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Abstract—In this paper, the tracking performance limitation of
networked control systems (NCSs) is studied. The NCSs is consid-
ered as continuous-time linear multi-input multi-output (MIMO)
systems with random reference noises. The controlled plants
include unstable poles and non-minimum phase (NMP) zeros.
The output feedback path is affected by multiple communication
constraints. We focus on some basic communication constraints,
including additive white noise (AWN), quantization noise, band-
width, as well as encoder-decoder. The system performance is
evaluated with the tracking error energy, and used a two-degree
of freedom (2DOF) controller. The explicit representation of
the tracking performance is given in this paper. The results
indicate the tracking performance limitations rely to internal
characteristics of the plant (unstable poles and NMP zeros),
reference noises (the reference noise power distribution (RNPD)
and its directions) and the characteristics of communication
constraints. The characteristics of communication constraints
include communication noise power distribution (CNPD), quan-
tization noise power distribution (QNPD), and their distribution
directions, transform bandwidth allocation (TBA), transform
encoder-decoder allocation (TEA), and their allocation directions,
and NMP zeros and MP part of bandwidth. Moreover, the
tracking performance limitations are also affected by the angles
between the each transform NMP zero direction and RNPD
direction, and these angles between each transform unstable
poles direction and the direction of communication constraint
distribution/allocation. In addition, for MIMO NCSs, bandwidth
(there are not identical two channels) always can affects the di-
rection of unstable poles, and the channel allocation of bandwidth
and encode-decode may be used for a feasible method for the
performance allocation of each channels. Lastly, a instance is
given for verifying the effectiveness of the theoretical outcomes.
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I. INTRODUCTION

IN the past ten years, there has been growing concern about

NCSs. It is well accepted that NCSs take both aspects,

control and communication, into consideration simultaneously

[1]–[8]. They have been applied in many important areas, e.g.,

industry control applications, automobiles, factory automation,

intelligent traffic, etc. Nowadays, the main issues addressed

include modeling and stabilization analysis of NCSs with

communication restrictions, including data-rate constraints [9],

[10], bandwidth restrictions [11], [12], time-delays [13], [14],

quantization [15], [16], packet losses [17], [18] as well as com-

munication noises [19], [20]. Notwithstanding the spectacular

achievements of these studies, even more thought-provoking

cases of best accomplishable tracking capability in certain

network condition still require to be further analyzed. The

analysis of the control system mainly includes two aspects:

stability and performance [21]. The NCSs as a special type of

control systems, its optimal performance naturally becomes a

new challenge, and it is crucial to analyzing how communi-

cation constraints affect its performance. This will inspire the

design of the NCSs.

Performance limitations as an important branch of control

system performance research [21], [22], it has a lot of results

in the control community [21], [23]–[25]. The essential feature

of control systems is the intrinsic accomplishable performance

limitations, which remains a constant no matter what the

controller is adopted. The limitation is dependent on the inner

characteristics of the plant (like NMP zeros and unstable

poles). For classical control systems, an exact expression of

performance limitations has been obtained in [23]. After that,

there are also many meaningful extended works, e.g., Wang et

al. [26] analyzes the tracking capability of linear time-invariant

(LTI) systems. It is shown that the properties of the plant

are affected by NMP zeros, unstable poles, their directions.

In addition, it has shown that the 2DOF controller would

bring improvement of the performance in the control systems.

However, the typical best control capability is attained as ide-

alize the condition of the information communicating between

controllers and plants in [21], [23]–[26]. Some additional

essential issues still remain unsolved, e.g., best design and

accomplishable tracking capability of NCSs with communi-
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cation restrictions, (e.g. quantization, bandwidth, time-delays,

data packet and channel noise).

Whether the performance of the system can be achieved is

a crucial problem in control system design. The performance

limitation, as the lower bound of the performance that the

system can achieve, has important guiding significance for the

system design [22]. For a NCSs, the optimal performance

is affected by the control system and network constraints

[19]. How to obtain the quantitative relationship between the

optimal performance and the internal characteristics of the

control system or the various network constraints, becomes

the key to the performance limitation of NCSs. With the

development of NCSs, the study of its performance limitations

has attracted extensive interest from researchers. In the last

ten years, the scientists have been expanding the studies in

the tracking performance limitation to NCSs. For example, in

terms of signal to noise ratio (SNR) capability limitation, the

SNR restricted communication paths are considered in [10],

[27], which demonstrates the restrictions of the quality of

stabilizing an unstable plant. The restriction is considered to be

over a SNR limited path by finite-dimensional LTI feedback.

Then, Rojas et al. [28] extended the results, he studies the SNR

fundamental limitation as considering the control channels of

a LTI feedback loop with an additive coloured Gaussian noise

(ACGN) channel. In the optimal performance of NCSs, the

tracking capability of continuous-time, MIMO, LTI systems

with a channel noise in output feedback are put into con-

sideration [29]. The results demonstrate the possible way the

AWGN worsens the tracking performance. Goodwin et al. [30]

presents a summary listing recent achievements in NCSs when

underlying the additive noise model methodology, also point

to several open problems in this area. Guan et al. [11] works

on the case of the tracking performance limitations of MIMO

NCSs with ACGN channel in downlink channel. The tracking

performance limitations are investigated in [31] and [32] for

NCSs in the feedback path with packet dropouts or time

delay, which theses papers are concerned with performance

limitations are determined by the internal structure of the plant

and communication parameters, and a novel design method

of controller is obtained by the frequency-domain analysis.

Then, the case of performance limitations of MIMO LTI

systems with communication noises and packet dropouts has

been promoted [33]. In [34], the impact of adding additional

energy constrained control inputs to the plant is studied on

the accomplishable closed loop performance. Li et al. [35]

investigated the system’s stabilizability as well as tracking

performance under the additional white noise (AWN) channel

power constraint. Qi et al. [36] give a fundamental conditions

of stabilizability. In recent years, we have also obtained some

optimal performance results of NCSs, such as upstream and

downstream channels with constraints [37], channel energy

constaint [38], some novel trade-off factors and constraint

channels [39], discrete-time(DT) systems with quantization

[15], AWGN fading channels [40], SIMO systems with packet-

dropouts [41]. In spite of the significant progress on optimal

performance studies, there are still many gaps in the optimal

performance of NCSs.

Tracking performance limitations issues have been studying

about ten years in regard to finite-dimensional, LTI NCSs.

Some existing literatures above tracking performance limita-

tions of NCSs concentrate upon simulated path models empha-

sizing specific fields of the wholesome case, such as [11], [15],

[30], [35], [41], [42] etc. However, multiple communication

constraints are often encountered in general practice, and the

performance limitations problem may become more complex

and realistic. We focus on understanding the inherent relation-

ship between multiple communication constraints and system

performance limitations for MIMO NCSs, and explore whether

communication constraints have a coupling relationship when

jointly affecting performance. Moreover, we further analyze

the difference affects of performance limitations between SISO

NCSs and MIMO NCSs, and the influence when each channel

has different power distribution for MIMO NCSs. For the

networked communication constraints, we focus on some

basic network constraints in NCSs, including communication

noises, bandwidth, encode-decode and quantification, which

are generally considered to be always present when the

signals are communicated in the NCSs. They are different

from the network-induced communication constraints, such

as time delay, packet loss, and so on. Almost any input

signals are inevitably subject to random interference when

these signals are input a control system or when a control

system tracks a given reference signal in practice. Therefore,

interference noises of the reference signal (or call reference

noises) is considered as the input signal in our control system

performance model. This is also widely used method when

studying control system performance in recent years, such as

[11], [15], [29], [35], [41]–[43] et al. In addition, we adopt

the 2DOF controller, which can be recognized as a controller

structure that achieves better performance [23], [26], because

this kind of controller structure has more design freedom.

In this paper, we investigates the tracking performance

limitations for MIMO NCSs with multiple communication

constraints, and the plant has unstable poles and NMP zeros.

The contributions and significance lie in the following several

folds:

(i) Multiple basic communication constraints are considered

simultaneously (including communication noises, bandwidth,

encode-decode and quantification). They are inherent factors

in network communication different from network-induced

factors (such as delay and packet loss).

(ii) The relationship among tracking performance limita-

tions, internal characteristics of the plant, reference noises

and communication constraints are presented in quantitatively.

Tracking performance limitations depend on characteristics of

plant (unstable poles, NMP zeros and their directions), and

network constraints (the reference noise power distribution,

the communication noise power distribution, the quantization

noise power distribution, and their power distribution direc-

tions, and the transform encoder-decoder allocation and trans-

form bandwidth allocation, and their allocation directions, and

the NMP zeros of bandwidth and the MP part of bandwidth).

(iii) Different from the classic performance limitation re-

sults, the results indicate the performance limitations of MIMO

NCSs are also related to the angles between NMP zeros

of plant and reference noise power allocation, the angles
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between unstable poles of plant and communication constraint

allocation direction, which can greatly affect the performance

limitations. Furthermore, the performance limitations are given

under some different communication constraint typical combi-

nations. In addition, the NMP bandwidth model in this paper

is considered as a more universal model.

This paper is organized as follows. Section II provides

a overall subsequent development with a preliminary back-

ground. Section III defines the network control model and

formulates the case of the tracking performance. Section IV

first studies the best accomplishable tracking performance for

SISO NCSs, and then investigated the tracking performance

limitations for MIMO NCSs, while Section V carried out some

numerical simulations. This paper is concluded in Section VI.

II. PRELIMINARIES

The notations used are demonstrated as follows. z̄ denotes

complex conjugate of any complex number z. uT denotes

the transpose of a vector u, and conjugate transpose of u is

denoted by uH . Let E(·), Tr(·) and Re(·) denote expectation

operator, trace operator and real part operator, correspondingly.

A is used to express any matrix, AT , AH and A† denote

the transpose, the conjugate transpose and the right-inverse of

matrix A, respectively. diag{zi} denotes a compatible dimen-

sion diagonal matrix, zi represents the corresponding element

of the i-th row and the i-th column. We suppose all of the

vectors, together with matrices have compatible dimensions.

In addition, C− := {s : Re(s) < 0}, indicates the open left

halves of the complex plane, while C+ := {s : Re(s) > 0}
indicates the right correspondingly. And we refer | · | to the

absolute value or modulus, ‖ · ‖ to the Euclidean norm, ‖ · ‖F
to the Frobenius norm. Moreover, the class of all stable and

the matrices of proper rational transfer function are written

as RH∞. In regard to the nonzero vectors α and β, we

give a description as cos∠(α,β) = |αHβ|/(‖α‖‖β‖), where

∠(α,β) represents the main angle of the two subspaces which

are spanned by α and β. The Hilbert Space is written as

L2 := {P : P (s) measurable in C0,

‖P‖22:=
1

2π

∫ ∞

−∞

‖P (jω)‖2Fdω < ∞},

when we define the inner product as follows:

〈P1, P2〉 :=
1

2π

∫ ∞

−∞

Tr{PH
1 (jω)P2(jω)}dω.

Denote L2 which admits an orthogonal decomposition (OD)

into two subspaces

H2 :=
{

P :P (s) analytic in C+,

‖P‖22:= sup
σ>0

1

2π

∫ ∞

−∞

‖P (σ + jω)‖2Fdω < ∞
}

,

and

H⊥
2 :=

{

P :P (s) analytic in C−,

‖P‖22:= sup
σ<0

1

2π

∫ ∞

−∞

‖P (σ + jω)‖2Fdω < ∞
}

.

Obviously, when it comes to any P1 ∈ H2 as well as P2 ∈
H⊥

2 , < P1, P2 >= 0.

III. PROBLEM FORMULATION

The feedback structure is provided by Fig. 1, in which G
acts as the plant. General bandwidth communication chan-

nels (B-C Channels) [27] are considered. This paper models

the bandwidth restriction by the low pass transfer function

F = diag{fi}, (i = 1, 2, · · · ,m) (look up to, e.g., [28] as well

as the notes wherein). [K1 K2] represents a 2DOF, while Q
represents uniform quantizer, A represents the term encoder,

and A−1 represents the decoder, respectively (e.g., [30], [35]

and the references wherein). Let A = diag{λ1, λ2, · · · , λm}.

It is suggested that signal r indicates the reference noises,

signal q indicates the quantization noises, and signal n in-

dicates the channel noises (or called communication noises),

accordingly. Assume that the quantizer does not overload, and

the quantized values of the outputs will be treated as an input

affected by an additive noise [44]. The quantization noise

q = [q1, q2, · · · , qm]T in dissimilar channels are statistically

self-reliant and are not related to one another, and we consider

qi, (1 ≤ i ≤ m) as a procedure of an AWN which distributed

uniformly over [−∆i/2, −∆i/2]. ∆i is the quantization inter-

val as is known to all, and ∆i = 2Mi/(2
bi−1), where bi is the

amount of bits which is distributed for channel transmission.

[−Mi,Mi] is the overall quantiser range, while considering

Mi ∈ R providing that the chance of overflow is small. The

variance of qi can be defined σ2
qi = ∆2

i /12 as reference [45].

The path model is generated by the bandwidth-limited (BL)

AWN path. We’ve noticed that a uniformly distributed AWN

is a well-recognized system of methods which is widely used

in signal processing literatures [46]. It is considered that the

channel communication noises n = [n1, n2, · · · , nm]T and

the reference noises r = [r1, r2, · · · , rm]T are zero mean i.i.d.

additional white noises (GWN) which obtains power spectral

density (PSD) of σr
2
i and σn

2
i .

Remark 1: We assume the reference noises are GWN,

because we believe the reference noises are always exist at

the signal input port, such as the reference [35] also adopt

similar signals. If it is assumed that this signals only occur

or exist when the reference signals are input, it can be set

as step random reference noises [11], and the corresponding

conclusions can be deduced in parallel.

In addition, these signals are transmitted in different chan-

nels so that they are not related to one another when being

analyzed from statistical data. And when it comes to a scalar

channel, this paper gives E{|r|2} = σ2
r , E{|n|2} = σ2

n

and E{|q|2} = σ2
q . Assuming the signals r,n and q are

uncorrelated. Let

U = diag{σri}, (i = 1, 2, · · · ,m), Φr = ‖U‖2F ,

V = diag{σni}, (i = 1, 2, · · · ,m), Φn = ‖V‖2F ,

Q = diag{σqi}, (i = 1, 2, · · · ,m), Φq = ‖Q‖2F ,

and it is instructive to represent the reference noise power

distribution direction (PD-Direction), communication noise

PD-Direction and quantization noise PD-Direction by unitary

vectors

υr = [σ2
r1 , σ

2
r2 , · · · , σ

2
nm

]T /Ψr,

υn = [σ2
n1
, σ2

n2
, · · · , σ2

nm
]T /Ψn,
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υq = [σ2
q1 , σ

2
q2 , · · · , σ

2
qm ]T /Ψq,

where Ψr = ‖UHU‖F ,Ψn = ‖VHV‖F ,Ψq = ‖QHQ‖F .
The Ψr, Ψn and Ψq are called the reference noise power

distribution square-sum block (PD-SSB), the communication

noise PD-SSB and the quantization noise PD-SSB. In addition,

let

ΨF =
∥

∥[|f1|
−2, |f2|

−2, · · · , |fm|−2]T
∥

∥

F
,

ΨA =
∥

∥[λ−2
1 , λ−2

2 , · · · , λ−2
m ]T

∥

∥

F
,

υF = [|f1|
−2, |f2|

−2, · · · , |fm|−2]T /ΨF ,

υA = [λ−2
1 , λ−2

2 , · · · , λ−2
m ]T /ΨA,

ΨF and ΨA are called bandwidth transform allocation square-

sum block (TA-SSB) and encoder-decoder TA-SSB. υF and

υA are called bandwidth transform allocation direction (TA-

direction) and encoder-decoder TA-direction, they are the

unitary vectors.

w

Fig. 1: The MIMO Plant Control Scheme.

In this paper, we use the integrated squared error (ISE)

criterion to analyze the tracking performance:

J =: E
{

‖e(s)‖
2
2

}

= E
{

‖y(s)− r(s)‖
2
2

}

. (1)

where e(s) is the tracking error.

Our relevant work is ascertaining the accomplishable perfor-

mance limitations through stabilizing the compensators in K,

which is indicated by J∗ := infK∈K J. The related controlled

plant includes NMP zeros as well as unstable poles.

In this paper we resort to factorizations, and consider that

the coprime factorization of G and FG can be provided by

G = NM−1 = M̃−1Ñ , (2)

FG = NFM
−1
F = M̃−1

F ÑF , (3)

where N, Ñ ,NF , ÑF ,M, M̃,MF , M̃F ∈ RH∞, NF = FN ,

MF = M . Because F is stable, M̃F and M̃ have the same

NMP zeros, but the NMP zeros direction has changed due

to the impact of the bandwidth model. NF , ÑF ,MF , M̃F are

satisfied with the double Bezout identity [47]:

[

X̃ −Ỹ

−ÑF M̃F

] [

MF Y
NF X

]

= I, (4)

for X,Y, X̃, Ỹ ∈ RH∞. As is known to all, by the the

Youla parameterization [37], [48], it is also possible to denote

every stabilizing two-degree-of-freedom (2DOF, or called Two-

parameter) compensator K . The set of all stabilizing 2DOF is

characterized by

K :=
{

K : K = [K1 K2] = (X̃ −RÑF )
−1

[

Q Ỹ −RM̃F

]

, Q,R ∈ RH∞

}

, (5)

where Q and R are the controller’s parameters, which can be

free design.

The unstable poles as well as the NMP zeros of G(s)
are written as pk (k = 1, . . . , np, and zk (k = 1, . . . , nz ,

respectively. We use sk, (k = 1, . . . , nf to denote NMP zeros

of F (s). And pk sk and zk are simple. Owning to F (s) is a

diagonal matrix, it is well known that F (s) can be factorized

as

F (s) = Lf(s)Fm(s) = Fm(s)Lf (s), (6)

where Fm(s) stands for the MP part of F (s), and Fm(s)

are diagonal, denote Fm(s) = diag[f
(m)
1 , f

(m)
2 , · · · , f

(m)
m ]T .

Lf(s) is all pass factor, and it is reliable for us to write it as

Lf(s) :=
∏nf

i=1 Lf i(s), where

Lf i(s) :=[ηfi Ufi]

[ s−si
s+s̄i

0

0 I

] [

ηH
fi

UH
fi

]

, (7)

where Ufi is a matrix whose columns, accompanied by ηfi,

creates an orthonormal basis of the corresponding Euclidean

space, i.e., ηfiη
H
fi + UfiU

H
fi = I .

Remark 2: The NMP bandwidth model in this paper is

a more universal model in performance analysis of MIMO

NCSs. Some literatures have studied some special cases.

For example, the stable and minimum bandwidth model is

considered in [42] in SISO NCSs, the SNR performance

limitations of SISO system are analyzed with NMP bandwidth

model in [27], [28], the NMP bandwidth model is studied in

[11] with same constraints in each channels of MIMO NCSs.

Furthermore, we factorize coprime factors N(s), M̃(s) and

M̃F (s) as

N = LNm, M̃ = M̃mB̃, (8)

NF = LFNFm, M̃F = M̃FmB̃F (9)

in which Nm and NFm represents the MP part of N and

FN , and M̃m represents the MP part of M̃ , M̃Fm represents

the MP part of M̃F (s) respectively. L,LF , B̃ and B̃F are

all pass factors. And it is possible to write for L, B̃ and B̃F

as follows. L :=
∏nz

i=1 Li, B̃ :=
∏np

i=1 B̃np−(i−1), B̃F :=
∏np

i=1 B̃Fnp−(i−1), and

Li(s) :=[ηi Ui]

[ s−zi
s+z̄i

0

0 I

] [

ηH
i

UH
i

]

, (10)

B̃i(s) :=[ωi Wi]

[ s−pi

s+p̄i
0

0 I

] [

ωH
i

WH
i

]

, (11)

B̃Fi(s) :=[ω̂i Ŵi]

[ s−pi

s+p̄i
0

0 I

] [

ω̂H
i

ŴH
i

]

, (12)

where ηiη
H
i + UiU

H
i = I , ωiω

H
i + WiW

H
i = I and

ω̂iω̂
H
i + ŴiŴ

H
i = I , respectively. ηi, ωi and ω̂i are called

zero direction, pole direction and pole bandwidth interference
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direction (BI-Direction), respectively. And, ηi, ωi and ω̂i are

unitary vectors. Let

Ψη̌i
=
∥

∥[η2i1, η
2
i2, . . . , η

2
i1]

T
∥

∥

F
, η̌i = [η2i1, η

2
i2, . . . , η

2
i1]

T /Ψη̌,

Ψω̌i
=
∥

∥[ω2
i1, ω

2
i2, . . . , ω

2
i1]

T
∥

∥

F
, ω̌i = [ω2

i1, ω
2
i2, . . . , ω

2
i1]

T /Ψω̌,

Ψ ˇ̂ωi
=
∥

∥[ω̂2
i1, ω̂

2
i2, . . . , ω̂

2
i1]

T
∥

∥

F
, ˇ̂ωi = [ω̂2

i1, ω̂
2
i2, . . . , ω̂

2
i1]

T /Ψ ˇ̂ω,

where Ψη̌i
,Ψω̌i

and Ψ ˇ̂ωi
are called zero direction square-sum

block (DSSB), pole DSSB and pole bandwidth interference

direction square-sum block (BI-DSSB), respectively. η̌i, ω̌i

and ˇ̂ωi are called zero transform direction (T-Direction),

pole T-Direction and pole bandwidth interference transform

direction (BI-T-Direction), respectively. Obviously, η̌i, ω̌i and
ˇ̂ωi are unitary vectors.

Lemma 1: Make L and B be determined similarly by (10)

and (11), and zi and pi with multiplicity 1, for any X,Y ∈
RH∞, the equations

L−1Y =T +

nz
∑

i=1

LOi(zi)(L
j
i )

−1LIi(zi)Y (zi),

XB̃−1 =S +

np
∑

i=1

X(pi)B̃Ii(pi)(B̃
j
i )

−1B̃Oi(pi)

hold for some S, T ∈ RH∞, where

LIi(s) =

i−1
∏

k=1

Lk(s), LOi(s) =

nz
∏

k=i+1

Lnp−k(s),

B̃Ii(s) =

i−1
∏

k=1

B̃i−k(s), B̃Oi(s) =

np
∏

k=i+1

B̃np+(i+1−k)(s).

Proof: Similar to the proof of lemme 3 in our work [11]

and combined partial fraction expansion technique, it is easy

to prove.

The prerequisite work of our research is assuming that the

plant transfer function matrix is right invertible. The premise is

indispensable for the purpose of achieving asymptotic tracking

[26], [35]. We look into 2DOF and calculate the tracking

error energy by an ISE criterion. The minimal tracking error

caused by the reference noise, additive communication noise,

quantization noise, bandwidth and encoder-decoder in the

feedback channel are given in the following sections.

IV. TRACKING PERFORMANCE LIMITATIONS OF

NCSS

This paper firstly investigates the tracking performance

limitations of SISO NCSs with multiple communication con-

straints. The controlled plant is unstable and NMP system.

And then, we further investigated the performance limitations

of MIMO NCSs with multiple communication constraints.

And the influences of various communication constraints on

performance limitations is analyzed and discussed. In this

paper, when it comes to a scalar channel, we donate f =

f1, λ = λ1, f
(m) = f

(m)
1 .

A. Tracking Performance Limitations of SISO NCSs with

Multiple Communication Constraints

In this section, in order to clearly examine the influences

between tracking performance limitation and system charac-

teristics, network constraints, the reference noise on system

performance, the SISO NCS is considered. Considering the

Fig. 2, we can get the corollary as follows.

w

Fig. 2: The SISO Plant Control Scheme.

Theorem 1: Considering the SISO system, the NCS struc-

tural model is demonstrated in Fig. 2. The reference signal r,

the communication noise n and the quantization noise q are

ought to be a zero mean i.i.d. GWN with PSD σr
2, σq

2 and

σn
2. The encoder A = λ. Assume that pk (k = 1, . . . , np)

are unstable poles of G(s), and zk (k = 1, . . . , nz) and

sk (k = 1, . . . , nf) are NMP zeros of G(s) and F (s),
respectively. Then,

J∗ = 2σr
2

nz
∑

i=1

Re(zi) +

np
∑

i,j=1

W i,j
sysW

i,j
net,

where

W i,j
sys =

4Re(pi)Re(pj)

p̄i + pj

nz
∏

k=1

p̄i + zk
p̄i − z̄k

np
∏

k=1,k 6=i

p̄i + pk
p̄i − p̄k

×

nz
∏

k=1

pj + z̄k
pj − zk

np
∏

k=1,k 6=j

pj + p̄k
pj − pk

W i,j
net =λ−1

(

(

σn/f̄
m(pi) + σq

)

(σn/f
m(pj) + σq)

)

×

nf
∏

k=1

p̄i + sk
p̄i − s̄k

nf
∏

k=1

pj + s̄k
pj − sk

.

Proof: The transfer function of n, q and r to y is

constructed as follows y = GK1r+GK2λ
−1[n+F (q+λy),

then y = (1−GK2F )−1G
(

K1r +K2λ
−1(n+ Fq)

)

.
On the basis of the coprime factorization (2)(3) and the

Youla parameterization (5), it is possible to rewrite the above-

mentioned transfer function as follows:

y =G(1 −K2FG)−1
(

K1r +K2λ
−1(n+ Fq)

)

=G
(

1− (X̃ −RÑF )
−1(Ỹ −RM̃F )NFM

−1
F

)−1

×
(

(X̃ −RÑF )
−1Qr + (X̃ −RÑF )

−1

× (Ỹ −RM̃F )λ
−1(n+ Fq)

)
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=GMF

(

(X̃ −RÑF )MF − (Ỹ −RM̃F )NF

)−1

×
(

Qr + (Ỹ −RM̃F )λ
−1(n+ Fq)

)

.

By using the double Bezout identity (3), noting MF = M we

have y = NQr +N(Ỹ −RM̃F )λ
−1(n+ Fq). On the basis

of the performance index (1) and r,n, q are uncorrelated, and

it can be designed M̃F = M̃ for SISO system, it follows that

J =E
{

‖y(s)− r(s)‖
2
2

}

= ‖(1−NQ)σr‖
2
2 +

∥

∥

∥
Nm(Ỹ −RM̃)λ−1(n+ Fq)

∥

∥

∥

2

2
.

we define

J1 = ‖(1−NQ)σr‖
2
2 , (13)

J2 =
∥

∥

∥
Nm(Ỹ −RM̃)λ−1(n+ Fq)

∥

∥

∥

2

2
. (14)

Because the controller parameters Q and R are indepen-

dently designable parameters, we have

J∗ = inf
K∈K

J = inf
Q∈RH∞

J1 + inf
R∈RH∞

J2.

First of all, for J1, noting equations (13), it holds that

J∗
1 = inf

Q∈RH∞

‖(1−NQ)σr‖
2
2

= inf
Q∈RH∞

∥

∥(L−1 − 1) + (1−NmQ))σr

∥

∥

2

2

Owning to L−1(0) = 1 and (L−1−1)σr ∈ H⊥
2 , and Q can be

select so that (I−N(0)Q(0))σr = 0, we have (1−NmQ)σr ∈
H2, then

J∗
1 =

∥

∥(L−1 − 1)σr

∥

∥

2

2
+ inf

Q∈RH∞

‖(1−NmQ)σr‖
2
2

Because Nm is MP part the coprime factor N , we can design

Q = N †
mσ−1

r , then infQ∈RH∞
‖(I −NmQ)σr‖

2
2 = 0. Thus,

J∗
1 =

∥

∥(L−1 − I)σr

∥

∥

2

2

=

nz
∑

i=1

∥

∥

∥

∥

2Re(zi)

s+ z̄i
σr

∥

∥

∥

∥

2

2

=2σr
2

nz
∑

i=1

Re(zi). (15)

Secondly, for J2, noting equations (6), (8) and (14), the

following equation holds

J2 =
∥

∥

∥
Nm(Ỹ −RM̃)λ−1σn

∥

∥

∥

2

2

+
∥

∥

∥
Nm(Ỹ −RM̃)λ−1f (m)σq

∥

∥

∥

2

2

=
∥

∥

∥
Nm(Ỹ B̃−1 −RM̃m)H

∥

∥

∥

2

2
.

where H = λ−1(σn
2 + |f (m)|2σq

2)1/2.

Using Lemma 1, we can obtain

J2 =

∥

∥

∥

∥

∥

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii(B̃

−1
i − B̃−1

i (∞))

× B̃−1
net,Oi +R1 −NmRM̃mH

∥

∥

∥

∥

∥

2

2

where

R1 = S +

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,IiB̃

−1
i (∞)B̃−1

net,Oi,

B̃net,Ii = B̃net,i−1(pi), B̃net,i−2(pi), · · · B̃net,1(pi),

B̃net,Oi = B̃net,np
(pi), B̃net,np−1(pi), · · · , B̃net,i+1(pi).

Since

S ∈ RH∞,
np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,IiB̃

−1
i (∞)B̃−1

net,Oi ∈ RH∞,

then R1 ∈ RH∞. Therefore, we can design R =

N †
mR1H

−1M̃
−1

m , then, we can obtain

J∗
2 =

∥

∥

∥

∥

∥

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii(B̃

−1
i − B̃−1

i (∞))

× B̃−1
net,Oi

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii

2Re(pi)

s− pi
B̃−1

net,Oi

∥

∥

∥

∥

∥

2

2

.

By Bezout identity (4) and equations (7)(10), we can get

Nm(pi)Y (pi) =Nm(pi)N
−1
F (pi)

=L−1(pi)L
−1
F (pi)(f

(m)(pi))
−1

=

nz
∏

k=1

pi + z̄k
pi − zk

nf
∏

k=1

pi + s̄k
pi − sk

(f (m)(pi))
−1.

Then, we can obtain

J∗
2 =

∥

∥

∥

∥

∥

np
∑

i=1

(

nz
∏

k=1

pi + z̄k
pi − zk

np
∏

k=1,k 6=i

pi + p̄k
pi − pk

)

2Re(pi)

s− pi

×

(

(f (m)(pi))
−1H(pi)

nf
∏

k=1

pi + s̄k
pi − sk

)
∥

∥

∥

∥

∥

2

2

=

np
∑

i,j=1

W i,j
sysW

i,j
net,

where

W i,j
sys =

4Re(pi)Re(pj)

p̄i + pj

nz
∏

k=1

p̄i + zk
p̄i − z̄k

np
∏

k=1,k 6=i

p̄i + pk
p̄i − p̄k

×

nz
∏

k=1

pj + z̄k
pj − zk

np
∏

k=1,k 6=j

pj + p̄k
pj − pk

,

W i,j
net =λ−2

(

(f̄m(pi))
−1σn + fm(pi)σq

)

×
(

(fm(pj))
−1σn + f̄m(pj)σq

)

×

nf
∏

k=1

p̄i + sk
p̄i − s̄k

nf
∏

k=1

pj + s̄k
pj − sk

,

and W i,j
sys is called the performance plant part, W i,j

net is called

the performance network part.



7

In order to analyze the system performance more conve-

niently, we denote

fnet(pj) = λ−1
(

(fm(pj))
−1σn + f̄m(pj)σq

)

nf
∏

k=1

pj + s̄k
pj − sk

,

Obviously, W i,j
sys = f̄net(pj)fnet(pj), we call fnet(·) the

network factor. This completes the proof.

Remark 3: Theorem 1 clearly demonstrates that the quantita-

tive relationship between tracking performance limitations and

system characteristics (NMP zeros and unstable poles), net-

work constraint characteristics (the power of communication

noises and quantization noises, the NMP zeros of bandwidth

and the MP part of bandwidth), the power of reference noises.

Remark 4: Theorem 1 also demonstrates that we can com-

pletely divide the tracking performance limitation J∗
2 part of

SISO NCSs into two parts: the plant part W i,j
sys and the network

part Wsys. Moreover, J∗
2 part is independent of network

constraints. If we want to detect the influences of various

network constraints on the tracking performance limitation

of the SISO NCSs, we just need to explore the relationship

between the W i,j
net (or fnet(·)) and every network constraints.

Moreover, there are some interesting results. Firstly, if any of

the NMP zeros of bandwidth model is very close to one of

the system’s NMP zeros, the tracking performance limitation

will be greatly deteriorated. Secondly, encoder-decoder and

the NMP zeros of bandwidth will affect W i,j
net globally, while

the MP part of bandwidth has the opposite effect between

communication noise and quantization noise. This means that

we can adjust the impact proportion of communication noise

and quantization noise in performance limitations by the MP

part of bandwidth, and this method is feasible in practice

because bandwidth and encoder-decoder can be manually

designed or intervened. In addition, the MP part of bandwidth

and the NMP zeros of plant is coupling, this will make this

method has more extensive features. If the bandwidth and

quantization noise are not considered, this results can degraded

to the situation in [35].

Remark 5: If there aren’t the communication noise and

the quantization noise of NCSs, the tracking performance

limitation degenerate into 2σr
2
∑nz

i=1 Re(zi). This means that

the effects of encoder-decoder and quantization noise can be

offset by using two degrees of freedom control in the mean

square sense. And, we will insight into the fact that there is

the same result in MIMO case from the next section.

B. Tracking Performance Limitations of MIMO NCSs with

Multiple Communication Constraints

Similar to the proof in Subsection IV-A, it is easy to obtain

J =E
{

‖y(s)− r(s)‖
2
2

}

= ‖(I −NQ)U‖
2
2 +

∥

∥

∥
N(Ỹ −RM̃F )A

−1V
∥

∥

∥

2

2

+
∥

∥

∥
N(Ỹ −RM̃F )A

−1FQ
∥

∥

∥

2

2
. (16)

Let

J1 , ‖(I −NQ)U‖
2
2 , (17)

J2 ,

∥

∥

∥
N(Ỹ −RM̃F )A

−1V
∥

∥

∥

2

2

+
∥

∥

∥
N(Ỹ −RM̃F )A

−1FQ
∥

∥

∥

2

2
. (18)

This following theorem gives us tracking performance lim-

itations for the feedback configuration which is shown in Fig.

1. The MIMO plants is considered with distinct unstable poles

and NMP zeros.

Theorem 2: Considering the structure model as Fig. 1,

and suppose that the reference noises r = [r1, r2, . . . , rm]T ,

the quantization noises q = [q1, q2, . . . , qm]T as well as the

communication noises n = [n1, n2, . . . , nm]T should be zero

mean i.i.d. GWN with PSD σr
2
i , σq

2
i and σn

2
i , respectively.

The model F of the bandwidth restriction with nf distinct

NMP zeros sk (k = 1, . . . , nf ). It is assumed that pk (k =
1, . . . , np) and zk (k = 1, . . . , nz) are unstable poles and NMP

zeros of G(s), respectively. Then,

J∗ = 2

nz
∑

i=1

Re(zi)ΨrΨη cos∠(υr, η̌i)

+

np
∑

i,j=1

4Re(pi)Re(pj)

p̄i + pj
hH
i fH

i fjhjg
H
j gi,

where

gi = B̃−H
net,Oiγi, hj = B̃−1

net,Ijγj ,

fj =

nz
∏

k=1

(

I +
2Rezk
pj + zk

ηjη
H
j

)

fnet,j ,

fnet(pj) = F−1(pj)H(pj).

Proof: With the use of the equations (16) as well as (17)-

(18) and referring that the parameter matrices Q and R are

mutually independent, we have

J∗ = inf
K∈K

J

= inf
Q∈RH∞

J1 + inf
R∈RH∞

J2

= J∗
1 + J∗

2 .

Firstly, for J1, we have

J∗
1 = inf

Q∈RH∞

‖(I −NQ)U‖22

= inf
Q∈RH∞

∥

∥

∥

(

(L−1 − I) + (I −NmQ)
)

U
∥

∥

∥

2

2

Owning to L−1(0) = I and (L−1− I)U ∈ H⊥
2 , and Q can be

select so that (I−N(0)Q(0))U = 0, we have (I−NmQ)U ∈
H2, then

J∗
1 =

∥

∥(L−1 − I)U
∥

∥

2

2
+ inf

Q∈RH∞

‖(I −NmQ)U‖22

Because Nm is an outer matrix function, we have

inf
Q∈RH∞

‖(I −NmQ)U‖
2
2 = 0.
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Thus,

J∗
1 =

∥

∥(L−1 − I)U
∥

∥

2

2

=

nz
∑

i=1

‖(I − Li)U‖
2
2

=

nz
∑

i=1

∥

∥

∥

∥

2Re(zi)

s+ z̄i
ηiη

H
i U

∥

∥

∥

∥

2

2

=2

nz
∑

i=1

Re(zi)

m
∑

j=1

σ2
rjη

2
ij

=2

nz
∑

i=1

Re(zi)ΨrΨηi
cos∠(υr , η̌i), (19)

where Ψr and Ψηi
are reference noise PD-SSB and zero

DSSB, υr and η̌i are reference noise PD-direction and zero

transform direction.

Secondly, for J2, the following equation holds

J2 =
∥

∥

∥
Nm(Ỹ −RM̃F )H

∥

∥

∥

2

2
, (20)

where

H(s) = diag{hi(s)}, (i = 1, 2, · · · ,m), (21)

hi(s) = λ−1
i (σ2

ni + |fi(s)|
2σ2

qi)
1/2,

then, we have

J2 =
∥

∥

∥
NmỸ H −NmRM̃FH

∥

∥

∥

2

2
. (22)

Furthermore, noting H(s) is a diagonal, MP and stable transfer

matrix, then M̃F (s)H(s) and M̃F (s) will have the same

NMP zeros, but the corresponding NMP zero direction will be

changed by the networked constraints. Thus, we can perform

an all-pass factorization

M̃F (s)H(s) = M̃net(s)B̃net(s), (23)

where B̃net(s) is the allpass factor and M̃net(s) is the MP

part of M̃F (s)H(s).
We may construct Bnet(s) as

B̃net(s) =

np
∏

i=1

B̃net,i(s), B̃net,i(s) := I −
2Re(pi)

s+ p̄i
γiγ

H
i ,

(24)

The unitary vector γi = [γi1, · · · , γim]T depends on the

network factor H(s).
Then

J2 =
∥

∥

∥
NmỸ HB̃−1

net −NmRM̃net

∥

∥

∥

2

2
. (25)

According to Lemma 1, it is easily obtained that

NmỸ HB̃−1
net =S +

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)

× B̃−1
net,I(pi)B̃

−1
net,i(s)B̃

−1
net,O(pi),

where S ∈ RH∞ and

B̃net,Ii = B̃net,i−1(pi), B̃net,i−2(pi), · · · B̃net,1(pi),

B̃net,Oi = B̃net,np
(pi), B̃net,np−1(pi), · · · , B̃net,i+1(pi).

Therefore, we have

J2 =
∥

∥

∥
S +

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii

(

B̃−1
net,i(s)

− B̃−1
net,i(∞)

)

B̃−1
net,Oi +

Ns
∑

i=1

Nm(pi)Ỹ (pi)H(pi)

× B̃−1
net,IiB̃

−1
net,i(∞)B̃−1

net,Oi −NmRM̃net

∥

∥

∥

2

2

=
∥

∥

∥
R1 +

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii

(

B̃−1
net,i(s)

− B̃−1
net,i(∞)

)

B̃−1
net,Oi −NmRM̃net

∥

∥

∥

2

2
, (26)

where

R1 =S +

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,I(pi)

× B̃−1
net,i(∞)B̃−1

net,O(pi). (27)

Noting

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii

(

B̃−1
net,i(s)

− B̃−1
net,i(∞)

)

B̃−1
net,Oi ∈ H⊥

2

Then, from equation (26), we can get

J∗
2 = inf

R∈RH∞

∥

∥

∥

∥

∥

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii(B̃

−1
net,i(s)

− B̃−1
net,i(∞))B̃−1

net,Oi +R1 −NmRM̃net

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii(B̃

−1
net,i(s)

− B̃−1
net,i(∞))B̃−1

net,Oi

∥

∥

∥

∥

∥

2

2

+ inf
R∈RH∞

∥

∥

∥

∥

∥

R1 −NmRM̃net

∥

∥

∥

∥

∥

2

2

.

Noting equation (27), we have

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii

× B̃−1
net,i(∞)B̃−1

net,Oi ∈ RH∞,

and S ∈ RH∞. This means that R1 ∈ RH∞. And Nm is

right reversible, Mnet is reversible. Therefore, we can design

R = N
†

mR1M̃
−1
net,



9

where N †
m is right inverse of Nm. Accordingly, the optimal

performance

J∗
2 =

∥

∥

∥

∥

∥

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii(B̃

−1
net,i(s)

− B̃−1
net,i(∞))B̃−1

net,Oi

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

np
∑

i=1

Nm(pi)Ỹ (pi)H(pi)B̃
−1
net,Ii

2Re(pi)

s− pi

× γiγ
H
i B̃−1

net,Oi

∥

∥

∥

∥

∥

2

2

. (28)

Noting the double Bezout identity (4), it yields that

I = X̃(pj)MF (pj)− Ỹ (pj)NF (pj)

= −Ỹ (pj)NF (pj).

Then, we can obtain

Ỹ (pj) = −N †
m(pj)L

−1(pj)F
−1(pj)

Moreover, noting equation (10), and F is diagonal matrix.

Therefore

J∗
2 =

np
∑

i,j=1

4Re(pi)Re(pj)

p̄i + pj
γH
i B̃−H

net,IiH
H(pi)Ỹ

H(pi)N
H
m (pi)

×Nm(pj)Ỹ (pj)H(pj)B̃
−1
net,Ijγjγ

H
j B̃−1

net,OjB̃
−H
net,Oiγi

=

np
∑

i,j=1

4Re(pi)Re(pj)

p̄i + pj
γH
i B̃−H

net,Iif
H
net(pi)

× L−H(pi)L
−1(pj)fnet(pj)B̃

−1
net,Ijγj

× γH
j B̃−1

net,OjB̃
−H
net,Oiγi (29)

where

fnet(pj) = F−1(pj)H(pj) (30)

and we define fnet(·) as the network factor. This completes

the proof.

Remark 6: Different from the SISO systems, we can find

out the tracking performance limitations of MIMO systems

have some new features from theorem 2. Firstly, the network

constraints and the system characteristics are more closely

coupled. However, the network factor fnet can completely

contain the impact of all network constraints fnet apart from

the effects of bandwidth on the zero directions of plant.

Secondly, the tracking performance limitations are uniquely

determined by the NMP zeros and unstable poles of the plant,

direction of NMP zeros and unstable poles, and network con-

straints. In addition, fnet demonstrates that this performance

limitations depends not only on the power distribution of the

reference noises, communication noise and quantization noise,

and the allocation of bandwidth and encoder-decoder, but also

on NMP zeros of bandwidth and MP part of bandwidth.

Remark 7: The performance J∗
1 part in theorem 2 also

demonstrates that these angles between the reference noise

PD-Directions and each NMP zero direction will affect the

tracking performance limitations. And, these varies from 0◦ to

90◦. If the transform NMP zeros directions and the reference

noises power distribution are all orthogonal (i.e., their angles

∠(υr, η̌i) = 90◦), the NMP zero and reference signal will not

have effects on the tracking performance limitations of NCSs.

Additionally, if the plant is MP, the reference signal tracking

won’t be interfering with the performance limitations. If

our communication constraints only consider communication

noises, our results can degenerate to similar results in [29].

Remark 8: As can be seen from γi in theorem 2,

bandwidth allocation will affect each directions of unsta-

ble poles. In addition, from (21)(30), we have fnet(pj) =

L−1
f (pj)diag{λ−1

k (f̄
(m)
k (pj)σ

2
nk+f

(m)
k (pj)σ

2
qk)

1

2 }. This equa-

tion demonstrates that the allocations of MP part of bandwidth

and encoder-decoder in each channel will affect corresponding

channel of network factor, but UMP zero part of bandwidth

may be affect all of channel. In addition, bandwidth also affect

each directions of unstable poles. Moreover, since bandwidth

and encode-decode can be adjusted by manual intervention, it

is a feasible method allocate different channel performance

of the system by adjust the allocation of bandwidth and

encode decode. This may be a viable direction for performance

allocation research.

Furthermore, we analyze the circumstances where multiple

unstable poles may exist with parallel or orthogonal directions.

Corollary 1: As Fig. 1, the NCS considered here which is

based on the structural model is demonstrated. Suppose that

G(s) is minimum, and z is the NMP zero. The results are as

follows.

(a) Each directions of unstable pole of G(s) are parallel

with unstable pole direction ω, the tracking perfor-

mance limitation is

J∗ =

np
∑

i,j=1

4Re(pi)Re(pj)

(p̄i + pj)‖H−1(pi)ω̂‖2‖H−1(pj)ω̂‖2

× ω̂H
i H−H

i B̃−H
net,Iif

H
net,ifnet,jB̃

−1
net,IjH

−1
j ω̂j

× ω̂H
j H−1

j B̃−1
net,OjB̃

−H
net,OiH

−1
i ω̂i

where

B̃−1
net,Ii =

[

i−1
∏

k=1

pi + p̄k
pi − pk

− 1

]

ω̂ω̂H + I,

B̃−1
net,Oi =

[ np
∏

k=i+1

pi + p̄k
pi − pk

− 1

]

ω̂ω̂H + I.

(b) Each directions of unstable pole of G(s) are orthog-

onal, Suppose that the the directions are ωk (k =
1, . . . , np), then

J∗ =

np
∑

i=1

2Re(pi)

‖H−1(pi)ω̂‖4

× ω̂H
i H−H

i B̃−H
net,Iif

H
net,ifnet,iB̃

−1
net,IiH

−1
i ω̂i

× ω̂H
i H−1

i B̃−1
net,OiB̃

−H
net,OiH

−1
i ω̂i
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where

B̃−1
net,Ii =

i−1
∑

k=1

2Repi
pi − pk

ω̂kω̂
H
k + I,

B̃−1
net,Oi =

np
∑

k=i+1

2Repi
pi − pk

ω̂kω̂
H
k + I.

Proof: Let

γi =
H−1ω̂

‖H−1ω̂‖
.

From the theorem 2 and noting equation (24), it is easy to

prove.

Remark 9: Corollary 1 demonstrates that different zero

directions will result in different system performance, this

property is similar to the classic control systems [23]–[25].

For the purpose of providing more conceptual guidance into

this result, we take into consideration that there is one single

unstable pole p with steering vector ω as well as a simple NMP

zero z with steering vector η in the MP plant. In Theorem 1,

we can get the corollary as follows.

Corollary 2: As Fig. 1, the NCS considered here which is

based on the structural model is demonstrated. The reference

signal r = [r1, r2, . . . , rm]T with PSD σr
2
i . Suppose that p is

the unstable pole of MP plant G(s), and z is the NMP zero.

The results are as follows.

(a) If the quantization noise is not considered, i.e.,

q = 0, the tracking performance limitations can be

represented as follows

J∗ =2Re{p}ΨF (p)Ψ ˇ̂ω

cos∠(υF (p), ˇ̂ω)

‖AV−1ω̂‖2
.

Specially, when every channel have the same band-

width, then

J∗ =2Re{p}|f (m)(p)|−2

×

nf
∏

k=1

∣

∣

∣

∣

p+ s̄k
p− sk

∣

∣

∣

∣

2 ∑m
i=1 cos∠(ei, ω̂)

‖AV−1ω̂‖2
,

(b) If the communication noise is not considered, i.e.,

n = 0, the tracking performance limitations can be

represented as follows

J∗ =2Re{p}ΨF (p)Ψ ˇ̂ω

cos∠(υF (p), ˇ̂ω)

‖AQ−1F−1
m (p)ω̂‖2

.

(c) If the bandwidth is unrestricted, i.e., F = I , the

tracking performance limitations can be represented

as follows

J∗ =2Re{p}

∑m
i=1 cos∠(ei,ω)

‖H−1ω‖2
.

(d) If there are q = 0, A = I,, and every channel have

the same bandwidth, then

J∗ =2Re{p}|f (m)(p)|−2

nf
∏

k=1

∣

∣

∣

∣

p+ s̄k
p− sk

∣

∣

∣

∣

2

×ΨnΨγ̌ cos∠(υn, γ̌).

(e) If there are n = 0, A = I , i.e only the quantization

noise and bandwidth are considered for network’s

constraints, then

J∗ =2Re{p}

nf
∏

k=1

∣

∣

∣

∣

p+ s̄k
p− sk

∣

∣

∣

∣

2

ΨqΨγ̌ cos∠(υq, γ̌).

Proof: From the theorem 2 and noting equation (24)(28),

For (a), we can construct

γ =
AV−1ω̂

‖AV−1ω̂‖
. (31)

Then

J∗
2 =2Re{p}Tr

{

F−1(p)ω̂ω̂HF−H(p)

‖AV−1ω̂‖2

}

=2Re{p}ΨF (p)Ψ ˇ̂ω

cos∠(υF (p), ˇ̂ω)

‖AV−1ω̂‖2
, (32)

where υF (p) and ˇ̂ω are the bandwidth transform allocation

direction and transform pole directions, respectively. ΨF (p)
and Ψ ˇ̂ω are TA-SSB and BI-DSSB, respectively.

Specially, if the bandwidth is the same on each channel,

then, we have

J∗
2 =2f−2(p)Re{p}Tr

{

ω̂ω̂H

‖H−1ω̂‖2

}

=2Re{p}|f (m)(p)|−2

nf
∏

k=1

∣

∣

∣

∣

p+ s̄k
p− sk

∣

∣

∣

∣

2 ∑m
i=1 cos∠(ei, ω̂)

‖AV−1ω̂‖2
,

(33)

where ei is Euclidean coordinates, where the ith element is

equal to one and is the only nonzero entry.

For (b), similar we can construct

γ =
AQ−1F−1

m ω̂

‖AQ−1F−1
m ω̂‖

.

From the theorem 2 and noting equation (24), we can obtain

J∗
2 =2Re{p}Tr

{

F−1(p)ω̂ω̂HF−H(p)

‖AQ−1F−1
m (p)ω̂‖2

}

=2Re{p}ΨF (p)Ψ ˇ̂ω

cos∠(υF (p), ˇ̂ω)

‖AQ−1F−1
m (p)ω̂‖2

. (34)

For (c), similar we can construct

γ =
H−1ω

‖H−1ω‖
.

From equations (24), we can obtain

J∗
2 =2Re{p}Tr

{

ωωH

‖H−1ω‖2

}

=2Re{p}

∑m
i=1 cos∠(ei,ω)

‖H−1ω‖2
, (35)

where

H = diag{λ−1
i (σ2

ni + σ2
qi)

1/2.
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For (d), if there are q = 0, A = I , and when every channel

have the same bandwidth, then

J∗
2 =2

∥

∥

∥
F−1(p)V

2Re(p)

s− p
γγH

∥

∥

∥

2

2

=2Re{p}|fm(p)|−2

nf
∏

k=1

∣

∣

∣

∣

p+ s̄k
p− sk

∣

∣

∣

∣

2

ΨnΨγ̌ cos∠(υn, γ̌).

(36)

where

Ψγ̌ =
∥

∥[γ2
1 , γ

2
2 , . . . , γ

2
m]T

∥

∥

F
, (37)

γ̌ = [γ2
1 , γ

2
2 , . . . , γ

2
m]T /Ψγ̌ (38)

Ψγ̌ and γ̌ are called zero transform bandwidth interference

DSSB and zero transform bandwidth interference direction,

respectively.

For (e), if there are n = 0, A = I , and every channel have

the same bandwidth, then

J∗
2 =

∥

∥

∥
F−1(p)QFm(p)

2Re(p)

s− p
γγH

∥

∥

∥

2

2

=
∥

∥

∥
L−1(p)Q

2Re(p)

s− p
γγH

∥

∥

∥

2

2

=2Re{p}

nf
∏

k=1

∣

∣

∣

∣

p+ s̄k
p− sk

∣

∣

∣

∣

2

ΨqΨγ cos∠(υq, γ̌). (39)

From equations (19,32-39), we obtain the result of Corollary

1.

Remark 10: Corollary 2 gives the performance limitations

of some different combinations of network constraints when

there is only one single unstable pole and one single NMP

zero. The results demonstrates that not only, but also these

angles between BTA direction or Euclidean coordinates and

NMP zero direction may affect on the tracking performance

limitations. And, these angles between the the BN-CAD

and the transform direction of NMP zero direction also can

affect tracking performance limitations. Moreover, when only

the quantization noise and the bandwidth are considered for

network’s constraints, the bandwidth and the angle between

the QNPA direction and the transform direction of NMP zero

direction can affect tracking performance limitations, but the

bandwidth will just affect the direction of each NMP zero.

From theorem 2, equations (19) and (29), we can insight

into the reference noises only affects the part J∗
1 , while the

network constraints only affects the part J∗
2 in the performance

limitation. In order to understand the influence of the number

of poles and zeros on this network coupling performance

limitation part, the corollary 3 is given as follows.

Corollary 3: Considering the MIMO system, the NCS

structural model is demonstrated in Fig. 2. The reference

signal r, the communication path additive noise process n

and the quantization noise q are ought to be a zero mean i.i.d.

GWN with PSD σr
2, σq

2 and σn
2. The encoder A = λ. G(s)

is unstable and NMP plant. Then, this tracking performance

limitation can be given as follows.

(a) If zk (k = 1, . . . , nz) are NMP zeros of G(s), and

G(s) haven’t any unstable pole, then

J∗ =2

nz
∑

i=1

Re(zi)ΨrΨη cos∠(υr, η̌i)

(b) If zk (k = 1, . . . , nz) are NMP zeros of G(s), and

there is only one unstable pole p in poles of G(s),
then

J∗ =2

nz
∑

i=1

Re(zi)ΨrΨη cos∠(υr, η̌i)

+ 2Re(p)γHfH
netfnetγ

(c) If pk (k = 1, . . . , np) are unstable poles of G(s),
and G(s) haven’t any NMP zero, then

J∗ =

np
∑

i,j=1

4Re(pi)Re(pj)

p̄i + pj
γH
j B̃−1

net,OjB̃
−H
net,Oiγi

× γH
i B̃−H

net,Iif
H
net,ifnet,jB̃

−1
net,Ijγj

(d) If pk (k = 1, . . . , np) are unstable poles of G(s),
and there is only one NMP zero z in zeros of G(s),
then

J∗ =2Re(z)ΨrΨη cos∠(υr, η̌)

+

np
∑

i,j=1

4Re(pi)Re(pj)

p̄i + pj

(pi + z̄)(pj + z̄)

(pi − z)(pj + z̄)

× γH
i B̃−H

net,Iif
H
net,ifnet,jB̃

−1
net,Ijγj

× γH
j B̃−1

net,OjB̃
−H
net,Oiγi

Proof: The corollary is easy to prove from theorem 2.

Remark 11: There are some interesting results have been

demonstrated by corollary 3. If if G(s) haven’t any NMP

zero, J∗
1 will be equal to zero. This means we can offset

the impact of reference noise under means square sense by

2DOF compensator in this case. Similarly, if G(s) haven’t any

unstable pole, J∗
2 will be equal to zero. This means we also

can offset the impact of all network constraints under means

square sense in this situation by 2DOF compensator.

V. SIMULATION STUDIES

Given the plant G = (s− k)/((s+1)(s− p)), In consider-

ation of the encoder A = λ, (λ ≥ 1). Obviously, when k > 0
and p > 0, G(s) is NMP and unstable as well.

In this circumstances, the control scheme by Fig. 1 is

considered. The limited bandwidth is generated by the LTI

filter. Similar to [28], the bandwidth model is considered as

the low-pass Butterworth filter with order 1, and fc is cut-off

frequency.

The interaction of the unstable pole’s site and the tracking

performance limitations is illustrated in Fig. 3. And accord-

ingly the interaction of the site of the NMP zero and the

tracking performance limitations are shown in Fig. 4. Both

the simulations in Fig. 3 and Fig. 4 reveal that the tracking

performance limitations will have a tendency to be infinite if

k = 2 or p = 2 for the reason that pole-zero cancellation

happens, and we can conclude what is the same as [29]. As
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a whole, with the increase of the NMP zero or unstable pole,

the degree of influence on the deterioration of performance

is greater apart from than the area where the pole-zero can-

cellation is eliminated. Fig. 5 shows the optimal performance

which is constructed by using the channel bandwidth. With a

decrease in the usable bandwidth of the communication path, a

rise in the optimal performance needed to assure stabilizability

is generated accordingly, and similar conclusions can be found

in [11]. Fig. 3, Fig. 4 and Fig. 5 also indicate that the tracking

signal will deteriorate the system performance.
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Fig. 3: J∗ with respect to the plant’s unstable poles.
(k = 2, fc = 2, σn = 0.1, b = 9, λ = 2)
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Fig. 4: J∗ with respect to plant’s NMP zero.
(p = 2, fc = 2, b = 8, σn = 0.1, λ = 2)
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Fig. 5: J∗ with respect to channel’s bandwidth.
(k = 3, p = 2, σn = 0.1, b = 8, λ = 2)
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Fig. 6: J∗ with respect to quantization noise.
(k = 2, p = 3, fc = 2, σr = 0.1, λ = 2)

[σ
n
]

0
1

1

5

T
ra

ck
in

g 
pe

rf
or

m
an

ce
 [J

* ]

0.80.5

 [σ
r
]

10

0.6
0.4

0 0.2

λ=2
λ=3
λ=4

Fig. 7: J∗ with respect to communication noise and reference
noise. (k = 2, p = 3, fc = 2, b = 9)
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Fig. 8: J∗ with respect to quantization noise and reference noise.
(k = 2, p = 3, fc = 2, b = 9)

In Fig. 6, it is possible to examine the tracking limitations

subjected to quantisation error. For the quantiser level number

b consider a range between 1 and 15. From Fig. 6, we can

then venture that a 128-bits quantiser will almost recover the

infimal tracking performance without noticeable degradation

from the quantisation error. It will likewise be observed in

the case when it comes to applying a 16-bit quantiser, and

consequently, it is needed to prepare to conclude it nearly

a six times of the infimal tracking performance for criterion

of stabilizability. Fig. 7 and Fig. 8 show the effects of the

quantization noise and reference signal, the channel noise and
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reference signal. Two facts can be appreciated from Fig. 7

and Fig. 8. Firstly, the reference signal will degrade system

performance. The reference noise, channel noise and quanti-

zation noise will degrade the tracking performance. Secondly,

improving coding level can improve system performance.

VI. CONCLUSIONS

In this paper, the tracking performance limitations is in-

vestigated in an AWN channel with bandwidth restriction

while considering both reference noise and encode-decode.

And furthermore, we apply the ISE criterion to measure the

tracking performance. The explicit representations of tracking

performance limitation is obtained by the use of H2 optimiza-

tion technology. It is clearly that the performance limitations

for an optimal tracking problem is dependent on the NMP

zeros as well as the unstable poles and their directions. What’s

more, the allocations of the power of reference noises and

network communications (quantization noise, communication

bandwidth, encode-decode) also have certain effects on the

optimal tracking capability. Finally, a typical example shows

the effectiveness of our results. Continuous-time systems over

communication channels are focused on in this paper. It is

delightful that we can develop a discrete-time counterpart to

our outcomes accordingly and straightforwardly.

In the future, performance limitation allocation may be

considered as a promising research direction. This will be ana-

lyzed progressively for the time to come. And, it is also worth

exploring on performance limitations of distributed NCSs.

Additionally, revealing the way the tracking performance limi-

tations are influenced by network-induced constraints, such as

packet-dropouts and network delay, is also a meaningful and

important project. Our findings are enlightening and guiding in

the field of the design of control systems and communication

network.
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