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Abstract

Conventional low-power static random access memories (SRAMs) reduce read energy by decreasing

the bit-line voltage swings uniformly across the bit-line columns. This is because the read energy

is proportional to the bit-line swings. On the other hand, bit-line swings are limited by the need to

avoid decision errors especially in the most significant bits. We propose a principled approach to

determine optimal non-uniform bit-line swings by formulating convex optimization problems. For a

given constraint on mean squared error of retrieved words, we consider criteria to minimize energy (for

low-power SRAMs), maximize speed (for high-speed SRAMs), and minimize energy-delay product.

These optimization problems can be interpreted as classical water-filling, ground-flattening and water-

filling, and sand-pouring and water-filling, respectively. By leveraging these interpretations, we also

propose greedy algorithms to obtain optimized discrete swings. Numerical results show that energy-

optimal swing assignment reduces energy consumption by half at a peak signal-to-noise ratio of 30dB

for an 8-bit accessed word. The energy savings increase to four times for a 16-bit accessed word.

I. INTRODUCTION

Von Neumann computing architectures separate memory units from computing units so there

is frequent data access that consumes enormous energy. Since static random access memories

(SRAMs) access requires more energy than arithmetic operations [1], SRAM access energy

accounts for the significant part of the total energy consumption in many information processing
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circuits [2]–[6]. Thus, it is important to reduce the energy consumption of SRAM access. The

basic way to reduce the access energy is to decrease either supply voltages or bit-line (BL)

swings, which increases vulnerability to variations and noise. If we reduce supply voltages or

BL swings across all BL columns [7], [8], then bit error rates (BERs) of all bit positions increase

equally.

In many applications including signal processing and machine learning (ML) tasks, however,

the impact of bit errors depends on bit position. For example, errors in the most significant

bits (MSBs) of image pixels degrade overall image quality much more than errors in the least

significant bits (LSBs). Likewise, an MSB error can cause a catastrophic loss in the inference

accuracy of ML applications.

Until now, the following techniques have been proposed to address the different impacts of

each bit position for energy efficiency:

1) Storing the MSBs in more robust bit cells and the LSBs in less robust cells [9], [10],

2) Applying higher supply voltage for the MSBs and lower supply voltage for the LSBs [11]–

[13],

3) Unequal error protection (UEP) by error control codes (ECCs) [14], [15],

4) LSB dropping (dropping the LSBs at the cost of reduced arithmetic precision) [16]–[18].

The first approach requires costly bit cells redesign and manual array reorganization. Also, the

bit cells are fixed at design time, so it is unable to dynamically track the time-varying fidelity

requirement [18]. The second approach employs different supply voltages for each bit position,

which significantly complicates the power routing network. Practical implementations only allow

a few supply voltage levels [12], [13]. Fine-grained UEP [14], [15] requires complicated hardware

implementations and dynamic change of protection is limited. LSB dropping [16]–[18] enables

dynamic fidelity control by changing the number of dropped LSBs. Note that UEP and LSB

dropping allow two levels of granularity (protected/unprotected or dropped/undropped) for each

bit position.

In [17], [18], selective ECCs were proposed by combining UEP and LSB dropping. Since

parity bits are stored in dropped LSB-cells, the encoded data has the same length as the uncoded

data. In [19], the authors proposed adaptive coding techniques for different computations on the

data read from faulty memories.

This paper presents an information-theoretic approach to determine the optimal BL swing

assignments. For a given constraint on mean squared error (MSE) of retrieved words, we
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formulate convex optimization problems whose objectives are as follows:

C1. Minimize energy (low-power SRAMs),

C2. Maximize speed (high-speed SRAMs),

C3. Minimize energy-delay product (EDP).

Solutions to these convex problems yield optimal performance that is theoretically attainable.

By casting read access for SRAMs as communication over parallel channels, we investigate the

fundamental trade-offs between physical resources (energy, delay, and EDP) and a fidelity (MSE)

constraint.

In addition, we provide generalized water-filling interpretations for our optimal solutions.

This follows since accessing a B-bit word is equivalent to communicating information through

B parallel channels. In classical water-filling, the ground represents the noise levels of parallel

channels [20], [21]. On the other hand, the importance of each bit position determines the

ground level in our optimization problems. Each optimization problem has its own interpretation

depending on its objective function: water-filling (C1), ground-flattening and water-filling (C2),

and sand-pouring and water-filling (C3), respectively. We also observe interesting connections

between our problems and variants on water-filling such as constant-power water-filling [22],

[23] and mercury/water-filling [24]. Also, we show that the proposed optimization techniques

can be extended to a wide range of sources and noise models.

Furthermore, we propose an SRAM circuit architecture to assign non-uniform bit-level swings.

The proposed architecture separates the data for each bit position in different SRAM subarrays

by interleaving. The proposed architecture enables fine-grained and dynamic control of bit-level

swings depending on time-varying fidelity requirements with little circuit complexity overhead.

Also, we propose greedy algorithms to optimize swing values drawn from a discrete set due to

circuit implementation limitations. Generalized water-filling interpretations and Karush-Kuhn-

Tucker (KKT) conditions are leveraged to develop these discrete optimization algorithms.

The rest of this paper is organized as follows. Section II introduces key metrics of energy, delay,

and fidelity. Section III formulates the convex optimization problems to determine the optimum

bit-level swings and provides generalized water-filling interpretations. Section IV shows that the

proposed optimization techniques can be extended to various source and noise models. Section V

investigates the SRAM architecture and develops greedy algorithms to optimize discrete swings.

Section VI gives numerical results and Section VII concludes.
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Fig. 1. A typical NBL ×NWL SRAM block (NBL = 6 and NWL = 5).

II. SRAM METRICS FOR RESOURCE AND FIDELITY

The total energy in an SRAM read access is given by

Etotal = Earray + Eperi + Eleakage (1)

where Earray and Eperi denote the dynamic energy consumption from the SRAM bit cell array

and the peripheral circuitry, respectively, and Eleakage represents the energy loss due to leakage.

Earray is the dominant component of energy consumption in high-density SRAMs during normal

read operations [3], [8], [25]. Hence, we focus on Earray, which is given by

Earray ∝ NBLNWLCbitVdd∆ (2)

where NBL and NWL are the numbers of bit-lines (BLs) and word-lines (WLs) in a memory

bank, respectively. Cbit is the BL capacitance per bit cell and Vdd is the supply voltage. Also, ∆

denotes the BL voltage swing in read access. As shown in Fig. 1, the voltage swing ∆ is the

voltage difference between BL and BL-bar (BLB). This voltage difference occurs because either

BL or BLB is discharged according to the stored bit. A sense amplifier detects which line (BL

or BLB) has the higher voltage and decides whether the corresponding bit cell stores 1 or 0.

The swing ∆ can be controlled by changing the WL pulse-width (i.e., WL activation time)

TWL since

∆ =
Ic

NWLCbit
· TWL (3)

where Ic is the discharge current of BL corresponding to the accessed bit cell [8]. From (2) and

(3), we can observe that Earray is directly proportional to TWL. Also, TWL has a direct impact on

the read access time [8], [26].
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Since larger voltage swing ∆ improves noise margin, there are trade-off relations between

reliability, energy, and delay. These relations will be explained in the following subsections.

A. Resource Metrics for Accessing B-bit Word: Energy, Delay, and EDP

We define resource metrics for energy, delay, and EDP for accessing a B-bit word. First, read

access energy can be defined as follows.

Definition 1: The read energy to access a B-bit word is

E(∆) =
B−1∑
b=0

∆b = 1T∆ (4)

where 1 denotes the all-one vector and the superscript T denotes transpose. Note that ∆ =

(∆0, . . . ,∆B−1) where ∆b denotes the swing for the bth bit position in a B-bit word. Note that

E(∆) represents Earray in (1).

Definition 2: The maximum swing corresponding to a B-bit word is

ρ = max(∆) = max {∆0, . . . ,∆B−1} . (5)

If we allot non-uniform swings for each bit position, the access time for a B-bit word depends

on Tmax = max{TWL,0, . . . , TWL,B−1} where TWL,b denotes the WL pulse-width for the bth bit

position. Note that Tmax is the pulse-width corresponding to the maximum swing ρ because of

(3). Hence, the maximum swing ρ is a proper metric to be minimized to maximize read speed.

The EDP is considered to be a fundamental metric as it captures the trade-off between energy

and delay [27], [28]. We define the EDP for accessing a B-bit word based on Definitions 1 and

2.

Definition 3: The EDP to access a B-bit word is

EDP(∆) = E(∆) · ρ = 1T∆ · ρ. (6)

B. Fidelity Metric for Accessing B-bit Word: MSE

We will define a fidelity metric for accessing a B-bit word. Suppose that a B-bit word x =

(x0, . . . , xB−1) is stored in SRAM cells, where x0 and xB−1 are the LSB and MSB, respectively.

Note that x can be represented by

x =
B−1∑
b=0

2bxb (7)
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where xb ∈ {0, 1} and x ∈
[
0, 2B − 1

]
(for integers i and j such that i < j, [i, j] = {i, . . . , j}).

Also, x̂ = (x̂0, . . . , x̂B−1) denotes the retrieved B-bit word. A decision error flips the original

bit xb as follows:

x̂b = xb ⊕ εb (8)

where ⊕ denotes XOR operator and εb = 1 denotes a bit error in bth bit position. The decimal

representation of the retrieved word is x̂ =
∑B−1

b=0 2bx̂b. The decimal error e is given by

e = x̂− x =
B−1∑
B=0

2beb (9)

where eb = x̂b − xb ∈ {−1, 0, 1}.

Remark 4: The decimal error e = (e0, . . . , eB−1) depends on xb as well as εb. Suppose that

ε = (1, 0, 0, 1). If x = (1, 0, 0, 1) = 9, then x̂ = (0, 0, 0, 0) = 0, i.e., e = (−1, 0, 0,−1) = −9. If

x = (0, 1, 1, 0) = 6, then x̂ = (1, 1, 1, 1) = 15 and e = (1, 0, 0, 1) = 9.

Since major noise sources of SRAMs are well modeled as Gaussian distributions [29]–[32],

the error probability of the bth bit position is given by

pb = Pr (εb = 1) = Q

(
∆b

σ

)
(10)

where ∆b and σ2 denote the swing of bth bit position and the noise variance in the corresponding

BL, respectively. Note that Q(x) =
∫∞
x

1√
2π

exp
(
− t2

2

)
dt. By increasing ∆b in (10), we

can reduce pb. However, larger ∆b implies more energy consumption and slower speed (see

Definitions 1 and 2).

To measure memory retrieval reliability, bit error probability (10) is not appropriate for many

applications, since it does not distinguish the differential impact of MSB and LSB errors. Hence,

we use the MSE as a fidelity metric.

Definition 5: The MSE of x is given by

MSE(x) = E
[
(x̂− x)2

]
= E

[
e2
]
. (11)

Lemma 6: For a uniformly distributed x, MSE(x) is given by

MSE(x) = MSE(∆) =
B−1∑
b=0

4bQ

(
∆b

σ

)
. (12)
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TABLE I

RESOURCE AND FIDELITY METRICS FOR SINGLE-BIT AND B-BIT WORD ACCESS

Single bit B-bit word Remarks

Energy ∆ E(∆) = 1T∆ Definition 1

Delay ∆ ρ = max(∆) Definition 2

EDP ∆2 EDP(∆) = E(∆) · ρ Definition 3

Fidelity p = Q
(

∆
σ

)
MSE(∆) =

∑
4bQ

(
∆b
σ

)
Lemma 6

Proof: If x is uniformly distributed, the xbs are independent and identically distributed

(i.i.d.) and follow the Bernoulli distribution Ber
(

1
2

)
. The MSE of x is given by

MSE(x) = E

(B−1∑
B=0

2beb

)2
 =

B−1∑
B=0

4bE
[
e2
b

]
=

B−1∑
b=0

4bpb (13)

=
B−1∑
b=0

4bQ

(
∆b

σ

)
(14)

where (13) follows from E [e2
b ] = E [εb] = pb and E [eiej] = 0 since the ebs are independent

and E [eb] = 0 for xb ∼ Ber
(

1
2

)
[14]. In addition, (14) follows from (10). Because MSE(x) is a

function of ∆, we set MSE(x) = MSE(∆).

Note that MSE(x) is the nonnegative weighted sum of bit error probabilities. The weight 4b

represents the differential importance of each bit position. We show that MSE(x) is convex.

Lemma 7: MSE(∆) is a convex function of ∆.

Proof: Q(x) is convex for x ≥ 0 because

d2Q(x)

dx2
=

x√
2π

exp

(
−x

2

2

)
≥ 0. (15)

Since ∆b ≥ 0 and MSE(∆) is the nonnegative weighted sum of Q
(

∆b

σ

)
, MSE(∆) is convex.

A signed number x can be represented by x = −xB−1 · 2B−1 +
∑B−2

b=0 2bxb whose MSE(x) is

the same as (12).

Table I summarizes the key resource and fidelity metrics for single-bit and B-bit word accesses.

III. OPTIMAL BIT-LEVEL SWINGS

We formulate convex optimization problems to determine the optimum swings. For a given

constraint on MSE, we attempt to (1) minimize energy (low-power SRAMs), (2) maximize

speed (high-speed SRAMs), and (3) minimize EDP. Also, we provide generalized water-filling

interpretations of these optimization problems based on KKT conditions.
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Fig. 2. Graphical interpretations of Theorem 8: (a) water-filling and (b) reverse water-filling.

A. Energy Minimization

Here, we minimize the read energy for a given constraint on MSE. Hence, we formulate the

following convex optimization problem.

minimize
∆

E(∆) = 1T∆

subject to
B−1∑
b=0

4bQ

(
∆b

σ

)
≤ V

∆b ≥ 0, b = 0, . . . , B − 1

(16)

where V is a constant corresponding to the given constraint of MSE.

Since the objective and constraints are convex, the optimization problem (16) is convex. The

optimal solution can be derived by KKT conditions.

Theorem 8: The optimal swing ∆∗ of (16) is given by

∆∗b =


0, if ν ≤

√
2πσ
4b

,

σ

√
2 log

(
4b√
2πσ
· ν
)
, otherwise

(17)

where ν is a dual variable.

Proof: We define the Lagrangian L1(∆, ν, λ) associated with problem (16) as

L1(∆, ν, λ) = 1T∆ + ν

(
B−1∑
b=0

4bQ

(
∆b

σ

)
− V

)
−

B−1∑
b=0

λb∆b (18)

where ν and λ = (λ0, . . . , λB−1) are the dual variables. The optimal solution (17) is derived

from L1 and the KKT conditions. The details of the proof are given in Appendix A.

The optimal solution (17) can be interpreted as classical water-filling or reverse water-filling

as shown in Fig. 2. Each bit position can be regarded as an individual channel among B parallel
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channels. In the water-filling interpretation (see Fig. 2(a)), the ground levels depend on the

importance of bit positions. We flood the bins to the water level of log ν. Since the MSB has

the lowest ground level and the LSB has the highest ground level, larger swings are assigned

to more significant bit positions. For a bit position b such that ν >
√

2πσ
4b

, we can readily obtain

the following equation (see Appendix A):

log ν = log

√
2πσ

4b
+

∆2
b

2σ2
(19)

where log ν, log
√

2πσ
4b

, and ∆2
b

2σ2 represent the water level, the ground level, and the water depth,

respectively. The water level log ν depends on V in (16).

Fig. 2(b) illustrates a reverse water-filling interpretation of (17). For a bit position b such that
1
ν
< 4b√

2πσ
, by modifying (19), we can readily obtain

log
4b√
2πσ

= log
1

ν
+

∆2
b

2σ2
(20)

where log 4b√
2πσ

and log 1
ν

denote the reverse ground level and the reverse water level, respectively.

The reverse ground level implies the importance of each bit position. We allocate positive swings

only for bit positions whose reverse ground levels are greater than the reverse water level.

Although we are dealing with the weighted bit error probabilities 4bQ
(

∆b

σ

)
rather than

capacities (for water-filling) or rate distortion functions (for reverse water-filling), we still obtain

water-filling and reverse water-filling interpretations.

Remark 9 (LSB dropping and constant-power water-filling): Constant-power water-filling

activates the subset of parallel channels but with a constant power allocation [22], [23]. Constant-

power water-filling in communication theory is equivalent to LSB dropping in circuit theory [16]–

[18] since LSB dropping allocates uniform swings for undropped bit positions.

B. Speed Maximization

Here, we maximize the speed of read access for a given constraint on MSE. The maximum

speed can be achieved by minimizing ρ of (5) since ρ is proportional to the maximum pulse-width

Tmax.

minimize
∆

ρ = max {∆0, . . . ,∆B−1}

subject to
B−1∑
b=0

4bQ

(
∆b

σ

)
≤ V

∆b ≥ 0, b = 0, . . . , B − 1

(21)
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Fig. 3. Ground-flattening and water-filling interpretation of Theorem 10: (a) ground-flattening and (b) water-filling (after ground-

flattening).

By introducing an additional variable ξ, we can reformulate (21) as

minimize
∆,ξ

ξ

subject to
B−1∑
b=0

4bQ

(
∆b

σ

)
≤ V

0 ≤ ∆b ≤ ξ, b = 0, . . . , B − 1

(22)

This reformulated optimization problem is also convex. From KKT conditions, we show that

ξ = ρ (see Appendix B).

Theorem 10: The optimal swing ∆∗ of (21) is given by

∆∗b = ρ = ξ = σ

√
2 log

(
4B − 1

3
√

2πσ
· ν
)

(23)

for all b ∈ [0, B − 1]. Note that ν is a dual variable.

Proof: We define the Lagrangian L2(∆, ξ, ν, λ, η) associated with problem (22) as

L2(∆, ξ, ν, λ, η) = ξ + ν

(
B−1∑
b=0

4bQ

(
∆b

σ

)
− V

)
−

B−1∑
b=0

λb∆b +
B−1∑
b=0

ηb(∆b − ξ) (24)

where ν, λ = (λ0, . . . , λB−1) and η = (η0, . . . , ηB−1) are dual variables. The optimal solution

(23) can be derived from L2 and corresponding KKT conditions. The details of the proof are

given in Appendix B.

The optimal solution (23) can be interpreted as ground-flattening and water-filling. For any

b ∈ [0, B − 1], we derive the following equation (see Appendix B):

log ν = log

√
2πσ

4b
+ log ηb +

∆2
b

2σ2
(25)
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Fig. 4. Sand-pouring and reverse water-filling interpretation of Theorem 10: (a) sand-pouring and (b) reverse water-filling (after

sand-pouring).

where log ν, log
√

2πσ
4b

, log ηb, and ∆2
b

2σ2 represent the water level, the ground level, the ground-

flattening term, and the water depth, respectively. Compared with (19), we observe that (25) has

an additional ground-flattening term log ηb. By solving KKT conditions, we show that

log ηb = log
3

4B − 1
· 4b < 0. (26)

Hence, the flattened ground level (i.e., the sum of the ground level and the ground flattening

term) is given by

log

√
2πσ

4b
+ log ηb = log

3
√

2πσ

4B − 1
. (27)

Since the unequal ground levels are flattened by the flattening terms, the water depths of all bit

positions are identical after water-filling (see Fig. 3(b)).

In addition, the optimal solution (23) can be interpreted by sand-pouring and reverse water-

filling. We can modify (27) into

log
4b√
2πσ

+ log
1

ηb
= log

4B − 1

3
√

2πσ
. (28)

where log 4b√
2πσ

, log 1
ηb

, and log 4B−1
3
√

2πσ
represent the reverse ground level, the sand depth, and

the reverse flattened ground level, respectively. The positive sand depth (see (26)) fills the gap

between each reverse ground level and the reverse flattened ground level (see Fig. 4(a)). The

reverse flattened ground results in uniform swings as shown in Fig. 4(b).

Remark 11: Conventional uniform swing assignment maximizes the read access speed if

importance of bit positions is ignored.

Remark 12: For conventional uniform swings assignment, the MSE is given by

MSE(x) =
4B − 1

3
· p (29)
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which comes from Lemma 6 and pb = p for any b ∈ {0, . . . , B − 1}.

Remark 13: The overall bit error rate (BER) is the sum of bit error probabilities of all bit

positions as follows:

BER =
B−1∑
b=0

Q

(
∆b

σ

)
(30)

Since Q(·) is convex (see the proof of Lemma 7), the uniform swing assignment minimizes the

overall BER.

If we do not consider the differential importance of each bit position, the conventional uniform

swing is optimal since it maximizes the read access speed (Remark 11) and minimizes the overall

BER (Remark 13).

C. EDP Minimization

We formulate the following convex optimization problem to minimize EDP for a given

constraint on MSE.

minimize
∆,ξ

1T∆ · ξ

subject to
B−1∑
b=0

4bQ

(
∆b

σ

)
≤ V

0 ≤ ∆b ≤ ξ, b = 0, . . . , B − 1

(31)

which is derived by taking into account (6) and (22). We show that ξ is equal to ρ (see

Appendix C).

Theorem 14: The optimal swing ∆∗ of (31) is given by

∆∗b =


0, if log ν

ρ
≤ log

√
2πσ
4b

,

ρ, if log ν
ρ
≥ log

√
2πσ
4b

+ ρ2

2σ2 ,

σ

√
2 log

(
4b√
2πσ
· ν
ρ

)
, otherwise

(32)

where ν is a dual variable.

Proof: We define the Lagrangian L3(∆, ξ, ν, λ, η) associated with problem (31) as

L3(∆, ξ, ν, λ, η) = 1T∆ · ξ + ν

(
B−1∑
b=0

4bQ

(
∆b

σ

)
− V

)
−

B−1∑
b=0

λb∆b +
B−1∑
b=0

ηb(∆b − ξ) (33)
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Fig. 5. Graphical interpretations of Theorem 14: (a) sand-pouring and water-filling and (b) ground-flattening and reverse water-

filling.

where ν, λ = (λ0, . . . , λB−1), and η = (η0, . . . , ηB−1) are dual variables. The optimal solution

(32) can be derived from L3 and corresponding KKT conditions. The details of the proof are

given in Appendix C.

The optimal solution of (32) can be interpreted by sand-pouring and water-filling as shown

in Fig. 5(a). For log ν
ρ
> log

√
2πσ
4b

, we derive the following equation (see Appendix C):

log
ν

ρ
= log

√
2πσ

4b
+ log

(
1 +

ηb
ρ

)
+

∆2
b

2σ2
(34)

where log ν
ρ
, log

√
2πσ
4b

, log
(

1 + ηb
ρ

)
, and ∆2

b

2σ2 represent the water level, the ground level, the sand

depth, and the water depth, respectively. Pouring sand suppresses the maximum water depth (i.e.,

the maximum swing) and water-filling allocates swings by taking into account energy efficiency.

The following corollary shows the relation between the sand depth and other metrics.

Corollary 15: The sand depth sb is given by

sb = log

(
1 +

ηb
ρ

)
(35)

where

ηb =

0, if 0 ≤ ∆b < ρ,

> 0, if ∆b = ρ.
(36)

Hence, sb = 0 for 0 ≤ ∆b < ρ and sb > 0 for ∆b = ρ. Also, the amount of sand is given by
B−1∑
b=0

exp(sb) =
E(∆)

ρ
+B. (37)

Proof: See Appendix C.

We observe that the amount of sand depends on the energy and the maximum swing.
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TABLE II

SUMMARY OF GENERALIZED WATER-FILLING

Water-filling interpretation Reverse water-filling interpretation Ground levels

Min energy Water-filling Reverse water-filling Unflattened

Max speed Ground-flattening / water-filling Sand-pouring / reverse water-filling Perfectly flattened

Min EDP Sand-pouring / water-filling Ground-flattening / reverse water-filling Partially flattened

Suppose that sand is poured in only the MSB position, i.e., ∆B−1 = ρ and ∆b < ρ for

b ∈ [0, B − 2]. Then,

ηB−1 =
B−1∑
b=0

ηb =
B−1∑
b=0

∆b = E(∆) (38)

which follows from (36), (74) (in Appendix C), and Definition 1. Hence,

sB−1 = log

(
1 +

E(∆)

ρ

)
= log

(
1 +

B

PASR(∆)

)
(39)

where the peak-to-average swing ratio (PASR) of swings is given by

PASR(∆) =
ρ

1
B
· E(∆)

. (40)

We also note that (39) takes a similar form as the Gaussian channel’s capacity. By (39) and (40),

we obtain

PASR(∆) =
B

exp (sB−1)− 1
(41)

which shows that more sand reduces the PASR of swings.

Fig. 5(b) illustrates the ground-flattening and reverse water-filling interpretation. From (34),

we can obtain

log
4b√
2πσ

+ log
ρ

ρ+ ηb
= log

ρ

ν
+

∆2
b

2σ2
(42)

where the negative flattening term log ρ
ρ+ηb

suppresses the maximum swing and reverse water-

filling up to the reverse water level log ρ
ν

optimizes energy efficiency.

Remark 16 (Sand-pouring and mercury-filling): Sand-pouring and water-filling has a con-

nection to mercury/water-filling [24] because both are explained by two-level filling. In the

mercury/water-filling problem, the mercury is poured before water-filling to fill the gap between

an ideal Gaussian signal and practical signal constellations, hence, each mercury depth depends

only on the corresponding signal constellation. On the other hand, sand-pouring depends on the

ground level and sand depths are correlated with each other since sand-pouring attempts to flatten
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the ground. Also, the amount of poured sand depends on water-filling as shown in Corollary 15

whereas the amount of mercury is not related to water-filling.

Remark 17 (Ground-flattening and Sand-pouring): The terms ground-flattening and sand-

pouring come from analogies with hydrodynamics. In hydrodynamics, flattening ground levels

increases the flow speed by reducing wetted perimeter1 [33]. In our optimization problems,

ground-flattening terms in (25) maximize the read speed by achieving perfectly even ground

levels. The sand-pouring of (34) limits the speed performance degradation by partially flattening

the ground levels.

Table II summarizes water-filling and reverse water-filling interpretations for our optimization

problems. Notice the duality between ground-flattening and sand-pouring.

IV. NON-UNIFORM SOURCES AND NON-GAUSSIAN NOISES

In this section, we study how to extend our optimization problems to non-uniformly distributed

sources and to non-Gaussian noise models.

A. Non-uniform Sources

In Lemma 6, we considered the MSE of a uniformly distributed source. For a non-uniformly

distributed source x =
∑B−1

b=0 xb of (7), the MSE is derived in the following proposition.

Proposition 18: The MSE of x is given by

MSE(x) =
B−1∑
b=0

4bpb + 2
B−1∑
b=1

b−1∑
b′=0

2b+b
′
pbpb′φ(b, b′) (43)

where φ(b, b′) = Pr (xb = xb′)− Pr (xb 6= xb′), pb = Q
(

∆b

σ

)
, and p′b = Q

(
∆b′
σ

)
.

Proof: From (13), the MSE of x is given by

MSE(x) = E

(B−1∑
B=0

2beb

)2
 =

B−1∑
B=0

4bpb + 2
B−1∑
b=1

b−1∑
b′=0

2b+b
′E [ebeb′ ] (44)

where E [ebeb′ ] for b 6= b′ is given by

E [ebeb′ ] =
∑
x,x̂

p(x)p(x̂ | x)ebeb′ = pbpb′ {Pr(xb = xb′)− Pr(xb 6= xb′)} = pbpb′φ(b, b′). (45)

If x is a uniformly distributed, φ(b, b′) = 0 because Pr(xb) = 1
2

for any b ∈ [0, B − 1].

1The wetted perimeter is the perimeter of the cross-sectional area that is in contact with the aqueous body. Friction losses

typically increase with an increasing wetted perimeter.
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Note that (43) is not convex since the pbpb′ values are not convex and φ(b, b′) can be negative.

Fortunately, (43) can be approximated to (12) because the second term in the right side of (43)

is much smaller than the first term as shown in the following claim.

Claim 19: If p0 � 1
2
, then (43) can be approximated as (12).

Proof: We can rewrite (43) as follows:

MSE(x) = p0 +
B−1∑
b=1

(4b + cb)pb (46)

where cb = 2b+1
∑b−1

b′=0 2b
′
pb′φ(b, b′). Hence,

|cb| ≤ 2b+1

b−1∑
b′=0

2b
′
pb′ |φ(b, b′)| ≤ 2b+1

b−1∑
b′=0

2b
′
pb′ (47)

≤ 2b+1p0

b−1∑
b′=0

2b
′
= 2b+1(2b − 1)p0 (48)

where (47) follows from |φ(b, b′)| ≤ 1. Also, (48) follows from the fact that p0 ≥ pb for

b ∈ [1, B−1] in our optimization problems. If 4b � 2b+1(2b−1)p0 for every b ∈ [1, B−1], then

we can neglect the MSE difference between a uniformly distributed source and non-uniformly

distributed sources, which is satisfied by the condition p0 � 1
2
.

We observe that (43) is very close to (12) in many cases even if p0 ≈ 1
2

(see Table III in

Section VI). The reason is that the second term of (43) cancels out due to sign changes of

φ(b, b′).

B. Non-Gaussian Noise Models

Although SRAM noise is well-modeled as a Gaussian distribution, the proposed optimization

problems can be extended to non-Gaussian noise models. We show that the convexity of proposed

optimization problems are maintained if the noise is unimodal and symmetric with zero mean.

Claim 20: If the noise has a unimodal and symmetric distribution with zero mean, then

MSE(∆) is convex.

Proof: Suppose that the noise distribution is f(t), which is a unimodal and symmetric

distribution with zero mean. Then, the bit error probability is given by pb =
∫∞

∆b
f(t)dt. Note

that d2pb
d∆2

b
= −df(∆b)

d∆b
≥ 0 which follows from df(∆b)

d∆b
≤ 0 for ∆b ≥ 0. Since the MSE is the

nonnegative weighted sum of bit error probabilities, the MSE is also convex.

Hence, the optimization problems to minimize energy, delay, and EDP for a given constraint

on MSE are convex if the noise distribution is unimodal, symmetric, and has zero mean.
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Fig. 6. Proposed interleaved architecture.

V. ARCHITECTURE AND DISCRETE SWINGS

In the previous section, we determined the optimized swings assuming that any real value can

be assigned to bit-level swings. However, current SRAM architectures and circuits do not support

fine-grained bit-level swing assignments. In this section, we propose an SRAM architecture to

enable bit-level swing control. Also, we provide algorithms to optimize discrete-valued swings

rather than continuous-valued swings.

A. Proposed Architecture

In [8], an SRAM architecture that allocates different swings for each memory instance (array

or sub-array) was introduced. The fine-grained swings were achieved by WL pulse-width control

with little overhead. This architecture attempts to compensate for the impact of spatial variations

by applying different pulse-widths to each sub-array.

By tweaking the architecture of [8], we propose an architecture that controls bit-level swings

in an efficient manner. We can separate the data for each bit position in different sub-arrays by

interleaving (see Fig. 6). Note that interleaving is already used in most SRAMs for soft-error

immunity [34], [35]. Hence, our architecture does not incur additional overhead, compared to

the architecture in [8].

The proposed architecture enables fine-grained bit-level swing control by adjusting pulse-

width for each sub-arrays. Also, dynamic swing control depending on the time-varying fidelity

requirement can be achieved by pulse-width control in Fig. 6. Since pulse-width control is usually

implemented by cascaded logic gates [8], the swing granularity depends on logic gates response

time, which is a finite value. Hence, we present optimization algorithms for discrete swings in

the following subsection.
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B. Optimization of Discrete Swings: Discrete Water-filling

By leveraging graphical interpretations from Section III, we propose optimization algorithms

for discrete swings. For Criterion 1 (minimize energy) and Criterion 2 (maximize speed), our

algorithm approximates the Levin–Campello algorithm [36]–[38]. The optimization problem

of Criterion 3 (minimize EDP) cannot be solved by the Levin–Campello algorithm and so

we develop an algorithm based on sand-pouring and water-filling interpretation and its KKT

conditions.

Suppose that β is the granularity in swings. Our discrete water-filling algorithm (Algorithm 1)

attempts to obtain the discrete swings minimizing energy or maximizing speed by a greedy

approach. The basic idea is to fill the water from the bit position whose temporal water level is

the lowest.

Algorithm 1 Discrete water-filling for (16) and (21)
1: Set ground level g = (g0, . . . , gB−1) depending on problems

2: ∆← 0

3: while MSE(∆) > V do

4: b← arg min
b∈[0,B−1]

{
gb +

∆2
b

2σ2

}
. Lowest water level

5: ∆b ← ∆b + β . Fill more water

6: end while

7: return ∆

For Criterion 1, the ground level should be gb = log
√

2πσ
4b

for b ∈ [0, B − 1] as shown in

Fig. 2(a). For Criterion 2, we set the ground level as g = 0, which represents the flat ground

level as shown in Fig. 3.

To minimize energy by discrete swings, we tailor the Levin–Campello algorithm by replacing

line 4 in Algorithm 1 with

b = arg min
b∈[0,B−1]

{MSE(∆ + βeb)−MSE(∆)} (49)

where eb is a unit vector where eb = 1 and e′b = 0 for b′ 6= b. Since MSE(∆) is the sum of

convex functions, the discrete swings obtained by the Levin–Campello algorithm are optimal.

We show that Algorithm 1 is an approximation of the Levin–Campello algorithm.

Corollary 21: The solution by Algorithm 1 converges to the solution by Levin–Campello

algorithm for small β.
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Proof: By Lemma 6,

MSE(∆ + βeb)−MSE(∆) = 4b
(
Q

(
∆b + β

σ

)
−Q

(
∆b

σ

))
. (50)

As β → 0, (50) converges to

β · 4b ·
∂Q
(

∆b

σ

)
∂∆b

= −β · 4b√
2πσ

exp

(
−∆2

b

2σ2

)
. (51)

We can consider choosing b that minimizes (51) as follows:

b = arg min

{
−β · 4b√

2πσ
exp

(
−∆2

b

2σ2

)}
= arg min

{
log

√
2πσ

4b
+

∆2
b

2σ2

}
, (52)

which is equivalent to line 4 of Algorithm 1.

Numerical results in Section VI show that the discrete swings obtained by Algorithm 1 are

almost identical to the solutions by the Levin–Campello algorithm.

We present an algorithm to obtain discrete swings to minimize EDP in Algorithm 2. The

Levin-Campello algorithm cannot solve this problem since the ρ = max (∆) in EDP cannot

be handled by the Levin-Campello algorithm. By leveraging the sand-pouring and water-filling

interpretation of Fig. 5 and KKT conditions, Algorithm 2 attempts to pour sand and fill water

iteratively.

Algorithm 2 Sand-pouring and discrete water-filling for (31)

1: gb ← log
√

2πσ
4b

for all b ∈ [0, B − 1] . Set ground level

2: ∆← 0, η ← 0, s← 0

3: while MSE(∆) > V do

4: ρ← max(∆)

5: b← arg min
b∈[0,B−1]

{gb + sb} . Lowest sand level

6: ηb ← ηb + β . Pour more sand

7: for b = 0 to B − 1 do

8: sb ← log
(

1 + ηb
ρ

)
. Calculate sand depth

9: end for

10: b← arg min
b∈[0,B−1]

{
gb + sb +

∆2
b

2σ2

}
. Lowest water level

11: ∆b ← ∆b + β . Fill more water

12: end while

13: return ∆
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Fig. 7. Comparison of energy consumption for (a) B = 8 and (b) B = 16 (σ = 1).
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Fig. 8. Comparison of maximum delay for (a) B = 8 and (b) B = 16 (σ = 1).

At each iteration, Algorithm 2 first pours more sand from the lowest sand level as shown in

line 5. Note that the sand level of each bit position is the sum of the corresponding ground level

and sand depth. We increase ηb by β in line 6 and ∆b by β in line 11 at each iteration to satisfy

the optimal condition
∑
ηb =

∑
∆b (see (74) in Appendix C). After increasing ηb, the sand

depth sb of each bit position is calculated by Corollary 15, which indicates the increased amount

of sand. Afterwards, water is filled from the bit position whose water level is the lowest. Note

that the sand depth sb affects the water level unlike Algorithm 1 (Compare line 4 of Algorithm 1

and line 10 of Algorithm 2).

Numerical results in Section VI show that the EDP loss due to discrete swings of Algorithm 2

is negligible for moderate granularity β.

VI. NUMERICAL RESULTS

We evaluate the solutions of the three optimization problems for both continuous and discrete

swings. Note that the solution of maximizing speed is equivalent to the conventional uniform
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Fig. 9. Comparison of EDP for (a) B = 8 and (b) B = 16 (σ = 1).
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Fig. 10. Optimal solutions (a) minimizing energy, (b) maximizing speed, and (c) minimizing EDP (σ = 1).

swing as noted in Remark 11. Also, we compare the proposed optimization solution to LSB

dropping and selective ECCs.

Fig. 7 compares the read energy consumption E(∆) as in Definition 1 for a given constraint
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of peak signal-to-noise ratio (PSNR). The PSNR depends on the MSE as

PSNR = 10 log10

(
2B − 1

)2

MSE(∆)
. (53)

At PSNR = 30dB, the optimal solution of (16) (i.e., minimizing energy) reduces the energy

consumption by half for B = 8, compared to uniform swing (i.e., maximizing speed). For

B = 16, the energy consumption of energy-optimal swing will be only quarter, compared to the

uniform swing. Note that energy consumption of EDP-optimal swing is slightly worse than that

of energy-optimal swing.

Fig. 8 compares the maximum delay ρ as in Definition 2 for a given PSNR. The conventional

uniform swing minimizes the maximum delay; hence it is the speed-optimal solution. The swings

minimizing energy achieve significant energy savings at the cost of speed (e.g., the maximum

delay increase of 20% at PSNR = 30dB). The EDP-optimal swings increase only 8% of maximum

delay at PSNR = 30dB.

Fig. 9 compares the EDP for a given PSNR. As formulated, the swings minimizing EDP

show the best results. The EDP can be reduced by 45% for B = 8 at PSNR = 30dB. The EDP

improvement will be much more for B = 16, e.g., 75% EDP saving at PSNR = 30dB. Note that

slight loss of speed performance can result in significant energy and EDP savings.

Fig. 10 shows optimal solutions to (a) minimize energy, (b) minimize maximum delay, and

(c) minimize EDP. As shown in Fig. 10(a), we should allocate larger swings for more significant

bits. Also, we observe that the swings for several LSBs can be zero depending on PSNR, e.g.,

∆0 = ∆1 = ∆2 = 0 at PSNR = 30dB, a refined kind of LSB dropping. These numerical

solutions confirm Theorem 8 and its water-filling interpretation in Fig. 2. Fig. 10(b) shows the

solutions minimizing maximum delay. As we showed in Theorem 10, uniform swings minimize

the maximum delay. The optimized swings in Fig. 10(c) minimize the EDP. Although the EDP-

optimal swings are similar to the energy-optimal swings, we observe that ∆6 = ∆7 = ρ at PSNR

= 30dB. It is because these two bit positions are filled with sand to suppress the maximum delay

as shown in Theorem 14 and its graphical interpretation in Fig. 5.

Fig. 11 compares uniform swings, energy-optimal swings (i.e., the optimal solutions of (16)),

LSB dropping, and selective ECCs. The proposed energy-optimal swings outperform the other

techniques since the energy-optimal swings achieve the target PSNR with the minimum energy

E(∆).
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Fig. 11. Comparison of uniform swings, energy-optimal swings, LSB dropping, and selective ECC (a) B = 8 and (b) B = 16

(σ = 1).

LSB dropping deactivates L LSBs and allocates uniform swings for (B − L) undropped

bit positions. In the low PSNR regime, dropping more LSBs (i.e., larger L) can be effective.

However, larger L will limit the levels of achievable PSNRs.

Selective ECCs store parity bits in LSBs to prevent the additional memory overhead. Unlike

LSB dropping, selective ECCs allocate uniform swings for all the bit positions. In spite of the

LSB information loss, the overall PSNR can be improved by correcting errors in MSBs. As

in [18], we consider (n, k) Hamming codes for selective ECCs since complicated ECCs are

impractical for SRAMs. In a selective ECC (7, 4) for B = 8, the bits of (x7, x6, x5, x4) are

protected by losing information of (x2, x1, x0). Since three LSBs are lost, the PSNR of selective

ECC (7, 4) converges to the PSNR by LSB dropping (L = 4) as shown in Fig. 11(a). For B = 8,

a (15, 11) Hamming code cannot be incorporated into an 8-bit word. Hence, we store four parity

bits of a Hamming (15, 11) codeword in the last LSBs of four different 8-bit words as proposed

in [18]. Note that selective ECC (15, 11) for B = 8 converges to LSB dropping (L = 1) for

high E(∆) since both schemes discard only the last LSBs. In Fig. 11(b), all selective ECCs are

applied to one 16-bit word.

Table III compares the PSNRs for uniformly distributed source to real image data (non-

uniformly distributed sources) from [39]. Although p0 = 1
2

at PSNR = 20dB (see Fig. 10(a)

and (c)), we can observe that their PSNRs are almost the same as the PSNRs of uniformly

distributed sources as discussed in Section IV-A.

Fig. 12 shows that the energy penalty due to discrete swings is negligible for moderate

granularity β. Energy consumption of discrete swings obtained by our Algorithm 1 is almost

the same as the Levin–Campello algorithm as explained in Corollary 21.
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TABLE III

COMPARISON OF PSNRS [DB] OF UNIFORMLY DISTRIBUTED SOURCES AND REAL IMAGE DATA

PSNR of PSNR of Airport PSNR of Fishing Boat PSNR of Man

uniform source Min energy Max speed Min EDP Min energy Max speed Min EDP Min energy Max speed Min EDP

20 19.99 20.05 20.07 20.19 20.07 20.18 19.75 20.01 19.85

24 24.05 24.01 24.05 24.10 24.06 24.08 23.82 24.00 23.91

28 28.04 28.01 28.03 28.06 28.02 28.09 27.90 28.00 27.95

32 32.00 32.03 32.03 32.04 31.96 32.02 31.95 32.02 31.98

36 36.00 36.00 35.97 36.03 36.05 36.03 35.99 35.97 36.00

40 40.01 39.95 39.95 40.02 40.05 40.07 40.01 40.03 40.03
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Fig. 12. Energy consumption of discrete swings obtained by Algorithm 1 and the Levin–Campello algorithm for (a) B = 8

and (b) B = 16 (σ = 1).

Fig. 13 compares the EDP by optimal swings of Theorem 14 and discrete swings by

Algorithm 2. By comparing Fig. 12 to Fig. 13, we observe that the EDP is more sensitive

to β than the energy. The reason is that the EDP is perturbed by the discretization of ρ as well

as the discretization of energy. Nonetheless, the EDP penalty at PSNR = 30dB is very little for

moderate granularity such as β = 1. We can observe that the EDP penalty due to discrete swings

is smaller for larger B. Since the Levin–Campello algorithm cannot solve the EDP optimization

problem, it is absent in Fig. 13.

VII. CONCLUSION

SRAM is a critical component for information processing systems. Casting read access for

SRAMs as an end-to-end communication problem, we found the optimal bit-level swings

of SRAMs for applications with fidelity dependent on bit position. We formulated convex

optimization problems to determine the optimal swings for the objective functions of energy,

maximum delay, and EDP. The optimized bit-level swings can achieve significant energy (50%
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Fig. 13. EDP of discrete swings obtained by Algorithm 2 for (a) B = 8 and (b) B = 16 (σ = 1).

for 8-bit word and 75% for 16-bit word) and EDP (45% for 8-bit word and 75% for 16-bit

word) savings at PSNR of 30dB compared to the conventional uniform swings.

By treating each bit position as an individual channel, we cast bit-level swing optimization

problems as generalizations of water-filling that may involve sand-pouring and ground-flattening.

Also, we developed optimization algorithms for discrete swings by leveraging water-filling

interpretations and KKT conditions. The discrete swings obtained by proposed algorithms achieve

almost the same energy and EDP savings as the continuous swings for moderate granularity.

APPENDIX A
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The KKT conditions of (16) are as follows:
B−1∑
b=0

4bQ

(
∆b

σ

)
≤ V , ν ≥ 0, (54)

ν ·

{
B−1∑
b=0

4bQ

(
∆b

σ

)
− V

}
= 0, (55)

∆b ≥ 0, λb ≥ 0, λb∆b = 0 (56)

for b ∈ [0, B − 1]. From ∂L1

∂∆b
= 0, λb is given by

λb = 1− ν · 4b√
2πσ

exp

(
−∆2

b

2σ2

)
≥ 0. (57)

By (56) and (57), we obtain

∆b

{
1− ν · 4b√

2πσ
exp

(
−∆2

b

2σ2

)}
= 0. (58)



26

If ν = 0, then λb = 1 and ∆b = 0 for any b ∈ [0, B − 1] because of (56) and (57). Since

∆ = 0 is a trivial solution, we claim that ν 6= 0, which results in
B−1∑
b=0

4bQ

(
∆b

σ

)
= V . (59)

If ν ≤
√

2πσ
4b

, then ∆b > 0 is impossible because it would imply λb = 0 and ν =
√

2πσ
4b

exp
(

∆2
b

2σ2

)
, which contradicts the condition ν ≤

√
2πσ
4b

. Hence, ∆b = 0 for ν ≤
√

2πσ
4b

.

If ν >
√

2πσ
4b

, then ∆b = 0 is impossible because it would imply ν =
√

2πσ
4b

exp
(

∆2
b

2σ2

)
=
√

2πσ
4b

,

which contradicts the condition ν >
√

2πσ
4b

. We claim that ∆b > 0 and λb = 0, which results in

and (19) for ν >
√

2πσ
4b

. Thus, the optimal solution ∆∗ of (16) can be derived from (17).

APPENDIX B

PROOF OF THEOREM 10

The KKT conditions of (22) are as follows:
B−1∑
b=0

4bQ

(
∆b

σ

)
≤ V , ν ≥ 0, (60)

ν ·

{
B−1∑
b=0

4bQ

(
∆b

σ

)
− V

}
= 0, (61)

0 ≤ ∆b ≤ ξ, λb ≥ 0, λb∆b = 0, ηb ≥ 0, ηb(∆b − ξ) = 0 (62)

for b ∈ [0, B − 1]. From ∂L2

∂∆b
= 0 and ∂L2

∂ξ
= 0, we obtain the following equations:

λb = ηb − ν ·
4b√
2πσ

exp

(
−∆2

b

2σ2

)
≥ 0, (63)

B−1∑
b=0

ηb = 1 (64)

From (62) and (63), {
ηb − ν ·

4b√
2πσ

exp

(
−∆2

b

2σ2

)}
∆b = 0. (65)

If ν = 0, thIEen ηb∆b = 0. Also, note that ηb(∆b − ξ) = 0 from (62). Both ηb∆b = 0 and

ηb(∆b − ξ) = 0 result in ηb = 0 for any b ∈ [0, B − 1], which violates (64). Hence, we claim

that

ν > 0,
B−1∑
b=0

4bQ

(
∆b

σ

)
= V . (66)
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From (63), ν ≤ ηb ·
√

2πσ
4b

exp
(

∆2
b

2σ2

)
. If ν ≤ ηb ·

√
2πσ
4b

, then ∆b = 0 and ηb = 0, which violates

ν > 0 of (66). Hence, ν > ηb ·
√

2πσ
4b

, which implies ∆b > 0 and λb = 0 for all b ∈ [0, B − 1]

because of (62). By λb = 0 and (63),

ηb = ν · 4b√
2πσ

exp

(
−∆2

b

2σ2

)
. (67)

Because of ν > 0 and (62), we claim that ηb > 0 and

∆b = ξ (68)

for all b ∈ [0, B−1]. Hence, the optimal solution of (22) is uniform swings, i.e., ∆∗ = (ξ, . . . , ξ)

where ρ = max (∆∗) = ξ. We confirm that the reformulated problem (22) is equivalent to the

original problem (21).

By (67) and (68),

ν =

√
2πσ

4b
· ηb · exp

(
ρ2

2σ2

)
(69)

which is equivalent to (25). From (64) and (69), we obtain (23) and (26).

APPENDIX C
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The KKT conditions of (31) are as follows:
B−1∑
b=0

4bQ

(
∆b

σ

)
≤ V , ν ≥ 0, (70)

ν ·

{
B−1∑
b=0

4bQ

(
∆b

σ

)
− V

}
= 0, (71)

0 ≤ ∆b ≤ ξ, λb ≥ 0, λb∆b = 0, ηb ≥ 0, ηb(∆b − ξ) = 0 (72)

for all b ∈ [0, B − 1]. From ∂L3

∂∆b
= 0 and ∂L3

∂ξ
= 0, we obtain the following equations:

ξ + ηb = λb + ν · 4b√
2πσ

exp

(
−∆2

b

2σ2

)
, (73)

B−1∑
b=0

∆b =
B−1∑
b=0

ηb (74)

Suppose that ν = 0, then ξ + ηb = λb for all b ∈ [0, B − 1], which implies (ξ + ηb) ∆b = 0

because of (72). For b such that ∆b 6= 0, ηb = 0 because of ξ + ηb = 0, ηb ≥ 0 and ξ ≥ 0. For b
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such that ∆b = 0, ηb = 0 because of (72). Hence, if ν = 0, then ηb = 0 for all b ∈ [0, B − 1],

which implies ∆b = 0 for all b ∈ [0, B − 1] due to ∆b ≥ 0 and (74). Thus, we claim that

ν > 0,
B−1∑
b=0

4bQ

(
∆b

σ

)
= V (75)

which is the same as (66).

By (72) and (73),

λb∆b = ν

{
ξ + ηb
ν
− 4b√

2πσ
exp

(
−∆2

b

2σ2

)}
∆b = 0 (76)

where ν
ξ+ηb
≤
√

2πσ
4b

exp
(

∆2
b

2σ2

)
because of λb ≥ 0. If ν

ξ+ηb
≤
√

2πσ
4b

, then ∆b = 0, which implies

ηb = 0 by (72). Hence, we claim that

∆b = 0, ηb = 0, if
ν

ξ
≤
√

2πσ

4b
. (77)

If ν
ξ+ηb

>
√

2πσ
4b

, then ∆b > 0 and

ν

ξ + ηb
=

√
2πσ

4b
exp

(
∆2
b

2σ2

)
. (78)

By (72) and (73),

ηb(∆b − ξ) = ν

{
4b√
2πσ

exp

(
−∆2

b

2σ2

)
− ξ − λb

ν

}
(∆b − ξ) = 0 (79)

where ν
ξ−λb

≥
√

2πσ
4b

exp
(

∆2
b

2σ2

)
because of ηb ≥ 0. If ν

ξ−λb
≥
√

2πσ
4b

exp
(
ξ2

2σ2

)
, then ∆b = ξ > 0,

which implies λb = 0 by (72). Hence, we claim that

∆b = ξ, λb = 0, if
ν

ξ
≥
√

2πσ

4b
exp

(
ξ2

2σ2

)
. (80)

If
√

2πσ
4b
≤ ν

ξ−λb
<
√

2πσ
4b

exp
(
ξ2

2σ2

)
, then

ν

ξ − λb
=

√
2πσ

4b
exp

(
∆2
b

2σ2

)
. (81)

By (78) and (81),
ν

ξ + ηb
=

ν

ξ − λb
=

√
2πσ

4b
exp

(
∆2
b

2σ2

)
(82)

for 0 < ∆b < ξ. ξ + ηb = ξ − λb (i.e., ηb = −λb) means ηb = λb = 0 because of ηb ≥ 0 and

λb ≥ 0. Hence, we claim that

ν

ξ
=

√
2πσ

4b
exp

(
∆2
b

2σ2

)
, ηb = λb = 0 (83)

for
√

2πσ
4b

< ν
ξ
<
√

2πσ
4b

exp
(
ξ2

2σ2

)
.
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Due to (74), there should exist ηb > 0 for b ∈ [0, B− 1] to make
∑B−1

b=0 ∆b > 0. Hence, there

exists ∆b = ξ due to (72), which implies ρ = max(∆) = ξ. From (77), (80), (83), and ρ = ξ,

we can obtain the optimal solution ∆∗ of (32).

Note that sb > 0 for ∆b = ρ and λb = 0. In this case, (73) can be modified into

ρ+ ηb = ν · 4b√
2πσ

exp

(
− ρ2

2σ2

)
. (84)

As shown in Fig. 5(a), the sand depth sb is given by

sb = log
ν

ρ
−

(
log

√
2πσ

4b
+

ρ2

2σ2

)
= log

ν

ρ
− log

ν

ρ+ ηb
= log

(
1 +

ηb
ρ

)
(85)

where (85) follows from (84). If 0 ≤ ∆b < ρ, then ηb = 0 as shown in (77) and (83). Hence,

sb = 0 for 0 ≤ ∆b < ρ. Hence, (35) in Corollary 15 is proved. Also, (37) in Corollary 15 is

derived from (74) and (85).
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