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Experimental evidence of variable-order behavior
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Abstract—The experimental study of two kinds of electrical
circuits, a domino ladder and a nested ladder, is presented. While
the domino ladder is known and already appeared in the theory
of fractional-order systems, the nested ladder circuit is presented
in this article for the first time.

For fitting the measured data, a new approach is suggested,
which is based on using the Mittag-Leffler function and which
means that the data are fitted by a solution of an initial-value
problem for a two-term fractional differential equation.

The experiment showed that in the frequency domain the
domino ladder behaves as a system of order 0.5 and the nested
ladder as a system of order 0.25, which is in perfect agreement
with the theory developed for their design.

In the time domain, however, the order of the domino ladder
is changing from roughly 0.5 to almost 1, and the order of the
nested ladder is changing in a similar manner, from roughly 0.25
to almost 1; in both cases, the order 1 is never reached, and both
systems remain the systems of non-integer order less than 1.

Both studied types of electrical circuits provide the first known
examples of circuits, which are made of passive elements only
and which exhibit in the time domain the behavior of variable
order.

Index Terms—fractional calculus, variable order, fractance,
fractional integrator, domino ladder, nested ladder, Mittag-Leffler
function

I. INTRODUCTION TO FRACTIONAL CALCULUS

RACTIONAL calculus is more then 300 years old topic,

which during recent decades became a powerful and
widely used tool for better modeling and control of processes
in many fields of science and engineering [1]-[5]. The term
“fractional calculus” has some historical background and is
used for denoting the theory of integration and differentiation
of arbitrary real (not necessarily integer) order.

The standard notation for denoting the left-sided fractional-
order differentiation of a function f(¢) defined in the interval
[a,b] is oD f(t), with @ € R. Sometimes a simplified
notation f(®)(t) or d® f(t)/dt* is used. In some applications
also right-sided fractional derivatives Dy f(¢) are used, but
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in the present article we will use only left-sided fractional
derivatives. Even from the notation one can see that evaluation
of the left-sided fractional-order operators require the values
of the function f(¢) in the interval [a,t]. When « becomes
an integer number, this interval shrinks to the vicinity of the
point ¢, and we obtain the classical integer-order derivatives
as particular cases.

There are several definitions of the fractional derivatives and
integrals, of which we need only the following two.

The Caputo definition of fractional differentiation can be
written as [[1]]:
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where I'(z) is Euler’s gamma function.

Above Caputo definition is extremely useful in the time do-
main studies, because the initial conditions for the fractional-
order differential equations with the Caputo derivatives can
be given in the same form as for the integer-order differential
equations. This is an advantage in applied problems, which
require the use of initial conditions containing starting values
of the function and its integer-order derivatives f(a), f (a),

fa), ..., f"D(a).
The formula for the Laplace transform of the Caputo
fractional derivative has the form []1]]:
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(n—1<a<n).

If the process f(t) is considered from the state of absolute
rest, so f(t) and its integer-order derivatives are equal to zero
at the starting time ¢ = 0, then the Laplace transform of the
a-th derivative of f(¢) is simply s*F(s).

The second definition, which we need, is the definition of
the left-sided Caputo-Weyl fractional derivative:
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The Fourier transform of _Y D f(¢) is simply (jw)®.
The Caputo-Weyl definition must be used in the frequency
domain studies of fractional-order systems. The Caputo-Weyl
derivative can be considered as the Caputo derivative with
a — —oo. In other words, the Caputo definition allows the
study of the transient effects in fractional-order systems, which



were initially at the state of rest, while the Caputo-Weyl
definition allows the study of frequency responses of such
systems.

Fractional-order models have been already used for mod-
eling of electrical circuits (such as domino ladders, tree
structures, etc.) and elements (coils, memristor, etc.). The
review of such models can be found in [6]—[8]].

Let us consider, for instance, a capacitor as a basic element
of many circuits. Westerlund and Ekstam in 1994 proposed a
new linear capacitor model [9]. It is based on Curie’s empirical
law of 1889 which states that the current through a capacitor
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where hy and « are constant, ug is the dc voltage applied at
t=0,and 0 < a <1, (¢ €R).
For a general input voltage u(t) the current is

d*u(t)
dt>

where C' is capacitance of the capacitor. It is related to the kind
of dielectric used in the capacitor. The order « is related to
the losses of the capacitor. Westerlund and Ekstam provided in
their work the table of various capacitor dielectrics with appro-
priated constants « which have been obtained experimentally
by measurements.

The relationship between the current and the voltage in
a capacitor is described using fractional-order integration:

i(t)=0C = CoDfu(t), 4)
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u(t) = 5/0 i(t)dt> = ol oDy “i(t). )
Then the impedance of a fractional capacitor is:
Ze(s) = L_ L 98 e (—o0,00).  (6)
¢ Cs  weC ’ ’

Ideal Bode’s characteristics of the transfer function for a real
capacitor (6) are depicted in Fig. [1]

General characteristics of the transfer function of a real
capacitor (6) are [10]:

o Magnitude: constant slope of —a20dB/dec.;

« Crossover frequency: a function of 1/C

o Phase: horizontal line of —a7;

Besides this fractional-order capacitor model, we can men-
tion the new fractional-order models of coils [11]], memristive
systems [/12], ultracapacitors [|13]], [[14]], and the element called
fractor [[15]]. Such elements can be combined with classical
passive and active elements for creating various types of
electrical circuits.

Among the aforementioned fractional-order elements, the
fractor is of special interest, because it is known that the
order of fractor slowly changes in time with aging of chemical
materials of which it is composed [[16, Table I]. In other
words, fractor is an example of an element of variable non-
integer order. Such variable-order behavior of the fractor was
experimentally studied in [16]. In this paper we demonstrate
that variable-order behavior can be observed in a wide class
of ladder-type circuits composed of standard passive elements.
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Fig. 1. Bode plots of real capacitor.

II. FRACTIONAL DEVICES AND FRACTANCE

Besides simple elements like a capacitor, electrical circuits
of more or less complex structure were studied by many
authors. The review of most of the previous efforts can be
found in [6]. A circuit that exhibits fractional-order behavior
is called a fractance [1].

A. Fractances

The fractance devices have the following characteristics
[17]]. First, the phase angle is constant independent of the
frequency within a wide frequency band. Second, it is possible
to construct a filter having a moderate characteristics which
can not be realized by using the conventional devices.

Generally speaking, there are three basic types of fractances.
The most popular is a domino ladder circuit network [22].
Another type is a tree structure of electrical elements [17]], and
finally, we can find out also some transmission line circuit (or
symmetrical domino ladder [[18]]).

Design of fractances having given order o can be done
easily using any of the rational approximations or a truncated
continued fraction expansion (CFE), which also gives a ratio-
nal approximation [19], [20]. Truncated CFE does not require
any further transformation; a rational approximation based on
any other methods must be first transformed to the form of a
continued fraction; then the values of the electrical elements,
which are necessary for building a fractance, are determined
from the obtained finite continued fraction. If all coefficients
of the obtained finite continued fraction are positive, then the
fractance can be made of classical passive elements (resistors
and capacitors). If some of the coefficients are negative, then
the fractance can be made with the help of negative impedance
converters [6]], [[19].

It is worth mentioning also the constant phase element
(CPE), which exhibits the fractional-order behavior as well.



It is a metal-insulator-solution or metal-insulator-liquid inter-
face used in electrochemistry. CPE interprets a dipole layer
capacitance [21]. The impedance of CPE is expressed as
Zeopr(s) = Qs and CPE cannot be described by a
finite number of passive elements with frequency independent
values.

B. Traditional domino ladder (half-order integrator)

Several different algorithms for approximation the fractional
order integrators are currently available [6], [22[]-[26]]. Most
of them are based on some form of approximation of irrational
transfer functions in the complex domain. The commonly used
approaches include the aforementioned CFE method and its
modifications, or representation by a quotient of polynomials
in s in a factorized form.

The main disadvantage of these algorithms is that the values
of electrical elements (like resistors and capacitors) needed
for the approximation are not the standard values of elements
produced by manufacturers.

However, it is still possible to obtain highly accurate and
practically usable implementations of a fractional-order inte-
grator using only standard elements with the standard values
available in the market. The idea of this practical approach
to implementation of fractional-order systems is based on the
domino ladder structure.
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Fig. 2. Domino ladder scheme.

The domino ladder circuit shown in Fig. 2] has the following
impedance:

1 1
G(s) =R+ = , (D
(s) sC+ L — (Tsys ¢
sC+
R+;C+ﬁ—y+lslc+m

where T' = C'/R. In the ideal case of infinite realization, (7)
gives a half-order integrator; a truncated realization gives its
approximation.

The domino ladder circuit can be also considered as a model
of a semi-infinite RC line, which is described by the following
partial differential equations [27]], [28]]:

0 .

%u(t,x) = Ri(t,x), (8)
0 . 0
az(t,x) = C’au(t,x)7 )

where u(t, z) is the voltage and i(¢, x) is the current at point
2 at time instance ¢.

This can be rewritten as
2

0 0
@u(t, x) = RC&u(t, x).

From this equation a relationship between the current i (¢, 0)
and voltage u(¢,0) at the beginning of the semi-infinite RC
line can be obtained in terms of half-order integral; in the
Laplace domain it has the following form:

~_U(s,0) /R 1
Gls) = I(s,0) V C 95’
where I(s,0) and U(s,0) are the Laplace transforms of (¢, 0)
and u(t, 0).

(10)
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C. Domino ladder with alternating resistors

For building accurate analog approximation of the half-order
integrator using easily accessible elements available in the
market, the approach presented in Fig. [3| can be used.
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Fig. 3. Proposed analogue model of half-order integrator.
Based on the observation made in article [29]], we can
formulate the following design algorithm:

(a) Choose the values of R; and C in order to obtain the
required low frequency limit.

(b) Choose value of Rs in order to satisfy the condition
Ry =~ 4R5. This condition allows to select those values
of resistors that are available as manufactured.

(c) Choose the ladder length n (number of steps in the
domino ladder) in order to obtain the desired frequency
range of approximation.

D. Enhanced domino ladder for half-order integration

The modified ladder with two alternating values of resistors
performs better than the classical domino ladder, but the phase
shift is still equal not to 45°, but to approximately 43°-44°
(45° achieved only at very short frequency range).

To further improve the accuracy of approximation, let us
modify the structure of the domino ladder in such a way that
there are not only two values of resistors, but also two values
of capacitors are used (Fig. ).

Fig [5] presents the experimental results for the enhanced
domino ladder for half-order integration with the following
parameters of the circuit presented in Fig. @} R; = 23209,
Ry = 820052, Cq = 330nF, Cy = 220nF, and the number of
steps in the ladder is equal to n = 34. The results are compared
with the realization presented in Fig. [3] It is obvious that the
phase plot of the enhanced ladder is indeed is much closer to
the 45° than in the case of the classical domino ladder.
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Fig. 4. Enhanced domino ladder for half-order integration.
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Fig. 5.
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Results of modeling of half-order integrator using a modified domino

E. A new type of fractances: a nested ladder

Based on the above results, we can easily extend them
to build a fractional order integrator of order 0.25. This
can be done by replacing the capacitors in the scheme in
Fig. 3] by half-order integrators, which can be either classical
domino ladders or enhanced domino ladders. This step can
be interpreted as an introduction a half-order dynamics into
the equation (9). This results in a transfer function of order
o = 0.25, which corresponds to a quarter-order integrator.

Fig. 6. Integrator of order o = 0.25 in the form of a nested ladder.

In Fig. [6] the scheme of the approximation of a quarter-order
integrator is shown; Z; 5 are the impedances of modified or
enhanced domino ladders implementing half-order integrators.

In the same way (namely, by replacing impedances Zj 5
with Zj 25) an integrator of order aw = 0.125 and so forth can
be built, but this will need a large number of elements.

We call such a structure of electrical circuit the nested
ladder. The nested ladder is an example of using the ideas
of self-similatiry and fractality for creating electrical circuits
exhibiting non-integer order behavior.

III. DATA FITTING USING THE MITTAG-LEFFLER
FUNCTION

In order to obtain a model for the measured data from the
considered electrical circuits (ladders and nested ladders), we
have developed a new approach to data fitting, which is based
on using the Mittag-Leffler function and which, in fact, allows
obtaining models of non-integer order.

The idea of our method is based on the following. When it
comes to obtaining a mathematical models from measurements
or observations, it iS a common practice in many fields of
science and engineering to choose the type of the fitting curve
and identify its parameters using some criterion (usually a least
squares method). We would like to point out that choosing a
particular type of a curve means that, in fact, the process is
modeled by a differential equation, for which that curve is a
solution.

For example, fitting data using the equation y(t) = at + b
(known as linear regression model) means that the process is
modeled by the solution of a simple second-order differential
equation under two initial conditions:

y' =0, y0)=>b, ¥(0)=a.

Similarly, the fitting function in the form y = asin(wt) +

bcos(wt) means that the process is modeled by the solution
of the initial value problem of the form

12)

y' +wly=0, y(0)=0, (13)

Choosing the fitting function in another frequently used
form, y = ae’®, means that the process is modeled by the
solution of the initial value problem

y'(0) = aw.

y(0) = a.

Thinking in this way, we conclude that instead of postulating
the shape of the fitting curve it is possible to postulate the
form of the initial-value problem and identify the parameters
appearing in the differential equation and in the initial condi-
tions. For the first time this method was suggested and used
in [[1, Chapter 10]. In this paper we, however, just emphasize
that obtaining a fitting function y(t¢) for measurements of
a dynamic process immediately means that that process is
described by an initial-value problem of which y(t) is the
solution.

In the present article the measured data are fitted by

Yy =y Ea1(at®) (15)
where E, 3(z) is the Mittag-Leffler function defined as [1]

y —by=0, (14)

Eap(2) = ];) NN (16)

The parameters to be identified are «, a, and yg.

If the data are fitted by the function , then this means
that they are modeled by the solution of the following initial-
value problem for a two-term fractional-order differential
equation containing the Caputo fractional derivative of or-
der a:

EDgy(t) — ay(t) =0,

y(0) = vo- (17)



IV. EXPERIMENTAL RESULTS

A. Experimental setup

For the experimental verification of the introduced method,
the circuits presented in Section [[I] were built. For measure-
ments, the modified domino ladder circuit and the nested
ladder were connected to the amplifier electronic circuit of
the operational amplifiers TLO71 and to the dSpace DS1103
DSP card connected to a computer. The real laboratory setup
is shown in Fig.[7]and detailed view of the ladders is in Fig.[§]

\

Fig. 7. Experimental setup used for all measurements: 1 — domino ladder, 2 —
nested ladder, 3 — dSpace card, 4 — computer with Matlab/Simulink software.

Fig. 8.

Detailed view: 1 — domino ladder, 2 — nested ladder.

The electronic scheme presented in Fig. [0 uses two oper-
ational amplifiers. The first one is working in the integrator
configuration and the second one is working in the inverse
unit-gain for compensating the signal inversion of the integra-
tor amplifier. The resistor R; can be used for changing the
gain of the integrator and it was chosen to R; = 3.3k{). The
wy is an input and us is an output of the integrator system.

Zladder Rz

Fig. 9. Electronic circuit of measurement setup for integrator.

1MQ i(t)

Zladder

Fig. 10. Electronic circuit of direct measurement setup for ladders.

B. Modified half-order domino ladder measurements

The tested circuit has the following parameters of the circuit
presented in Fig. B} Ry = 20002, Ry = 820012, C' = 470nF,
and numbers of steps in the ladders was taken first n = 60 and
then n = 130. The sampling period was T's = 0.0001 s. The
manufacturing tolerance of the elements used for making such
ladders is 1% for resistors and 20% for capacitors. As it can be
seen in Fig. [TT] and Fig. the obtained experimental results
fully confirm the theoretical considerations and simulations.

I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1
Time (sec)

Fig. 11. Comparison of measured and calculated step responses of half-order
integrator with domino ladder of 130 steps: (dotted line) calculated response
for a = 0.5167 from Table for 1 s; (solid line) measured response.

C. Quarter-order domino ladder measurements

The tested circuit has the following parameters of the circuit
presented in Fig. E R = 200012, Ry = 820012, C = 470nF
and realization length equal n = 14 x 14, that is 14 sub-ladders
with 14 steps each. The sampling period was T's = 0.0001 s.
The manufacturing tolerance of the elements used for making
such ladders is 1% for resistors and 20% for capacitors. As it
can be seen in Fig. [I3] and Fig. [I4} the obtained experimental
results confirm the theoretical considerations and simulations.
A little deviation in the time domain is due to small number
of the nested ladder steps, which can be also observed in the
frequency domain (only two and half decades approximation).
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Fig. 12. Measured Bode plots of half-order integrator with domino ladder
of 130 steps.
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Fig. 13. Comparison of measured and calculated step responses of quarter-
order integrator with nested ladder of size 14 X 14 steps: (dotted line)
calculated response for o = 0.3126 from Tablemfor 1 s; (solid line) measured
response.
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Fig. 14. Measured Bode plots of quarter-order integrator with nested ladder
of size 14 x 14 steps.

V. VARIABLE-ORDER BEHAVIOR

If the measurements are obtained for the fixed interval [0, ¢],
then fitting using the Mittag-Leffler function (T3), described
in Section [, immediately gives the model (I7) of fractional
order c.

However, if we consider the changing length of the interval,
then the resulting order of the model will be, in general,
a function of this changing interval length ¢: o = «(t). The
same holds for other two parameters.

In our experiments we considered the growing number of
measurements that are used for fitting the measured data. We
increment the length of the time interval by 1 s within first

5 s, and then use the increment of 5 s up to 100 s. This
allowed us to better examine the time-domain response of
the considered circuits (discharge of both ladders), connected
as in Fig. [T0] near the starting point ¢ = 0, and also their
time-domain responses in long run, which was in our case the
interval up to 100 seconds. Discharges of the 60-steps domino
ladder, 130-steps domino ladder, and nested domino ladder are
depicted in Figs. [I3] [I6 and [I7] respectively. The sampling
period was T's = 0.01 s for all measurements of the discharges
used for the computations.

The results of these computations are presented in Table [

and in the Figs. [I8] and [T9
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Fig. 15. Discharge of the 60-steps domino ladder (DL060).
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Fig. 16. Discharge of the 130-steps domino ladder (DL130)).
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Fig. 17. Discharge of the nested domino ladder (NL14x14).

The method of data fitting using the Mittag-Leffler function
is implemented as a Matlab routine [|30]], and the Mittag-Leffler
function is computed also using our Matlab routine [31].

VI. DISCUSSION

Our main conclusion is that both the domino ladder and the
nested ladder exhibit dual behavior in the frequency domain
and in the time domain. In some frequency range or in
some time interval they behave as fractional-order integrators
of (almost) constant order. Outside of that frequency range



TABLE I
VARIABLE ORDER «(¢t) FOR THE 60-STEPS DOMINO LADDER (DL060),
THE 130-STEPS DOMINO LADDER (DL130), AND THE NESTED LADDER

(NL14x14)
t [s] a(t)
DL060 DL130 NL14x14

1 0.5294 0.5167 0.3126
2 0.4984 0.4972 0.4498
3 0.5277 0.4901 0.6978
4 0.5746 0.4821 0.6959
5 0.6408 0.4855 0.7205
10 0.8195 0.5390 0.8278
15 0.8986 0.6326 0.8732
20 0.9385 0.7098 0.9249
25 0.9523 0.7801 0.9354
30 0.9586 0.8227 0.9618
35 0.9604 0.8531 0.9620
40 0.9620 0.8737 0.9770
45 0.9638 0.8900 0.9847
50 0.9651 0.9046 0.9823
55 0.9661 0.9142 0.9837
60 0.9668 0.9201 0.9837
65 0.9670 0.9246 0.9868
70 0.9674 0.9279 0.9872
75 0.9678 0.9307 0.9886
80 0.9677 0.9336 0.9879
85 0.9676 0.9354 0.9888
90 0.9677 0.9373 0.9887
95 0.9672 0.9388 0.9904
100 0.9672 0.9406 0.9915

DLOGO (60 steps)
DL130 (130 steps)

0 10 20 30 40 60 70 80 90 100

50
t(time), [s]

Fig. 18. Variable order a(t) for the 60-steps domino ladder (DL060), dotted
line, and the 130-steps domino ladder (DL130), solid line.

or outside of that time interval they behave as variable-
order integrators; in one case that variable order depends on
frequency, in the other case it depends on the time.

The domino ladder behaves as Caputo-Weyl integrator of
constant order « = 0.5 in a certain frequency range in the
frequency domain. This means that in that frequency range
it simply shifts the phase by aw/2 = w/4. The frequency
range where this behavior is observed can be made larger
by increasing the number of steps in the domino ladder.
Outside of this frequency range the domino ladder behaves

(ordi
°
&
N B e B S
I T T T R T R |

50
t(time) [s]

Fig. 19. Variable order «(t) for the nested domino ladder (NL14x14).

as a variable-order system, where the order depends on the
frequency, as one can conclude directly from the Bode plots.

At the same time, in the time domain the same domino
ladder behaves as an integrator of variable non-integer order,
where the order depends on the length of the time interval.
Close to the starting time instance ¢ = 0, the domino ladder
behaves as an integrator of order o ~ 0.5, and with growing
t the domino ladder behaves closer and closer to the classical
integrator of order 1. It should be mentioned that although
the domino ladder order, «(t), tends to 1, the order 1 is never
reached. However, in many practical applications it is sufficient
to neglect the transient effects for some initial time interval
and to assume that «(t) = 1 for all .

The similar observations hold for the nested ladder circuit,
which has been introduced in this paper. In some frequency
range it behaves as an integrator of order 0.25, and outside
of this frequency range it behaves as a variable-order system,
where the order depends on the frequency.

In the time domain the nested ladder circuit behaves like
a variable-order integrator, with order «(t) starting close to
0.25, and then increasing towards 1; the order 1 is also never
reached in the considered time interval.

The frequency range and the time interval, where the order
of the nested ladder is close to 0.25, can be extended by
increasing the number of levels of the ladders in the nested
structure, and by increasing the numbers of steps in those
ladders.

VII. CONCLUSIONS

In this paper we have presented the experimental study
of the two types of electrical circuits made only of passive
elements, which exhibit non-integer order behavior. One of
them is the domino ladder, which already appeared in the
works of other authors on the fractional-order systems. The
other one is the circuit that we call the nested ladder and
which was introduced in this paper.

For both these types of circuits we demonstrated that they
should be considered not just as non-integer order systems,
but as variable-order systems, where the order depends either
on the frequency (in the frequency domain) or on the time
variable (in the time domain).

While in the frequency domain the frequency-dependent
variable order is obvious directly from the Bode plots, provid-
ing the evidence of the variable-order behavior of the consid-
ered circuits in the time domain required some additional tools.
Namely, we suggested a method of data fitting with the help
of the Mittag-Leffler function, explained a link between such
fitting and fractional-order differential equations, and provided
the Matlab routines for such fitting.

The approach to identification of variable-order systems,
that we presented in this paper, can be used for creating
variable-order models for many other processes.
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