Efficient Interactive Rendering of Detailed Models
with Hierarchical Levels of Detall

Ali Lakhia
The University of California at Berkeley
Email: | akhi a@ecs. ber kel ey. edu

Abstract— Recent acquisition systems, such as the one devel-
oped at the University of California at Berkeley, are capabé of

collecting large, detailed, highly textured models that sindard _,_J By
levels of detail (LOD) rendering techniques [15] cannot hadle
efficiently. %\,‘ 0

We propose an out-of-core rendering engine which applies #h
cost and benefit approach of the Adaptive Display algorithm
by Funkhouser and Squin [15] to Hierarchical Levels of Detail @) (b)

(HLODs) [8]. Unlike the Adaptive Display algorithm, we do nat
skip objects to maintain interactivity when many objects ae Fig. 1. (a) LOD of large object is too coarse near the camdralJging a
visible. higher detailed representation wastes detail that is faydwom the camera.

Funkhouser and Squin apply hysteresis by adding a penalty in
the benefit heuristics to discourage disturbing visual effets due

to fast switching of detail in the model. However, this penay h Il ch . d ibl
may not be sufficient if the user is moving around rapidly in that small changes in geometry and texture are perceptible

the scene. Instead, we have deve|0ped a more robust tempora"f seen from a certain vieW-pOint and at a certain distance.
hysteresis by retaining the amount of detail that is renderd over That is, rather than throwing away data, we should manage

a time period. _ _ the details in the model to solve interactive renderingdssu
We have implemented our rendering engine to run on a) gty the rendering system should maintain a specified

common personal computer with a standard graphics card. The . L2
engine is capable of visualizing, in both walk-through and #- frame rate while maintaining some coherency between frames

through mode, a detailed model of 114 city blocks comprised and minimizing toggles between discrete levels of detail.
of 7 million triangles and 720 million color pixels. Our enghe B. Oraanization
maintains a constant frame rate and limits excessive flickéng - V1Y

simultaneously. The paper is organized as follows. Section Il reviews

previous work in interactive visualization of large scendg

also explain why these approaches are not suitable to meet
Recently, an acquisition system has been developed at the goals. In Section Ill, we elaborate on our approach. We

Video and Image Processing Lab at Berkeley which is capalpleesent overall results in Section IV.

of rapidly acquiring large, detailed, 3D textured models of

urban environments from the ground level by using two 2D)

laser scanners and digital cameras [10], [11]. Far-rangeddi A- Representation of Data

Surface Map (DSM) data and aerial imagery is then registeredPolygon representations are most popular and their render-

with respect to the ground-based model and merged to creiaig is well optimized for most, if not all, graphic hardware

a single model [12]. architectures. Levels of detail (LODs), introduced by €lar
The final city model has over 114 complete blocks of buildn 1974, consist of a hierarchy of objects at ever simpler

ing facades, where none of the buildings share the geomatepresentations [3]. He used the appropriate represensati

or the texture with any other building. The total number dab improve interactivity.

triangles are about 7 million. The texture consists of over Rendering discrete LODs of large objects, however, are less

720,000,000 pixels or about 2160 MB of uncompressed datgtimal. For example, consider a slanted view of a building

An overview of the entire model can be seen in Fig. 2 (a). facade in Fig. 1. Note that a coarse representation of therbb)j

closeup in Fig. 2 (b) shows the details in the model. is ideal for the portion of the object that is far away from the

camera but is too coarse near the camera. Similarly, a highly

A. Goals detailed LOD provides good detail near the camera but wastes
The primary goal of this work is to address the renderingo many triangles for detail that is not perceptible froratth

of such large models on a common personal computer wittpasition.

standard graphics card and average amount of system memor@ne possibility to overcome this is to break large objects
The rendering system should scale with the size of tleto smaller pieces. However, smaller pieces restrict Bfinp

model without discarding any of the collected data. We argeation locally to that piece and yield substantially sulthopl

I. INTRODUCTION

II. PREVIOUSWORK

oN 2

(@ (b)

Fig. 2. (a) The entire city model, as seen through our rengesystem, has about 114 blocks. The grey regions are temight do not have corresponding
texture; (b) Closeup of one of the blocks in the city model.

LODs at the coarsest levels. The use of a hierarchy of LODs, no texture since it trades off geometric complexity with
or HLODs, was proposed to overcome suboptimal use txture management. However, this trade-off is less dasira
LODs [8]. for models, such as ours, with large texture maps.

Progressive meshes are a flexible representation of polygon
geometry that can be adaptively tailored to produce dilffBreB
LODs [17], [19], [25]. These LODs may also be made view-
dependent such that more detail is presented where it is mostlemory usage must be managed to prevent swapping of
observable by the user [18]. However, progressive mestees a@ata between memory and the hard disk. Funkhouser prevents
not able to fully utilize the graphics hardware acceleraio swapping by asynchronously prefetching data as needed [14]
since the geometry changes frequently. However, the prefetching algorithm cannot guarantee alvil

Geometry that is stored as triangle strips provides a compé#y of objects in memory and objects may pop into view after
representation that saves memory, reduces bandwidth, #mely are loaded.
takes less time to render [9]. This technique was improvedVaradhan and Manocha implement an out-of-core rendering
to generate triangle strips for LOD meshes [1] and in reaéngine using two processes: one that renders the scene, and
time [27]. Nonetheless, such techniques do not make rendek that prefetches HLODs [29]. However, if the prefetching
time output-dependent and rendering of large models requireuristics are miscalculated or the user moves unpredyctab
some management to ensure interactiveness. the rendering engine may stall while that HLOD is loaded.

Point-based rendering is yet another technique that scald®t is, the render time is dependent on the loading time of
well with complexity [20], [24]. Hybrid approaches have heean object.
developed that use both polygons and points as renderindhe details of the model must also be managed to limit
primitives [2], [4] to efficiently use large flat surfaces andhe load of the graphics pipeline and to ensure interagtivit
creases. However, these algorithms exploit minimal giephiFunkhouser and Séquin use a heuristic to determine tieeafati
hardware acceleration. cost and benefit of each object at each of its LODs [15]. They

Dachsbacher et al. proposed a way to convert a hieraradyuate the graphics pipeline load management problem to the
of points and polygons into a linear list that could then bmultiple choice knapsack problem, and offer an approxiomati
rendered quickly by graphics hardware with minimal CPUtb the optimal solution [15]. However, they employ a simple
load [5]. The trade-off with this approach is that hieracethi 2-level LOD hierarchy that is inefficient for large, detaile
culling cannot be performed since parent-child relatigmsh objects.
lost in a sequential list. Maciel and Shirley use a hierarchy of LODs and imposters.

Height fields are often used for terrain visualization [7]They traverse the hierarchy in a bottom-up fashion [22],
[21], [23], [28]. However, our city model has detailed biilg and thus, the complexity of their algorithm &(N) with
facades as well as aerial data. Thus, our model cannot easflgpect to the total number of nodes. This limits scalabilit
be represented as height fields and these strategies arelastly, their hysteresis implementation worsens theimia
applicable to our problem. rate dramatically.

Maciel and Shirley introduced the use of image-basedErikson et al. traverse the hierarchy top-down and use
“impostors” to replace the underlying 3D geometry [22] and screen-space error metric to choose which HLODs are
their idea was refined by others [6], [26]. Such an approacéfined [8]. However, the refinement process does not dyrectl
works well for highly detailed polygonal models with littleconsider the cost of each refinement and can result in signifi-

Data Management

cantly non-optimal use of render tirte3he polygon budget is

simply based on previous frame render times, which can lead
to frequent switching of HLODs between successive frames@ g @ g @
C. Other Approaches

Wand et al. suggest a novel rendering algorithm that is
output sensitive [30]. They use a randomized Z-buffering
algomhm that ChO_OSGS dynamlca”y from a Se.t of random% 4. (a) A set of triangles before split; (b) cutting plaiseused to create
surface sample points to render the scene. Their data &t Ygk sets of triangles that are shown separated for clarigw Nertices are
the same geometry repeated numerous times to demonsteatged on the plane; (c) The split triangles are re-tritatgd.
their approach with a high triangle count.

(@) (b) (©

IIl. PROPOSEDAPPROACH .
A. Model Preparation

Our experimental tests show that texture size is largely non . L . . .
P gely The city model is is split up into blocks that typically

linear in relationship with the time taken to render an objec . :
. - corresponds to one side of a city block. For each bldgk,
Therefore, our approach is to manage texture indirectly b X L T
efficiently managing the geometry that is rendered in ea(\%e generate the least detailed HLQody, by simplifying it
using Qslim Simplication Software [16] so that the block has

frame. : T -
We choose to use HLODs to represent our model becauilssiredTri triangles. Therefore, the simplification factor is:

as mentioned previously, they are more efficient than discre simplificationniog, — numT'riy

LODs. Also, discrete HLOD nodes better utilize graphics CdesiredTri

hardware acceleration and optimization techniques sudisas

play lists. HLODs also allow hierarchical culling, subsially s peing processed. The original texture data is down-sadnpl
reducing CPU an_d GPU load. _ by this simplification factor as well.

Our approach is to generate an HLOD hierarchy from_the Next, we definerjoyeiracior as the ratio of the number of
model, followed by pre-processing to reduce computatioffngles and size of texture between two successive levels
during rendering. As shown in Fig. 3, our rendering enging the hierarchy. To create the next level in our hierarchy,
consists of a rendering and a loading thread. The renderyglg)ddH’ we simplify the original block's triangle mesh and

thread traverses the HLOD hierarchy to render each frame §yyn-sample texture by a simplification factor computedifro
selecting a front that is then sent to the graphics pipeldre. o previous factor:

traversal, each node’s priority is calculated and maiwighim

Here,numTri, is the number of triangles in the block that

simplificationniod
d

a priority queue. The loading thread queries the prioritgugi simplificationnioa,,, =
and asynchronously pre-fetches those nodes with the Highes ClevelFactor
priority and unloads the nodes deemed least important. We also create;...;ractor — 1 CUttiNg planes perpendicular

These are discussed in more detalil in the sections belowo the longest dimension of the block that run from one end
of the bounding box to the other end.

- We apply each cutting plane to a block in order to separate
HLODs on «LDadHLOD{ '-Tohad'”g Fpr%;'ingTg%s its triangles into two sets, depending on which side of the
disk rea plane the vertices fall. Vertices that form triangles asrtise

cutting plane are split into 3 smaller triangles by introitigc
Queue

two vertices at the intersection of the two edges and théngutt
plane. This technique, illustrated in Fig. 4, minimizescksa

HLOD patries that appear when HLODs at different levels are next to each
other.

This division step yieldscjepeiractor Pi€CES, Where each
piece corresponds to a node in the HLOD hierarchy. The

Update
HLOD status

Rendering
Thread

Input:

HLOD

Hierarchy T,ﬁgg:

Render

[o> division and simplification process is recursively repdata
Graphics Pipeline each piece with a smaller simplification factor until thetfac
becomes less than 1.

The end result is a hierarchy where the top most node
Fig. 3. Overview of the rendering engine architecture. is most simplified and represents the entire block. The next
level hascieveiractor pi€ces that collectively represent the
parent. That is, each node in this level has more detail but
Consider an example where 4 candidates for refinement ailatdgsand represents an increasingly smaller portion of the entioekl
one of them has a slightly higher screen-space error. Ifréfined candidate . . .
This relationship holds all the way to the leaf nodes that are

consumes the entire triangle budget while using the saméeuof triangles) ‘ -
as the other 3 replacements combined, then we get a subabptofution. most detailed but contain the smallest piece of the block.

hiod, C. Rendering Thread

The rendering thread recursively traverses nodes in the
hierarchy in a top-down, breadth-first manner to render each
frame. Since we need not visit all the nodes in the hierarchy,

the running time is dependent on the target render time for
F F F one frame and the number of objects in the scene.
Bl q . ﬂ . ﬂ Breadth-first traversal ensures that all siblings are ederi
before their children. If a node is visible and not loaded in

Fig. 5. HLODs for a single block. The nod€od, is most coarse whereas ; ikl ;
hlods is the most detailed. Note thatody's siblings are other blocks. memory, none of its S|bI|ngs Ca.'n be rendered either and the
parent node must be rendered instead

l

hlod, hlod, hlod,

We repeat this procedure for all the blocks in our modg ot ‘imeNeedeﬁ—L
Our final data has a total of 3028 nodes from 207 blocks:—
The maximum depth of the hierarchy is 5. One such block Js;j’
shown in Fig. 5 where;c,ciractor IS Shown to be 3. berefit,
On average we expect each node to hayg;,cqr-; trian-
gles. However, the actual number of triangles vary consider
ably due to the varying density of samples, and varying &ffec
of simplification along different subsections of the block. Fig. 6. Dependency graph of front selection in the rendetimgad

priority | hyst,,

timeSlice, j cumHyst,
L™

priority ! hyst

Node selection, as illustrated in Fig. 6, is dependent on the
cost and benefit of a node, which determine its priority. The

We pre-compute and save each node’s 1) bounding box ftme slice is assigned by Splitting the available renderetim
culling purposes, 2) cost that measures the estimated ren@@ong the node and its siblings based on the ratio of their
time, 3) static benefit that is adjusted during run-time, ahd Priorities and their cumulative priority. This time slice then
average normal to calculate foreshortening. recursively divided among each node’s children.

The cost of a nodey, is approximately proportional to the Subsequently, the estimated time needed to render a node
time needed to render the node. It is the weighted sum of tfecOmpared with the time slice allocated to the node. This

B. Other Pre-processing

number of textured and untextured triangles: comparison is used to update a hysteresis counter for each
node to limit excessive switching of HLODs. Finally, a cumu-
costn = numTexTrin X Crex + 1) lative hysteresis value is calculated for a set of siblingséctv
numUnTexTrin, X (1 — Ctex) determines if all the visible siblings should be renderedatr

Priority Heuristics: Upon visiting each nodes, the render-

The constant weight¢,.,, is calculated empirically by ing thread calculates its priority based on a benefit and cost
comparing the render time of a set of triangles both witf@tio so that a higher priority indicates higher importance
texture and with flat shading. it — bene fitn

We compute a static approximation of the benefit, which is preorttyn = = stn
then dynamically adjusted during the rendering phase, @s th _ o]
geometric mean of the accuracy of its representation and itd¥ecall thatstaticBenefit, is calculated offline for each
total surface area. Specifically, given thai(n) is the set of Node in (2). This benefit is measured as the approximate,
triangles in node: and area; is the area of trianglet, we unforeshortened screenspace of a node that is 1 unit away.

We compute the benefit from the static benefit, by adjusting

have:
for distance, visibility and foreshortening:
staticBenefitn = \/nu'nLT'r‘in thetri(n) areat (2) benefit — StatiCBenefitn X UiSn X fOreShOTtenn
" distance,?

Since most of our nodes are facades of buildings, theThe distance is measured from to the camera and is
orientation of most of the triangles is fairly uniform. Tieéore, adjusted by adding a portion of the user’s velocity to exploi
we compute the normal of a node by taking the average norrtginporal coherence.

of each trianglenormal;, weighted by its area and then We compute visibilityvis,, by frustum culling. We do not
normalized: perform occlusion culling because of its high overhead but i

would be easy to incorporate it into our heuristics:
Zt€t7‘i(n) (normaly Xareat)

— 3) Visn = 14 (cvis X frustumVisy)
I Zzetn(n) (normalt Xareat)||

—_—
avgNormal, =

°Note thathlodg nodes are always kept loaded in memory.

Hysteresis: The Adaptive Display algorithm of Funkhouser

Here, frustumVis, is 1 if n is in the view frustum. P -
! - .~ and Séquin incorporates a hysteresis component as pdm of t
Otherwise, it linearly decreases to 0 based on the distance .. _— : .
: : enefit heuristics [15]. However, this approach can stillsea
of n from the view frustum. The constant,;;, weighs the

. . switching of LODs as objects become visible or invisible][13
importance of visibility.

Lastly, we adjust the static benefit for foreshortening bIl;{urthermore, we would like the loading to be independent of

multiplying with the dot product of the normal of the image ysteresis.
P & P &l of the Imag Maciel and Shirley implement a counter that is incremented
plane, view, and the average normal of, avgNormal,

. : . every time the algorithm wishes to switch from parent to
from (3). This is weighted by a constamo.: children. The switching is allowed only if the counter exdee
foreshortenn, = 1+ (view - avgNormal, X ¢fore) a pre-fixed threshold [22]. However, this implementation is
inflexible and does not account for nodes that need to be
The cost ofn, cost,, is also calculated offline as shownSWitChed_ more urger_1t|y th_an_ others. Consequently, thamé
in (1). rate exhibits drgmatlc varlgtlon.

Time Slicing: We calculatetimeSlice,, or the amount of We choose, instead, to increment or decrement the counter
based on an urgency factor. Let us denote the countiy by,

time that has been allocated to render in a top-down ¢ q th each | of q h _
approach based on the overall time target, arslrelative or noden. With each traversal ok, we update the counter.

priority with respect to the total priority of its siblings: timeSlice, — timeNeeded,,

hyst, hyst, -
Ystn < hystn + timeN eeded,,

priorityy

ZiESib(n) priority; . . L
We add a constraint to the above and restrigtt,, to lie in

Here, sib(n) is defined to be the set of all visible nodeshe range of-cjysirimic @nd chystrimic- That is, if the time
that have the same parent as Also, shareT'ime, is the slice ofn is larger compared to the time needed to render
total time a node and all its siblings share. This is assignednhen the hysteresis counter will approach positivg; r.imi:
constant valueg,q,getrime, for all n at level 0. Each nodey over time. If both are almost the sanigyst,, remains near a
at hlody, recursively passes along its time sli¢éneSlice,, 0 value. Otherwise, it tends to Negativig, st L imit-
to its children to be shared among them based on (4). Thusihe approximate hysteresis counter value of 0 indicatds tha

(4)

timeSlice,, = shareTime, X

shareTime, is defined as: selecting that node to render will approximately use theleen

.) : : time allotted to the node. However, a node cannot be rendered

. timeSliceparent(ny I parent(n) exists . L o .

shareTime, = § _ otherwise without rendering its siblings. Therefore, we need a cutiuga

targetTime) o .

hysteresis value for all the siblings. Our approach is:
Next, we estimate the time required to renaerwhich is
proportional ton’s cost: cumHyst, — Z trunc [—TWStn
i€ sib(n) ChystSwitch

timeNeeded,, = Viime X COSty

Here, trunc() truncates the floating point value to an integer
Note thatvy;,,.. is a variable that is adjusted in a feedback loopy discarding the decimal value. This eliminates the least
based on comparing actual time used to render a frame wéflgnificant bits responsible for oscillations.
the estimated render time needed for all the nodes renderedrhe constant,cpysiswitch, determines the threshold for
The need for this feedback loop is due to the fact that maswitching and should be between 1 angs:rimi:- A higher
graphics hardware performance is based on factors besidakie implies longer delay to switch HLODs but with a looser

number of triangles, such as the fill rate. guarantee on how close the render time will betQ jeirime-
One possible implementation of the rendering algorithm Bonversely, a lower value implies that render times will be
to keep recursing as long as: closer 10 ciargerime at the expense of more switching of
HLODs.
shareTimen > Z timeNeeded Our rendering algorithm recurses breadth-first and updates
i€sib(n) the cumulative hysteresis value until it reaches the lddingj.

When the above condition does not hold for a set of siblingl§, cumHyst,, is less than zero, we render the parent of the
their parent is selected to be rendered instead. This agiproaiblings. Otherwise, we recursively visit the children dfthe
guarantees that the time slice of the parent is never exdeedibling nodes, again, in a breadth-first order.
by the children. Consequently, the total estimated rerideg t This describes the implementation of our rendering thread.
will never exceett oy getTime- Unlike Maciel and Shirley, we do not use the hysteresis

In practice, however, the feedback loop introduces exeesscounter to override switching of nodes [22]. Instead, our
switching of the HLODs asy;,,. Oscillates up and down. counter is sensitive to the urgency of a node needing to be
Therefore, we must extend the above approach to incorporsgtched. Consequently, we rely on the hysteresis counter
hysteresis. alone to select the front.

D. Loading Thread 250 : : : : : : :

The rendering thread starts rendering with ollyd, nodes 3
in memory. The rendering thread relies on the loading thtead 3 200 1
asynchronously query the priority queue and load high ftyior é
nodes that have not been loaded. ® 150} A

The loading is done incrementally by reading only a sma@
portion of a node at a time. The priority queue is checkeds 149l
between each incremental load, and the previous loading &
suspended and loading of a new node is started if the prioritg 50|
changes. This feature makes our loading more responsive fo

erratic movements by the user. ‘
0

To limit memory usage and avoid swapping, we assume that 0 100 200 300 400 500 600 700 800
memory usage for a node is proportional to its cost. Thus, Frame Number
memory usage is bounded by the set of nodes in memory,
mem: hlodo hlod1 hlod2 — hlod3 —
Fig. 7. Walk-through at ground level renders fewer total HRsxthus more
mazMemory > Cremory X Z costi detailed HLODs are selected. During fly-through, we renddy @lodo and
i€mem hlod, nodes.
The loading thread prevents memory usage from substan-
tially exceeding a fixed sizepax M emory, by unloading the 5 v v v v v v v
nodes in the sehem with the smallest priority until the above I Down Toggle v |
condition is satisfied. The constamt,,emo-,, i established Moving Average of Total Toggles——
experimentally and maxzMemory is based on the system ,, 3t 1
resources. % 5| |
e
IV. RESULTS 5 4l |
We have implemented our rendering engine on a Windowé 0 |
architecture using the Visual C++ language. Our tests are ruz
on a Windows XP PC with a 2.0 GHz Intel Pentium IV CPU, -1} W v -
1024 MB of system RAM, and a Nvidia GeForce4 Ti 4600
graphics card with 128 MB of RAM. 27 |
Our implementation allows the user to move around in all -3

6 degrees of freedom without any restrictions. The user has 0 50 100 150 200 250 300 350 400
the choice of standing still or navigating at arbitrary sfmee Frame Number
; ; Fig. 8. Flickering measured during walk-through where thevimg average
A. Detail Management Effectiveness is taken over 35 frames. A down toggle is shown in the negadiis for
We show that our rendering engine adapts to varyirsgity.
rendering loads by varying the amount of detail in the scene.

We conduct a walk-through at ground level, with many nodes
culled away, that gradually becomes a fly-through such thatVe Show the upgrade and downgrade toggles for 200 frames
the entire model is visible. corresponding to a walk-through, followed by 200 frames in

Fig. 7 shows the number of each type of HLOD that idrive-through mode in Fig. 8. Note that in drive-through rapd
Oﬁgi toggles are more frequent since the user is moving around

rendered over time. For the path described above, initia ,
many highly detailed HLODs are rendered. However, as m scene about 10 times faster. Overall, the result shaats th

objects become visible, fewer highly detailed HLODs ar&€ do not get successive up and down toggles associated with
selected to be rendered. That is, as we add more data@ggillations from the feedback loop.
be rendered, our engine decreases detail, and degenergtegame Rate Consistency

gracefully to the case where no detail is rendered. . .
We measure the actual render time and compare it to the

B. Flicker Prevention the target render time during a fly-through and a walk-thioug
In order to measure the flickering, we count each time '[,jpese results are shown in Figs. 9 (a) and (b) respectively.

node gets upgraded to its children between successiveéram,eAS can be seen from these figures, the fI_y—thro_ugh render
Similarly, we tally each downgrade from sibling nodes to mes are much closer to the target render time since a large

majority of nodes that are selected to be renderedhéwé,
parent node. ; .

nodes that are resident in memory. The walk-through mode
3We cannot precisely calculate storage requirements fqlayidists. culls away severablody nodes and, thus, the time utilization

60 T T T T

Actual Render Time |
Target Render Time———
o 501 | 5
© ©
o o
o o
o o
g 407] 8
E E
o 30)
£ £
- -
S 20 3
o o
[0] (0]
14 14
10
0
0 100 200 300 400 500 600 700 800

Frame Number

@

60 T T T

" Actual Render Time
Target Render Time———

50 1

30

20 |

10

0 100 200 300 400 500

Frame Number

600 700 800

(b)

Fig. 9. Actual render time compared to target render timeGfrlliseconds for (a) fly-through and (b) walk-through.

depends on the loading of more detailed HLODs.

to Avideh Zakhor and Carlo Séquin for his valuable insights

On average, our algorithm well-utilizes the alloted renddrhis research was funded by Army Research Office MURI
time, and prevents the actual render time from exceeding ttentract #DAAD19-00-1-0352.

target render time.

V. CONCLUSION

We have presented an algorithm that uses hierarchicaklevet;
of detail to efficiently render large, detailed models forlkwa
through and fly-through modes of interaction. Our implemen-
tation runs on a common PC with a moderate graphics carg
and system memory.

Our rendering engine limits memory usage, maintains
specified frame rate by managing detail, and incorporates hﬁ]
teresis into a simple unified approach. Furthermore, our prey
fetching scheme does not skip objects that are visible aydel
rendering to load objects. Lastly, our implementation egal
well with increasing data size and degenerates gracefally {5
the case where it does not render any of the more detailed
HLODs. [6]

VI.

Our cost heuristics currently do not account for the texturé’]
size because increasing the texture does not generallyaiser
the render time. The exception to this occurs when the texturs]
size exceeds the texture memory on the graphics card. In
this case, the render times change substantially. Although
our feedback loop compensates for this situation, a futurg
improvement would be to directly address this. Lastly, the
foreshortening in the benefit heuristics could be improved lflO]
clustering similarly oriented triangles together in onel@o

FUTURE IMPROVEMENTS

ACKNOWLEDGMENT

We would like to thank John Flynn, Chris Frueh and Lu Yﬁll]
for their contributions to the implementation. We are dfate

REFERENCES

O. Belmonte, I. Remolar, J. Ribelles, M. Chover, C. Réholand
M. Fernandez. Multiresolution triangle strips. Broceedings IASTED
Invernational Conference on Visualization, Imaging anédm Process-
ing (VIIP 2001) pages 182-187, 2001.

B. Chen and M. X. Nguyen. Pop: a hybrid point and polygondexing
system for large data. IRroceedings of the conference on Visualization
'01, pages 45-52. IEEE Computer Society, 2001.

J. H. Clark. Hierarchical geometric models for visiblarface algo-
rithms. Communications of the ACM.9(10):547-554, 1976.

J. D. Cohen, D. G. Aliaga, and W. Zhang. Hybrid simplifioat
combining multi-resolution polygon and point rendering Proceedings
of the conference on Visualization 'Opages 37—44. IEEE Computer
Society, 2001.

C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sdigligoint
trees. INSIGGRAPH 2003, Computer Graphics Proceedinm@gyes 657—
662. ACM Press / ACM SIGGRAPH, 2003.

X. Decoret, F. Sillion, G. Schaufler, and J. Dorsey. Midffered impos-
tors for accelerated renderinGomputer Graphics Foruml8(3):61-73,
1999.

M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Mille€;. Aldrich,
and M. B. Mineev-Weinstein. ROAMing terrain: real-time pally
adapting meshes. IfEEE Visualization pages 81-88, 1997.

C. Erikson, D. Manocha, and W. V. Baxter, lll. HLODs forster display
of large static and dynamic environments. Rroceedings of the 2001
symposium on Interactive 3D graphjcpages 111-120. ACM Press,
2001.

F. Evans, S. S. Skiena, and A. Varshney. Optimizing gianstrips
for fast rendering. In R. Yagel and G. M. Nielson, editotEEE
Visualization '96 pages 319-326, 1996.

C. Frueh and A. Zakhor. Fast 3D model generation in urkan
vironments. Ininternational Conference on Multisensor Fusion and
Integration for Intelligent Systems/olume 2.2, pages 165-170. The
University of California at Berkeley, 2001.

C. Frueh and A. Zakhor. Data processing algorithms faregating tex-
tured 3D building facade meshes. 3D Data Processing, Visualization
and Transmissionpages 834-847, 2002.

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

C. Frueh and A. Zakhor. Constructing 3D city models byrgireg
ground-based and airborne viewslEEE Computer Graphics and
Applications 23(6):52-61, 2003.

T. A. Funkhouser. Database and Display Algorithms for Interactive
Visualization of Architectural Models PhD thesis, The University of
California at Berkeley, 1993.

T. A. Funkhouser. Database management for interadisplay of large
architectural models. In W. A. Davis and R. Bartels, edit@saphics

(23]

[24]

[25]

Interface '96 pages 1-8. Canadian Human-Computer Communications

Society, 1996.

T. A. Funkhouser and C. H. Séquin. Adaptive displayalpm for inter-
active frame rates during visualization of complex virteakironments.
Computer Graphics27(Annual Conference Series):247-254, 1993.
M. Garland and P. S. Heckbert. Surface simplificatiomgisguadric
error metrics.Computer Graphics31(Annual Conference Series):209—
216, 1997.

H. Hoppe. Progressive meshes. Pmoceedings of the 23rd annual
conference on Computer graphics and interactive techmsiqpieges 99—
108. Microsoft Research, ACM Press, 1996.

H. Hoppe. View-dependent refinement of progressivehegs<omputer
Graphics 31(Annual Conference Series):189-198, 1997.

H. Hoppe. Efficient implementation of progressive mestComputers
and Graphics 22(1):27-36, 1998.

M. Levoy and T. Whitted. The use of points as a displaymjtive.
Technical report, Computer Science Department, Uniwersit North
Carolina at Chapel Hill, January 1985. TR 85-022.

P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Fausnd
G. Turner. Real-time continuous level of detail renderirfgheight
fields. Proceedings of SIGGRAPH'9@ages 109-118, 1996.

P. W. C. Maciel and P. Shirley. Visual navigation of largnvironments
using textured clusters. Bymposium on Interactive 3D Graphigmges
95-102, 211, 1995.

[26]

[27]

(28]

[29]

[30]

R. Pajarola, M. Antonijuan, and R. Lario. Quadtin: Qtrad based
triangulated irregular networks. IRroceedings of IEEE Visualizatipn
pages 395—, 2002.

S. Rusinkiewicz and M. Levoy. QSplat: A multiresolutiopoint
rendering system for large meshes. In K. Akeley, ediggraph 2000,
Computer Graphics Proceedingpages 343-352. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. ufextnapping
progressive meshes. In E. Fiume, edit8frGGRAPH 2001, Computer
Graphics Proceedinggpages 409-416. ACM Press / ACM SIGGRAPH,
2001.

J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, andSdyder.
Hierarchical image caching for accelerated walkthroughsamplex
environments.Computer Graphics30(Annual Conference Series):75—
82, 1996.

M. Shafae and R. Pajarola. DStrips: Dynamic trianglpstfor real-
time mesh simplification and rendering. Proceedings Pacific Graphics
2003 pages 271-280. IEEE, Computer Society Press, 2003.

R. Toledo, M. Gattass, and L. Velho. Qlod: A data struetior interative
terrain visualization. Technical report, VISGRAF Laborgt 2001. TR-
01-13.

G. Varadhan and D. Manocha. Out-of-core rendering ofssiva
geometric datasets. IRroceedings of the conference on Visualization
pages 69-76. IEEE Computer Society, 2002.

M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and \vaBer. The
randomized z-buffer algorithm: Interactive rendering aftty complex
scenes. In E. Fiume, edito6IGGRAPH 2001, Computer Graphics
Proceedingspages 361-370. ACM Press / ACM SIGGRAPH, 2001.

