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Abstract—We consider a multi-cell massive MIMO system
where a time-division duplex protocol is used to estimate the
channel state information via uplink pilots. When maximum
ratio combining (MRC) is used at the BSs, the re-use of pilots
across cells causes the pilot contamination effect which yields
interference components that do not vanish as the number of
base-station (BS) antennas M → ∞. When treating interference
as noise (TIN), this phenomenon limits the performance of
multi-cell massive MIMO systems. In this paper, we analyze
more advanced schemes based on simultaneous unique decoding
(SD) as well as simultaneous non-unique decoding (SND) of
the interference that can provide unbounded rate as M → ∞.
We also establish a worst-case uncorrelated noise technique for
multiple-access channels to derive achievable rate expressions
for finite M. Furthermore, we study a much simpler subset
of SND (called S-SND) which provides a lower bound to SND
and achieves unbounded rate as M → ∞, and also outperforms
SD for finite M. For the special cases of two-cell and three-
cell systems, using a maximum symmetric rate allocation policy
we compare the performance of different interference decoding
schemes with that of TIN. Finally, we numerically illustrate the
improved performance of the proposed schemes.

Index Terms—Massive MIMO, pilot contamination, simultaneous
unique/non-unique decoding (SD/SND), treating interference as noise

(TIN).

I. INTRODUCTION

W IRELESS communication standards are rapidly evolv-

ing to deal with challenges such as the ever increasing

number of users as well as the demand for higher data rates

and energy efficiency. These challenges give rise to the need

to incorporate new protocols and techniques in 5G cellular

networks. For instance, the METIS 5G project has as overall

technical goals to increase the typical user data rate in a mobile

network by 10x to 100x, handle 1000x more mobile data traffic

per unit area, and support 10x to 100x more connected devices,

all by 2020 [1]. Also in light of the demand for increased

energy efficiency, the GreenTouch initiative has, for example,

aimed to reduce the net energy consumption in end-to-end

communication networks by up to 98% by 2020, compared

to 2010 [2]. In order to meet these goals, several promising

solutions have been proposed for 5G, including massive multi-

input multi-output antenna systems [3], cloud-RAN [4], ultra-

densification [5] and millimeter wave communications [6], [7].

In a massive MIMO communication system, each BS uti-

lizes a very large number of antennas, which allows for the si-

multaneous serving of several (single or multi-antenna) users,

where the number of BS antennas is normally assumed to be

significantly larger than the number of users. The introduction

of massive MIMO technology dates back to the seminal
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work of Marzetta in [8], where it was shown that, under the

assumption of independent Rayleigh fading channels and when

the number of BS antennas grows to infinity, the effects of

small-scale fading, intra-cell interference and additive noise

all vanish due to channel hardening effects. In theory, massive

MIMO has several advantages including high energy efficiency

[9], high spectral efficiency and increased capacity through

the aggressive spatial multiplexing of many users [3], [10],

all enabled by the use of simple linear precoding/decoding

techniques [11]. With regards to energy efficiency in particular,

the work of [9] has analytically shown that when perfect CSI

is available at the BSs, the uplink transmit power of each user

can be scaled inversely proportionally with the number of BS

antennas, without any performance loss.

Successful implementation of massive MIMO in practice,

however, depends heavily on the availability of knowledge of

channel state information (CSI) at the BSs. Thanks to the use

of time-division duplex (TDD) protocols as suggested in [8]

as well as uplink and downlink channel reciprocity, the BSs

are able to estimate downlink channels using uplink pilots and

later employ these estimates for both precoding and decoding

purposes. In reality, the length of the channel coherence time is

finite, and therefore the number of available orthonormal pilot

sequences is limited. Consequently, in a multi-cell system, the

same set of orthonormal pilots is shared across multiple cells.

This, in turn, degrades the channel estimation performance

for a user in one cell in that it will be contaminated by

the channels of users in other cells whose pilots are not

orthonormal to the first user. More specifically, the pilot

contamination (PC) effect becomes a source of interference

that precludes the logarithmic growth of users’ achievable rate

with the number of BS antennas [8]. Hence, it is believed that

PC constitutes a fundamental bottleneck in multi-cell massive

MIMO systems [12]. Some notable exceptions to this belief

are the works of [13]–[15] that will be discussed in the sequel.

A. Contributions

In this paper, we assume the same orthonormal pilots are

used across multiple cells, and take a different view of the

inter-cell interference caused by PC. More specifically, we

show that when M → ∞ the use of more sophisticated

schemes such as decoding the PC interference, rather than

simply treating it as noise, allows one to attain unbounded

rates, even in the presence of the PC effect.

We summarize the major contributions of this paper as

follows:

• Using the capacity region obtained by simultaneous

unique decoding of the desired signal and PC interference

http://arxiv.org/abs/1911.11103v1
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(i.e., employing SD as opposed to TIN), it is shown that

when maximum ratio combining (MRC) is employed at

BS, the per-user rate tends to infinity as M → ∞.

• It is shown that when decoding interference due to the

PC, reusing the same pilots across cells (as opposed to

using different pilots) is preferable as it requires decoding

significantly fewer interference terms.

• The benefits of using simultaneous non-unique decoding

(SND) is investigated, which strictly contains regions SD

and TIN. Moreover, a simplified subset of SND (S-SND)

is studied, which is shown to be strictly larger than SD

and also provides a lower bound to SND.

• A worst-case uncorrelated noise technique for multi-

ple access channels (MAC) is established that for fi-

nite M yields achievable rate expressions over regions

SD/SND/S-SND.

• The problem of maximum symmetric rate allocation

(i.e., maximizing the minimum achievable rate) for

TIN/SD/SND/S-SND is investigated. Some structural re-

sults are also presented for the two extreme regimes

of high and low SINR. In particular, it is found that

when the number of BS antennas is truly large the

interference decoding schemes SD/SND achieve the same

performance and also strictly outperform TIN.

• For the special case of a two-cell system and assuming a

symmetric geometry, it is shown that for relatively small

values of M, the PC interference is “weak” in that SND

and TIN achieve the same rate and both of these strictly

outperform SD and S-SND. Hence, one may choose

TIN which is simpler to implement. Nevertheless, for

large values of M (beyond a threshold), the PC interfer-

ence becomes “strong” so that the interference decoding

schemes SD/SND provide the same performance and both

of these strictly outperform TIN. Hence, one may choose

SD which is simpler to implement. Analytical conditions

in terms of mutual information expressions under which

these results hold are also found.

• For the special case of a three-cell system, it is numer-

ically shown that the use of SND can provide a strictly

better performance compared to all the other schemes.

One should note that the theoretical contributions in the first

five items listed above as well as the analytical conditions for

the two-cell case are valid regardless of the numerical results

presented in Section V. It is only in Section V that specific

values for the system parameters are chosen to numerically

compare the performance of different schemes and hence

validate the analytical findings of Sections III and IV.

B. Related Work

In order to tackle the PC problem, systematic solutions have

been extensively studied in the literature; some attempt to

alleviate the PC effects by reducing its impact on the system

performance [16]–[19] whereas others, given that some as-

sumptions and requirements are satisfied, suggest schemes that

completely eliminate PC and provide unbounded achievable

rates in the asymptotic regime [13]–[15], [20]. Specifically,

in the framework of PC mitigation schemes, the use of time-

shifted pilots is proposed in [17], [18], where in order to make

sure that non-orthonormal pilots do not overlap in time, the

location of pilots in frames shift so that transmission in differ-

ent cells is done at non-overlapping times. In addition to time-

shifted pilots, power allocation algorithms are also proposed

in [17] and have shown to provide significant gains. In [19], a

multi-cell MMSE based precoding is investigated for downlink

to minimize the sum of the mean square error of signals

received at the users in the same cell and the mean square

interference seen by users in other cells. Unfortunately, in all

these techniques the PC effect is only partially suppressed and

thus the achievable rates do not grow without bound as the

number of BS antennas is increased.

In the line of works that construct asymptotically noise and

interference free systems with infinite capacity, [13] considers

a semi-blind channel estimation technique to separate the

subspace of the desired user channels from the subspace of

interfering channels due to PC. However, in order for complete

elimination of the PC effect, this method requires that the

channel coherence time goes to infinity. Unfortunately, this

assumption is not true in practice. Other interesting works

include [14], [20], where a large-scale fading decoding (LSFD)

technique is used that eliminates PC interference with the

help of a network controller resulting in achievable rates that

scale as O(log M). Therein, BS cooperation is required for the

exchange of large-scale fading coefficients between BSs and

the network controller, which results in backhaul overhead.

Different from [14], [20], the work of [15] uses a multi-

cell MMSE precoding/combining technique and assumes that

pilot-sharing users must have asymptotically linearly indepen-

dent covariance matrices. This assumption, however, may not

always be true and also requires the knowledge of channel

covariance matrices at the BSs.

In this paper, we do not view the interference caused by

PC as a fundamental limitation in a multi-cell system due

to treating it as noise. This is because TIN is known to

be suboptimal in some scenarios [21], [22], and hence the

present work proposes more sophisticated schemes based on

interference decoding.

The rest of this paper is organized as follows. In Section II,

we present the system model and describe the PC problem.

In Section III, to combat the PC problem we propose two

interference decoding schemes, i.e., SD and SND, as well as

an achievable subset of SND (S-SND). Achievable rate expres-

sions based on the worst-case uncorrelated noise technique

are also derived in this section. The problem of maximum

symmetric rate allocation is studied in section IV along with

some structural results for the extreme regimes of high and low

SINR as well as for the special cases of two-cell and three-cell

systems. In Section V, we demonstrate numerical results, and

finally, section VI concludes this paper.

Notation: We use boldface upper and lower case symbols

to represent matrices and vectors, respectively. An M × M

identity matrix and an all-zero vector are denoted by IIIM and

000, respectively. The superscripts (.)T , (.)†, (.)∗, and (.)−1 denote

the transpose, Hermitian transpose, conjugate and inverse

operations. The notation diag(vvv) represents a diagonal matrix

with elements v[1], v[2], ... of vector vvv along its main diagonal.

The expressions E [.] and var [] are used to denote mean and
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kth User

lth Cell

jth Cell

√
β j k lh j k l[m] 1

m

M

Fig. 1: System model showing the channel gain between the mth

antenna of the BS in cell j and the kth user in cell l.

variance of a random variable, respectively, and CN(mmm, RRR)
denotes the circular symmetric complex Gaussian distribution

with mean vector mmm and covariance matrix RRR.

II. PRELIMINARIES

A. System Model

We consider a multi-cell communication system with L

cells, where each cell has a BS equipped with M antennas

serving K (M ≫ K) single antenna users. Assuming a flat-

fading model, the channel between the M antennas of the BS

in cell j and the users in cell l is described by

GGG jl = HHH jlDDD
1/2
jl
, (1)

where HHH jl = [hhhj1l, hhh j2l, ..., hhh jKl] ∈ CM×K is the channel matrix

associated with the channel vectors hhh jkl ∈ CM×1 of small-scale

fading coefficients between antennas of the BS in cell j and

the kth user in cell l, and DDD jl = diag(βj1l, βj2l, ..., βjKl) is the

matrix of large-scale fading coefficients. One may rewrite (1)

as

ggg jkl =

√
βjklhhh jkl, (2)

which explicitly shows that the large-scale fading coefficient

βjkl , which models shadowing and path loss and is assumed

to be known at the BS, is constant with respect to the index

m of the BS antenna (see Fig. 1). The latter follows since

the distance between the BS and a user is much larger than

the spacing between the antennas of the BS. We also assume

a block fading model where the large-scale fading coeffi-

cients βjkl are constant over many coherence time intervals T

and known a priori, whereas small-scale fading coefficients

hjkl[m],m = 1, ..., M are constant over one coherence interval,

and drawn independently in each coherence interval with

hhh jkl ∼ CN(000, IIIM ) (i.e., flat-fading model).

Furthermore, we consider TDD operation such that reci-

procity holds between uplink and downlink channels. We take

the frequency re-use factor to be one, i.e., the whole frequency

band is used in one cell, and re-used in all the adjacent cells.

This assumption, in particular, entails a worst-case inter-cell

interference.

B. Uplink Data Transmission

We point out that the model used for uplink data transmis-

sion in this paper is similar to that of [11] with slight change

of notation. During the uplink data transmission phase, the BS

in cell j receives the baseband signal yyy j ∈ CM×1 given by

yyy j =

∑L

l=1

∑K

k=1

√
ρuggg jklxl[k] + nnn j, (3)

where xxxl = [xl[1], xl[2], ..., xl[k]]T is the vector of transmit

signals of the users in cell l, ρu is the average uplink transmit

power of the users, and nnnj ∼ CN(000, IIIM ) is the additive

Gaussian noise vector at the BS in cell j. Thus, ρu can be

interpreted as the uplink transmit SNR of the users.

C. CSI Estimation at BS

Similar to the approach of [14] for CSI estimation, it is

assumed that the same set of pilot sequences ψψψ1, ψψψ2, ..., ψψψK ∈
C
τ×1 of length τ (usually τ ≥ K , however without essen-

tial loss of generality we assume τ = K) are used in all

cells and thus the channel estimate will be corrupted by

the PC from the adjacent cells. Defining the pilot matrix

ΨΨΨ = [ψψψ1, ψψψ2, ..., ψψψK ]T ∈ CK×K , we assume orthonormal pilots

ΨΨΨΨΨΨ
†
= IK .

During the uplink training phase of the TDD protocol, user

k = 1, 2, ..., K in each cell transmits the pilot sequence ψψψk to

its BSs. The BS in cell j then finds the estimate Ĝ̂ĜG j j of the

local channels GGG j j . More specifically, the BS in cell j receives

the matrix YYY
p

j
∈ CM×K , i.e.,

YYY
p

j
=

∑L

l=1

√
ρpGGG jlΨΨΨ + ZZZ j, (4)

where ρp is the average pilot transmission power, and ZZZ j is

the AWGN at the BS with entries that are iid CN(0, 1) random

variables. Similar to the uplink data transmission, ρp can be

interpreted as the pilot SNR. Generally, ρp is a function of

the average transmit power of users ρu and the length of pilot

sequences τ.

Multiplying YYY
p

j
byΨΨΨ†, the k th column of the resulting matrix

is

rrr jk =

∑L

l=1

√
ρpggg jkl + z̃̃z̃z jk, (5)

where z̃̃z̃z jk ∼ CN(000, IIIM ). The MMSE estimate ĝ̂ĝg jk j of ggg jk j

based on the observation rrr jk is given by [23]

ĝ̂ĝg jk j = E

[
ggg jk jrrr

†
jk

]
E

[
rrr jkrrr

†
jk

]−1

rrr jk (6)

=
√
ρpβjk j

(
1 + ρp

∑L

l=1
βjkl

)−1

rrr jk (7)

= αjk j

(∑L

l=1

√
ρpggg jkl + z̃̃z̃z jk

)
, (8)

where αjk j :=
√
ρpβjk j

1+ρp
∑L

l=1 βjkl
. Due to the orthogonality property

of MMSE estimation, one can decompose the channel ggg jk j as

ggg jk j = ĝ̂ĝg jk j +ǫǫǫ jk j , where ǫǫǫ jk j is the estimation error. It is also

known that ǫǫǫ jk j is uncorrelated (and thus independent due to

the Gaussian assumption) from the estimate ĝ̂ĝg jk j [14]. There-

fore, it can be verified that ĝ̂ĝg jk j ∼ CN(000, √
ρpβjk jαjk jIIIM )

and ǫǫǫ jk j ∼ CN(000, βjk j (1 − √
ρpαjk j )IIIM ). Using (6), one can
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see that the estimate ĝ̂ĝg jkl can be written in terms of ĝ̂ĝg jk j as

follows

ĝ̂ĝg jkl =

(
βjkl

βjk j

)
ĝ̂ĝg jk j . (9)

D. Treating Interference as Noise (TIN)

Assuming maximum ratio combining (MRC), from (3) the

estimate of the ith user’s signal in cell j is

ŷji = ĝ̂ĝg
†
jij
yyy j (10)

=

∑L

l=1

√
ρuĝ̂ĝg

†
jij
ggg jil xl[i]

+

∑L

l=1

∑K

k=1,k,i

√
ρuĝ̂ĝg

†
jij
ggg jklxl[k] + ĝ̂ĝg†jijnnnj . (11)

Substituting (8) in (11), and applying the strong law of large

numbers, as M → ∞, the following is obtained

ŷji

M

a.s.−→ √
ρuρpαjij

(
βjij xj [i] +

∑L

l=1,l,j
βjil xl[i]

)
, (12)

where
a.s.−→ represents the almost sure convergence. Note that

a channel hardening effect is observed in (12).

Assuming TIN in uplink, the BS in cell j only decodes the

desired signal xj [i] and treats the remaining interfering signals

xl[i], l , j as noise. Thus, defining Rij as the uplink rate of

the ith user in cell j, any rate tuple (Ri1, ..., RiL) is achievable

if it satisfies the following set of inequalities

Rij ≤ I
(
ŷji; xj [i]

��� ĝ̂ĝg jij

)
, for j = 1, ..., L. (13)

Based on (12), it is known that [8]

I
(
ŷji; xj [i]

��� ĝ̂ĝg jij

)
a.s.−→ C

(
β2
jij∑L

l=1,l,j β
2
jil

)
, as M → ∞, (14)

where C(x) := log(1 + x) is the Shannon rate function.

Remark 1. As the number of BS antennas M in (12) becomes

large, except for the terms associated with the pilot-sharing

users, i.e., the interference caused by PC, the effects of

interference and noise vanish.

Throughout the paper, it is assumed that the noisy channel

estimates ĝ̂ĝg jij are known locally at the BSs. Thus, from now

on to simplify notation they will be omitted from the mutual

information expressions.

III. DECODING THE PC INTERFERENCE

One can see that, as the number of BS antennas M becomes

large enough, the expression of (14) converges to a constant

independent of M and thus the benefits of increasing M

saturate. In other words, treating interference due to PC as

noise results in a fundamental limitation that constitutes a

major bottleneck in overall performance of massive MIMO

systems [8].

In this paper, as opposed to simply performing TIN, we

consider more sophisticated schemes based on interference

decoding. More specifically, we treat the PC interference terms

as individual users (similar to a MAC) and thus try to decode

them. As will be seen in the subsequent part, this change

of perspective results in new achievable rate expressions that

grow without bound as M → ∞.

A. Simultaneous unique Decoding (SD)

Note that in the expression of the received signal after

performing MRC in (12), the first term is the desired signal

and the remaining non-vanishing terms are all inter-cell inter-

ference caused by users in other cells that are sharing the same

pilot sequence, ψψψi, i = 1, . . . ,K , as the ith user of cell j. Now,

consider (11) which is the output of the j th BS after performing

MRC. If ŷji , for j = 1, 2, ..., L, i = 1, ..., K , are considered

together, then these represent the output of K separate/non-

interfering L-user interference channels (ICs), one such L-

user IC for each pilot sequence ψψψi, i = 1, . . . ,K: each L-user

IC consists of L transmitters, i.e., ith user of all cells that are

using the same pilot sequence ψψψi , and L receivers, i.e., the

BSs. One should also note that at each of the L receivers of

each IC, an asymptotically noise-free L-user MAC is observed

(see (12)). For instance, in the noise-free L-user MAC of (12),

by unique joint decoding of the users [x1[i], x2[i], ..., xL[i]]T ,

unbounded rates are obtained as M → ∞.

Remark 2. Note that since large-scale fading coefficients from

contaminating users are unknown at the BS, and also the

effective channel gains in the MAC of (12) are functions of

these coefficicents, this MAC can be regarded as a compound

MAC [24], where the channel gains from users to the receiver

are unknown. It has been shown in [24] that the achievable

rates of a compound MAC (i.e., a MAC with unknown channel

gains) are the same as those of the standard MAC, where all

channel gains are known. Therein, it has been shown that the

lack of knowledge of channel gains at the receiver does not

affect the achievable rates, i.e., the users’ signal can still be

successfully decoded.

Due to finite coherence time of wireless channels, the

number of available orthonormal pilot sequences is smaller

than K L for typical values of K and L. Thus, one way to

address this issue is to re-use the same set of orthonormal

pilots across all cells as described in Section II-C. However, an

alternative approach to that of Section II-C is to use different

sets of orthonormal pilots in different cells. To illustrate this

alternative, assume that a single set of orthonormal pilots is

picked for one cell, and different rotated versions of this set are

used in all other cells. In particular, user k in cell l transmits

the pilot sequence ψψψkl to its BS, where the entire pilot matrix

used in cell l is denoted by ΨΨΨl. As the sequences of other

pilot matrices, ΨΨΨ j, j , l ∈ {1, 2, ..., L}, are rotated versions of

sequences in ΨΨΨl, they have non-zero inner product.

After transmission of all pilot sequences, the BS in cell j

receives the matrix YYY
p

j
∈ CM×K , given by

YYY
p

j
=

∑L

l=1

√
ρpGGG jlΨΨΨl + ZZZ j . (15)

Multiplying YYY
p

j
by ΨΨΨ

†
j
, the k th column of the resulting matrix

is

rrr jk =
√
ρpggg jk j +

∑L

l=1,l,j

√
ρpGGG jlΨΨΨlψψψ

†
k j
+ qqq jk, (16)

where qqq jk ∼ CN(000, IIIM ). Therefore, the MMSE estimate ĝ̂ĝg jk j

of ggg jk j based on the observation rrr jk is

ĝ̂ĝg jk j = E

[
ggg jk jrrr

†
jk

]
E

[
rrr jkrrr

†
jk

]−1
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×
(√
ρpggg jk j +

∑L

l=1,l,j

√
ρpGGG jlΨΨΨlψψψ

†
k j
+ qqq jk

)
. (17)

One can readily see from (17) that the channel estimate ĝ̂ĝg jk j

is now contaminated by the channel of all the users in other

cells. Thus, after performing MRC and letting M → ∞, the

non-vanishing terms in (12) will include the signal of every

user in every other cell. In turn, when employing interference

decoding schemes, using the same set of pilots in different

cells results in decoding L users, whereas using different

sets of pilots in different cells, as explained above, results

in decoding K(L − 1) + 1 users. As will be explained later

in Remark 7, this alternative approach that requires decoding

K(L−1)+1 users (instead of L users) degrades the performance

of interference decoding schemes, as compared to the approach

of Section II-C. Moreover, the complexity of jointly decoding

K(L − 1) + 1 users is larger than that of decoding L users.

Hence, when decoding the PC interference, using the same

set of pilots in different cells (as opposed to different pilots)

is preferable as it results in fewer interference terms to be

decoded.

We now provide a detailed analysis of the achievable rates

for finite values of M. Following the approach of [14], by

adding and subtracting a term associated with the mean of the

effective channel ĝ̂ĝg
†
jij
ggg jil in (10), the following is obtained

over one coherence interval

ŷji =
√
ρu

∑L

l=1
E

[
ĝ̂ĝg
†
jij
ggg jil

]
xl[i]︸                              ︷︷                              ︸

Desired signals

+

∑L

l=1

√
ρu

(
ĝ̂ĝg
†
jij
ggg jil − E

[
ĝ̂ĝg
†
jij
ggg jil

] )
xl[i]︸                                               ︷︷                                               ︸

Interference due to channel estimation error

+

∑L

l=1

∑K

k=1,k,i

√
ρuĝ̂ĝg

†
jij
ggg jklxl[k]︸                                       ︷︷                                       ︸

Interference caused by other users

+ ĝ̂ĝg
†
jij

nnnj︸︷︷︸
Noise

(18)

=

∑L

l=1
γilxl[i] + z′jij, (19)

where γil :=
√
ρuE[ĝ̂ĝg†jijggg jil] and z′

jij
is the effective noise term.

The power of the desired signals in (19) is proportional to

|γil |2 and is thus proportional to M2. Moreover, the power of

the effective noise term z′
jij

is proportional to M. Therefore,

by unique joint decoding of the users’ signals {xl[i]}Ll=1 in

(19), the achievable rates of the corresponding MAC grow

unboundedly as M → ∞.

Note that the effective noise z′
jij

in (19) contains the last

three terms in (18) including the inner product ĝ̂ĝg
†
jij

nnnj of

two Gaussian vectors, and hence is neither Gaussian nor

independent of the users’ signals. However, as will be shown

in the sequel, it is uncorrelated from the users’ signals. The

following lemma lower bounds the mutual information terms

defining the boundaries of the MAC region, using a Gaussian

effective noise with the same power as that of z′
jij

in (19).

Lemma 1. Consider the L-user MAC given by y =
∑L

i=1 xG
i
+

z, where the users’ signals xG
i
, i = 1, ..., L are independent

with complex Gaussian distribution xG
i

∼ CN(0, Pi), and the

additive noise z is a complex random variable with mean zero

and variance σ2
z . If z is uncorrelated from xG

i
, i = 1, ..., L,

then

I
(
xxxG
Ω

; y
G
���xxxG
Ωc

)
≤ I

(
xxxG
Ω

; y

���xxxG
Ωc

)
, (20)

where xxxG
Ω

is the vector with entries xG
i
, i ∈ Ω ⊆

{1, 2, ..., L},Ω , ∅, Ωc := {1, 2, ..., L} \Ω, yG =
∑L

i=1 xG
i
+ zG ,

and zG ∼ CN(0, σ2
z ).

Proof. See Appendix A. �

Note that using Lemma 1 one can obtain an achievable

lower bound on the capacity of a MAC with uncorrelated

additive non-Gaussian noise by replacing the noise term with

an independent zero mean Gaussian noise having the same

variance. This is known as the worst-case uncorrelated noise

result which has been previously established for the case of a

point-to-point channel in the literature [25]. When the additive

noise is independent of the users’ signals, Gaussian noise has

been proven to be the worst-case noise for point-to-point,

MAC, degraded broadcast and MIMO channels [26]. However,

the proof provided in Lemma 1 only requires the additive noise

to be uncorrelated of the users’ signals.

We now consider the MAC of (19) at BS j. Using the usual

definitions as in [27], each message ml ∈ [1 : 2nRil ], l =

1, ..., L (distributed uniformly) is encoded into the codeword

xxxn
l
[i](ml) of length n which is generated iid CN(0, 1). Using

SD and the standard random coding analysis as in [27], it

can be shown that decoding error probability tends to zero as

n → ∞, i.e., the rate tuple (Ri1, ..., RiL) is achievable, if

RΩ :=
∑

l∈Ω
Ril ≤ I

(
ŷji ; xxxΩ

��� xxxΩc

)
, (21)

where S = {1, 2, ..., L}, Ω ⊆ S, and xxxΩ is the vector with

entries xl[i], l ∈ Ω. Finally, to obtain the achievable region

network-wide (at all BSs), one should take the intersection

of achievable regions over all BSs. It should be pointed out

that recent studies in the literature have proposed practical

schemes using off-the-shelf LDPC codes that can achieve a

performance very close to the theoretical SD [28], [29].

Note that xl[i] and xj [k] are independent for (l, i) , ( j, k),
ggg jil and gggmkn are independent for ( j, i, l) , (m, k, n), and

also ĝ̂ĝg jil and ǫǫǫ jil are uncorrelated. Therefore, for transmission

over multiple coherence intervals all interference and noise

terms in (18) are uncorrelated from the desired signal com-

ponents. Thus applying Lemma 1, an achievable lower bound

to I(ŷji; xxxΩ
�� xxxΩc ) in (21) is obtained, similar to the ones

established in [14]. More specifically, replacing the effective

noise z′
jij

in (19) by an independent Gaussian noise with a

variance equal to the sum of the variances of the interference

and noise terms in (18), provides a lower bound in (21). This

is formally presented in the following theorem.

Theorem 1. Assuming xxxl = [xl[1], xl[2], ..., xl[K]]T ∼
CN (000, IIIK ) for l ∈ {1, 2, ..., L}, the following set of lower

bounds can be achieved for the MAC given in (19) at BS j

I
(
ŷji; xxxΩ

��� xxxΩc

)
≥ C

(
P1

P2 + P3 + P4

)
:= CLB(Ω), (22)

which holds for ∀Ω ⊆ {1, 2, ..., L}, where

P1 = M2
∑

l∈Ω
ρpρuβ

2
jilα

2
jij, (23)
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P2 = M
√
ρpβjijαjij

∑L

l=1
ρuβjil, (24)

P3 = M
√
ρpβjijαjij

∑L

l=1

∑K

k=1,k,i
ρuβjkl, (25)

P4 = M
√
ρpβjijαjij . (26)

Proof. See Appendix B. �

Remark 3. Note that P1 is the power of the desired signal

components associated with xxxΩ, whereas P2 is the power of

the interference due to the channel estimation error, P3 is the

power of the interference of other users, and P4 is the power

of the noise.

Using (23)-(26), one can simplify the right hand side of (22)

as

CLB(Ω) = C

(
M

∑
l∈Ω

√
ρpρuβjilαjil∑L

l=1

∑K
k=1 ρuβjkl + 1

)
, ∀Ω ⊆ {1, 2, ..., L}

(27)

which follows from the fact that βjilαjij = βjijαjil . Therefore,

it is clear that I(ŷji; xxxΩ

��� xxxΩc ) ≥ C(M × κ), where κ is a

function of ρu, ρp and large-scale fading coefficients, and is

also constant. Thus, the uplink achievable rates in (22) grow

as O(log M).
It is important to note that the BS j is only interested in

correct decoding of xj [i] in uplink. Thus, incorrectly decoding

xl[i], l , j, should not penalize the rates achievable at BS

j. Furthermore, the power of received signal for the users

located in distant cells is very small, and thus trying to decode

signals of such users can reduce achieved rates considerably.

As later illustrated in the paper, there exist scenarios where

system performance is constrained by these distant cells, which

motivates the need for more advanced decoding schemes.

B. Simultaneous Non-unique Decoding (SND)

In this part, we investigate the benefit of using SND and

further show that it enlarges the region obtained by SD for

finite M. The optimality of this decoding scheme for interfer-

ence networks with point-to-point codes and time-sharing has

been shown in [30]. Associated with the estimate of xl[i] in

cell l, we consider an IC that consists of the L senders, i.e.,

the ith user in each of cell l = 1, ..., L, and the L BS receivers.

In particular, the BS j ∈ S = {1, 2, ..., L} simultaneously

decodes the intended message xj [i] and the interference signals

xl[i], l , j, where incorrect decoding of the interference

signals does not incur any penalty. More precisely, BS j finds

the unique message m̂j such that (x̂xxnj [i](m̂j), x̂̂x̂xn
S\{ j }[i](mS\{ j }),

ŷ̂ŷy
n
ji
) is jointly typical for some mS\{ j }, where x̂̂x̂xn

S\{ j }[i](mS\{ j })
is the tuple of all codewords x̂̂x̂xn

l
[i](ml) for l ∈ S \ { j}. For a

comprehensive treatment of random code ensembles and joint

typicality, we refer the reader to [27, Chap. 3].

It has been shown in [30] that, assuming point-to-point ran-

dom code ensembles, the capacity region of the IC associated

with the ith users across the L cells can be described by

Ci =

⋂
j∈S

R ji, (28)

where R ji is the rate region achievable at BS j given by

R ji =

⋃
{ j }⊆Ω⊆S

Ri
MAC(Ω, j), (29)

and Ri
MAC(Ω, j) represents the achievable rate region obtained

from unique joint decoding of the signals xl[i], l ∈ Ω at BS

j. Note that Ω at BS j must contain the index of the desired

signal xj [i].
The rate region Ri

MAC(Ω, j) has the following properties:

[P1] The region does not include the rates Ril, l ∈ Ωc,

and is thus unbounded in these variables.

[P2] The signals xl[i], l ∈ Ωc , are treated as noise in the

rate expressions defining the region.

One can readily see that R ji strictly contains the MAC region

at BS j. Therefore, the capacity region Ci in (28) (obtained

from SND) is strictly larger than the intersection of the MAC

regions (obtained from SD) at BSs l = 1, ..., L. Another impor-

tant observation is that, due to [P2], R ji also contains the TIN

region (a similar observation was also made in [30] and [21])

and thus parts of region R ji’s boundary remain constant when

M → ∞. It is also worth mentioning that a low complexity

technique, called sliding-window coded modulation (SWCM)

has been recently proposed in the literature that can achieve

a performance close to that of the theoretical SND, while

outperforming TIN in the strong interference regime [31]–

[34]. We will see in the next section that depending on the

number of BS antennas and geometry of the cells, the use of

SND automatically specifies the optimal subset of signals that

should be jointly decoded while the remaining signals will be

treated as noise.

Note that in SD, the decoder attempts to uniquely decode

the message tuple of all users (i.e., the intended one as well as

the interfering users), as in a MAC. While in SND the decoder

attempts to decode only the intended message uniquely and the

messages of interfering users non-uniquely. More specifically,

for SND the decoder needs to perform jointly typical decoding

of all possible message tuples that include the message of the

intended user (i.e., the intended message only, all 2-message

tuples containing the intended message, ..., all (n−1)-message

tuples containing the intended message and the only n-message

tuple) as in (29). Hence, the SND decoder is more complex

than that of SD.

Remark 4. Note that there exists a complexity-performance

trade-off between the two interference decoding schemes SND

and SD, and also between SD/SND and TIN. As explained

above, the SD scheme attempts to decode all users, including

those that have weak interference. Hence, while SD requires

less complexity than SND, as will be seen later in the paper,

it achieves worse rates than SND. In contrast, SND is able

to adaptively determine whether a user should be decoded

or treated as noise based on the strength of the interference.

Hence, even though SND has more complexity than SD,

it achieves larger rates than SD. A similar trade-off exists

between SD/SND and TIN. Specifically, while the proposed

schemes of SD/SND have more complexity than TIN as they

need to decode additional users, for sufficiently large number

of antennas M, the rates achieved by TIN saturate to a fixed
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value that does not increase with M. In contrast, the rates

for SND/SD increase as O(log M), and hence as M → ∞,

unbounded rates are obtained.

Remark 5. Note that the successive interfernce cancelation

(SIC) technique used in [35] is different from the SND/SD of

this paper in the following manner: the work of [35] considers

a setting in downlink where each user is served by all BSs

through the reception of L independent data symbols from

the L BSs. In particular, each user applies SIC to sequentially

decode the L intended data symbols transmitted by the BSs,

while treating all interfering signals, including pilot-sharing

interfering signals, as noise, thus resulting in the rate saturation

problem. This is in contrast to the approach proposed in this

paper. As the BSs try to jointly decode (either uniquely or non-

uniquely) the intended signal along with the signal coming

from the pilot-sharing users, there is no rate saturation as M

increases.

C. A Simplified Subset of SND (S-SND)

We now consider a simplified achievable region which is a

subset of SND and also described in [26, Eq. (6.5)]. We refer

to this region as S-SND, which is given by the following set

of inequalities at BS j∑
l∈Ω

Ril ≤ I
(
ŷji; xxxΩ

��� xxxΩc

)
, (30)

for all Ω such that { j} ⊆ Ω ⊆ {1, 2, ..., L}.
One can directly verify that region S-SND can be obtained

from SD by removing all 2L−1 − 1 inequalities in (21) that

do not involve the rate Rij . Hence, the region SD is strictly

contained in S-SND. Furthermore, due to Theorem 1 it can

be verified that the boundaries of S-SND in (30) grow as

O(log M).
The motivation behind considering this region is as follows.

It will be shown in the next section that, as opposed to SND,

the S-SND region is in the form of a convex polytope which

makes it tractable for computing the maximum symmetric rate

allocation. Therefore, even though for large networks (e.g.,

more than 3 cells) the maximum symmetric rate of SND

can not be computed in a computationally efficient way, it is

feasible under S-SND. Furthermore, since S-SND is a subset

of SND, it provides a lower bound to SND. As will be shown

later, there are cases where S-SND strictly outperforms other

schemes (e.g., it strictly outperforms SD in the low SINR

regime). Thus, based on these findings we are able to draw

conclusions regarding the performance of SND.

IV. MAXIMUM SYMMETRIC RATE ALLOCATION

Considering (19), it is evident that users with relatively

small effective channel gains γil, l , i, suffer from smaller

rates compared to those users with stronger channels. There-

fore, it is crucial to assure fairness among users when allo-

cating resources in cellular networks. As such, we study the

problem of maximum symmetric rate allocation policy (which

is the same as maximizing the minimum achievable rate among

all users) for various schemes. More specifically, we will

compare the performance of all interference decoding schemes

SD/SND/S-SND with that of TIN based on the maximum

symmetric rate they can offer. In what follows, the analysis

is shown only for the ith (i is arbitrary) users across multiple

cells that are employing the same pilots, since the same results

hold for other sets of pilot-sharing users.

A rate allocation is said to be symmetric when all users are

assigned the same rate. Thus, the maximum symmetric rate as-

sociated with BS j is obtained by R
j

Sym
= max R such that the

rate vector RRR = [R, R, ..., R]T belongs to the achievable region

at BS j. Therefore, the rate vector [R j

Sym
, R

j

Sym
, ..., R

j

Sym
]T must

lie at the intersection of the diagonal (Ri1 = ... = RiL) with the

boundary of the achievable region at BS j.

One can verify that the SD region described in (21)

(achieved at BS j) can be represented as the intersection of

a finite number of closed half-spaces and is also bounded.

Hence, it is a convex polytope, denoted by Rj , shown below

Rj =

{
[Ri1, ..., RiL]T :

∑
l∈Ω

Ril ≤ gj (Ω),∀Ω ⊆ {1, 2, ..., L}
}
,

(31)

where the function gj (Ω) is the r.h.s of the inequality in (21).

Similarly, it can be verified that the region S-SND in (30) is

of the form (31) except now gj (Ω) = ∞ if j < Ω, and is also

a convex polytope.

The following lemma can be used to find the maximum

possible value for the minimum entry of a vector RRR, where

RRR ∈ Rj .

Lemma 2. In the polytope Rj , define

π = max min
i∈S

Ri (32)

subject to [R1, ..., RL]T ∈ Rj, (33)

where S = {1, 2, ..., L}. Then,

π = min
Ω⊆{1,2,...,L },Ω,∅

gj (Ω)
|Ω| . (34)

Proof. Following the steps of [36], consider an arbitrary vector

RRR ∈ Rj , and define δ = mini Ri. Hence, for all Ω , ∅, we have

δ ≤ ∑
i∈Ω Ri/|Ω| ≤ gj (Ω)/|Ω|. Therefore, minΩ,∅ gj (Ω)/|Ω|

is an upper bound on mini Ri. Choosing RRR = (π0, ..., π0) ∈
Rj , where π0 = minΩ,∅ gj (Ω)/|Ω|, the upper bound is thus

achieved. �

Thus, the maximum symmetric rate (which also maximizes

the minimum rate due to Lemma 2) at BS j is

R
j

Sym
= min
Ω j ⊆{1,2,...,L },Ω j,∅

gj (Ωj )
|Ωj |

. (35)

Finally, to find the maximum symmetric rate network-wide

one needs to compute min R
j

Sym
for j ∈ {1, 2, ..., L}. In the

following, we discuss how (35) can be solved over various

regions.

SD: At BS j, the minimization over the SD region in (21)

can be carried out by solving

min
Ω j

I(ŷji; xxxΩ j
| xxxΩc

j
)

|Ωj |
(36)

subject to Ωj ⊆ {1, 2, ..., L}. (37)
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The inequality in (27) then allows one to find an achievable

lower bound to the above problem by solving

[P1] min
Ω j

1

|Ωj |
log

(
1 +

M
∑

l∈Ω j

√
ρpρuβjilαjil∑L

l=1

∑K
k=1 ρuβjkl + 1

)

(38)

subject to Ωj ⊆ {1, 2, ..., L}. (39)

SND: It can be seen from (29) that the region achieved

by SND at BS j can not in general be represented by the

intersection of a finite number of half-spaces and thus does not

fall in the category of convex polytopes. Hence, finding the

maximum symmetric rate over this region in general does not

appear to have a closed-form formulation as in (35). However,

in order to provide insights into the benefits of using SND,

below we investigate S-SND which provides a lower bound

to SND. The special cases of two-cell and three-cell systems,

for which analyzing SND is tractable, are also studied at the

end of this section.

S-SND: Under S-SND, it is solved at BS j

[P2] min
Ω j

1

|Ωj |
log

(
1 +

M
∑

l∈Ω j

√
ρpρuβjilαjil∑L

l=1

∑K
k=1 ρuβjkl + 1

)

(40)

subject to { j} ⊆ Ωj ⊆ {1, 2, ..., L}. (41)

Note that even though [P1] and [P2] have the same

objective function, following the discussion below (30) the

solution Ωj of [P2] must include the index j associated with

the rate Rij , and is thus not necessarily identical to that of

[P1].
To tackle [P1] (or [P2]), we first consider two extreme

regimes of high and low SINR.

A. High SINR regime

In this regime, the values of M and L are such that

log

(
1 +

M
∑

l∈Ω j

√
ρpρuβjilαjil∑L

l=1

∑K
k=1 ρuβjkl + 1

)
≃ log(M). (42)

For instance, this approximation holds when the number of

BS antennas M is truly large but finite while the number of

cells L is fixed.

Thus, in this regime the minimization in both [P1] and [P2]
is achieved by Ω∗

j
= {1, 2, ..., L}, and thereby the maximum

symmetric rate at BS j is given by

R
SD, j

Sym
= R

S-SND, j

Sym
=

I
(
ŷji ; x1[i], x2[i], ..., xL[i]

)
L

, (43)

which scales as O(log M). As discussed before, the per-

formance of SND is at least as good as SD and S-SND,

i.e., R
SND, j

Sym
≥ R

SD, j

Sym
= R

S-SND, j

Sym
. Thus, in the high SINR

regime the maximum symmetric rate of SND occurs on one

of it’s region boundaries that scales as O(log M). In other

words, from (29) the maximum symmetric rate achieved

by SND in the high SINR regime belongs to the full

MAC, i.e., R
SND, j

Sym
∈ Ri

MAC({1,...,L }, j). Therefore, in the high

SINR regime one can upper bound R
SND, j

Sym
by R

SND, j

Sym
≤

1

L
I
(
ŷji; x1[i], x2[i], ..., xL[i]

)
. Consequently, we obtain for

the high SINR regime R
SND, j

Sym
= R

SD, j

Sym
= R

S-SND, j

Sym
. To find

the allocation network-wide, denoted by RSym, one needs to

calculate the smallest value of (43) across all cells, i.e.,

RSym = min
j

I
(
ŷji; x1[i], x2[i], ..., xL[i]

)
L

, (44)

which is the same for all interference decoding schemes.

Therefore, compared to TIN we obtain

RSym > min
j

I
(
ŷji ; xj [i]

)
= RTIN

Sym, (45)

i.e., joint decoding of all signals {xl[i]}Ll=1
performs strictly

better than decoding only the desired signal (e.g., xj [i] at BS

j) while treating the interference signals (e.g., {xl[i]}Ll=1,l,j
at

BS j) as noise (TIN).

Remark 6. Similar to the results of [14], [20], it is apparent

from (44) that, for sufficiently large M, the proposed interfer-

ence decoding schemes of this paper are also able to achieve

rates that scale as O(log M). Note that the achievable rates

of [14], [20] are higher than the ones reported in this paper

due to an extra array processing at a centralized network

controller, which results in a larger pre-log factor (e.g., 1 vs

1/L in the high SINR regime). However, such a centralized

processing requires extra resources and hardware infrastructure

to facilitate the BS cooperation at the network controller. In

contrast, in this paper, all processing are performed locally at

BSs without needing any cooperation.

Remark 7. Consider the alternative approach of using dif-

ferent pilots in different cells, as explained before (15). One

should note that, for the regime of large but finite M, decoding

all K(L − 1) + 1 number of interfering users at the current

BS will generally produce a smaller symmetric rate than

the approach of Section II-C which only decodes L users,

due to the much smaller pre-log factor in the former case.

For instance, in the regime of high SINR, using (42)-(44),

the achieved maximum symmetric rate of the former case is

≈ 1/(K(L − 1) + 1) log(M), whereas that of the latter case

is ≈ 1/L log(M). Hence, when decoding the PC interference,

re-using orthonormal pilots cross all cells is preferred as, for

finite M, it results in larger symmetric rate across the network.

Observation: In the high SINR regime, regardless of the

cells geometry, all interference decoding schemes SD/SND/S-

SND have identical performance and also strictly outperform

TIN. In turn, one may choose to implement SD which has a

simpler decoder.

B. Low SINR regime

In this regime, the values of M and L are such that

log

(
1 +

M
∑

l∈Ω j

√
ρpρuβjilαjil∑L

l=1

∑K
k=1 ρuβjkl + 1

)
≃

M
∑

l∈Ω j

√
ρpρuβjilαjil∑L

l=1

∑K
k=1 ρuβjkl + 1

.

(46)

For instance, this approximation holds when M and L are

small such that the product of the number of BS antennas M

and the ratio

∑
l∈Ω j

√
ρpρuβj ilαj il∑L

l=1

∑K
k=1 ρuβjkl+1

becomes small.
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Since αjil =

√
ρpβj il

1+ρp
∑L

l1=1 βj il1

, provided that (46) holds one

can see that [P1] (or [P2]) has the same minimizer Ω∗
j

as the

problem below

[P3] min
Ω j

∑
l∈Ω j

β2
jil

|Ωj |
, (47)

subject to (39) for SD (or (41) for S-SND). To solve this

problem, we first construct the sorted vector

πππ ji =

[
β2
ji(1), β

2
ji(2), ..., β

2
ji(L)

]T
, (48)

whose entries are βji1, βji2, ..., βjiL sorted in non-decreasing

order, i.e., β2
ji(1) ≤ β2

ji(2) ≤ ... ≤ β2
ji(L). Thus, considering a

simple distance-based pathloss model for large-scale fading

coefficients and assuming that users are associated to the

nearest BS, βji(1) and βji(L) correspond to the furthest and

closest users to BS j, respectively and βji(L) = βjij . Further

note that the objective function of [P3] is an averaging

operation over a subset of the entries of (48). We now study

the solution of [P3] under SD and S-SND in the following.

SD: Subject to (39), the average over any subset of the

entries of (48) is always at least as large as the smallest

entry, β2
ji(1) , with equality when the average is only over the

smallest entry. Therefore, Ω∗
j

is the index of the BS located

at the furthest distance from the BS j. In other words, in

the low SINR regime the performance of SD at BS j is

(unsurprisingly) limited by the rate of the furthest user from

BS j, i.e., R
SD, j

Sym
= I(ŷji; xΩ∗

j
[i]

�� xxxS\Ω∗
j
)

S-SND: First, note that since Ω∗
j

for S-SND at BS j contains

index j, the averaging operation in [P3] must include the

largest entry of (48), i.e., β2
ji(L) = β

2
jij

. Moreover, by including

any other entry of (48) to the averaging operation, its value

decreases. Therefore, to find Ω∗
j

one should start with the

initial value b1
= (β2

ji(L)+β
2
ji(1))/2, and then repeatedly add the

next smallest entry of the vector πππ ji to the averaging operation.

This process terminates when the average becomes larger than

its value from the previous iteration. The following algorithm

computes Ω∗
j

for S-SND.

Algorithm 1. Set q = 1, bq = (β2
ji(L) + β

2
ji(1))/2.

(1) Set q = q + 1, and compute bq =

β2
ji(L) +

∑q

l=1,l,L
β2
ji(l)

q + 1
.

(2) If bq ≥ bq−1, then stop and output Ω∗
j
= { j} ∪{

l : β2
jil

∈ {πππ ji[1 : q − 1]}
}
, where πππ ji[1 : q − 1]

denotes the the first q − 1 entries of πππ ji . Otherwise,

go to step 1.

Therefore, in the low SINR regime, by construction the

allocation

R
S-SND, j

Sym
=

I(ŷji; xxxΩ∗
j
| xxxS\Ω∗

j
)

|Ω∗
j
| , (49)

where Ω∗
j
⊆ S = {1, 2, ..., L}, is strictly larger than that of

SD, i.e., in the low SINR regime S-SND strictly outperforms

SD. Even though the performance of SND in the low SINR

regime appears intractable, as previously pointed out S-SND

provides a lower bound to SND. Hence, network-wide we have

RSND
Sym

≥ RS-SND
Sym

> RSD
Sym

.

C. General SINR

Now, consider the problem of determining the maximum

symmetric rate of SD ([P1]) or S-SND ([P2]) in general,

where approximations of high and low SINR are no longer

assumed. In Appendix C, efficient methods to numerically

compute the maximum symmetric rate of SD and S-SND are

presented.

Since it is difficult to comment on the performance of

maximum symmetric rate for SND in general due to the

structure of the SND region, we next study two special

cases of two-cell and three-cell systems which are analytically

tractable. For the two-cell system, we find conditions under

which either TIN/SND is optimal or interference decoding

schemes SD/SND/S-SND are all optimal. Whereas, for the

three-cell system we will briefly illustrate examples where

SND outperforms all the other schemes.

1) Two-cell system: We now consider a cellular system

consisting of only two cells, and denote the indices of the

cells by j = 1, 2. Associated with the ith user, i = 1, 2, ..., K ,

the rate regions achieved at BS 1 are given as below.

SD: From (21) we obtain

Ri1 ≤ I
(
ŷ1i; x1[i]

�� x2[i]
)

(50)

Ri2 ≤ I
(
ŷ1i; x2[i]

�� x1[i]
)

(51)

Ri1 + Ri2 ≤ I (ŷ1i; x1[i], x2[i] ) . (52)

SND: From (29) we obtain

Ri1 ≤ I
(
ŷ1i; x1[i]

�� x2[i]
)

(53)

Ri1 +min
{

Ri2, I
(
ŷ1i; x2[i]

�� x1[i]
)}

≤ I (ŷ1i; x1[i], x2[i] ) .
(54)

S-SND: From (30) we obtain

Ri1 ≤ I
(
ŷ1i; x1[i]

�� x2[i]
)

(55)

Ri1 + Ri2 ≤ I (ŷ1i; x1[i], x2[i] ) . (56)

Remark 8. One can similarly obtain the rate regions at BS 2

by replacing ŷ1i with ŷ2i and swapping appropriate indices in

(50)-(56).

An interesting observation for a two-cell system is that the

region for SND is the union of the SD/S-SND region and the

TIN region. We now aim to investigate the performance of

different schemes with maximum symmetric allocation. For

the two-cell system, we first define the following cases:

Case (i): In this case, we have

I
(
ŷ1i; x2[i]

��x1[i]
)
< I (ŷ1i; x1[i] ) . (57)

Case (ii): In this case, we have

1

2
I (ŷ1i ; x1[i], x2[i] )

≤ min
{
I
(
ŷ1i ; x1[i]

�� x2[i]
)
, I

(
ŷ1i ; x2[i]

�� x1[i]
)}
. (58)

Case (iii): In this case, we have

I
(
ŷ1i; x1[i]

��x2[i]
)
< I (ŷ1i; x2[i] ) . (59)
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Ri2

Ri1

Ri2 = Ri1

(b)
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(c)

Fig. 2: (a) Illustration of the SD region at BS 1 representing the 3 sub-regions G1, G2 and G3 over which the diagonal Ri2 = Ri1 will
intersect a particular facet of the rate region, (b) Illustration of the rate regions achieved under TIN/SND/S-SND/SD at BS 1 for case (i):
the diagonal Ri2 = Ri1 intersects SD at point E, S-SND at point F, and SND/TIN at point G, resulting in (64), (c) Illustration of the rate
regions achieved under TIN/SND/S-SND/SD at BS 1 for case (ii): the diagonal Ri2 = Ri1 intersects TIN at point H, and SND/S-SND/SD
at point I, resulting in (65).

From the perspective of the maximum symmetric rate, cases

(i)-(iii) refer to conditions (in terms of mutual information)

under which the diagonal Ri2 = Ri1 intersects a particular

facet of the rate region.

More specifically, consider the rate region achieved by

SD at BS 1 depicted in Fig. 2a, where the entire re-

gion is divided into 3 sub-regions G1,G2 and G3. Also,

from (50)-(52), note that the corner points are given by

(C, A) =
(
I (ŷ1i ; x1[i] ) , I

(
ŷ1i; x2[i]

��x1[i]
) )

and (D, B) =(
I
(
ŷ1i ; x1[i]

��x2[i]
)
, I (ŷ1i ; x2[i] )

)
. Now, the conditions un-

der which the diagonal Ri2 = Ri1 lies in sub-regions G1,G2 or

G3, are equivalent to the conditions of the three cases of (57)-

(59) as follows: the diagonal Ri2 = Ri1 lies in G1, i.e., case

(i) is true, iff C > A; the diagonal Ri2 = Ri1 lies in G2, i.e.,

case (ii) is true, iff C ≤ A and B ≤ D; the diagonal Ri2 = Ri1

lies in G3, i.e., case (iii) is true, iff B > D. Specifically, the

conditions for case (i) in (57) and case (iii) in (59) are exactly

those given by C > A and B > D, respectively.

For case (ii), note that one can also write

I(ŷ1i; x1[i], x2[i] ) = I(ŷ1i; x1[i] ) + I(ŷ1i; x2[i] | x1[i] )
(60)

= I(ŷ1i; x2[i] ) + I(ŷ1i; x1[i] | x2[i] ).
(61)

Hence, in case (ii) where we have C ≤ A and B ≤ D, by

replacing C and B with their respective identity from (60) and

(61), we reach the following conditions

1

2
I(ŷ1i; x1[i], x2[i] ) ≤ I(ŷ1i; x2[i] | x1[i] ) (62)

1

2
I(ŷ1i; x1[i], x2[i] ) ≤ I(ŷ1i; x1[i] | x2[i] ), (63)

resulting in (58).

Remark 9. If the worst-case uncorrelated noise bound in (27)

is substituted for the mutual information expressions in (57)-

(59), case (iii) can never happen as the effects of small-scale

fading vanish in (27) and thus the received power of x2[i]
at BS 1 can not be larger than that of x1[i] at BS 1. Hence,

case (i) and case (ii) can be viewed as two complimentary and

exhaustive conditions for a two-cell system at BS 1.

Note that the bounds of (27) differ from the mutual ex-

pressions in (59) due to two factors: (a) the expressions in

(59) depend on the specific fading gains, and (b) the effective

noise is not necessarily Gaussian. However, in the limit of

large M the channel hardening of (12) minimizes the effects

of (a). Moreover, due to the channel hardening of (12) as well

as the assumption of Gaussian signaling in Theorem 1, the

interference terms (effective noise) in (11) are asymptotically

Gaussian.

The performance comparison of various schemes at BS 1 is

summarized in the following corollary.

Corollary 1. If the condition of case (i) in (57) holds at BS

1, then

R
SD,1
Sym

< R
S-SND,1
Sym

< R
SND,1
Sym

= R
TIN,1
Sym

, (64)

otherwise, if the condition of case (ii) in (58) holds at BS 1,

then

R
TIN,1
Sym

≤ R
SD,1
Sym
= R

SND,1
Sym

= R
S-SND,1
Sym

, (65)

with strict equality in (65) if and only if (58) holds with strict

equality.

Proof. See Appendix D. �

Fig. 2 illustrates an example of this corollary. Sub-figure

(a) represents case (i) and its consequence in (64), whereas

sub-figure (b) represents case (ii) and its consequence in (65).

To comment on the performance of various schemes over

both cells, we consider a symmetric setting which is easy to

analyze, and provides insights into the benefits of employing

interference decoding schemes.

We define the symmetric setting as a scenario, where the

MACs at both BS 1 and 2 are identical. Therefore, if case (i)

is active at BS 1, it is also active at BS 2, and the resulting

rates are equal at both BSs. Following Remark 8 it is thus

obtained network-wide that

RSD
Sym < RS-SND

Sym < RSND
Sym = RTIN

Sym. (66)

Observation: Both SND and TIN achieve the same perfor-

mance and strictly outperform SD and S-SND. Thus, TIN may

be the better choice of strategy in practice due to its simplicity.
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Cell 1 Cell 2

dx

Fig. 3: An example of symmetric geometry with circular cells at
a fixed distance of d from each other, where users are located at a
distance x from the their BSs located at the center of the cells. The
position of users is denoted by ’×’.

Similarly, if case (ii) is active with strict inequality at BS 1,

it is also active with strict inequality at BS 2, and the resulting

rates are equal at both BSs. Following Remark 8 it is thus

obtained network-wide that

RTIN
Sym < RSD

Sym = RSND
Sym = RS-SND

Sym . (67)

Observation: The interference decoding schemes SD/SND/S-

SND achieve the same performance and strictly outperform

TIN. Thus, SD (joint decoding of both users) may be the

simplest one to implement in practice. Practical examples

of these cases will be demonstrated in the numerical results

section.

Consider, for instance, a setup where all users are located

at a distance x from the corresponding BS as in Fig. 3. With

respect to the lower bound in (27), this setup is symmetric

as the effects of small-scale fading vanish in (27). Note that

in a two-cell system, irrespective of whether the setting is

symmetric or not, under no circumstances does SND strictly

outperform all the other schemes. We next illustrate scenarios

for a three-cell system, where SND can strictly outperform all

the other schemes.

2) Three-cell system: Now, consider a cellular system con-

sisting of only three cells, where the indices of the cells are

denoted by j = 1, 2, 3. In this case, the rate regions under

SD/S-SND can be obtained by a straightforward extension of

(50)-(52) and (55)-(56) to the three-cell system, thus omitted

for brevity. Moreover for SND, the rate region associated with

the ith user, i = 1, 2, ..., K , at BS 1 can be found using (29) as

follows:

Ri1 ≤ I
(
ŷ1i; x1[i]

�� x2[i], x3[i]
)

(68)

Ri1 +min
{
I
(
ŷ1i ; x2[i]

�� x1[i], x3[i]
)
, Ri2

}
≤ I

(
ŷ1i; x1[i], x2[i]

�� x3[i]
)

(69)

Ri1 +min
{
I
(
ŷ1i ; x3[i]

�� x1[i], x2[i]
)
, Ri3

}
≤ I

(
ŷ1i; x1[i], x3[i]

�� x2[i]
)

(70)

Ri1 +min
{
I
(
ŷ1i ; x2[i], x3[i]

�� x1[i]
)
,

Ri2 + I
(
ŷ1i; x3[i]

�� x1[i], x2[i]
)
,

Ri3 + I
(
ŷ1i; x2[i]

�� x1[i], x3[i]
)
,

Ri2 + Ri3

}
≤ I (ŷ1i; x1[i], x2[i], x3[i] ) . (71)

An example of this region is plotted in Fig. 4, where the

dashed lines indicate that the region at BS 1 is unbounded in

variables Ri2 and Ri3, which is in agreement with property [P1]

of the achievable region. Also, note that following Remark 8

Fig. 4: An example of the rate region obtained by SND at BS 1.

the regions corresponding to BSs 2 and 3 can be similarly

found. By comparing (68)-(71) with the achievable regions of

SD and S-SND, it is noted that there are four faces in Fig. 4

that are only achieved by SND and not by any other schemes.

More precisely at BS 1, it is possible for R1
Sym

to achieve

one of the rates, I(ŷ1i; x1[i]
�� x3[i] ), I(ŷ1i; x1[i]

�� x2[i] ),
1
2

I(ŷ1i; x1[i], x2[i] ) or 1
2

I(ŷ1i; x1[i], x3[i] ). Note that the first

rate I(ŷ1i; x1[i]
�� x3[i] ) can be interpreted as the maximum

rate of the ith user of cell 1, while treating the ith user in

cell 2 as noise. The second rate I(ŷ1i; x1[i]
�� x2[i] ) can be

interpreted similarly. Moreover, the rate 1
2

I(ŷ1i; x1[i], x2[i] )
can be interpreted as the maximum symmetric rate achieved

by joint decoding of the ith users of cells 1 and 2, while

treating the ith user of cell 3 as noise. The fourth rate
1
2

I(ŷ1i; x1[i], x3[i] ) can be interpreted similarly. Therefore,

neither SD/S-SND nor TIN can provide these rates, in which

case it is conceivable that SND could strictly outperform all

the other schemes. More discussion will be provided in the

numerical results section.

V. NUMERICAL RESULTS

To illustrate the performance of the two-cell system un-

der both cases of (i) and (ii), we consider two different

scenarios. In scenario (a), we assume that the cell radius

and the distance of BSs are fixed, while the number of

antennas M varies. In scenario (b), we assume that M and

the distance of BSs are fixed, while the cell radius varies. In

both scenarios for the geometry setting shown in Fig. 3, we

compare the performance of various schemes TIN/SD/SND

based on their achieved maximum symmetric rate using the

bounds in (27). In particular, for scenario (a), we numerically

quantify a threshold on M at which the transition from case

(i) to case (ii) is observed. Analogously, for scenario (b),

we numerically quantify a threshold on the distance x at

which the transition from case (i) to case (ii) is observed.

It should be pointed out that the results of this section are
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Optimal: SND/TIN Optimal: SD/SND/S-SND

(a) Scenario (a)

Optimal: SND/TIN Optimal: SD/SND/S-SND

(b) Scenario (b)

Fig. 5: Achieved maximum symmetric rate across two cells, RSym, over regions of TIN/SD/SND/S-SND: (a) for fixed values of d = 2x and

x = 400 m, as M is increased; (b) for fixed values of d = 500 m and M = 5×104 , as x is increased.

numerical examples presented only for the sake of illustration

that validate the analytical findings of the previous sections.

Hence, the identified thresholds depend on specific choices

of system parameters. Moreover, for the large-scale fading

coefficients βjil we use a distance-based path loss model

similar to [11] and neglect shadowing, i.e, βjil = (d0/djil)α,

where djil is the distance of the ith user in cell l from the

BS j, α is the path loss exponent and d0 is a normalization

constant. For both scenarios (a) and (b), we take K = 4, α = 2,

ρu = 30, ρp = 120, and d0 = 100 m. Achieved maximum

symmetric rate of various schemes for scenario (a) are shown

in Fig. 5a, where x = 400 m and d = 2x. It can be observed

that for M < 4 × 104, condition of case (i) in (57) is active;

thus, SND and TIN have the same performance and strictly

outperform SD/S-SND, i.e., RSD
Sym

< RS-SND
Sym

< RSND
Sym
= RTIN

Sym
.

In other words, for M < 4 × 104, to achieve the optimum

performance each BS should only decode the signal of its own

user while treating the signal of PC interference as noise. On

the other hand, when M > 4 × 104, the condition of case (ii)

in (58) is active; thus, interference decoding schemes are all

optimal, i.e., RTIN
Sym

< RSD
Sym
= RS-SND

Sym
= RSND

Sym
. Consequently,

for significantly large values of M, to achieve the optimum

performance each BS should jointly decode both the signal

of its own user as well as that of the PC interference. This

observation also matches with the consequence of the high

SINR regime for truly large M in (45). Also, notice that there

does not exist any range of M for which SND is strictly

optimal. These observations are all in agreement with the

analysis performed in subsection IV-C1.

Next consider scenario (b) where the BSs are at a distance

of d = 500 m, M = 5 × 104, and the cell radius x varies

from 200 m to 250 m. The maximum symmetric rate for

various schemes in this scenario, shown in Fig. 5b, illustrates

that when approximately x < 233 m, the condition of case

(i) in (57) is active, and thus using TIN is optimal. One

implication of this observation is that for a fixed M, there

Cell 1 Cell 2 Cell 3

x
2x

x
θ

Fig. 6: Illustration of a three-cell system with circular cells, where
all users of the left and the right cells are located on the cell edge
at the farthest distance from the BSs located at the center of the
cells, whereas the position of users on the edge of the middle cell is
changing over 0◦ ≤ θ ≤ 180◦. The position of users is denoted by
’×’.

exists a threshold on cell radius such that if x is smaller than

this threshold (i.e., 233 m in this example), interfering users

located in the other cell are far away from the BS of the

current cell, and hence treating interfering users as noise is

optimal. On the other hand, if x is above the threshold, the

condition of case (ii) in (58) is active: the interfering users are

now close to the current BS, and thus interference decoding

schemes achieve the optimal performance. We now extend the

cell configuration model considered in Fig. 3, to the case of

three cells. Particularly, we consider two scenarios with three

circular cells based on Fig. 6 with x = 400 m, where the

position of users in the left and the right cells is fixed on the

cell edge at the maximum distance from the BSs located at

the center, whereas those of the middle cell are determined

based on the angle θ. More specifically, in scenario (a), it is

assumed that the users of the middle cell are located on the

cell edge at θ = 90◦, while in scenario (b), it is assumed

that the position of users on the edge of the middle cell are

swept over 0◦ ≤ θ ≤ 180◦. Note that while the setting of Fig.

6 is impractical as all users will not be located at a single

point at cell edge (i.e, at farthest distance from their BSs)

in practice, nevertheless it does provide a conservative and
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SND/TIN SND/S-SND > TIN SD/SND/S-SND > TIN

(a) (b) (c)

Fig. 7: Achieved maximum symmetric rate across three cells, RSym,
over all four regions TIN/SD/SND/S-SND. The x-axis is divided into
three intervals: (a) SND and TIN have identical performance and
strictly outperform SD/S-SND, (b) SND/S-SND strictly outperform
TIN/SD, (c) SD/SND/S-SND strictly outperform TIN.

somewhat pessimistic estimate of the user rates. In practice,

users will typically be distributed more uniformly in the cell

and some users will thus be located closer to their BSs. Hence,

rate for users located closer to the BS will be higher than those

located at cell edge, and thus the overall rate will be potentially

higher.

The maximum symmetric rates of scenario (a) for various

schemes and for different values of M are illustrated in Fig.

7, where the parameters of the setup are the same as before.

It is observed from Fig. 7 that, even though for M < 1.1×105

the performance of SND and TIN are identical and strictly

better than SD/S-SND (and one can thus simply use TIN), for

M > 1.1×105 the PC interference is “strong” in that decoding

it, as opposed to treating it as noise, produces better rates, i.e.,

SND/S-SND strictly outperform all the other schemes (and

one should thus only use SND). In other words, for 1.1×105 <

M < 5×105 (the upper bound on M is not shown in the figure),

the optimum performance is achieved only by SND and not by

any other scheme. However, for M > 5 × 105 all interference

decoding schemes achieve the same rate as expected, while

outperforming TIN. Finally, observe that for (approximately)

M > 1.85 × 105 SD outperforms TIN as well.

Finally, while keeping all other parameters the same as

before, we consider scenario (b) where the position of users

in the middle cell changes with θ, and plot the resulting

maximum symmetric rates for various schemes against 0◦ ≤
θ ≤ 180◦ with different values of BS antennas as illustrated

in Fig. 8: (a) M = 103, (b) M = 104, (c) M = 5 × 104, and

(d) M = 105. We focus on the rates for 0◦ ≤ θ ≤ 180◦ as,

due to symmetry, the rates for 180◦ < θ < 360◦ are identical

to those for 0◦ ≤ θ ≤ 180◦. Also, recall that the SND region,

which contains TIN, S-SND and SD regions as special cases,

as explained in subsection III-B, is always optimal.

Observe that in Fig. 8a for M = 103, the characteristics

of rates can be classified into 3 regimes of θ: regime-1

where θ is smaller than 90◦ and SND outperforms TIN (i.e.,

θ ≤ 66◦ in the setting of Fig. 8a), regime-2 where θ is close

to 90◦ and SND and TIN have the same performance (i.e.,

66◦ < θ ≤ 114◦), and regime-3 where θ is larger than 90◦

and SND outperforms TIN again (i.e., θ ≥ 114◦). In regime-

1, we have RSND
Sym

> RS−SND
Sym

> RTIN
Sym

> RSD
Sym

, as explained

below. Note that θ captures the distance between users and

BSs in different cells, and for θ in regime-1, users in the

middle cell are much closer to BS 1 and farther away from

BS 3. Therefore, users in the middle cell creates “strong” PC

interference at BS 1 and “weak” PC interference at BS 3;

hence, SND/S-SND outperforms all other schemes as it allows

for users of the middle cell to be decoded at BS 1 and to

be treated as noise at BS 3. In comparison, TIN provides

poor performance as treating “strong” users from the middle

cell as noise at BS 1 drastically reduces the rates, whereas

SD performs poorly as it requires decoding of “weak” PC

interference from users in the middle cell at BS 3. In the

complementary setting of regime-3, the same principles apply

with the roles of BS 1 exchanged with BS 3.

In contrast, for θ in regime-2, we have RSND
Sym

= RTIN
Sym

>

RS−SND
Sym

> RSD
Sym

. Here, users in the middle cell are somewhat

far from both BS 1 and BS 2, and thus the resulting PC

interference becomes “weak” at both BS 1 and BS 2. Hence,

performing TIN at both BSs is optimal and provides identical

performance to that of SND while outperforming S-SND and

SD.

As M is increased, the decoding rates continue to follow

the same trend, but regime-2 shrinks to a small set of angles

near 90◦, while the two other regimes expand, as illustrated

in Fig. 8a to Fig. 8d. As M increases, users in the middle

cell produce progressively stronger interference at BS 1 and

BS 3, and thus using TIN at BS 1 and BS 3 to treat these

users as noise results in poor rates except for a small set of

θ near 90◦. These trends are similar to those in Fig. 7, where

θ was fixed at θ = 90◦. These trends also confirm that when

considering more than two cells, depending on the geometry

and the parameters of the setting (e.g., M, cell radius, etc),

there exist scenarios where SND performs strictly better than

TIN/SD/S-SND.

VI. CONCLUSION

In this paper, to address the PC problem in the uplink

of a multi-cell massive MIMO system it was proposed to

decode the interference caused by PC rather than treating

it as noise. In particular, when MRC is used at BS, it was

shown that by coding over multiple coherence intervals and

decoding the PC interference, the per-user rates tend to infinity

as M → ∞. Moreover, it was shown that when decoding the

interference, using the same pilots across all cells (as opposed

to using different pilots) is preferred as it results in decoding

significantly fewer interference terms at each BS. A worst-

case uncorrelated noise technique was also established for

multiple access channels, from which achievable rates under

two interference decoding schemes SD/SND were found for

finite M. Comparing the performance of different schemes

based on their maximum symmetric rate, structural results



14

0 20 40 60 80 100 120 140 160 180

Angle θ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
a
x
im

u
m

S
y
m
m
e
tr
ic

R
a
te

SD

TIN

S-SND

SND

(a) M = 103

0 20 40 60 80 100 120 140 160 180

Angle θ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
a
x
im

u
m

S
y
m
m
e
tr
ic

R
a
te

SD

TIN

S-SND

SND

(b) M = 104
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(c) M = 5 × 104
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Fig. 8: Achieved maximum symmetric rates across three cells, RSym, over all four regions TIN/SD/SND/S-SND for 0◦ ≤ θ ≤ 180◦, (a)

M = 103, (b) M = 104, (c) M = 5 × 104, (d) M = 105.

were found for the extreme regimes of high and low SINR.

Specifically, for the high SINR regime when M is truly large,

it was found that all interference decoding schemes achieve

the maximum sum-rate and thus strictly outperform TIN.

The special cases of two-cell and three-cell systems were

also studied. In the case of a two-cell system with symmetric

geometry, conditions were found under which either SND

and TIN achieve the same performance and are optimal (one

should thus treat interference as noise), or all interference

decoding schemes achieve the same performance and are

optimal (one should thus jointly decode the desired signal

as well as the PC interference). Furthermore, the analytical

findings were numerically validated by quantifying a threshold

on M (or on the cell radius), where TIN/SND was shown to be

optimal below this threshold. On the other hand, beyond this

threshold it was observed that only the interference decoding

schemes achieve optimum performance.

Also in the case of a three-cell system, it was numerically

shown that there exists a range of M for which the optimum

performance is achieved only by SND and not by any other

scheme. Hence, it was concluded that for large enough M

when there are more than two cells (which is indeed true in

practice), SND can strictly outperform all the other schemes.

One possible future extension is to consider the downlink

counterpart of this problem using well-known linear precoding

techniques such as maximum ratio transmission (MRT), zero

forcing (ZF), etc., where each BS simultaneously serves K

users inside its cell. Specifically, after performing an arbitrary

precoding technique at all BSs, K non-interfering L-user

ICs will be obtained, whereby with simultaneous unique/non-

unique decoding (SD/SND) of the intended signal along with

the PC interference at each user, one can find achievable

rates similar to (27) that scale as O(log M). Another possible

future extension is to consider a correlated Rayleigh fading

channel that will lead to a non-diagonal channel covariance

matrix. This change of channel model will change the MMSE

estimate of the channel vector in (6)-(8) and consequently the

distribution of the channel estimate and the estimation error,

and thus the power of different terms in P1-P4 in (23)-(26).

One should note that, even though the updated expressions of

(23)-(26) result in a new rate lower bound, it would still grow

as O log(M) (similar to (27)), and thereby the final conclusions

will remain the same.
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APPENDIX A

Without loss of generality assume that Ω = {1, 2, ..., l} and

thus Ωc
= {l + 1, ..., L}. We start by expanding the r.h.s of

(20) as follows

I
(
xxxG
Ω

; y

��xxxG
Ωc

)
= h

(
xxxG
Ω

��xxxG
Ωc

)
− h

(
xxxG
Ω

��y, xxxG
Ωc

)
(72)

(a)
= h

(
xxxG
Ω

)
− h

(
xxxG
Ω

��y, xxxG
Ωc

)
(73)

(b)
= log

(
(πe)lΠl

i=1Pi

)
− h

(
xxxG
Ω

��y, xxxG
Ωc

)
, (74)

where (a) is because the entries of xxxG
Ω

and xxxG
Ωc are indepen-

dent, and (b) follows from the entropy of a complex Gaussian

vector with independent entries. Also, using the chain rule one

can write

h
(
xxxG
Ω

��y, xxxG
Ωc

)
(75)

=

∑
i∈Ω

h
(
xGi

���xG1 , ..., xGi−1, y, xxx
G
Ωc

)

=

∑
i∈Ω

h
©­
«

xGi − αi
©­
«
y −

i−1∑
j=1

xGj −
∑
k∈Ωc

xG
k

ª®
¬
���xG1 , ..., xGi−1, y, xxx

G
Ωc

ª®
¬
,

where αi is any constant. Defining ỹi = y − ∑i−1
j=1 xG

j
−∑

k∈Ωc xG
k

, we obtain∑
i∈Ω

h
(
xGi − αi ỹi

��xG1 , ..., xGi−1, y, xxx
G
Ωc

)
(76)

(c)
≤

∑
i∈Ω

h
(
xGi − αi ỹi

)
(d)
≤

∑
i∈Ω

log
(
(πe)var

[
xGi − αi ỹi

])
, (77)

where (c) is due to the fact that conditioning reduces the

entropy and (d) follows as Gaussian distributions maximize

entropy. To obtain the tightest upper bound, one should mini-

mize var[xG
i
−αi ỹi], i.e., αi ỹi must be the LMMSE estimate of

xG
i

. More precisely, one can choose αi = E[ỹ∗i ỹi]−1
E[xG

i
ỹ
∗
i
] =

Pi/(
∑l

j=i Pj + σ
2
z ), where the second equality follows since z

is uncorrelated from the users’ signals. Thus

var
[
xGi − αi ỹi

]
=

Pi

(∑l
j=i+1 Pj + σ

2
z

)
∑l

j=i Pj + σ
2
z

, (78)

and therefore we obtain

h
(
xxxG
Ω

��y, xxxG
Ωc

)
≤

∑
i∈Ω

log
©­­«
(πe)

Pi

(∑l
j=i+1 Pj + σ

2
z

)
∑l

j=i Pj + σ
2
z

ª®®
¬

(79)

= log

(
(πe)l

(Πi∈ΩPi)σ2
z∑

i∈Ω Pi + σ
2
z

)
. (80)

Hence, from (74) the following lower bound is obtained

I
(
xxxG
Ω

; y

��xxxG
Ωc

)

≥ log
(
(πe)lΠi∈ΩPi

)
− log

(
(πe)l

(Πi∈ΩPi)σ2
z∑

i∈Ω Pi + σ
2
z

)
(81)

= log

(
1 +

∑
i∈Ω Pi

σ2
z

)
= I

(
xxxG
Ω

; y
G
���xxxG
Ωc

)
. (82)

APPENDIX B

We start by computing the power of the desired signals, P1.

Note that

P1 =

∑
l∈Ω

ρu

���E [
ĝ̂ĝg
†
jij
ggg jil

] ���2 =∑
l∈Ω

ρu

���E [
ĝ̂ĝg
†
jij

(
ĝ̂ĝg jil + eee jil

)] ���2

(83)

(a)
=

∑
l∈Ω

ρu

���E [
ĝ̂ĝg
†
jij
ĝ̂ĝg jil

] ���2 (84)

=

∑
l∈Ω

M2ρu

(
βjil

βjij

)2 ρ2
pβ

4
jij(

1 + ρp

∑L
l1=1 βjil1

)2
(85)

= M2
∑
l∈Ω

ρpρuβ
2
jilα

2
jij, (86)

where (a) follows from the fact that ĝ̂ĝg jij and ê̂êe jij are indepen-

dent. Note that as explained earlier, all terms in the effective

noise are uncorrelated; thus var[z′
jij
] = P2 + P3 + P4.

For the power of interference due to the channel estimation

error, P2, we write

P2 =

L∑
l=1

ρuE

[���ĝ̂ĝg†jijggg jil − E
[
ĝ̂ĝg
†
jij
ggg jil

] ���2
]

(87)

=

L∑
l=1

ρuE

[���ĝ̂ĝg†jij ĝ̂ĝg jil − E
[
ĝ̂ĝg
†
jij
ĝ̂ĝg jil

] ���2
]
+

L∑
l=1

ρuE

[���ĝ̂ĝg†jijeee jil
���2
]
.

(88)

For the first term in (88) we obtain

L∑
l=1

ρuE

[���ĝ̂ĝg†jij ĝ̂ĝg jil − E
[
ĝ̂ĝg
†
jij
ĝ̂ĝg jil

]���2
]

=

L∑
l=1

ρu

(
βjil

βjij

)2

var
[
ĝ̂ĝg
†
jij
ĝ̂ĝg jij

]
(89)

=

L∑
l=1

Mρu

(
βjil

βjij

)2 ρ2
pβ

4
jij(

1 + ρp

∑L
l1=1 βjil1

)2
. (90)

Similarly, for the second term in (88) we obtain

L∑
l=1

ρuE

[���ĝ̂ĝg†jijeee jil
���2
]

=

L∑
l=1

ρuE

[
tr

(
ĝ̂ĝg
†
jij

eee jileee
†
jil
ĝ̂ĝg jij

)]
(91)

= Mρu

(
ρpβ

2
jij

1 + ρp

∑L
l1=1 βjil1

)
L∑
l=1

(
βjil −

ρpβ
2
jil

1 + ρp

∑L
l1=1 βjil1

)
.

(92)

Therefore, using (90) and (92), one can verify that

P2 =

L∑
l=1

Mρu

(
βjil

βjij

)2 ©­­«
ρ2

pβ
4
jij(

1 + ρp

∑L
l1=1 βjil1

)2

ª®®
¬

(93)

+ Mρu

(
ρpβ

2
jij

1 + ρp

∑L
l1=1 βjil1

)
L∑
l=1

(
βjil −

ρpβ
2
jil

1 + ρp

∑L
l1=1 βjil1

)



16

= M
√
ρpβjijαjij

L∑
l=1

ρuβjil . (94)

For the power of the interference of other users, P3, we write

P3 =

L∑
l=1

K∑
k=1,k,i

ρuE

[���ĝ̂ĝg†jijggg jkl

���2
]

(95)

=

L∑
l=1

K∑
k=1,k,i

ρuE

[���ĝ̂ĝg†jij ĝ̂ĝg jkl

���2
]
+

L∑
l=1

K∑
k=1,k,i

ρuE

[���ĝ̂ĝg†jijeee jkl
���2
]

(96)

=

L∑
l=1

K∑
k=1,k,i

Mρu

(
ρpβ

2
jij

1 + ρp

∑L
l1=1 βjil1

) (
ρpβ

2
jkl

1 + ρp

∑L
l2=1 βjkl2

)

+

L∑
l=1

K∑
k=1,k,i

Mρu

(
ρpβ

2
jij

1 + ρp

∑L
l1=1 βjil1

)

×
(
βjkl −

ρpβ
2
jkl

1 + ρp

∑L
l2=1 βjkl2

)
(97)

= M
√
ρpβjijαjij

L∑
l=1

K∑
k=1,k,i

ρuβjkl . (98)

Finally, for the power of the noise, P4, we obtain

P4 = E

[���ĝ̂ĝg†jijnnnj

���2
]
= tr

(
E

[
ĝ̂ĝg jij ĝ̂ĝg

†
jij

]
E

[
nnnjnnn

†
j

] )
(99)

= M
ρpβ

2
jij

1 + ρp

∑L
l1=1 βjil1

= M
√
ρpβjijαjij . (100)

APPENDIX C

We now propose efficient methods to compute the maximum

symmetric rate of SD ([P1]) or S-SND ([P2]), where the

assumption of high and low SINR are no longer made.

SD: One may first compare all 2L − 1 (total number of

non-empty subsets of S = {1, 2, ..., L}) different rates with a

computational complexity that is exponential in the number

of cells. However, due to the structure of [P1] we can find

the minimum by comparing only L rates at each BS. Thus

network-wide, this task can be done in O(L2) time as there

are in total L cells in the network. For notational brevity define

sq =
∑q

l=1
β2
ji(l) as the sum of the first q entries of πππ ji and also

µji =
Mρpρu(∑L

l=1

∑K
k=1 ρuβjkl + 1

) (
1 + ρp

∑L
l=1 βjil

) . (101)

One can see that due to the structure of the entries of πππ ji ,

if |Ω∗
j
| = q for some integer 1 ≤ q ≤ L, the minimum of

the objective function in [P1] is 1/q log
(
1 + µjisq

)
. Hence,

define

vq = log
(
1 + µjisq

)
/ q, ∀q. (102)

Then, [P1] reduces to minq vq, which can be calculated by

comparing L values.

S-SND: Similarly when S-SND is used at BS j, define

cq =




log
(
1 + µjiβ

2
jij

)
, q = 1

1

q
log

(
1 + µji

(
β2
jij
+

∑q

l=1,l,j
β2
ji(l)

))
, otherwise.

(103)

Therefore, [P2] reduces to minq cq, which can also be calcu-

lated by comparing L values.

APPENDIX D

Using (50)-(56), it can be verified that in case (i) we have

R
SD,1
Sym
= I(ŷ1i; x2[i] | x1[i] ), R

S-SND,1

Sym
=

1
2

I(ŷ1i; x1[i], x2[i] ),
and R

SND,1

Sym
= R

TIN,1

Sym
= I(ŷ1i; x1[i] ).

Furthermore, using (60), one can rewrite (57) as

I(ŷ1i; x2[i] | x1[i] ) < 1
2

I(ŷ1i; x1[i], x2[i] ), and conclude

that R
SD,1

Sym
< R

S-SND,1

Sym
. Moreover, using (60), one can rewrite

(57) as 1
2

I(ŷ1i ; x1[i], x2[i] ) < I(ŷ1i; x1[i] ), and conclude

that R
S-SND,1

Sym
< R

SND,1

Sym
= R

TIN,1

Sym
. This is illustrated in Fig. 2b.

Similarly, using (50)-(56), it can be verified that in case (ii) we

have R
TIN,1

Sym
= I(ŷ1i; x1[i] ), and R

SD,1

Sym
= R

SND,1

Sym
= R

S-SND,1

Sym
=

1
2

I(ŷ1i; x1[i], x2[i] ). Also, using (60)-(61), one can rewrite

(58) as

max{I(ŷ1i; x1[i]), I(ŷ1i; x2[i])} ≤ 1
2

I(ŷ1i; x1[i], x2[i] ).
Hence, when this condition holds it yields (65), which is also

illustrated in Fig. 2c.
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