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Towards Weather-Robust 3D Human Body
Reconstruction: Millimeter-Wave Radar-Based
Dataset, Benchmark, and Multi-Modal Fusion

Anjun Chen, Xiangyu Wang, Kun Shi, Yuchi Huo, Jiming Chen, Fellow, IEEE, and Qi Ye

Abstract—3D human reconstruction from RGB images
achieves decent results in good weather conditions but degrades
dramatically in rough weather. Complementarily, mmWave
radars have been employed to reconstruct 3D human joints
and meshes in rough weather. However, combining RGB and
mmWave signals for weather-robust 3D human reconstruction is
still an open challenge, given the sparse nature of mmWave and
the vulnerability of RGB images. The limited research about the
impact of missing points and sparsity features of mmWave data
on reconstruction performance, as well as the lack of available
datasets for paired mmWave-RGB data, further complicates the
process of fusing the two modalities. To fill these gaps, we
build up an automatic 3D body annotation system with multiple
sensors to collect a large-scale mmWave dataset. The dataset
consists of synchronized and calibrated mmWave radar point
clouds and RGB(D) images under different weather conditions
and skeleton/mesh annotations for humans in these scenes. With
this dataset, we conduct a comprehensive analysis about the
limitations of single-modality reconstruction and the impact of
missing points and sparsity on the reconstruction performance.
Based on the guidance of this analysis, we design ImmFusion,
the first mmWave-RGB fusion solution to robustly reconstruct
3D human bodies in various weather conditions. Specifically, our
ImmFusion consists of image and point backbones for token
feature extraction and a Transformer module for token fusion.
The image and point backbones refine global and local features
from original data, and the Fusion Transformer Module aims
for effective information fusion of two modalities by dynamically
selecting informative tokens. Extensive experiments demonstrate
that ImmFusion can efficiently utilize the information of two
modalities to achieve robust 3D human body reconstruction
in various weather environments. In addition, our method
achieves superior accuracy compared to that of the state-of-the-
art Transformer-based LiDAR-camera fusion methods.

Index Terms—3D human body reconstruction, mmWave-RGB
fusion, human body dataset.

I. INTRODUCTION

3D human body reconstruction has been studied extensively
and has wide applications, such as XR technologies,

autonomous driving, outdoor robotics, search and rescue, etc.
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With easy access and low cost, RGB cameras are one of the
most common sensor modalities for the reconstruction [1].
Nevertheless, the performance of reconstruction using RGB
images under adverse circumstances is still limited, as the
perception capability of RGB cameras rapidly deteriorates
in poor illumination or inclement weather conditions [2]. In
addition, recovering 3D information from a single 2D RGB
image is inherently an ill-posed inverse problem [3] due to
depth ambiguity.

Millimeter wave (mmWave) imaging radar is a newly
emerging sensing technology to capture 3D or more high-
dimensional scene information with relative lower cost than
LiDAR. It has gained increasing popularity in wireless sensing
areas in recent years, such as autonomous driving [11]–
[13], human activity recognition [14], [15], and SLAM [16],
[17]. Moreover, mmWave radar can sense low-visibility en-
vironments such as dense fog, smoke, snowstorm, rain, etc.
[18], which makes it appealing for many applications that
require working in various weather conditions. Despite these
capabilities, point clouds generated from mmWave radar suffer
from sparsity due to low spatial resolution, large missing parts
due to specular reflection, and high-level noise due to multi-
path effects. Despite existing applications in large scenes and
motion classification, these defects can hinder its application
in fine-grained 3D human body reconstruction. A promising
solution is to combine RGB images with mmWave signals,
as the sparse and noisy mmWave radar point cloud could be
complemented by the high-resolution and high-quality RGB
images. Therefore, fusing the two modalities to combine
their strengths is essential to realize robust 3D human body
reconstruction in various weather conditions.

However, mmWave-RGB fusion faces many challenges: 1)
research works and public data are limited for studying the
fine-grained 3D human reconstruction from point clouds with
characteristics of sparsity and missing points like mmWave
signals; 2) the quality of mmWave signals for 3D body
reconstruction compared with RGB images or point clouds
from depth cameras are not well studied, which makes it
difficult to design a fusion strategy for the modality; 3) despite
some works on LiDAR-RGB fusion, the performance of these
fusion strategies for mmWave and RGB is questionable due to
the significant defects of sparsity and missing mmWave points.
In this work, we aim to address these challenges.

Currently, research on the human body reconstruction from
mmWave radar is limited. Some works pioneer in the explo-
ration of human body reconstruction from wireless signals
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TABLE I
COMPARISON OF HUMAN BODY DATASETS WITH WIRELESS SIGNALS. NO. MOTIONS INDICATE THE NUMBER OF MOTIONS.

Datasets Signals Labels No. Motions Public
Scenes

Furnished Rain Smoke Poor Lighting Occlusion

Person-in-WiFi [4] Wi-Fi 2D Skeletons / # # # # # #

RF-Pose [5] RF Signal 2D Skeletons / # # # # ! !

RF-Pose3D [6] RF Signal 3D Skeletons / # # # # # !

RF-MMD [7] RF Signal 3D Skeletons 35 # # # # ! !

RF-Avatar [8] RF Signal Mesh / # # # # # !

mmMesh [9] mmWave Mesh 8 # ! # # ! !

mRI [10] RGB(D), mmWave 3D Skeletons 12 ! # # # # #

Our mmBody RGB(D), mmWave Mesh, Skeletons 100 ! ! ! ! ! !

[4]–[9]. Despite the inspiring exploration, there is no public
mmWave radar dataset available for the community to study
the problem. Additionally, these works have not quantitatively
evaluated the accuracy of reconstructing 3D human mesh from
mmWave signals in different scenarios and how they perform
compared with RGB and depth cameras. Furthermore, among
the defects of sparsity, missing parts, and high noise, key
factors influencing the reconstruction quality from mmWave
signals and the fused mmWave-RGB signals, are not identified,
which are important for the design of fusion algorithms.

Though there is little work on mmWave-RGB fusion,
LiDAR-camera fusion has been studied in some computer
vision problems. Early LiDAR-camera fusion approaches [19],
[20] adopt point-to-image projection to combine point clouds
and image pixel values/features through element-wise addition
or channel-wise concatenation. These approaches heavily rely
on the local projection relationship between the point clouds
and images, which can break down if one of the modalities
is compromised or fails. Undesirable issues like low density,
random incompleteness, and temporal fluctuation of mmWave
point clouds can result in the retrieval of inadequate or
incorrect features from corresponding images. More recently,
several customized Transformer-based structures [21]–[23]
have been proposed for multi-modal fusion. These fusion
frameworks, however, focus on LiDAR-camera fusion-based
object detection, which is inapplicable for the mmWave-RGB
fusion-based human body reconstruction task. Furthermore,
the degradation of modality features in challenging envi-
ronments, such as low lighting and smoke conditions, can
extremely impair performance.

In this paper, we make efforts in filling these gaps and
addressing the challenges in three aspects: 1) proposing a
dataset for the study of human body reconstruction from
mmWave signal, 2) comparing the reconstruction quality of
different sensor inputs in different environments and analyzing
the impact of characteristics of noisy points (sparsity and
missing points) on the reconstruction performance, and 3)
proposing a novel fusion strategy tailored for RGB fusion with
sparse and noisy signals like mmWave point clouds.
mmWave Dataset. We first design a data collection system
with automatic 3D body mesh annotation, which is realized
by fitting the SMPL-X body model [24] to markers attached
to subjects using MoSh++ [25]. Using this system, we collect

a large-scale mmWave 3D human body dataset (denoted as
mmBody) with 100 motions captured from 20 volunteers in 7
different scenes. The statistics and visualization of the dataset
in Table I and Fig. 2 reveal that our dataset makes a significant
advancement in terms of completeness and diversity of sce-
narios, shapes, and poses. In addition to the mmWave signals,
we also collect synchronized and calibrated RGB(D) images
for mmWave-RGB fusion for the 3D body reconstruction in
different weather conditions.
mmWave Quality Evaluation. With this dataset, we conduct
extensive experiments to evaluate 3D body reconstruction
performance using different single-sensor inputs (mmWave
signals, depth from TOF sensors [26] and RGB images) in
different scenarios including extreme weather conditions like
smoke, rain, and night. To further analyze the characteristics
of mmWave data, we investigate the impact of missing points
and sparsity on the reconstruction accuracy by comparing the
reconstruction from mmWave signals with that from depth
point clouds.
mmWave-RGB Fusion. With the guidance of these analyses,
we present ImmFusion, the first fusion solution to combine
the mmWave point clouds and RGB images to robustly re-
construct the 3D human body in various conditions. Due to
the noisy mmWave point clouds, in our framework, different
from fusion via projection, we do not establish the connection
explicitly via the spatial relation of two modalities. Instead,
we resort to well-devised Transformer-based fusion modules
to dynamically fuse the information from different modalities
based on their feature strengths. Additionally, in contrast to
previous fusion methods that regard point clouds as the main
modality, our framework does not assume a main modality and
treats features from different modalities as equal tokens (like
words in NLP). The corrupted tokens from one modality could
possibly be remedied by others or disregarded to accommodate
the sparsity and missing parts. Experimental results demon-
strate that ImmFusion can effectively mitigate sensor defects
and fuse information from the two modalities to achieve robust
3D human body reconstruction in various environments.

The rest of this paper is organized as follows: Section II
gives a brief overview of related works on 3D human recon-
struction, sensor fusion, and human body datasets. Section III
introduces our data collection system and our large-scale
mmWave-RGB human body dataset, mmBody. Section IV



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024 3

presents our proposed mmWave-RGB fusion method, ImmFu-
sion. Section VI elaborates experimental results and analysis.
Section VII finally concludes the paper.

II. RELATED WORKS

A. Human Body Reconstruction

3D human body reconstruction has been researched for
many years. Most prevailing reconstruction approaches lever-
age RGB images. Learning-based methods to solve this prob-
lem can be broadly divided into two categories: parametric
and non-parametric approaches. For parametric methods, a
mapping function from the input to the output representation of
the body, e.g. 2D/3D skeletons [27], [28], and the parameters
of SMPL or SMPL-X [29], [30] is learned. Despite greatly re-
ducing regressing parameters, it is still challenging to estimate
precise coefficients from a single image [31], [32]. To improve
the reconstruction, researchers make efforts by utilizing multi-
view information [33]–[35], dense depth maps [36], [37] or
sequential videos [38]–[40]. On the other hand, non-parametric
approaches directly regress the vertices of the 3D mesh from
the input image. Most pioneers choose Graph Convolutional
Neural Network [41] to model the local interactions between
neighboring vertices with an adjacency matrix. More recent
approaches, such as METRO [42] and Mesh Graphormer [43],
utilize transformer encoders to jointly model the relationships
between vertices and joints.

Recently, millimeter wave (mmWave) sensors have gained
popularity for their ability to work in challenging conditions
such as rain, smoke, and occlusion. Several wireless systems
have been developed to reconstruct the human body and the
mmWave-based system is one of them. The mmWave sensing
has been widely adopted to enable various human sensing
works, such as human monitoring and tracking [44], [45],
human detection and identification [46], [47], and gesture
recognition [48]. For human pose estimation, several pioneer-
ing works [4], [5], [49] have been proposed to recover human
skeletons from RF and Wi-Fi signals. Works on the full-
body reconstruction including shape estimation from wireless
signals are limited. Zhao et al. [8] reconstruct the 3D human
mesh by utilizing RF signals, which demonstrates that wireless
signals contain sufficient information for the estimation of the
pose and shape of the human body. To make the reconstruction
more accessible, Xue et al. [9] present a real-time human
mesh estimation system using commercial portable mmWave
devices. However, the datasets are not public in these works
and the capability of the reconstruction from the combination
of multi-sensor signals is not studied.

B. Multi-Modal Fusion

Existing fusion methods can be broadly classified into
three categories: decision-level, data-level, and feature-level
fusion. Generally, how to overcome disparateness and exploit
the synergy of heterogeneous modalities are the foremost
considerations. To this end, most of the methods resort to
investigating elaborately-designed modal alignment schemes.
Decision-level fusion [50], [51] usually utilizes information
from one modality to generate regions of interest containing

valid objects. However, such coarse-grained fusion strategies
may not fully release the potential of multiple modalities.
Data-level fusion [19], [20] commonly entails the coordi-
nate projection technique, which is easily affected by sensor
misalignment and defective image features. Feature-level fu-
sion [52], [53] typically involves the fusion of proposal-wise
features in multi-modal feature maps, while determining the
optimal weighting for features of each modality is challenging.
All these conventional approaches make efforts in modal
alignment schemes, while most of them are short of efficiency,
adaptability, and compatibility.

Recently, promising performance has been achieved by
Transformer-based fusion, which sheds light on the possibility
of leveraging the Transformer structure as a substitute for man-
ually designed alignment operations. Specifically, DeepFusion
[21] uses a learnable alignment mechanism to dynamically
correlate LiDAR information with the most relevant cam-
era features. TokenFusion [22] prunes feature tokens among
single-modal Transformer layers to preserve better information
and then re-utilizes the pruned tokens for multi-modal fusion.
CAT-Det [54] jointly encodes intra-modal and inter-modal
long-range contexts to explore multi-modal information for
detection. TransFusion [55] employs a soft-association ap-
proach to process inferior image situations. Some recent works
[56]–[58] propose to formulate unified end-to-end multi-sensor
fusion frameworks for 3D detection. These works, which focus
on fusion-based object detection, however, differ from ours
since we make efforts in constructing the mmWave-RGB fu-
sion pipeline for 3D human body reconstruction. Additionally,
in contrast to previous fusion methods that deteriorate severely
when they are applied to noisy point clouds, our framework
can effectively accommodate the sparsity and missing parts.

C. Human Body Datasets

In recent years, various human body datasets have been
introduced to advance the research on human body reconstruc-
tion. These datasets provide annotated RGB(D) images with
ground truth in the form of skeletons or mesh. However, most
of the frequently used datasets, such as CMU MoCap [59],
MPI-INF-3DHP [60], NTU RGB+D [61], 3DPW [62], and
Human3.6M [63], do not include scenes captured in adverse
environments due to the degradation of RGB(D) cameras in
such conditions.

With the demand for autonomous driving, some mmWave-
based datasets [64], [65] have been proposed recently for
object detection and semantic understanding. However, as
exhibited in the Table I, no public mmWave-based datasets for
3D body reconstruction are available, which limits the devel-
opment of this field to some extent. Our proposed annotation
system and large-scale multi-modal human body dataset can
pave the way for further research on combing mmWave radars
with RGBD cameras for 3D body reconstruction in various
weather conditions.

III. MMBODY DATASET

In this section, we first introduce our method of building an
automatic annotation system and then present our mmWave
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mmWave Radar

Kinect masterKinect slave

3-5m

8m

1.5-2m

1.2m

0.8m

Camera Capture System
MoCap System

Fig. 1. Hardware system. It consists of three parts: a mmWave capture
system to record the body motions, a MoCap system to label both human
joint locations and full-body meshes, and a camera capture system to obtain
RGB(D) images.

human body dataset. The hardware system consists of three
parts: a mmWave capture system to record the body motions,
a MoCap system to label both human joint locations and
full-body meshes, and a camera capture system to obtain
RGB(D) images. The spatial arrangement of each component
of the hardware system is roughly set as shown in Fig. 1.
The hardware system is explained in Section III-A. Then the
synchronization and calibration among the systems follow in
Section III-B. In Section III-C, the acquisition of the full-body
mesh annotation is discussed. Section III-D shows statistics
of our benchmark. Section III-E gives a comparison of the
pose and shape space of mmBody with popular human body
datasets captured using MoCap or RGB(D) images.

A. Hardware System

mmWave System. The spatial sensing via mmWave is
achieved by transmitting wireless signals and receiving their
reflections from environments via antenna arrays. The fre-
quency shift between transmitting and receiving signals and
the difference in arriving time between antennas determine the
range measurement and the angle measurement, respectively.
For more details on the mmWave spatial sensing mechanism,
we refer readers to the technical report [66].

In our work, we choose the Phoenix type mmWave radar
produced by Arbe Robotics1 for its high resolution, which
works at 10 to 30 FPS. An antenna array of 48 transmitting
channels by 48 receiving channels enables it to reach 0.4
meters for the range resolution and about 2.0 degrees for the
angle resolution. It has an onboard processor to convert the
original signals into point clouds which we use as input for
3D body reconstruction. More specifications of the radar are
provided in the product overview [67].

The mmWave radar is placed on a 3D printing holder with
a depth camera (Azure Kinect2) beneath it, shown in Fig. 1.

1https://arberobotics.com
2https://azure.microsoft.com/en-us/products/kinect-dk

The holder is fixed on a tripod about 0.8 meters above the
ground. The 3D point clouds for the motion of subjects are
captured at a distance of 3 to 5 meters away from the radar as
the mmWave radar works well at a distance of 3 meters away.
The mmWave radar captures the scene at about 14 FPS.
Camera Capture System. The camera capture system aims
to get the RGB(D) images. The system consists of 2 Azure
Kinects: a master Kinect is placed right under the mmWave
radar, and the other slave one is located on one side of
the radar-body line, 1.5-2 m from the body. As the quality
of the depth images degrades with distance, we place the
slave Kinect closer to the subject. The Kinects are connected
using synclines. Azure Kinects provide color images and depth
images at a speed of 30 FPS.
MoCap System. The MoCap system aims to provide the 3D
body skeletons and full-body meshes. It is the main annotation
system for our dataset collection. Our OptiTrack3 MoCap
system consists of 8 cameras and markers attached to the
human body. Cameras are evenly fixed on 8 tripods around
a circular field with a radius of 8 meters at the height of 2.5
m, all looking at the center of the field. The system provides
high-quality maker locations (accuracy of 0.8 mm) at a speed
of 300 FPS at most. The number of markers is 37 and most
markers are attached near human joints.

B. Calibration and Synchronization

Calibration. We set the mmWave radar coordinate frame as
the target coordinate frame and transform the labels obtained
from the MoCap system and the camera capture system to it.

The calibration between the mmWave radar and the camera
capture system is achieved in two steps. The first step is
the calibration of the Azure Kinect sensors. It is calibrated
using a 1m × 1m Aruco tag, and the transformation matrix
is obtained via the Colored ICP algorithm [68]. The second
step is the calibration between the mmWave radar and one
of the Azure Kinect sensors. Following [17], we place the
mmWave radar and the sensor on a 3D printing holder.
The transformation matrix between the two sensors is set
beforehand. The calibration between the mmWave radar and
the MoCap system is achieved by placing markers on the radar
and using the position of markers located by the OptiTrack
system to calculate the transformation matrix.
Synchronization. As the three systems work at different
operation systems, synchronization is needed. The camera
capture system and the mmWave radar are connected to the
same laptop and therefore can be synchronized by the system
time. For the MoCap system (running on another PC), we
synchronize it to the camera capture system via the local
network connection. For the mmWave radar, we can only get
the timestamp of receiving the point clouds and therefore, are
not able to get the exact capture time between the timestamps
for two frames. The miss-alignment between the mmWave
radar and other data is manually checked and adjusted slightly
for each sequence.

3https://optitrack.com

https://arberobotics.com
https://azure.microsoft.com/en-us/products/kinect-dk
https://optitrack.com
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Fig. 2. 2D-TSNE embedding of poses and shapes of mmBody and other
datasets. The color of the dots in (a) represents different subjects.

C. Full Body Annotation

To obtain full-body mesh annotations, we use MoSh++
[25] to fit the parameterized body representation, i.e. SMPL-
X [24] to marker locations from the MoCap system. The
SMPL-X model is defined as a function M(β, α, γ), where
β represents shape parameters, α body pose, hand pose, and
facial expression parameters, and γ translation. For the body
pose parameters, the first 3 dimensions represent the global
rotation of joints, and the rest represent the rotations of 21
body joints. For the hand pose and expression parameters, we
use their template values and keep them fixed. In the following
paper, we use α for body pose only. The output of the function
M(β, α, γ) is a triangulated mesh.

D. Build a Complete and Concise Benchmark

We collected more than 100k frames covering 100 motions
of 20 volunteers in 6 different environments. Among the 100
motions, there are 16 static poses, 9 torso motions, 20 leg
motions, 25 arm motions, 3 neck motions, 14 sports motions,
7 daily indoor motions, and 6 kitchen motions. Among the
20 volunteers, there are 10 females and 10 males (physical
gender), with weights ranging from 42kg to 75kg and heights
ranging from 159cm to 183cm. The 7 different scenes include
2 different labs, a furnished lab, poor lighting, rain, smoke, and
occlusion environments. In the furnished scene, the furniture
is randomly placed behind the human activity area in the lab.
For the smoke and rain scene, we simulate smoke/fog weather
using smoke cakes and rain weather using a shower head. In
the occlusion scene, the mmWave radar and Kinect master are
covered with different materials (plastic wrapping paper and
foam board). Only Kinect master and radar are influenced in
the rain, smoke, and occlusion scene while Kinect slave is not
interfered. The collection and use of our data adhere to the
ethical guidelines strictly. All human subject data collections
are under full acknowledgment and agreement.

E. Comparison with Other Datasets

To show the coverage of our dataset better, we compare
the pose space and the shape space of mmBody with three
popular datasets for human body reconstruction using MoCap
or RGB(D) images, i.e. the CMU dataset [59], the MPI
Limits, [69] and the ACCAD dataset [70]. The comparison
of the 2D TSNE of SMPL-X poses and shapes of these

datasets is shown in Fig. 2. The SMPL-X parameters of the
other three datasets are from the AMASS [71], a large and
varied database of human motion. Fig. 2 (a) shows the TSNE
visualization of our SMPL-X body shape space and pose space
which demonstrates the completeness and evenness of the pose
and shape in our dataset. Fig. 2 (b) compares the pose and
shape space with the MPI Limits dataset [69] (referred to as
PosePrior in AMASS). The AMASS provides 35 motions of
the MPI Limits, at a total length of 20.82 minutes. This dataset
aims to model the pose priors over 3D human pose and the
subjects are instructed to perform extreme poses. The TSNE
embedding reflects the extent of these limits that mmBody fails
to reach but mmBody covers a very even space within these
limits. The shape space of mmBody has a border coverage.
Fig. 2 (c) compares the pose and shape space with the CMU
dataset [59]. The CMU MoCap dataset contains 2605 trials
in 6 categories and 23 subcategories. The AMASS provides
SMPL-X parameters containing 2083 motions of 106 subjects,
at a total length of 551.56 minutes. Though our dataset only
consists of 100 motions, about 5% of the CMU motions, the
pose space covers a similar large space. Fig. 2 (d) compares
the pose and shape space with the ACCAD dataset [70]. The
AMASS provides 252 motions of 20 subjects of the ACCAD,
at a total length of 26.74 minutes. The ACCAD contains daily
motions which mmBody covers, and stage actions like dance
and performance which mmBody does not cover. The shape
space is larger than mmBody.

IV. MMWAVE-RGB FUSION

In this section, we present our proposed method ImmFusion
for 3D human body reconstruction with both RGB images
and mmWave point clouds as input. Fig. 3 (a) illustrates the
framework of ImmFusion.

A. Problem Formulation

ImmFusion aims to predict the 3D positions of the joints
and vertices of human meshes from mmWave point clouds
and RGB images. We adopt the non-parametric approach
mentioned above for body reconstruction. As our focus is
reconstruction, we utilize the bounding boxes automatically
annotated from the ground truth mesh joints to crop the region
of interest containing only the body part. Given a dataset
D = {P, I, J, V } , t = 0, . . . , N , where P ∈ R1024×3, I ∈
R224×224×3 are the cropped body region of the mmWave radar
point cloud with 1024 points and the RGB image with a size
of 224 × 224, and J ∈ R22×3, V ∈ R10475×3 are the XYZ-
coordinate annotations of 22 joints and 10475 vertices, the
global/local point and image features are firstly extracted by
the image and point backbone, respectively. Next, the two
global features are incorporated as one global feature vector
and embedded with SMLP-X template positions. Then, all
global/local features are tokenized as input of a multi-layer
Fusion Transformer Module to dynamically fuse the informa-
tion of two modalities and directly regress the coordinates of
3D human joints and coarse mesh vertices. Last, we employ
a two-stage coarse-to-fine mechanism to upsample the coarse
mesh vertices to the full SMPL-X [24] mesh vertices.
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Fig. 3. Comparison of different fusion strategies. (a) Our proposed ImmFusion. We first extract global and local features from each of the masked modalities
using corresponding backbones. Next, we utilize the Global Integrated Module to incorporate global features. Then, we employ the Fusion Transformer Module
to fuse global and local features and to regress locations of joints and vertices. D.R. MLP stands for a Dimension Reduction MLP. (b) Points-Image-Feature
method [20]. (c) DeepFusion [21]. (d) TokenFusion [22].

B. Extraction of Global and Local Features

We extract global and local features for the image and point
cloud inputs to help extract global contextual dependencies and
model local interactions. Specifically, we directly feed point
clouds and images to the commonly used point and image
backbones to extract global and local features. Either back-
bone can be substituted with alternative options as necessary.
With this feature extraction mechanism, the deficiencies of
RGB images in adverse weather conditions can be effectively
constrained at the global level, while the defects of radar point
clouds in normal environments can be well compensated by
local image features as demonstrated in our ablation study. For
brevity, we leave out the subscript t in the following parts.

For the point cloud data, we obtain cluster features Lpc ∈
R32×(3+2048), from a radar point cloud P using PointNet++
Epc, where 32 denotes the number of seed points sampled by
Farthest Point Sample (FPS), 3 denotes the spatial coordinate,
and 2048 denotes the dimension of features extracted from the
grouping local points. A global feature vector Gpc ∈ R2048 is
further extracted from cluster features Lpc using an MLP. For
image data, we acquire the grid features Lim ∈ R49×2051

using HRNet [72] Eim, where 49 denotes the number of grid
features from the last convolution block of HRNet. The global
feature Gim ∈ R2048 is extracted from the grid features using
a CNN layer. MLPs are used to make the dimensions of local
features the same as those of the point features.

C. Accommodation Corrupted Features with Self-Attention
Fusion

Traditional point-based fusion works [20], [73] concatenate
image features or projected RGB pixels to the point clouds as
extended features of points, as Fig. 3 (b) illustrates. However,
this early fusion strategy is not suitable for mmWave-RGB
fusion due to the sparsity and noise of radar points. As our
analysis in Section V reveals, point-based reconstruction meth-
ods are inevitably affected by the issues of missing points and
sparsity. On the other hand, undesirable issues like low density,
randomly missing, and temporally flicking of radar point cloud
would lead to fetching fewer or even wrong image features.
The low quality of image features in adverse environments
like poor lighting would further degrade the performance of the
model severely. Multi-head attention module [74] is famous for
modeling the relationship between information tokens. Cross-
attention fusion methods [21], [55] employ a Transformer-
based module to fuse image and point features as illustrated
in Fig. 3 (c). Specifically, it converts the point features into
the queries and image features into the keys/values and then
aggregates image features to the point features. However, this
mechanism requires to treat point clouds as the main modality,
which cannot handle the corrupted features of the two modali-
ties either. For TokenFusion [22] shown in Fig. 3 (d), it aims to
substitute unimportant modality tokens detected by Score Nets
with projected features from the other modality. The Score
Net is implemented using a four-layer MLP to dynamically



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024 7

score the feature tokens. Similar to point-based fusion, this
projection-based design is also ineffective in incorporating
corrupted modalities in adverse environments.

To mitigate the feature degradation caused by the sparsity
and noise of mmWave signals and the deficiency of RGB
information in extreme conditions, we formulate our fusion
problem into the self-attention framework by exacting words
(local features) and sentences (global features) from different
inputs and designing the interaction modules between these
words and sentences. This structure allows our fusion frame-
work to effectively select informative token features from the
two input modalities based on their feature strengths instead
of the spatial affinity and to dynamically fuse these features.
Even if some words (local features) is masked out (missing
points), the model can utilize global information and other
features to complete them.

Specifically, the two global features are fused into a global
feature G ∈ R2048 by Global Integrated Module (GIM) Φg

implemented using a tiny Transformer module,

G = Φg(G
im, Gpc), (1)

where Φg is a three-layer attention module ending with a sum
operation to integrate the global features.

After Φg , similar to [41], we perform positional embedding
by attaching the 3D coordinates of 22 joints and 655 vertices in
a coarse mesh downsampled from a SMPL-X template mesh
to the global vector GT = cat(J template, V template, G) to
simplify the training, where GT ∈ R677×2051. Both local
features serve the purpose of providing fine-grained local
details for body reconstruction. In addition, the adoption of
this non-parametric mechanism enables interactions between
vertices, joints, local features, and global features, which can
further enhance the reconstruction performance of ImmFusion.

Subsequently, we utilize the Fusion Transformer Module
Φf to combine the strengths of radar points and images,
enabling the model to select informative token features from
two modalities dynamically:

GT ′
, Lim′, Lpc′ = Φf

(
GT , Lim, Lpc

)
, (2)

where GT ′ ∈ R677×64, Lim′ ∈ R49×64 and Lpc′ ∈ R32×64.
Φf is implemented with a three-layer Transformer module that
uses several attention heads in parallel to fuse global and local
features. While attending to valid features and restricting unde-
sirable features, the Fusion Transformer Module Φf adaptively
adopts cross attention between joint/vertex queries GT gener-
ated from global features G and point/image token features
from local features Lim Lpc to aggregate relevant contextual
information. Simultaneously, the self-attention mechanism rea-
sons interrelations between each pair of candidate queries.
Then, we adopt a dimension-reduction graph convolution
[41] architecture to decode the queries GT ′ containing rich
cross-modalities information into 3D coordinates of joints and
vertices following [43]. The Dimension Reduction (DR) MLP
substantially reduces the training parameters while improving
performance. The Graph Convolution (GC) can effectively
model interactions between joints and vertices. Lastly, a linear
projection network implemented using MLPs upsamples the
coarse output mesh to the original 10475 vertices.

D. Data Imbalance Solution by Modality Masking
Despite the superiority of the multi-head attention mecha-

nism, the model is prone to struggle with data imbalance for
multi-modal input according to [75] due to the bias of training
data (without data under adverse conditions), which makes
Transformer focus all attention on the single modality that
performs better under normal circumstances as demonstrated
in our experiments. To effectively activate the potential of the
model across all scenarios, we design a Modality Masking
Module (MMM) to mask one of the input modalities ran-
domly and thus enforce the model to learn from the other
modality in various situations. As a result, MMM enables the
Fusion Transformer Module to overcome the training data
bias problem and consider both modalities, which further
facilitates the model to perform better across all scenarios in
our experiments. In addition to the modality masking, we also
randomly mask some percentages of joint/vertex token features
GT to simulate self or smoke occlusions and missing parts.
For the mask proportion, we set it to 30% in the following
experiments as it achieves the best accuracy.

E. Training Loss
Our ImmFusion applies L1 loss to the reconstructed mesh

to constrain the 3D vertices V and joints J . In addition, the
coarse meshes Vd1, Vd2 are also supervised by downsampled
ground truth meshes using L1 loss to accelerate convergence.
The total loss of ImmFusion is calculated by:

L = λ∥J − J̄∥1 + µ(∥V − V̄ ∥1+∥Vd1 − V̄d1∥1
+∥Vd2 − V̄d2∥1),

(3)

where λ and µ denote the weight of each component, and
variables with overline represent the ground truth.

V. EVALUATION ON MMWAVE POINT CLOUDS

Despite some inspiring exploration of human body recon-
struction from the wireless signals [4], [5], these works have
not evaluated the accuracy quantitatively of reconstructing
3D human mesh from commercial mmWave radar devices in
different scenarios and how they perform compared with RGB
and depth cameras. Therefore, in this section, we make efforts
in answering the following questions. 1) Can mmWave radars
work robustly in different environments as claimed for 3D
body reconstruction? 2) Can they achieve comparable accuracy
with RGB cameras or depth cameras? 3) If not, what are the
key factors leading to inferior performance?
Dataset. With the dataset collected above, we can then evalu-
ate 3D body reconstruction performance in different scenarios
using different sensor inputs. The dataset is split into training
and testing sets as Table II shows. We choose 20 sequences
from 10 subjects recorded in the lab scenes as the training
set, and 2 sequences for each scene including labs, furnished,
rain, smoke, poor lighting, and occlusion as the test set. Each
sequence contains about 2000 frames of data.
Methods. To evaluate the performance of 3D body reconstruc-
tion with different single modalities, we implement single-
modality methods by removing one input stream from our pro-
posed ImmFusion pipeline (see Section IV). For the Images-
Only input, the feature extractor consists of only the CNN
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TABLE II
TRAINING SET AND TESTING SET. */* DENOTES THE NUMBER OF

SEQUENCES/NUMBER OF SUBJECTS.

Scenes Lab1 Lab2 Furnished Poor Lighting Rain Smoke Occlusion

train 10/4 10/6 / / / / /
test 2/2 2/2 2/2 2/2 2/2 2/2 2/2

Fig. 4. Comparison of original depth
point cloud (left) and noisy depth
point cloud after processing (right).
Radar points are in green and depth
points are in orange.

Fig. 5. Depth point clouds are sig-
nificantly affected in the rain (left)
and smoke (right) scenes.

backbone to extract image features. Regarding the Radar-Only
method, we substitute the CNN backbone with PointNet++
and the image input with the radar point cloud. In addition
to the RGB image and radar input, we also evaluate the
reconstruction from the depth point cloud, i.e. Depth-Only
method, to make a comprehensive analysis.
Metrics. To evaluate the performance of the reconstruction,
we employ commonly used metrics, Mean Per Joint Position
Error (MPJPE) and Mean Per Vertex Error (MPVE), which
quantify the average Euclidean distance between the prediction
and the ground truth for joints/vertices in each frame. For the
BEHAVE dataset, we additionally employ Procrustes Analysis
[76] MPJPE (PA-MPJPE) and MPVE (PA-MPVE) to evaluate
the alignment accuracy.

A. Reconstruction from mmWave

The point clouds generated by the mmWave radar are
usually very sparse, and contain many missing parts and noise
resulting from the multi-path effect. Particularly, with such
low-resolution point clouds, its ability to reconstruct the full
3D body is questioned. Our experiment results show that the
3D body can be reconstructed from the mmWave radar signals
in spite of the sparsity. The mean joint error and the mean
vertex error can reach 7cm and 9cm, which is comparable
with that from RGB images.

B. Robustness in Different Environments

As discussed in the Section I, each modality is constrained
by the limitations of its respective sensor. With the inherent
defects of each modality, its ability to individually reconstruct
the full 3D body in different environments is questioned.

Table III presents the quantitative results for methods with
different single-modality inputs. As can be observed from the
table, each modality possesses unique strengths and limita-
tions. For instance, the RGB image modality (Images-Only
in Table III) performs well in basic scenes, while it naturally
degrades significantly in poor lighting and occlusion scenarios.
The mean vertices error reaches 14.1cm and 16.6cm. On the
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Fig. 6. Average number of points of depth and radar data within a radius of
0.15m around different joint locations.

other hand, with the susceptibility to the point cloud sparsity
and random missing points, the mmWave modality (Radar-
Only) performs poorly in basic scenes, but is relatively robust
to be resistant to the effects of adverse environments. Its mean
joint error achieves the best performance (8.3cm) in the smoke
scene. The depth modality (Depth-Only) provides dense depth
information and demonstrates a relatively high precision in
basic scenes, but is severely impacted by rain and smoke.
The mean vertices error in the smoke scene reaches 15.1cm.
Therefore, fusing multiple single-modality inputs to combine
their complementary strengths is beneficial to improve the
performance of 3D body reconstruction.

C. Challenges of Reconstruction from mmWave

Though mmWave exhibits robustness in different adverse
weather conditions, there still exists a gap (about 3 cm for
mean joint error) from the depth point clouds in normal
scenarios. By examining the failure cases of the reconstruction
from the mmWave radar, the reasons for these failures may
be attributed to sparse point clouds and large missing parts.
(1) Sparsity of radar points clouds (see the input radar
point clouds in Fig. 4): each frame of the mmWave radar
only contains about 1k human points (at a distance of 3-5
m) due to the bandwidth and antennas of the Arbe Phoenix
radar while a depth image contains up to 200k. Fig. 6 (a)
presents the average number of points of depth and radar
data within a radius of 0.15m around different joint locations.
It can be observed that the number of points of the depth
point cloud is much greater than that of the radar point cloud
for all joints. (2) Large missing parts: some parts of the
human body, such as the head and limbs, may not have radar
points due to the specularity of mmWave signals, as shown
in Fig. 4. These cases pose particular challenges different
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TABLE III
ERRORS (CM) OF DIFFERENT METHODS FOR 3D BODY RECONSTRUCTION IN DIFFERENT SCENES ON THE MMBODY DATASET. FOR THE TWO COLUMNS

OF EACH SCENE, THE FIRST COLUMN IS FOR JOINT ERROR AND THE SECOND VERTEX ERROR.

Scenes
Basic Scenes Adverse Environments

AverageLab1 Lab2 Furnished Rain Smoke Poor lighting Occlusion

Single Modality

Images-Only 4.1 5.5 4.0 5.3 5.4 6.8 5.9 7.4 8.5 11.2 9.9 14.1 11.3 16.6 7.0 9.6
Radar-Only 6.1 8.2 6.6 9.3 6.8 9.1 6.8 8.9 8.3 10.5 6.4 8.4 7.5 9.6 6.9 9.1
Depth-Only 3.1 4.0 3.3 4.3 3.7 4.4 6.1 7.8 10.9 15.1 4.1 4.7 9.5 14.2 5.8 7.8

Depth-Only-128 3.8 4.8 3.7 4.7 4.2 5.0 5.7 6.9 10.2 14.2 4.8 5.5 9.8 14.7 6.0 8.0
Preprocessed-Depth-1024 5.6 6.8 4.4 5.7 4.7 5.7 7.4 10.1 11.1 14.6 5.5 6.6 9.5 14.2 6.9 9.1
Preprocessed-Depth-512 5.8 7.1 4.7 5.7 5.1 6.2 6.7 9.1 10.7 15.0 5.8 6.8 9.5 14.1 6.9 9.1
Preprocessed-Depth-128 6.0 7.4 5.2 6.4 5.3 6.7 6.5 8.7 11.5 15.7 6.1 7.5 9.6 14.1 7.2 9.5

METRO [42] 4.9 7.0 4.4 6.4 6.5 8.8 7.2 9.4 8.4 11.6 13.6 17.9 19.1 26.0 9.2 12.5
CLIFF [77] 4.0 5.4 3.9 5.1 5.3 6.7 6.0 7.6 8.7 11.6 11.9 17.1 11.4 16.7 7.3 10.0

Zuo et al. [78] 8.0 10.6 8.8 11.5 8.5 12.1 9.2 11.2 8.7 12.2 8.4 11.8 9.5 12.3 8.7 11.7
P4Transformer [79] 7.8 9.5 8.0 9.9 8.2 10.4 8.8 10.2 8.7 10.0 7.5 9.5 10.7 14.1 8.5 10.5

mmWave-RGB Fusion

Points-RGB [19] 6.7 9.3 6.7 8.7 6.6 8.9 7.7 10.1 11.3 14.8 7.0 9.4 12.0 17.2 8.3 11.2
DenseFusion [52] 5.8 8.5 5.7 8.2 6.1 7.9 7.4 9.1 9.5 10.9 10.9 14.5 10.2 14.4 7.9 10.5

Points-Image-Feature [20] 4.4 6.1 4.2 5.4 6.0 8.0 6.4 8.5 8.0 10.9 13.0 19.6 18.4 20.7 8.6 11.3
DeepFusion [21] 5.1 6.5 5.7 6.8 6.7 8.2 7.0 8.2 9.6 12.1 13.4 16.9 13.3 17.8 8.7 10.9
TokenFusion [22] 4.3 6.0 4.0 5.3 5.6 7.0 6.0 7.4 9.4 12.9 11.3 15.7 10.8 14.9 7.4 9.9
ImmFusion (Ours) 4.1 5.4 3.7 4.7 5.2 6.4 5.6 6.8 7.6 9.8 6.8 9.0 7.8 11.0 5.9 7.4

from point clouds from the Kinect, thus more sophisticated
algorithms are required to deal with these challenges. To verify
the hypotheses, we conduct further analysis to investigate
the impact of missing points and sparsity on reconstruction
performance.
Sparsity. The number of points of the depth point cloud is
much greater than that of the radar point cloud for all joints as
shown in Fig. 6 (a), particularly in the lower body region where
radar points are mostly absent. To verify our hypotheses, we
downsample the depth point clouds to 128 points to validate
the impact of sparsity on the reconstruction performance. As
indicated in Table III, the errors of Depth-Only-128 are higher
than that of Depth-Only in the basic scenes. However, in
scenes with rain or smoke, the impact of the environment on
the Depth-Only-128 method is relatively small. As shown in
Fig. 5, the depth point clouds are significantly affected by rain
and smoke, resulting in a noisy subset of points remaining.
Therefore, the number of corrupted input points decreases after
downsampling, leading to an improvement of performance.
Missing Points. We conduct further analysis to investigate the
impact of missing points on reconstruction performance. We
preprocess the depth and radar point clouds to reduce their
gap on missing points and sparsity. Specifically, we utilize
ground truth joint locations to remove most of the depth point
clouds in the lower body region of the human body, and
then randomly remove points near 1-5 limb joints to simulate
the random missing characteristics of the radar point clouds.
Subsequently, the radar and remaining depth point clouds are
padded or downsampled to 1024 points as input. The average
numbers of points of depth and radar point clouds for every
joint are approximately close as shown in Fig. 6 (b).

The experimental results confirm our hypothesis. As re-
ported in Table III, compared to the Depth-Only method,
Preprocessed-Depth-1024 exhibits a significantly higher error
in all scenes. In addition to padding the depth point cloud to
1024 points, we also downsample it to 512 and 128 points
to investigate the impact of sparsity on performance. With
increasing sparsity of the point cloud, the reconstruction error
also increases. For instance, the error of the Preprocessed-

Depth-128 is as high as that of the Radar-Only method in the
lab1 scene.

In conclusion, our experiments demonstrate that: 1) it
is feasible to reconstruct detailed 3D human bodies from
mmWave point clouds; 2) compared with RGB and depth data,
mmWave radar demonstrates higher errors in the basic scenes
but exhibits stable performance in adverse weather conditions;
3) as revealed in our analysis, the sparsity and missing
points of point clouds can severely impact the reconstruction
performance. Meanwhile, these issues can also impair the
effectiveness of traditional point-based fusion methods as
demonstrated in Table V. Therefore, to accommodate these
challenges and push the performance border of 3D body
reconstruction further, we propose ImmFusion to combine the
mmWave point clouds and RGB images to robustly reconstruct
the 3D human body in various weather conditions. In contrast
to projection-based methods, our well-devised self-attention
Transformer modules can effectively fuse image and point
cloud features and predict precise human body mesh. The self-
attention mechanism allows the model to effectively select
informative token features from arbitrary input modalities,
and to dynamically fuse these features. The corrupted tokens
from one modality could possibly be remedied by others or
disregarded to accommodate the sparsity and missing parts of
mmWave point clouds.

VI. EXPERIMENTS AND ANALYSIS

To evaluate our proposed fusion method, we conduct exper-
iments on our collected mmBody dataset and the other public
multi-modal human dataset, BEHAVE [80], to demonstrate its
adaptability. To be fair, all the models are implemented using
Pytorch and are trained on an Nvidia GeForce RTX 3090.
We train all the networks for 50 epochs from scratch with an
Adam optimizer and an initial learning rate of 0.001. The loss
weights of λ and µ in our experiments are 1000 and 100.

A. Experimental Results for ImmFusion

Fig. 7 shows the reconstructed meshes from ImmFusion for
different poses and subjects in the different scenarios. Overall,
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Fig. 7. Qualitative results. Each row represents an adverse weather scene (rain,
smoke, poor lighting, and occlusion) and each column shows the reconstructed
mesh, respectively.

the reconstructed meshes for most samples are close to the
ground truth. Table III summarizes the main results of different
fusion models tested on the mmBody dataset. Compared with
existing fusion solutions and baselines, our approach can
better exploit the complementary nature of two modalities: in
addition to eliminating the negative effects of one modality on
the other one, it also enhances the performance of one single
modality by utilizing the complementary feature of the other.
Comparison with Single-Modality Methods. To demonstrate
the effectiveness of our proposed fusion method, we compare
ImmFusion with approaches using single-modality input. In
addition to the methods implemented using the ImmFusion
pipeline, we also evaluate SOTA single-modality methods on
our dataset, including image-based methods METRO [42] and
CLIFF [77], as well as point-based methods by Zuo et al. [78]
and P4Transformer [79]. Experimental results demonstrate
that ImmFusion is able to integrate strengths and mitigate
defects of two modalities effectively. As shown in Table III,
the average of mean joint errors and mean vertex errors of
ImmFusion can reach as low as 5.8cm and 7.4cm, decreasing
by more than about 1cm and 2cm from that of Images-Only
or Radar-Only methods in Table III. Furthermore, ImmFusion
achieves better accuracy than the other SOTA single-modality
methods across all scenes, illustrating that ImmFusion can
dynamically select preferable information from mmWave point
cloud and RGB images. Particularly in poor lighting and
occlusion scenes where the RGB camera fails, ImmFusion
can work robustly as the mmWave radar emits active signals
in the mmWave frequency range, which are independent of
external light conditions and can penetrate through occlusions.
Meanwhile, ImmFusion can effectively overcome the sparsity
and missing points issues of the radar data in the basic scenes.
Comparison with Point-Level Fusion Methods. We con-
ducted a comparative study between ImmFusion and point-
level fusion methods, i.e. Points-RGB [19], DenseFusion [52],
and Points-Image-Feature [20], which are implemented by
augmenting point clouds with RGB values and image features.
Results show that the intuitive fusion approach of Points-RGB
yields minimal accuracy improvement in basic scenes and
even performs worse than single-modal methods in adverse

TABLE IV
RESULTS (MM) ON THE BEHAVE [80] DATASET.

Methods MPJPE ↓ MPVE ↓ PA-MPJPE ↓ PA-MPVE ↓

Mesh Graphormer [43] 65.35 83.81 39.23 64.42
VoteHMR [36] 63.34 72.28 40.33 52.25
CHORE [81] - - - 55.80

CONTHO [82] - - - 49.90
ImmFusion (Ours) 54.56 72.11 38.68 51.53

TABLE V
PERFORMANCE OF DIFFERENT FUSION METHODS FOR RGB IMAGES AND

DEPTH (AND NOISY) POINT CLOUDS ON THE BEHAVE DATASET [80].
NOISY KINECT DEPTH IS DOWNSAMPLED KINECT DEPTH POINT CLOUDS

WITH MISSING POINTS (SEE SECTION V FOR THE PROCESSING).

Methods
Image w/ Kinect Depth Image w/ Noisy Kinect Depth

MPJPE ↓ MPVE ↓ MPJPE ↓ MPVE ↓

Points-Image-Feature [20] 62.34 82.12 75.01 (21% ↑) 96.52 (17% ↑)
DeepFusion [21] 59.64 76.14 70.73 (20% ↑) 88.28 (16% ↑)
TokenFusion [22] 56.24 74.23 79.83 (41% ↑) 95.14 (28% ↑)
ImmFusion (Ours) 54.56 72.11 58.72 (7% ↑) 76.12 (5% ↑)

scenes. This can be mainly attributed to the limited exploration
of inter-modality interactions. Issues like severe sparsity and
missing points of radar point cloud and deficiency of RGB
images in adverse environments can not be well settled in
this fusion way. On the other hand, DenseFusion and Points-
Image-Feature methods take a step further in integrating multi-
modal features, resulting in some accuracy improvement in
basic scenes. However, the inferior image features in severe
scenes cannot be effectively constrained, leading to a signifi-
cant degradation in performance.
Comparison with LiDAR-Camera Fusion Methods. We also
compare ImmFusion with the state-of-the-art fusion methods
DeepFusion [21] and TokenFusion [22]. DeepFusion exhibits
inferior performance compared to ImmFusion in all scenarios.
This can be mainly attributed to the lack of global features,
which leads to reduced global interactions during the fusion
stage. Regarding TokenFusion, it has been observed to exhibit
suboptimal performance in challenging environments. We sus-
pect the reason that TokenFusion aims to discard unimportant
token features among Transformer layers, which is ineffective
in incorporating the single-modality streams at the end of the
model, which ultimately leads to unfavorable results as shown
in Fig. 7. Furthermore, compared to the other two fusion
methods, ImmFusion demonstrates superior robustness in poor
lighting and occlusion scenes. Specifically, the mean joint
errors of ImmFusion in these scenes only increase by about
3cm compared to the same scenes without poor lighting and
occlusion. For reference, the errors of DeepFusion increase by
about 8cm, and TokenFusion increases by about 7cm.
Performance on the Other Dataset. We further validate
ImmFusion on the public BEHAVE [80] dataset, and the
results are summarized in Table IV and Table V. The BEHAVE
dataset is a challenging large-scale human-object interactions
dataset that presents difficulties such as object occlusions and
variations in background environments. As this dataset does
not provide the mmWave data, we utilize the depth point cloud
as the input of the point stream. We compare ImmFusion with
the state-of-the-art single-modality reconstruction methods,
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TABLE VI
ABLATION STUDY ON THE MMBODY DATASET.

Methods
Basic Scenes Adverse Environments

AverageLab1 Lab2 Furnished Rain Smoke Poor Lighting Occlusion

ImmFusion-ResNet [83] 4.6 6.1 4.2 5.6 5.6 7.6 6.1 7.5 8.8 11.7 7.0 9.5 8.6 12.1 6.4 8.6
ImmFusion-CLIPResNet [84] 4.1 5.4 3.8 5.0 5.3 7.0 5.2 6.2 8.4 10.3 6.7 8.8 8.1 11.3 6.0 7.8
ImmFusion-PointNeXt [85] 3.9 5.3 3.7 4.8 4.8 6.0 5.0 6.0 7.1 9.4 6.2 8.8 7.7 10.5 5.5 7.3

ImmFusion-w/o-DR 4.1 5.4 3.7 4.7 5.1 6.0 5.7 6.9 7.5 9.6 7.2 9.3 8.0 11.2 5.9 7.7
ImmFusion-w/o-GC 4.2 5.5 3.8 4.9 5.3 6.5 5.8 6.9 7.7 10.2 7.0 9.5 8.8 12.7 6.1 8.0
ImmFusion-w/o-LF 4.9 6.5 4.7 6.0 6.0 7.8 6.7 8.1 8.5 10.9 10.9 15.5 10.4 14.4 7.4 9.9

ImmFusion-w/o-MMM 4.1 5.7 3.8 5.0 5.3 7.0 6.0 7.2 7.9 10.1 9.7 13.6 10.7 14.1 6.8 9.0
ImmFusion-FD 4.1 5.4 3.8 4.9 5.2 6.4 5.7 6.9 7.7 9.9 7.2 9.7 10.3 12.8 6.3 8.0

ImmFusion-w/o-GIM 4.1 5.5 3.7 4.8 5.3 6.6 6.1 7.3 7.7 9.7 7.6 9.5 9.6 14.9 6.3 8.3
ImmFusion 4.1 5.4 3.7 4.7 5.2 6.4 5.6 6.8 7.6 9.8 6.8 9.0 7.8 11.0 5.8 7.6

Mesh Graphormer [43], CHORE [81], CONTHO [82], and
VoteHMR [36]. We also evaluate other fusion methods, i.e.
Points-Image-Feature [20], DeepFusion [21], and TokenFusion
[22] on this dataset. As we can see in Table IV, ImmFusion
achieves lower errors compared to the single-modality and
other fusion methods, which demonstrates its effectiveness
in combining information from image and depth modalities.
Additionally, ImmFusion can handle the fusion with noisy
point clouds much more effectively compared with other
traditional LiDAR-Camera fusion methods. As demonstrated
in Table V, when other fusion methods are applied to sparse
point clouds with large missing points, their performances
deteriorate rapidly. In contrast, ImmFusion decreases slightly.
Computational Overhead. Our model consumes affordable
computational resources and can achieve real-time perfor-
mance. The total parameter count of ImmFusion is 228.3M
and the running speed can achieve 14.6 fps.

B. Ablation Study

We conduct comprehensive ablation studies on different
backbones, DR, GC, local features (LF), MMM, feature
dropout (FD), and GIM on the mmBody dataset.
Ablation on Different Backbones. We study the behavior of
extracting global and local features by using different modality
backbones. We use the original ResNet-50 [83] and ResNet-50
pre-trained using CLIP [84] (CLIPResNet) for the image back-
bone and PointNeXt [85] for the point backbone. In Table VI,
we observe that ImmFusion achieves inferior performance
when using the original ResNet-50. However, after pre-training
with numerous vision-language data, ImmFusion-CLIPResNet
achieves competitive results. Additionally, utilizing the supe-
rior point backbone PointNeXt can also bring improvements.
Effectiveness of Dimension Reduction MLP. Due to the
non-parametric approach our ImmFusion employs, FTM needs
to process a large number (775) of input tokens. DR MLP
reduces the training parameters while improving performance
in adverse environments as demonstrated in Table VI.
Effectiveness of Graph Convolution. Despite the proficiency
of Self-Attention in extracting long-range dependencies, it
demonstrates less efficiency in capturing fine-grained infor-
mation within intricate data structures like 3D meshes [43].
GC in our proposed network can effectively model inter-

TABLE VII
ABLATION STUDY ON THE MASK RATIO.

Mask Ratio MPJPE ↓ MPVE ↓

10% 6.1 7.9
30% 5.8 7.6
50% 6.0 7.8

actions between joints and vertices. ImmFusion outperforms
ImmFusion-w/o-GC in most scenes.
Effectiveness of Local Features. The local features, which
directly affect the quality and details, play a very important
role in reconstruction tasks. To analyze the effectiveness of
the local features, we compared the results of the original
ImmFusion with its variation ImmFusion-w/o-LF, in which
the cluster features and grid features are removed from the
input of FTM. As indicated in Table VI, the mean errors of
ImmFusion-w/o-LF are obviously greater than ImmFusion.
Effectiveness of Modality Masking Module. An important
question is whether MMM is valid. The results of single-
modality methods, i.e. Images-Only and Points-Only in Ta-
ble III report that RGB images have better accuracy than
mmWave point clouds in the basic scenes due to the high reso-
lution. Therefore, the training set only consisting of basic data
would force the Transformer module to pay more attention
to the image modality, which leads to a rapid decline of the
performance in the poor lighting and occlusion scenes. Clearly,
MMM eliminates the bias of training data and significantly
improves the performance in extreme scenes as the result of
ImmFusion-w/o-MMM demonstrates. We further compare our
masking strategy with dropout at the feature level. We can see
that ImmFusion achieves better results since MMM enforces
the Transformer module to lean more attention on the effective
modality to select helpful features. We train several models
with varying maximum masking ratios to choose the best one
and the optimal proportion is 30% as shown in Table VII.
Effectiveness of Global Integrated Module. In ImmFu-
sion, GIM serves as a mixer to integrate global features of
mmWave and RGB input. Instead of naive element-wise addi-
tion or channel-wise concatenation, GIM contains learnable
parameters to control the weights of global features from
different modalities. Among all types of scenes in Table VI,
ImmFusion-w/o-GIM merely outperforms ImmFusion a lit-
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tle in the smoke environment, where the valid information
proportion of RGB v.s mmWave is balanced, misleading the
model to select useless features from the global feature. In
other situations, especially in the poor lighting and occlusion
scene, ImmFusion-w/o-GIM clearly underperforms compared
with ImmFusion, proving the importance of GIM.

VII. CONCLUSIONS AND LIMITATIONS

In this paper, we introduce ImmFusion, a multi-modal
fusion model which combines mmWave and RGB signals for
robust all-weather 3D human body reconstruction. In addition
to the good results in basic scenes, ImmFusion shows great
robustness in severe environments like rain, smoke, poor
lighting, and occlusion due to the effectiveness of the attention
mechanism and the Modality Masking Module. To evaluate
our method, an automatic capture and annotation system is
built up with multiple sensors. We collect a large-scale multi-
modal 3D body reconstruction dataset and close the gap of no
available public datasets to study the problem of reconstructing
the 3D human body from multi-view multi-modal inputs in
different scenes. Experimental results suggest that ImmFusion
can efficiently fuse the information of mmWave and RGB
signals. In addition, we investigate various fusion approaches
and demonstrate that ImmFusion outperforms single-modality,
point-level, and LiDAR-camera fusion methods in all basic
scenes and the majority of adverse environments.

Though with the masking module, our model has gained
a certain level of generalization ability: it exhibits relatively
high error in furnished, smoke, and occlusion conditions on
the mmBody dataset due to sensor defects and data imbal-
ance. Contrastive and predictive multi-modal pre-training are
promising solutions. Additionally, constrained by the data
collection, we could only capture data in the indoor scenes
with fixed sensors. With the advancement of autonomous
driving and mobile robotics, information fusion from various
modalities with dynamic multiple viewpoints in outdoor envi-
ronments is an important problem. We leave the extension of
our method to such scenarios as future work.
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