invariant and known beforehand. It would be a challenging
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problem if the channel condition follows a time-varying model

and the parameters are unknown. In this case, a learning based

method such as Q-learning can be used. In this work, the

centralized scheduling is considered. Another future direction

involves a distributed design. If some information exchange

among the sensors is applicable, the scheduling policy can be

done in a distributed manner.
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APPENDIX

A. Proof of Theorem 1

Based on [39, Theorem 5.5.4], if there exists a policy

{πk}∞k=0 ∈ Π such that

lim
T→∞

1

T + 1

T∑

k=0

n∑

i=1

E[c(i)e (τ
(i)
k ) + c(i)c a

(i)
k ] <∞, (11)
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i.e., the corresponding average cost is bounded, then the opti-

mal scheduling policy can be found in the set of deterministic

stationary policies.

Lemma 3 If there exists a policy {πk}∞k=0 ∈ Π such that (11)

holds, then there exist a constant J ⋆, a function V ⋆(τ), and

a deterministic stationary policy π⋆ : S 7→ A that satisfy the

following Bellman optimality equation

J ⋆ + V ⋆(s) = min
a∈A

[

c(s, a) +
∑

s+∈S

V ⋆(s+)Pr(s+|s, a)
]

(12)

and

J ⋆ + V ⋆(s) =

[

c(s, π⋆(s)) +
∑

τ+∈S

V ⋆(s+)Pr(s+|s, π⋆(s))

]

.

In addition,

J(π⋆) = min
π∈Π

J(π) = J ⋆.

Proof: The proof relies on the vanishing discount ap-

proach in [39, Theorem 5.5.4]. We define the discounted total

cost

V ⋆
β (s) = min

π∈Π
lim

T→∞
E

[ T∑

k=0

βkc(sk, ak) | s0 = s
]

,

for an auxiliary purpose. In summary, the following conditions

need to be verified.

1) The one-stage cost c(s, a) is continuous, nonnegative, and

for any r ∈ R the set {a ∈ A|c(s, a) < r} is compact.

2) The probability transition law Pr(s+|s, a) is strongly

continuous.

3) There exists a state z ∈ S, a number 0 < β < 1 and

M ≥ 0 such that

(1− β)V ⋆
β (z) ≤M, ∀s ∈ S, β ≤ β < 1.

4) There exists a constant M ≥ 0 and a nonnegative function

b(s) on S such that

−M ≤ V ⋆
β (s)− V ⋆

β (z) ≤ b(s), ∀s ∈ S, β ≤ β < 1.

5) The function b(s) above is measurable and for any s ∈ S

and a ∈ A:
∑

s+S
b(s+)P(s+|s, a) <∞

6) The sequence {V ⋆
β(n)(s)− V ⋆

β(n)(z)} is equicontinuous.

The first two conditions are satisfied in this problem as the

action space consists of finite actions and the one-stage cost

is bounded below by zero. If there exists a π ∈ Π policy such

that the average cost is bounded, i.e.,

lim
T→∞

1

T + 1

T∑

k=0

E[c(sk, π(sk))] <∞.

By Abelian Theorem [39, Lemma 5.3.1], we have

lim inf
T→∞

1

T + 1

T∑

k=0

E[c(sk, π(sk))]

≤ lim inf
β→1

(1− β)

∞∑

k=0

βk
E[c(sk, π(sk))]

≤ lim sup
β→1

(1− β)

∞∑

k=0

βk
E[c(sk, π(sk))]

≤ lim sup
T→∞

1

T + 1

T∑

k=0

E[c(sk, π(sk))].

As the limit

lim
T→∞

1

T + 1

T∑

k=0

E[c(sk, π(sk))]

exists, the limit

lim
β→1

(1 − β)

∞∑

k=0

βk
E[c(τk, f(τk))]

also exists. Denote this limit as Mc. The existence of the limit

implies that for every β < 1, there exists ε ≥ 0 such that

|(1 − β)
∑∞

k=0 β
kE[c(sk, π(sk))] −Mc| ≤ ε. Therefore, we

can derive

(1− β)V ⋆
β (s) ≤ (1− β)

∞∑

k=0

βk
E[c(sk, π(sk)) | s0 = s]

≤Mc + ε

for any s ∈ S and β ≤ β < 1, which verifies condition (3).

By [40, Lemma 7.4.1], condition (4) also holds. Since there

are finite possible s+ in Pr(s+|s, a) given s ∈ S, condition

(5) also holds. Lastly, as the state space is discrete, condition

(6) also holds. As the six conditions are satisfied, the result

holds.

Lemma 3 serves as a guide for us to establish a sufficient

condition of existence of a regular optimal policy. In brevity,

we want to find a stationary and deterministic policy such that

the associated time average cost is bounded. This can be done

using the results from [41, Theorem 3].

The setup in [41], however, is different from the setting in

this work. They assume that the sensors may send redundant

local estimate through multiple channels simultaneously and

thus their approach is not directly applicable in this work. If

the allowable channel number is one, i.e., m = 1, we can

immediately obtain that if

max
i

ρ2(Ai)max
j

(1− λj) < 1 (13)

for 1 ≤ i ≤ n and 1 ≤ j ≤ n, the time average of the sum

of the estimation error covariance of all sensors is bounded

under an L-triggered policy2.

We generalize this result for m > 1. The idea is as follows.

We can partition the n processes into m groups. At each time

step, only one sensor in each group is allowed to transmit

2The term L-triggered policy comes from [41]. In this work, it only
schedules sensors with τ (i) > L.
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packets. Then the boundedness condition turns out to be

whether there exists a partition such that the time-averaged

cost of each group are bounded. Note that the partition is

applied to the unstable processes because the boundedness

holds even if the stable processes are never scheduled.

If the output of Algorithm 1 is less than m, we can partition

the n processes into m groups, i.e., {N1, . . . ,Nm}. In each

group Nj , there exists an Lj such that an Lj-triggered policy

leads to a bounded average estimation error. In addition, time-

averaged communication costs are always bounded. Therefore,

there exists a policy such that (11) holds, which shows the

optimality of a deterministic stationary policy.

B. Proof of Theorem 2

Before we proceed to the proof, we make two definitions.

For every process i, we can define a partial order ≤i on the

states s. The same convention of partial order is defined for

the actions a.

The monotonicity for every process i can be perceived as

monotonicity of the optimal action on the state space. This

can be guaranteed if the following four conditions hold.

1) If s ≤i s
′, c(s, a) ≤ c(s′, a) for any a ∈ A;

2) If s ≤i s
′, for any a ∈ A,

∑

s+

Pr(s+|s, a)V (s+) ≤
∑

s+

Pr(s+|s′, a)V (s+)

where V (s) is any monotone increasing function, i.e.,

V (s) ≤ V (s′) if s ≤i s
′;

3) If s ≤i s′ and a ≤i a′, c(s, a) + c(s′, a′) ≤ c(s′, a) +
c(s, a′);

4) If s ≤i s
′ and a ≤i a

′,
∑

s+

Pr(s+|s, a)V (s+) +
∑

s+

Pr(s+|s′, a′)V (s+)

≤
∑

s+

Pr(s+|s′, a)V (s+) +
∑

s+

Pr(s+|s, a′)V (s+),

where V (s) is again any monotonically increasing func-

tion.

Conditions (1) and (2) address the monotonicity of c(s, a)
and Pr(s+|s, a), while conditions (3) and (4) the submodu-

larity of c(s, a) and Pr(s+|s, a). Consider a discounted cost

MDP over a finite time-horizon

min
π∈Π

E

[ T∑

k=0

βkc(sk, ak)
]

.

An optimal policy must satisfy the following Bellman opti-

mality equation defined backwards (from k = T to k = 0)

by

V ⋆
T,β(s) := min

a∈A

c(s, a)

and for t = T − 1, T − 2, . . . , 0,

V ⋆
k,β(s) := min

a∈A

[

c(s, a) + β
∑

s+

Pr(s+|s, a)V ⋆
k+1,β(s+)

]

.

If the above four conditions are satisfied, the quantity inside

the minimization of the Bellman optimality equation c(s, a)+

β
∑

s+
Pr(s+|s, a)V (s+) is monotone and submodular in s

and a, which shows that there exists a monotone policy being

an optimal policy for any finite-horizon MDP. By again using

the vanishing discount approach [39, Theorem 5.5.4], the

monotonicity is propagated to the time-averaged MDP. The

proof of Lemma 3 has already verified the applicability of

such an argument. The remaining task is to verify the four

conditions.

Conditions (1) and (3) are satisfied according to the def-

inition of c(s, a). Denote τ (−i) = (τ (j))j 6=i and a(−i) =
(a(j))j 6=i as the states and actions of all sensors except sensor

i. Note that
∑

s+

Pr(s+|s, a)V (s+)

=
∑

τ
(i)
+

Pr
(i)(τ

(i)
+ |τ (i), a(i))

∑

τ
(−i)
+

Pr
(−i)(τ

(−i)
+ |τ (−i), a(−i))V (s+)

=
∑

τ
(i)
+

Pr
(i)(τ

(i)
+ |τ (i), a(i))Ṽ (τ

(i)
+ ),

where Ṽ (τ
(i)
+ ) :=

∑

τ
(−i)
+

Pr
(−i)(τ

(−i)
+ |τ (−i), a(−i))V (s+) is

monotone in τ
(i)
+ . By its definition in (4), the transition

probability Pr
(i)(τ

(i)
+ |τ (i), a(i)) satisfies

∑

τ
(i)
+

Pr(τ
(i)
+ |τ (i), a(i))Ṽ (τ

(i)
+ ) ≤

∑

τ
(i)
+

Pr(τ
(i)
+ |τ ′(i), a(i))Ṽ (τ

(i)
+ )

for any a(i) ∈ Ai if τ (i) ≤ τ ′(i); and
∑

τ
(i)
+

Pr(τ
(i)
+ |τ (i), a(i))Ṽ (τ

(i)
+ ) +

∑

τ
(i)
+

Pr(τ
(i)
+ |τ ′(i), a′(i))Ṽ (τ

(i)
+ )

≤
∑

τ
(i)
+

Pr(τ
(i)
+ |τ ′(i), a(i))Ṽ (τ

(i)
+ ) +

∑

τ
(i)
+

Pr(τ
(i)
+ |τ (i), a′(i))Ṽ (τ

(i)
+ )

if τ (i) ≤ τ ′(i) and a(i) ≤ a′(i). This shows that conditions (2)

and (4) are also satisfied, which completes the proof.

C. Proof of Lemma 1

Part I. Optimality of threshold policy. The threshold policy

can be perceived as a monotone policy, whose optimality can

be verified by the following four conditions as follows, which

are similar to that mentioned in the proof of Theorem 2.

1) If τ (i) ≤ τ ′(i), c(i)(τ (i), a(i)) ≤ c(i)(τ ′(i), a(i)) for any

a(i) ∈ Ai;

2) If τ (i) ≤ τ ′(i),
∑

τ
(i)
+ ≥t

Pr(τ
(i)
+ |τ (i), a(i)) ≤

∑

τ
(i)
+ ≥t

Pr(τ
(i)
+ |τ ′(i), a(i))

for any a(i) ∈ Ai and t ∈ Si;

3) If τ (i) ≤ τ ′(i) and a(i) ≤ a′(i), c(i)(τ (i), a(i)) +
c(i)(τ ′(i), a′(i)) ≤ c(i)(τ ′(i), a(i)) + c(i)(τ (i), a′(i));

4) If τ (i) ≤ τ ′(i) and a(i) ≤ a′(i),
∑

τ
(i)
+ ≥t

Pr(τ
(i)
+ |τ (i), a(i)) +

∑

τ
(i)
+ ≥t

Pr(τ
(i)
+ |τ ′(i), a′(i))

≤
∑

τ
(i)
+ ≥t

Pr(τ
(i)
+ |τ ′(i), a(i)) +

∑

τ
(i)
+ ≥t

Pr(τ
(i)
+ |τ (i), a′(i))
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for all t;

where c(i)(τ (i), a(i)) = c
(i)
e (τ (i))+c

(i)
c a(i)+wia

(i). Conditions

(1) and (3) can be seen from the definition of c(i)(τ (i), a(i))
and conditions (2) and (4) can be verified through calculation.

Since the four conditions are satisfied, the optimality of mono-

tone policy holds for any finite-horizon MDPs. By using the

vanishing discount argument, the monotone policy is preserved

for the time-averaged MDP.

Part II. Monotonicity of the optimal threshold. We need the

following lemma to prove the monotonicity of the optimal

threshold.

Lemma 4 Let f : X×Y→ R be a submodular function, i.e.,

f(x+, y+) + f(x−, y−) ≤ f(x+, y−) + f(x−, y+)

if x+ ≥ x− and y+ ≥ y−. The function

g(x) := max{y⋆ ∈ argmin
y∈Y

f(x, y)}

is increasing in x.

Proof: Suppose x+ ≥ x−. As f(x, y) is submodular, for

any y ≤ g(x−), we have

f(x+, g(x−))− f(x+, y) ≤ f(x−, g(x−))− f(x−, y) ≤ 0,

which implies f(x+, g(x−)) ≤ f(x+, y) for any y ≤ g(x−).
Therefore, g(x+) ≥ g(x−).

Consider the total time-averaged cost

Ji(wi, θi) = lim
T→∞

1

T + 1
E
θi
[ T∑

k=0

c(i)e (τ
(i)
k ) + c(i)c a

(i)
k + wia

(i)
k

]

,

where Eθi stands for the expectation under a threshold policy

with threshold θi. It suffices to prove that Ji(wi, θi) is

submodular in wi and θi. Given a threshold policy θi, we

can compute the stationary distribution of the states of arm i
as follows.

πi(τ
(i); θi) =







λi

λiθi+1 , if τ (i) ≤ θi,
λi

λiθi+1 (1 − λi)
τ (i)−θi , if τ (i) > θi,

0, otherwise.

(14)

Therefore, we can obtain

lim
T→∞

1

T + 1
E
θi
[ T∑

k=0

wia
(i)
k

]

= wi(1− θi
λi

λiθi + 1
)

=
wi

λiθi + 1
. (15)

This quantity is submodular in wi and θi because, if wi ≥ w′
i

and θi ≤ θ′i, we can obtain

wi

λiθi + 1
+

w′
i

λiθ′i + 1
− wi

λiθ′i + 1
− w′

i

λiθi + 1

=
(w − w′)(λiθ

′
i − λiθi)

(λiθi + 1)(λiθ′i + 1)
≥ 0,

which is equivalent to

wi

λiθi + 1
+

w′
i

λiθ′i + 1
≥ wi

λiθ′i + 1
+

w′
i

λiθi + 1
.

As the quantity

lim
T→∞

1

T + 1
E
θi
[ T∑

k=0

c(i)e (τ
(i)
k )

]

only depends on θi, the total averaged cost J (wi, θi) is

submodular in wi and θi. Therefore, by Lemma 4, θ⋆i (wi)
monotonically increases with respect to wi.

D. Proof of Lemma 2

In (15) in the proof of Lemma 1, we can obtain the time-

averaged communication rate under a threshold policy with

threshold τ (i) is

lim
T→∞

1

T + 1
E

[ T∑

k=0

a
(i)
k

]

=
1

λiτ (i) + 1
.

To compute the time-averaged estimation error J
(i)
e (τ (i)),

we need the following lemma regarding computation of a

Lyapunov equation.

Lemma 5 [42, Lemma D.1.2] For a given positive definite

symmetric X , there exists a unique positive definite symmetric

S satisfying S = ASA⊤ + X if and only ρ(A) < 1, where

ρ(A) is the spectral radius of A. In addition, the unique S
can be computed by

S =

∞∑

t=0

AtX(A⊤)t.

The time-averaged estimation error J
(i)
e (τ (i)) can be computed

by

J (i)
e (τ (i)) =

∞∑

t=0

πi(t; τ
(i))c(i)e (t),

where πi(t; τ
(i)) is defined in (14).

When τ (i) = 0, we have

J (i)
e (0)

=

∞∑

t=0

λi(1− λi)
t Tr[ht

i(P
(i)
)]

=λiTr
{ ∞∑

t=0

[

(1− λi)
tAt

iP
(i)
(A⊤

i )
t

+
t∑

k=0

(1− λi)
k+1Ak

iQi(A
⊤
i )

k
]}

=λiTr
{ ∞∑

t=0

(1− λi)
tAt

iP
(i)
(A⊤

i )
t
}

+ λi Tr
{ ∞∑

t=1

(1 − λi)
t

∞∑

k=0

(1− λi)
kAk

iQi(A
⊤
i )

k
}

=λiTr(SP
(i)) + λiTr

{ ∞∑

t=1

(1− λi)
tSQi

}

=λiTr(SP
(i)) + (1− λi)Tr(SQi

).
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When τ (i) > 0, note that

J (i)
e (τ (i))

=

τ (i)−1∑

t=0

λi

λiτ (i) + 1
Tr[ht

i(P
(i)
)]

+

∞∑

t=0

λi

λiτ (i) + 1
(1− λi)

t Tr[ht
i(h

τ (i)

i (P
(i)
))].

Note that the form of the second infinite summation is the

same as that in J
(i)
e (0). We can therefore obtain

J (i)
e (τ (i)) =

[

Tr(S
hτ(i)

i (P
(i)

)
) +

1− λi

λi

Tr(SQi
)

+

τ (i)−1∑

t=0

c(i)e (t)
]

· λi

λiτ (i) + 1

for τ (i) > 0.

E. Proof of Theorem 3

By its definition, the Whittle’s index wi(τ
(i)) should be such

that the expected costs of being passive (no transmission) and

be active (transmission) are equal under a threshold policy

with threshold t, i.e.,

c(i)e (t) + c(i)c + wi(t) + E[Vi(t+)|t, 1]
= c(i)e (t) + E[Vi(t+)|t, 0],

which yields

c(i)c + wi(t) =E[Vi(t+)|t, 0]− E[Vi(t+)|t, 1]
=λi[Vi(t+ 1)− Vi(0)]. (16)

Under the threshold policy with threshold t, the relative value

functions Vi(·) should satisfy, for 0 ≤ t′ < t

V (t′) + ρi = c(i)e (t′) + V (t′ + 1), (17)

where the average cost under the threshold policy is the

summation of the estimation errors and communication costs,

i.e.,

ρi = J (i)
e (t) +

1

λit+ 1
(c(i)c + wi(t)),

and, since transmission and no transmission should have same

costs,

V (t) + ρi = c(i)e (t) + wi(t) + c(i)c + V (t+ 1). (18)

Plug (17)-(18) in (16) and replace t with τ (i), we can obtain

the expression for wi(τ
(i)) stated in the theorem.
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