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Evolutionary Game for Hybrid Uplink NOMA with
Truncated Channel Inversion Power Control

Jinho Choi and Jun-Bae Seo

Abstract—In this paper, we consider hybrid uplink non-
orthogonal multiple access (NOMA) that can support more users
by exploiting the notion of power-domain NOMA. In hybrid
uplink NOMA, we do not consider centralized power control as a
base station (BS) needs instantaneous channel state information
(CSI) of all users which leads to a high signaling overhead.
Rather, each user is allowed to perform power control under
fading in accordance with a truncated channel inversion power
control policy. Due to the lack of coordination of centralized
power control, users in the same resource block compete for
access. To analyze users’ behavior, evolutionary game can be
considered so that each user can choose transmission strategies
to maximize payoff in hybrid uplink NOMA with power control.
Evolutionarily stable strategy (ESS) is characterized with fixed
costs as well as costs that depend on channel realizations, and it
is also shown that hybrid uplink NOMA can provide a higher
throughput than orthogonal multiple access (OMA). To update
the state in evolutionary game for hybrid uplink NOMA, the
replicator dynamic equation is considered with two possible
implementation methods.

Index Terms—NOMA; Uplink Power Control; Evolutionary
Game; Fading Channels

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been exten-
sively studied as an alternative to conventional orthogonal
multiple access (OMA) [1] [2] [3] [4]. NOMA can be used
for both uplink and downlink in cellular systems. For down-
link NOMA, a base station (BS) uses superposition coding
with careful power allocation to transmit signals to multiple
users. At users, successive interference cancellation (SIC) is
employed to decode signals. This approach is called power-
domain NOMA because users’ signals are differentiated by
different power levels. In [5] [6], power-domain NOMA is
studied for downlink with beamforming in cellular systems.
For downlink millimeter-wave systems, NOMA can also be
employed with beamforming as in [7] [8]. In [9] and [10],
downlink NOMA is applied to multiple cells with coordinated
multipoint transmission and beamforming, respectively. In
[11], distributed analog beamforming is considered to support
cell-edge users as well as users close to BSs for network
NOMA (with multiple cells). Note that in [12], uplink NOMA
is considered in a multi-cell scenario.

In [13], power-domain NOMA is studied for uplink with
centralized power allocation. To assign the power levels (to
users) for successful SIC at the BS, the BS needs to know all
users’ instantaneous channel state information (CSI). However,
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in practice, full instantaneous CSI may not be available at
the BS. For example, only long-term fading coefficient (i.e.,
statistical CSI) can be available at the BS. Thus, if power
allocation is carried out with statistical CSI, successful SIC is
not guaranteed and there are outage events as in [14] (which is
also true for downlink NOMA as in [15]), and power allocation
can be carried out to minimize the impact of outage events as
in [16].

In [17] [18], uplink NOMA is seen as a random access
scheme, which is called NOMA-ALOHA, where outage events
happen due to collision in the power domain. To decide access
probabilities to different power levels in NOMA-ALOHA, the
notion of game theory [19] [20] is adopted in [21] [22]. In
[23], an evolutionary game approach to NOMA-ALOHA is
studied, where a large number of users can choose strategies
with certain probabilities to maximize their payoff. In [24], a
NOMA-assisted grant-free access scheme is studied, in which
grant-free users can co-exist with grant-based users for uplink
transmissions.

In this paper, we study a hybrid uplink NOMA system
with a large number of orthogonal radio resource blocks. In
each radio resource block, there are two users competing for
access as random access. Compared to conventional uplink
(i.e., uplink of OMA) where only one user is allocated per
radio resource block, the number of users becomes doubled.
The rationale of the proposed approach is to achieve the
same or higher spectral efficiency (defined later) with some
additional transmit power cost spent by users, while supporting
more users. In the proposed scheme, when one user does not
transmit signals due to severe fading under power control,
another user assigned to the same resource block can access
successful. If two users have two different power levels as
well as zero power level (which means no transmission)
so that the signals transmitted by two users with different
power levels can be successfully decoded by SIC. We use the
truncated channel inversion power control policy [25] with two
non-zero target receive power levels and employ the notion
of evolutionary game to decide the thresholds for truncated
channel inversion power control that maximize the average
payoff.

The main contributions of the paper are as follows: i) hybrid
uplink NOMA is proposed that can effectively support more
users by exploiting fading with the spectral efficiency that is
higher than or equal to that of conventional uplink (of OMA);
ii) an evolutionary game formulation is studied and its solution
is characterized to decide thresholds for truncated channel
inversion power control that is used in hybrid uplink NOMA.

The rest of the paper is organized as follows. In Section II,
the system model for hybrid uplink NOMA is presented. We
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formulate an evolutionary game for hybrid uplink NOMA
to decide thresholds for truncated channel inversion power
control in Section III. In Section IV, the evolutionary game
for hybrid uplink NOMA is analyzed to characterize solutions
under different settings. We discuss other issues including
comparisons with other schemes and implementations in Sec-
tion V. Simulation results are presented in Section VI. We
conclude the paper with some remarks in Section VII.

Notation: Matrices and vectors are denoted by upper- and
lower-case boldface letters, respectively. The superscript T and
H denotes the transpose and Hermitian transpose of a vector
or matrix, respectively. For a matrix X, [X]m,n represents the
(m,n)th element of it. We also denote by E[·] and Var(·)
the statistical expectation and variance, respectively, whereas
CN (a,R) represents the distribution of a circularly symmetric
complex Gaussian (CSCG) random vector with mean vector
a and covariance matrix R.

II. SYSTEM MODEL

In this section, we consider an uplink system based on
power-domain NOMA with multiple (orthogonal) radio re-
source blocks. In general, when power-domain NOMA is
applied to uplink, there is a dilemma in terms of signaling
overhead and spectral efficiency. If a BS knows its users’
(instantaneous1) CSI, it can decide users’ transmit powers (and
inform to users) for successful SIC, which leads to a high
spectral efficiency [13]. However, a high signaling overhead
is expected to make CSI available at the BS under fading
channels. On the other hand, if the transmit powers are decided
by users, although there is no signaling overhead (to make CSI
available at the BS), a poor spectral efficiency or throughput is
expected due to outage events [14]. To address this dilemma,
we consider a hybrid uplink NOMA scheme, where the BS
arbitrarily allocates a resource block to two users regardless of
their CSI (as the BS does not have CSI). In each radio resource
block, two users independently perform power control under
fading. When the two users experience independent fading, a
statistical multiplexing with random access is expected such
that one user does not transmit signals due to severe fading,
another user can access the radio resource block. With the
notion of power-domain NOMA, we generalize it in this
section.

Suppose that there are a group of users for uplink transmis-
sions with M orthogonal radio resource blocks of capacity
F . While conventional OMA can support M users, power-
domain NOMA can support more users by allocating the same
resource block to multiple users [2]. Note that although the
number of users per radio resource block can be large, in this
paper, we only focus on the case that there are two users per
radio resource block due to the limitation of transmit power.
As mentioned earlier, the BS arbitrarily or blindly allocates
each resource block to two users, denoted by users 1 and 2,
without knowing their CSI.

It is assumed that each user knows his or her own CSI, but
not the other’s. Let hk(t) denote that the channel coefficient
between user k ∈ {1, 2} and the BS at time slot t. Throughout

1In the paper, CSI means instantaneous CSI unless it is stated otherwise.

the paper, we assume block-fading channels [26], where the
channel coefficient remains unchanged within a slot interval
and randomly varies from a slot to another (thus, hk(t) and
hk(t+1) become independent). For convenience, we omit the
index for time slot t, unless it is necessary. The instantaneous
signal-to-noise ratio (SNR) is defined as γk = |hk|2

N0
, which is

known at user k. In time division duplexing (TDD) mode, the
BS can broadcast a pilot signal prior to uplink transmissions
so that each user is able to estimate the channel coefficient, hk,
thanks to the channel reciprocity2. For uplink transmissions,
the transmit power can be decided at each user based on the
CSI or γk. For the power control over fading channels, we
employ the truncated channel inversion power control [25].
In particular, we assume that a user transmits his signal if
γk ≥ τ , where τ > 0 is a threshold (for power control) to
be discussed later. In addition, when γk ≥ τ , a user can set
the transmit power to either ρ2

γk
or ρ1

γk
(which also depends on

the instantaneous SNR as will be explained later) for power-
domain NOMA, where ρ1 and ρ2 are the pre-defined receive
power levels with ρ1 > ρ2.

To decide ρ1 and ρ2, suppose that one user, say user 1,
chooses the high transmit power and the other, say user 2,
chooses the low transmit power. The received signal at the BS
becomes

y = h1

√
ρ1

γ1
s1 + h2

√
ρ2

γ2
s2 + n, (1)

where sk represents the (coded) signal block from user k with
E[sk] = 0 and E[sks

H
k ] = I, and n ∼ CN (0, N0I) is the

background noise. For SIC, the strong signal, i.e., the signal
from user 1, s1, is to be decoded first. Once it is decoded, it
can be removed from the received signal, y, using SIC. Then,
the BS can decode the other signal, i.e., the signal from user
2, s2. To allow successful SIC and decoding, ρ1 and ρ2 need
to satisfy the following constraints:

ρ1

ρ2 + 1
≥ Γ and ρ2 ≥ Γ, (2)

where Γ represents the signal-to-interference-plus-noise ratio
(SINR) threshold for successful decoding. If a capacity achiev-
ing code is used, it is necessary to satisfy log2(1 + Γ) ≥ rtx,
where rtx represents the transmission rate. However, if a
non-capacity achieving code is employed, Γ depends on the
modulation order, code rate, and so on [27]. If the minimum
powers are assigned for (2), we have

ρ2 = Γ and ρ1 = Γ(1 + Γ), (3)

which implies that ρ1 in dB has to be at least two times
higher than ρ2 in dB. Consequently, in order to avoid high ρ1,
the SINR threshold, Γ, cannot be too high. With a moderate
value of Γ (e.g., 10 dB), for successful decoding, channel
coding is required as in uplink NOMA [27]. For example,
if 16-quadrature amplitude modulation (QAM) is used with
Γ = 10 dB, a channel code with a code rate less than
log2(1+Γ)

log2 16 = 0.8649 is to be used.

2On the other hand, if the BS needs to estimate all users’ instantaneous
CSI, each user should transmit a pilot signal, which results in a prohibitively
high signaling overhead for a large number of users.



3

Since each user in a radio resource block can independently
determine the transmit power due to independent fading, if
two users are more likely to choose different power levels
(including zero transmit power), one or two signals can be
expected to be transmitted successfully, which can lead to a
high throughput thanks to power-domain NOMA.

Note that, however, if the two users may choose the same
receive power level, it results in unsuccessful SIC and no one
can successfully transmit their signals. Thus, in each resource
block, contention-based multiple access3 is used, while the
BS strictly allocates two users per radio resource block. From
this, the resulting scheme becomes a hybrid scheme (as a
limited contention-based multiple access for two users per
radio resource block is used together with a deterministic
allocation of two users for every radio resource block) and
is referred to as the hybrid uplink NOMA scheme.

For comparison with OMA, we define the efficiency of the
system bandwidth as the number of users supported by a unit
bandwidth multiplied by channel usage over time, whereas F
denotes the overall bandwidth as mentioned earlier. First, let
us consider that the users have always a packet to transmit. If
the efficiency of the system bandwidth for OMA is denoted
by eo, we obtain it as eo = M

F . With the proposed scheme, if
two users transmit their signals at receive power level ρ1 or
ρ2 with probability 0.5, we can find two cases of collisions
out of four outcomes; that is, one user for ρ1 (or ρ2) and the
other for ρ1 (or ρ2), i.e., (ρ1, ρ1) and (ρ2, ρ2); further, we can
see two outcomes for success as (ρ1, ρ2), and (ρ2, ρ1). Since
there can be 50% collisions in this case, when eh denotes
the efficiency of the system bandwidth for hybrid NOMA,
we have eh = 0.5 × 2M/Ct = M/F , which is equal to eo.
Thus, hybrid NOMA can support additional M users at the
expense of additional transmit power for Γ2 in (3) compared
to OMA while two systems have the same efficiency of the
system bandwidth. Secondly, let us consider that each user has
a packet to transmit with probability α. Then, we have eo =
αM
F for OMA. On the other hand, in this case, eh for hybrid

NOMA is expressed as eh =
(
2α(1− α) + 0.5α2

)
2M
F , where

the first term indicates that a user has a packet, while the
other does not. The second term shows that both users have
a packet to transmit. Consequently, if α < 1, it always holds
that eh > eo, which demonstrates the superiority of hybrid
NOMA to OMA.

III. EVOLUTIONARY GAME FOR HYBRID UPLINK NOMA

In this section, we focus on a power control approach at
users based on evolutionary game for the hybrid uplink NOMA
scheme. In particular, multiple actions are considered with the
truncated channel inversion power control so that the power
control at a user can be carried out by selecting an action, and
its average payoff is obtained for evolutionary game.

3Since contention-based multiple access is used in each (radio resource)
block, it is easy to increase the number of users per block (i.e., a general-
ization with more than two users per block is straightforward). However, the
throughput may decrease with the number of users, because the probability
that more than one user has the same power level increases. Therefore, it
might be reasonable to consider two users per block unless another multiple
access scheme to support more users can be used.

A. Power Control for NOMA

For power-domain NOMA, the truncated channel inversion
power control is modified and the transmit power can be given
by

Pk(γk) =


ρ1

γk
, if γk > τpn

ρ2

γk
, if τ < γk ≤ τpn

0, if γk ≤ τ ,
(4)

where τpn > τ . Note that τpn is another threshold to be
determined. The resulting power control scheme can be seen
as a generalized truncated channel inversion power control for
NOMA.

Accordingly, we can have the strategy set of the three
actions. Action 1 is the transmission of high power, i.e.,
Pk = ρ1

γk
; action 2 is the transmission of low power, i.e.,

Pk = ρ2

γk
; and action 3 is no transmission, i.e., Pk = 0. It

is noteworthy that since each user’s action is decided by γk,
which is a random variable, a user’s selection of strategy can
be seen as random to the other user.

B. A Formulation of Evolutionary Game

Let xi represent the probability of action i ∈ {1, 2, 3}.
According to the power control in (4), we have

xi = Pr(γk ∈ Gi), (5)

where G1 = {γk : γk > τpn), G2 = {γk : τ < γk ≤ τpn),
and G3 = {γk : 0 < γk ≤ τ). The probabilities of actions are
dependent on τ and τpn. In addition, let the set of the proba-
bilities over the actions be X = {x :

∑3
i=1 xi = 1, xi ≥ 0},

where x = [x1 x2 x3]T is the probability distribution over 3
actions (or pure strategies). A distribution x is also called the
state or profile of the population.

In this section, consider a symmetric game with the same
reward and cost for each user. Thus, we only focus on the
payoff of user 1. Denote by R the reward4 when user k
successfully transmits its signal. In addition, let Ci(γk) be
the cost of action i. If user 1 succeeds to transmit its signal
with action i ∈ {1, 2}, the payoff becomes R−Ci(γ1). On the
other hand, if action 3 is chosen, the payoff becomes −C3,
which is seen as the regret cost.

Note that we also consider the case that Ci is a pre-defined
constant for each i with C1 > C2 (because the cost of high
transmit power is higher than that of low transmit power).

Let us consider the average payoff of user 1, when user 2
employs the state x. The average payoff of user 1 with action
i ∈ {1, 2} is given by

u1(i,x) = REx[1(succeed with action i)]− C̄i, (6)

where Ex[·] is the expectation with respect to the distribution
x and 1(·) represents the indicator function. Here, if the cost
depends on the instantaneous SNR, we have

C̄i = E[Ci(γ1) | γi ∈ Gi], i = 1, 2. (7)

4If a capacity achieving code is employed, the achievable rate becomes
log2(1 + Γ). Thus, if we set R ∝ log2(1 + Γ), the reward becomes
proportional to the achievable rate for successful decoding. Note that since
the power levels are decided as in (3), with both actions 1 and 2, we can have
the same reward, which is proportional to log2(1 + Γ).
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Otherwise, C̄i = Ci. In addition, we have

u1(3,x) = −C3. (8)

Property 1. Let x̄ = [x̄1 x̄2 x̄3]T ∈ X . Then, the average
payoff of user 1 with a state (mixed strategy) x̄ becomes

u(x̄,x) =

3∑
i=1

x̄iu1(i,x) = x̄TAx, (9)

where

A =

 −C̄1 R− C̄1 R− C̄1

R− C̄2 −C̄2 R− C̄2

−C3 −C3 −C3

 . (10)

Proof: See Appendix A.
Note that if we add C3 to all the average payoffs, the

resulting payoff with action i = 3 becomes 0. Thus, in the
rest of the paper, we assume that C3 = 0 without loss of
generality.

In the context of evolutionary game [28], the total number
of users, 2M , becomes the size of the population. Let x̄ be
the state of the mutant and x be the state of the population,
where x̄ 6= x. In addition, denote by ε ∈ (0, 1) the size of the
subpopulation of mutants. Then, u(x̄, εx̄+ (1− ε)x) becomes
the average payoff of a mutant. Furthermore, if there exists
εmax ∈ (0, 1) such that

u(x, εx̄+(1−ε)x) > u(x̄, εx̄+(1−ε)x), ε ∈ (0, εmax), (11)

x is an evolutionarily stable strategy5 (ESS). In (9), u(x̄,x)
can also be seen as the payoff of user 1 with the mixed strategy
x̄ when x is the mixed strategy of user 2. Consequently, we
can consider a two-person game for each radio resource block.

For the two-person game for each radio resource block, we
can also characterize a mixed strategy Nash equilibrium (NE)
[19] [20].

Property 2. If x∗ satisfies

u(x∗,x∗) ≥ u1(i,x∗), for all i ∈ {1, 2, 3}. (12)

x∗ is a mixed strategy NE. If we have the strict equality in
(12), then x∗ is a strict mixed strategy NE.

Proof: See Appendix B.

IV. ANALYSIS

In this section, we find the solutions to the hybrid uplink
NOMA game in Section III in different settings.

A. With Fixed Costs

In this subsection, we consider the case that the costs are
independent of the SNR and pre-decided.

An ESS is also a mixed strategy NE [28], while the converse
does not hold unless the game is symmetric. Fortunately, since
the game for each radio resource block is symmetric, we can
have an ESS by finding a mixed strategy NE.

5In evolutionary game theory [28], an ESS is a robust strategy which if
adopted by a population cannot be invaded by any competing alternative
strategy. According to (11), it is a local optimal (power control) strategy
corresponding to a local maximum payoff.

Property 3. Suppose that Let ∆C = C1−C2 > 0. There are
4 cases as follows:
A) C1 + C2 > R and C1 < R: Then, we have

(x∗1, x
∗
2, x
∗
3) =

(
1− C1

R
, 1− C2

R
,
C1 + C2

R
− 1

)
.

(13)
B) C1 > R and 0 < C2 < R: The solution is

(x∗1, x
∗
2, x
∗
3) =

(
0, 1− C2

R
,
C2

R

)
. (14)

C) C1, C2 > R: The solution is

(x∗1, x
∗
2, x
∗
3) = (0, 0, 1) . (15)

D) C1 + C2 < R: The solution is

(x∗1, x
∗
2, x
∗
3) =

(
1

2

(
1− ∆C

R

)
,

1

2

(
1 +

∆C

R

)
, 0

)
,

(16)
where x∗1 ∈ (0, 1

2 ) and x∗2 ∈ ( 1
2 , 1).

In Fig. 1, we show the 4 solution regions (depending on the
values of C1 and C2).

Proof: See Appendix C.

D

1

C
2

C

R

R

B

A

C

Fig. 1. Four solution regions for NE.

Once the xi’s are obtained, we can decide the values
for τ and τpn using (5). Thus, according to Property 3, if
C1 + C2 < R (i.e., region D), x∗3 = 0 and τ = 0, which
means that a channel inversion power control without any
truncation is to be used. Clearly, this case is not desirable
as the transmit power can be very high for a small |hk|2 (or
deep fading). Furthermore, if C1 + C2 > R (i.e., region C),
no user transmits signals as x∗3 = 1 and clearly this case
should not be considered. The case associated with region
B is reduced to conventional truncated channel inversion
power control without power-domain NOMA, because only
one target receive power level (i.e., ρ2) exists while τpn →∞.
Consequently, the case associated with region A is suitable for
hybrid uplink NOMA, where x∗1 and x∗2 decrease with their
costs, C1 and C2, respectively.

As shown above, the ESS can be easily found when the costs
are fixed. However, since we expect that the costs increase with
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the actual transmit power, it might be more interesting to find
the ESS when costs are functions of the actual transmit power,
which is studied in the rest of the paper.

B. With Costs Depending on Instantaneous SNR

In this subsection, we study the case that the costs depends
on the instantaneous SNR under the assumption that the hk’s
are independent and identically distributed (iid) for tractable
analysis. In particular, we consider Rayleigh fading, where

hk ∼ CN (0, σ2
h), k ∈ {1, 2}. (17)

For the cost functions, we can consider the following ones:

Ci(γk) = C

(
ρi
γk

)
, i ∈ {1, 2}, (18)

where C(x) is an increasing function of x so that the cost
increases with the actual transmit power in (4). In particular, if
the energy efficiency is considered, it is necessary to take into
account the transmit power for the cost so that the resulting
strategy is more related to energy efficiency. Closed-form
expressions for the average cost functions are available when
C(x) is a linear6 function as follows.

Property 4. Suppose that

C(x) = cx, (19)

where c > 0. For convenience, c is referred to as the scaling
factor for costs. Then, for the Rayleigh fading in (17), we have

C̄1 = C̄1(x) =
cρ1

γ̄x1
E1

(
ln

1

x1

)
C̄2 = C̄2(x) =

cρ2

γ̄x2

(
E1

(
ln

1

x1 + x2

)
− E1

(
ln

1

x1

))
,(20)

where En(x) =
∫∞
x

e−z

zn dz is the exponential integral and
γ̄ =

σ2
h

N0
, which is referred to as the average channel SNR.

Proof: See Appendix D.
Under Rayleigh fading, we need to have τ > 0 in order

to avoid infinite transmit power [25], which means that x3

has to be greater than 0. This is also necessary to avoid that
C̄2(x) becomes infinite as shown in (20). Therefore, when we
consider Rayleigh fading channels, it is desirable to have a
non-zero x3 or τ .

Property 5. Under a Rayleigh fading channel, suppose that
x3 > 0. Then, x∗1 is the unique solution of

R(1− x1) =
cρ1

γ̄x1
E1

(
ln

1

x1

)
, x1 ∈ (0, x̄3), (21)

where x̃3 = 1− x3, if the following condition holds
cρ1

γ̄
>

Rx3x̃3

E1

(
ln 1

x̃3

) . (22)

6Although we only consider the case that the cost is a linear function of
the transmit power as in (19) in this paper, it is also possible to consider
another increasing function. For example, if C(ptx) = ln(ptx), where ptx
is the transmit power, the payoff becomes R − ln(ptx) = ln eR

ptx
. If eR is

the transmission rate, the payoff becomes the energy efficiency in bits per
second per transmit power. Thus, the maximization of payoff is equivalent to
the maximization of energy efficiency.

In addition, x∗1 decreases with c and increases with γ̄.

Proof: See Appendix E.
Once x∗1 is found by solving (21), x∗2 can be found with

known x∗1. That is, from (38) and (20), x∗2 becomes the
solution of the following equation:

R(1− x2) =
cρ2

γ̄x2

(
E1

(
ln

1

x∗1 + x2

)
− E1

(
ln

1

x∗1

))
,

(23)

with x2 ∈ (0, 1−x∗1−x3). Note that since x3 is not known, it
is difficult to verify that the condition in (22) holds. Therefore,
we can attempt to find x∗1 by solving (21) with x1 ∈ (0, 1).
In this case, the solution always exists. Then, we find x∗2
by solving (23) with x2 ∈ (0, 1 − x∗1). In this case, as in
Property 5, we can show that x∗2 exists and is unique. If
x∗1 + x∗2 = 1, the solution is not valid (because x3 becomes
0). In this case, a larger c should be used to encourage non-
transmission (i.e., x3 > 0).

Alternatively, in order to find the solution, we can use the
replicator dynamic equation7 [28] that is given by

ẋi = µxi(u1(i,x)− u1(x,x)), (24)

where µ > 0 is the step-size. We will consider the replicator
dynamic equation from an implementation point of view in
Section V.

V. OTHER ISSUES

In this section, we consider a few issues including compar-
isons with other schemes that are not based on game-theoretic
setups and a fairness issue in evolutionary game for hybrid
uplink NOMA.

A. Comparisons with Other Schemes

The state or distribution, x, can be decided to maximize
the throughput that is the average number of successfully
transmitted users. For a given x, the throughput of hybrid
uplink NOMA per user can be found as

ηhnoma(x) =

2∑
i=1

Ex[1(succeed with action i)]xi

= (x2 + x3)x1 + (x1 + x3)x2

= (1− x1)x1 + (1− x2)x2, (25)

which is a concave function of x1 and x2. It can be readily
shown that the following state maximizes the throughput:

x1 = x2 =
1

2
, x3 = 0, (26)

i.e., each user always transmits with action 1 or 2. The
maximum throughput per user becomes

η∗hnoma = max
x

ηhnoma(x) =
1

2
. (27)

7In the replicator dynamic equation, ẋi = d
dt
xi(t), where xi(t) represents

xi at time t. In a discrete-time system, ẋi = xi(t+ 1)−xi(t), where t ∈ Z
represents the discrete time unit.
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and the total throughput (with two users) per resource block
is 1. Note that the total throughput of 1 can also be achieved
without power-domain NOMA, i.e., by allocating one user per
radio resource block. Therefore, hybrid uplink NOMA is not
to increase the throughput, but to support more users. That
is, the advantage of hybrid uplink NOMA over conventional
uplink OMA is an increase in users to be supported (with the
same throughput).

Note that in practice, it is difficult to achieve the total
throughput of 1 with or without power-domain NOMA due to
transmit power constraints under fading. To see this, consider
(26), where x3 = 0 or x1 +x2 = 1. Under the Rayleigh fading
in (17), the average power with action 2 becomes∞ from (20)
(when x1 + x2 = 1, C2(x) = ∞ since limz→0E1(z) = 0).
Therefore, it is necessary to keep τ > 0 or x3 > 0. This is also
true for the case without power-domain NOMA. With a certain
non-zero threshold τ > 0 and its corresponding x3 = δ > 0,
we can consider time division multiple access (TDMA) for two
users per radio resource block. In this case, the throughput per
user becomes

ηtdma =
1− δ

2
. (28)

For hybrid uplink NOMA, from (25), after some manipula-
tions, we can have

η∗hnoma = max
x1+x2≤1−δ

(1− x1)x1 + (1− x2)x2

=
1− δ2

2
. (29)

This indicates that when truncated channel inversion power
control is employed with a non-zero threshold, τ > 0, hybrid
uplink NOMA can provide a higher throughput than OMA
by a factor of up to 1−δ2

1−δ = 1 + δ = 1 + x3. Clearly, as in
(44), τ increases with x3 under Rayleigh fading. From this,
if users have transmit power constraints and need to keep
a high threshold, τ , hybrid uplink NOMA is preferable to
OMA as it can effectively allow to share the radio resource
block between two users and improve the throughput. Note
that centralized power control, which requires CSI from all the
users, is not used in both hybrid uplink NOMA and OMA. As
a result, hybrid uplink NOMA has signal overhead comparable
to OMA, while its throughput can be higher than that of OMA.

B. Fairness in Evolutionary Game for Hybrid Uplink NOMA

In Subsection IV-B we consider the case that the cost
functions depend on the instantaneous SNR. As shown in (20),
the average cost, C̄i, i ∈ {1, 2}, is shown to be inversely
proportional to the average channel SNR, γ̄. In general, the
average channel SNR is decided by the large-scale fading term
that is inversely proportional to the distance between the BS
and the user. This implies that the cost of the user close to the
BS (called near users) is smaller than that of user far away
from the BS (called far users). Consequently, near users can
take advantage of low costs and will have higher transmission
probabilities than far users. Certainly, this results in unfairness
in transmission opportunities, and fairness policies [29] [30]
are needed to be imposed.

In the evolutionary game for hybrid uplink NOMA, we
can impose the fairness by letting the value of c in (19) be
proportional to the average channel SNR at each user, i.e.,
c ∝ γ̄k, where γ̄k represents the average channel SNR at
user k. Then, in (20), we can see that C̄1 and C̄2 become
independent of γ̄k and a fairness can be achieved (i.e., the
same state at every user).

C. Implementation of State Updating

If the BS knows statistical CSI of fading channels, (e.g.,
the pdf of |hk|2 in (17)), it can decide the ESS, (x∗1, x

∗
2, x
∗
3),

by solving (21) and (23) with closed-form expressions for
u1(i,x), i ∈ {1, 2}, and broadcasts it to all the users so
that each user can play the evolutionary game (or perform the
modified truncated channel inversion power control) for hybrid
uplink NOMA with the ESS. However, in practice, it may be
difficult for the BS to have statistical CSI of fading channels
(which may also slowly vary) in advance. Thus, closed-form
expressions for u1(i,x) are not available. In this case, the BS
is forced to use the replicator dynamic equation in (24) to find
the ESS with estimates of Ri(x) and C̄i(x), i ∈ {1, 2}. For a
given x, at time slot t, we consider the following estimate of
Ri(x):

R̂i(t;x) =
R

2M

M∑
m=1

Ym(t; i), (30)

where Ym(t; i) ∈ {0, 1, 2} is the number of successfully
decoded signals in resource block m at time slot t, which
is available at the BS. Since the average cost is available at
users, we assume that each user sends their average costs for
actions 1 and 2 once in a block consisting of B slots, where
B ≥ 1. Here, B becomes the time window for time average.
If B increases, the feedback rate to send the average cost
decreases and leads to a lower8 signaling overhead (at the cost
of delayed state updates). Together with the average costs from
the users and the estimate of Ri(x) in (30), the estimates of
u1(i,x), i = 1, 2, become available at the BS. Provided that
the channels are iid and their statistics are invariant over the
time, the BS can find the ESS after a number of iterations.
This approach is also valid even if each channel has a different
average channel SNR as long as the scaling factor for costs is
decided to be proportional to γ̄k, i.e., c = ck ∝ γ̄k at each user,
which results in the C̄i’s being independent of the average
channel SNR at each user as mentioned in Subsection V-B.
The resulting approach is referred to as state updating at the
BS (SU-BS).

To avoid the uplink signaling overhead to send the time
averages of costs from users, we can further consider an ap-
proach that each user employs the replicator dynamic equation
to update its own state to approach the ESS. In this case,
the BS needs to send acknowledgment (ACK) or negative
acknowledgment (NACK) signal back to users at the end of
each slot. From the feedback information, two users are able
to estimate Ri as in (30). Let b denote the block index. For

8Compared to centralized power control, where the CSI is to be updated
at every slot, the feedback rate becomes lower by a factor of B.
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each user in radio resource block m (we now omit the index
m), we have the time average of payoff as follows:

ūk[i,x; b] =
1

B

(b+1)B−1∑
t=bB

(
R̂i(t;x)− ck

ρi
γk(t)

)
, i ∈ {1, 2}.

(31)
Then, using the time average of payoff in (31), each user can
update the state at a block rate as follows:

xk,i[b+ 1]− xk,i[b]
= µxk,i[b] (ūk[i,xk[b]; b]− ūk[xk[b],xk[b]]) , (32)

where xk,i[b] denotes the probability of action i at user k in
the bth block and

ūk[xk[b],xk[b]] =

3∑
i=1

xk,i[b]ūk[i,xk[b]; b]. (33)

The resulting approach is referred to as state updating at users
(SU-U).

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results when the cost
is inversely proportional to the instantaneous SNR9 as in (19)
under Rayleigh fading channels with iid hk in (17) for all
users.

To find the ESS, we can use the replicator dynamic equation
in (24) and an illustration of the trajectory of the state is shown
in Fig. 2 when (R, c) = (1, 2), Γ = 6 dB, γ̄ = 10 dB, and
µ = 0.2. By solving (21) and (23), we find that the ESS is
given by

(x∗1, x
∗
2, x
∗
3) = (0.035, 0.415, 0.550),

which can also be found by the replicator dynamic equation
after a sufficient number of iterations as demonstrated in
Fig. 2.
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Fig. 2. A trajectory of the state of the replicator dynamic equation in (24) with
the initial state of (x1, x2, x3) = (0.025, 0.025, 0.95) that is represented by
◦ marker, when R = 1, c = 2, Γ = 4 (or 6 dB), γ̄ = 10 (or 10 dB), µ = 0.2.
The replicator dynamic converges to (x∗1, x

∗
2, x

∗
3) = (0.035, 0.415, 0.550),

which is represented by ? marker.

9Since the ESS is fully characterized in Property 3 when the costs are fixed,
we do not consider the case of fixed costs in this section.

Fig. 3 shows the results of the evolutionary game for hybrid
uplink NOMA with different values of the scaling factor for
cost, c, when R = 1, Γ = 6 dB, and γ̄ = 10 dB. The ESS as
a function of c is shown in Fig. 3 (a), where we can see that
x∗1 decreases with c, which is expected by Property 5. That is,
as the cost of transmission increases, users are not encouraged
to use action 1. It can be also observed that x1 = x2 ≈ 0.46
around c = 0.4. This shows that the users choose action 1 or
2 equally likely so that a fair access can be achieved, while
the maximum of throughput per user is obtained in Fig. 3 (b),
where the throughput (per user) of hybrid uplink NOMA with
is compared to that of OMA (i.e.,, TDMA). The throughput
of OMA is given by 1−x3

2 . We can observe that for a large
cost of transmission (i.e., a large c), x3 becomes high. In this
case, the throughput of hybrid uplink NOMA is better than
that of OMA as expected. That is, with a large threshold τ for
truncated channel inversion power control (or a high x3), it is
better to share the channel with another user using NOMA to
improve the throughput. Furthermore, with a sufficiently high
x3, as in [17] [31] [23], more than two users can be allocated
to the same radio resource block.
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Fig. 3. Evolutionary game for hybrid uplink NOMA with different values of
the scaling factor for cost, c, when R = 1, Γ = 4 (i.e., 6 dB), and γ̄ = 10
(i.e., 10 dB): (a) ESS as a function of c; (b) throughput per user.
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We show the results of the evolutionary game for hybrid
uplink NOMA with different values of average channel SNR,
γ̄, when (R, c) = (1, 1), Γ = 6 dB, and γ̄ = 10 dB in Fig. 4.
In Fig. 4 (a), it is shown that x∗1 increases with γ̄ as expected
by Property 5. That is, when c is fixed, since the cost decreases
with γ̄, users are more encouraged to employ action 1 for a
higher γ̄. The throughput of hybrid uplink NOMA is shown
in Fig. 4 (b), where we can see that hybrid uplink NOMA can
have a higher throughput than OMA if γ̄ is not too high.
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Fig. 4. Evolutionary game for hybrid uplink NOMA with different values of
average channel SNR, γ̄ when R = 1, c = 1, and Γ = 4 (i.e., 6 dB): (a)
ESS as a function of c; (b) throughput per user.

As mentioned earlier, the ESS can be found using the
replicator dynamic equation with the time averages of the
rewards and costs as their estimates. To this end, in Sub-
section V-C, we have discussed the state updating rules at
the BS and users, i.e., SU-BS and SU-U, respectively. Fig. 5
shows the trajectory of x obtained by the replicator dynamic
equation in SU-BS when M = 300, µ = 0.5, B = 40,
Γ = 6 dB, γ̄ = 10 dB, and (R, c) = (1, 1). Note that the
initial x is set to (1/3, 1/3, 1/3). In Fig. 5, the time for each
iteration corresponds to one block interval (i.e., the duration
of B = 40 time slots). We can observe that SU-BS (using the
replicator dynamic equation with the estimates of the average
payoff that are obtained from time averages of the rewards

and costs) can provide a good estimate of the ESS that is
(x∗1, x

∗
2, x
∗
3) = (0.183, 0.486, 0.331).
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Fig. 5. A trajectory of x obtained by the replicator dynamic equation in
SU-BS when M = 300, µ = 0.5, B = 40, Γ = 6 dB, γ̄ = 10 dB, and
(R, c) = (1, 1).

Unlike SU-BS, SU-U is a distributed state updating rule
where each user updates the state and each user’ state can be
different from the others. Thus, we show the average of 2M
users’ states to show the trajectory of x in Fig. 6 where the
state obtained by the replicator dynamic equation in SU-U is
shown when M = 300, µ = 0.5, B = 40, Γ = 6 dB, γ̄ = 10
dB, and (R, c) = (1, 1). Compared with SU-BS in Fig. 6, SU-
U has a slow convergence rate as it requires more iterations
to converge to the ESS.
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Fig. 6. A trajectory of x obtained by the replicator dynamic equation in
SU-U when M = 300, µ = 0.5, B = 40, Γ = 6 dB, γ̄ = 10 dB, and
(R, c) = (1, 1).

Since the replicator dynamic equation can be seen as an
adaptive updating rule for the state, it may be used when a
parameter is varying over the time. For example, the control
of the scaling factor for costs, c, might be necessary to
improve the throughput as shown in Fig. 3 (b). In particular,
the BS can broadcast a desirable value of c to improve the
overall performance. To see how the state can be updated
with the replicator dynamic equation in SU-B, we consider



9

the following variation of the scaling factor for costs for each
block:

c[b] =
2b

200
+ 0.5, b = 1, . . . , 200, (34)

where 200 is the number of blocks in a test. In Fig. 7, we
show the trajectory of x by the replicator dynamic equation in
SU-BS when M = 300, µ = 0.5, B = 40, Γ = 6 dB, γ̄ = 10
dB, and R = 1. For comparisons, we also show the ESS with
increasing c[b] when the exact average payoffs are available.
It is shown that the trajectory of x in SU-B can closely follow
the ESS after some iterations.
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Fig. 7. A trajectory of x obtained by the replicator dynamic equation in
SU-BS and the ESS of ideal case (with the exact average payoffs) with time-
varying scaling factor for costs when M = 300, µ = 0.5, B = 40, Γ = 6
dB, γ̄ = 10 dB, and R = 1.

To see the trajectory of x in SU-U for varying c, we consider
the variation of the scaling factor for costs for each block as
follows:

c[b] =
2b

6000
+ 0.5, b = 1, . . . , 6000, (35)

where 6000 is the number of blocks in a test. Note that the
variation of c in (35) is slower than that in (34) by a factor
of 6000

200 = 30. In Fig. 8, we show the trajectory of x by
the replicator dynamic equation in SU-U when M = 300,
µ = 0.5, B = 40, Γ = 6 dB, γ̄ = 10 dB, and R = 1. When
we compare the trajectory in SU-U with the ESS, it is clear
that there is a time lag10.

From Figs. 7 and 8, we can see that SU-BS can update the
state faster than SU-U in accordance with the variation of c.
Thus, SU-BS is preferable to SU-U when certain key param-
eters (e.g., c) are controlled by the BS for better performance
at the cost of high signaling overhead.

VII. CONCLUDING REMARKS

We proposed a hybrid uplink NOMA scheme to support
more users using power-domain NOMA. In order to avoid high

10A large step-size µ can be used for a better tracking performance.
However, a large step-size µ leads to instability although it is not shown
in the paper. As a result, the selection of the step-size has to be carefully
considered, which is beyond the scope of the paper and might be a further
research topic.
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Fig. 8. A trajectory of x obtained by the replicator dynamic equation in SU-U
and the ESS of ideal case (with the exact average payoffs) with time-varying
scaling factor for costs when M = 300, µ = 0.5, B = 40, Γ = 6 dB,
γ̄ = 10 dB, and R = 1.

signaling overhead for the power allocation that is usually re-
quired for power-domain NOMA, truncated channel inversion
power control at users was considered. The proposed hybrid
uplink NOMA scheme was able to exploit fading in such a
way that when one user does not transmit signals due to severe
fading, another user can access the radio resource block. To
decide the threshold values for the truncated channel inversion
power control in hybrid uplink NOMA, an evolutionary game
was formulated and its solution (i.e., ESS) was characterized.
We also showed that the replicator dynamic equation can
be used to find the ESS and discussed two implementation
approaches to update the state with outcomes about the success
of transmissions and realizations of fading channels.

Note that in this paper, we focused on the power control
strategy for the hybrid uplink NOMA scheme based on power-
domain NOMA. As in [32], there are other uplink NOMA
schemes (e.g., sparse code multiple access (SCMA)). As a
further research topic, the sparse code control (which might
be equivalent to the power control) can be studied for SCMA
from a point of view of evolutionary game theory. In addition,
although we only consider two users per radio resource block
in this paper, a generalization with more than two users per
radio resource block is possible with more power levels. This
generalization with a combination of power-domain NOMA
and SCMA (to keep the maximum transmit power limited
when there are a number of users per radio resource block)
might be an interesting topic to be studied in the future.

APPENDIX A
PROOF OF PROPERTY 1

For convenience, denote by Px(i) the probability that user
1 succeeds with action i ∈ {1, 2} when the state (or the mixed
strategy) of user 2 is x. Then, it can be shown that

Px(1) = x2 + x3 and Px(2) = x1 + x3. (36)
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In (36), we consider SIC to find Px(2). That is, although user
2 chooses action 1, user 1 can still succeed with action 2 using
SIC. Since

Ex[1(succeed with action i)] = Px(i), i ∈ {1, 2},

we can show that

u1(i,x) = Ri(x)− C̄i, i ∈ {1, 2}, (37)

where

Ri(x) =

{
R(x2 + x3), if i = 1
R(x1 + x3), if i = 2. (38)

Substituting (37) into the first equation in (9), we can have
the second equation in (9) after some manipulations. This
completes the proof.

APPENDIX B
PROOF OF PROPERTY 2

With a slight abuse of notation, let uk(i, j) denote the payoff
of user k when user 1 and user 2 choose pure strategies, i and
j. In addition, if user 1 chooses a mixed strategy x and user
2 chooses a mixed strategy x′, the payoff of user k is denoted
by uk(x,x′). If user 2 chooses a mixed strategy x and user 1
chooses a pure strategy i, then the payoff of user 1 is denoted
by u1(i,x), which is identical to that in (6). By the definition
of a mixed strategy NE [20] we have

u1(i,x∗) ≤ u1(x∗,x∗), i ∈ {1, 2, 3}, (39)

if x∗ is a mixed strategy NE. Note that since the game is
symmetric, (39) is equivalent to u2(x∗, i) ≤ u2(x∗,x∗), i ∈
{1, 2, 3}. From (9), it can be readily shown that

u1(x∗,x) = u(x∗,x∗). (40)

Substituting (40) into (39), we can have (12), which completes
the proof.

APPENDIX C
PROOF OF PROPERTY 3

In case of A, according to the indifference principle [20],
we have

u1(1,x∗) = u1(2,x∗) = u1(3,x∗). (41)

Since x∗1 + x∗2 + x∗3 = 1, from (41), we have

Rx∗1 −R+ C1 = Rx∗2 −R+ C2 = 0.

This leads to (13) as C1 < R and C1 + C2 > R.
In case of B, we can see that x∗1 has to be zero, while

x∗2, x
∗
3 > 0. According to the indifference principle [20], we

need to have u1(2,x∗) = u1(3,x∗), which results in (14).
In case of C, since costs C1 and C2 are higher than reward

R, x∗1 and x∗2 become 0 and x∗3 = 1, which means that no
transmission becomes NE.

In case of D, we can see that u1(1,x) = u1(2,x) with
x∗3 = 0, which leads to (16) and completes the proof.

APPENDIX D
PROOF OF PROPERTY 4

From (17), the probability density function (pdf) of γk is
given by fγ(γk) = 1

γ̄ e
− γkγ̄ . Using this, we can show that

C̄1 = cρ1E
[

1

γk
| γk ∈ G1

]
= cρ1

∫ ∞
0

1

γ
fγ(γ | γ ∈ G1)dγ

=
cρ1

x1

∫ ∞
τpn

1

γ
fγ(γ)dγ =

cρ1

γ̄x1
E1

(
τpn

γ̄

)
. (42)

Similarly, we can also derive that

C̄2 =
cρ2

γ̄x2

(
E1

(
τ

γ̄

)
− E1

(
τpn

γ̄

))
. (43)

Furthermore, from (17) and (5), we can readily show that

τ = γ̄ ln
1

1− x3
= γ̄ ln

1

x1 + x2

τpn = γ̄ ln
1

x1
. (44)

Substituting (44) into (42) and (43), we have the costs in (20),
which completes the proof.

APPENDIX E
PROOF OF PROPERTY 5

Since x3 > 0, based on the indifference principle, we need
to have u1(1,x) = 0 or from (38) and (20),

R(x2 + x3)− C̄1(x) = R(1− x1)− C̄1(x) = 0,

which leads to (21). Consider V (x) =
E1(ln 1

x )
x , x ∈ (0, 1). It

can be shown that

lim
x→0

V (x) = lim
x→0

1
xE0(− lnx)

1
= 0, (45)

where the limit is due to L’Hospital’s rule, the fact that
d
dxEn(x) = −En−1(x) (for n = 0, 1 . . .), and E0(x) = − e

−x

x .
In addition, let Ṽ = V (x̃3). It can be shown that

dV (x)

dx
= − 1

x lnx
− E1(− lnx)

x2

=
1

x

(
− 1

lnx
− E1(− lnx)

x

)
≥ 1

x

(
− 1

lnx
− ln

(
1− 1

lnx

))
> 0, (46)

where the first inequality is due to E1(x) ≤ e−x ln
(
1 + 1

x

)
,

x ≥ 0, and the second inequality is due to z > ln(1 + z),
z > 0, with z = − 1

ln x > 0. Since C1(x) = cρ1

γ̄ V (x), C1(x)
is an increasing function of x1 and limx1→0 C1(x) = 0 and

C1(x)
∣∣
x1=x̃3

=
cρ1

γ̄
Ṽ ,

while R(1 − x1) is a decreasing function of x1. As a result,
(21) has a unique solution if cρ1

γ̄ Ṽ > Rx3, which is equivalent
to (22).

Furthermore, since C1(x) increases with c and decreases
with γ̄, we can also see that x∗1 decreases with c and increases
with γ̄.
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