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Abstract

Deepfake detection automatically recognizes the manip-
ulated medias through the analysis of the difference between
manipulated and non-altered videos. It is natural to ask
which are the top performers among the existing deepfake
detection approaches to identify promising research direc-
tions and provide practical guidance. Unfortunately, it’s
difficult to conduct a sound benchmarking comparison of
existing detection approaches using the results in the liter-
ature because evaluation conditions are inconsistent across
studies. Our objective is to establish a comprehensive and
consistent benchmark, to develop a repeatable evaluation
procedure, and to measure the performance of a range of
detection approaches so that the results can be compared
soundly. A challenging dataset consisting of the manipu-
lated samples generated by more than 12 different methods
has been collected, and 11 popular detection approaches
(9 algorithms) from the existing literature have been im-
plemented and evaluated with 6 fair-minded and practical
evaluation metrics. Finally, 92 models have been trained
and 644 experiments have been performed for the evalua-
tion. The results along with the shared data and evaluation
methodology constitute a benchmark for comparing deep-
fake detection approaches and measuring progress.

1. Introduction
The recent emergence of face manipulation technology

based on deep learning, also known as Deepfake, misleads
people into believing the fake words and deeds, posing a
new threat to violation of privacy, identity, financial, legal,
and even national security [11]. As the deepfake videos and
pictures spread, deepfake detection techniques have been
increasingly focused on to prevent emerging malicious face
manipulation threats.

Along with the emergence of large-scale deepfake foren-

sic datasets, some forgery detection benchmarks have been
established recently. Unfortunately, they seldom focus on
fair and comprehensive evaluation of existing state-of-the-
art deepfake detection approaches. The most obvious prob-
lem of existing benchmarks is that although they evalu-
ate detection methods on consistent evaluation datasets, the
benchmarking models are usually trained on different data,
which leads to an unfair comparison. In other words, the
evaluation performances of detection models are highly re-
lated to their training data and models trained on data with
larger scale, higher quality and more diversity of manipula-
tion approaches are able to attain better evaluation perfor-
mance.

In addition, as for benchmark datasets, they are usually
compared in terms of data scale and diversity of manipu-
lation and perturbation. However, there is no quantitative
comparison indicating which dataset is more challenging
and appropriate to train a robust deepfake detection model.
As a result, there is an urgent need to construct a system-
atic, fair and consistent benchmark with practical evalua-
tion metrics to identify current achievements and perceive
the future requirements in deepfake detection.

Although several advanced deepfake detection methods
have been proposed and proved to be effective, it is diffi-
cult to soundly quantify the contribution of existing works
due to the following reasons. Firstly, unlike popular im-
age classification and object detection tasks usually using
same datasets for training to ensure a fair comparison, many
deepfake detection methods are trained on different datasets
but evaluated on the same test data. For example, many
existing works [14, 35] directly apply publicly available
trained models instead of re-implementing these methods
using the same training data for the evaluation. Such incon-
sistent training data leads to unfair evaluations and com-
parisons of the existing detection methods and therefore it
is difficult to measure whether the performance contribu-
tions are brought by the method itself or its adopted training
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data [6, 8].
Secondly, most deepfake detection methods with out-

standing performance can be impractical due to the over-
fitting problem and poor transferability, since many of
them are trained and evaluated on the same domain dis-
tributed datasets containing limited manipulation methods.
Predictably, the detection performance of these methods
may experience a significant decrease when testing on the
datasets with different distributions or deploying in realis-
tic scenarios dealing with fake data generated by different
manipulation approaches [9, 21].

Thirdly, the widely used evaluation metrics, including
AUC (area under the ROC curve) and accuracy, are not suf-
ficient to reflect a comprehensive performance of detection
methods. The essential and practical evaluation metrics in-
cluding time and space complexity have drawn nil attention
in previous research, which can result in the low efficiency
of top detection methods for large-scale forged videos or
images in realistic scenarios.

To address these limitations, this paper proposes a fair,
comprehensive and strict benchmark on our collected stan-
dard datasets and our proposed Imperceptible and Diverse
test (ID test) set. The standard datasets is constructed by in-
corporating several existing representative deepfake foren-
sic datasets and used to train and evaluate popular deep-
fake detection methods re-implemented during the experi-
ment. To better simulate a realistic media environment, an
Imperceptible and Diverse test (ID test) set has been pro-
posed, containing hard and diverse samples selected from
public datasets and our hosted private dataset, and merely
used for the evaluation. The forged videos in ID test set
are highly indistinguishable to both human eyes and detec-
tion algorithms, synthesised by various classic manipulation
approaches and distorted by commonly encountered pertur-
bations. In addition to using AUC and accuracy metrics
for evaluation, four complementary evaluation metrics have
been applied to measure the benchmarking methods from
different aspects, including forgery detection ability, robust-
ness, efficiency, and practicability. To guarantee the com-
pleteness of the experiment, the deepfake datasets were ini-
tially categorized according to their adopted forgery meth-
ods and then experiments were conducted on intra- and
inter-class evaluations.

Through a comprehensive and quantitative analysis of
the results from 644 evaluation experiments, this work
presents several important findings. First, the forgery detec-
tion ability of all 11 popular deepfake detection approaches
drops significantly on a realistic and challenging dataset, in-
dicating the performance fails to satisfy the requirement for
real-world applications. Second, we find the overall perfor-
mance of popular detection methods shows no significant
difference under strictly uniform evaluation conditions, un-
like the claim in previous studies that a detection method is

significant better than another by using a specific evaluation
configuration. Third, taking into account detection abil-
ity, generalization, robustness and practicability simultane-
ously, no one method shows comprehensive superiority over
others. Considering from different perspectives, Multiple-
attention achieves the best AUC in terms of detection per-
formance with a high time complexity, Patch-Xception-
Block2 and Patch-Resnet-Layer1 has a relatively high de-
tection ability with very low inference time and memory
consumption. Conv LSTM owns the top-performing gener-
alization ability with the highest time complexity.

2. Deepfake Creation and Detection
This paper concentrates on integrating the current popu-

lar forensic datasets and detection methods to release a com-
prehensive benchmark. We firstly briefly introduce the pop-
ular deepfake creation methods and corresponding datasets.
Then we summarize and roughly classify the existing deep-
fake detection approaches into four categories based on
their strategies. Last subsection describes the existing eval-
uation metrics and forensic benchmarks.

2.1. Deepfake Creation and Forensic Datasets

2.1.1 Deepfake Creation

Existing popular face manipulation approaches can be
roughly classified into three types.

Autoencoder-based Manipulation maintains an autoen-
coder for each pair of face swapped identities. The au-
toencoder consists of a shared encoder that enables encod-
ing common features of both identities and a specific de-
coder to reconstruct the source face in the target image. As
one of the most widely used manipulation types, majorities
of forensic datasets contain this type of manipulated data.
For example, UADFV [22] uses an autoencoder-based soft-
ware, FakeApp [4] to generate 49 fake videos. FaceForen-
sics++ [30] applies an open-source tool called FaceSwap [2]
to manipulate 1,000 videos. DeeperForensics-1.0 [17] de-
signs a novel autoencoder-based framework, DF-VAE, to
manipulate 10,000 videos. Recently proposed ForgeryNet
leverages DeepFakes [28] to generate thousands of videos
and images.

GAN-based Manipulation leverages generators, which
trained by the contest with discriminators, to generate
whole source face or some source face attributes in ma-
nipulated face images. Benefiting from its powerful
learning ability and manipulation performance, DeepFake-
TIMIT [19] leverages a GAN-based face-swapping algo-
rithm [3] to synthesize 620 fake videos. FaceForensics++
tampers 1,000 videos by using a two-stage face swapping
method named FaceShifter [20] and ForgeryNet selects
GAN-based FSGAN [27] and FaceShifter [20] to generate
tens of thousands of videos and images.



Dataset Total Frames/Images Video-level
Split

Manipulation Method Extra
Test Set

Perturb Bench-
markReal Fake AE GAN Graphic

UADFV 17,329 16,991 3:1:1 1 – – – – 13
DF-TIMIT 34,003 34,023 3:1:1 – 1 – – – 11
Celeb-DF-v2 358,790 2,116,768 13:1:1 1 – – – – 7
DeeperForensics-1.0 509,128 508,944 7:1:2 1 – – ✓ 7 7
FaceForensics++ 509,914 1,321,408 5:1:1 1 1 1 – – 23
DFDC 5,635,501 29,075,744 5:1:1 2 3 1 ✓ 19 2119
ForgeryNet 2,848,548 1,054,671 48:3:7 1 2 - ✓ 36 11

Table 1. Overview of popular forensic datasets. We list the most crucial information reflecting the pros and cons of datasets to train and
evaluate deepfake detection methods. Dataset scale and data distribution are reflected by the measurement of total frames. Dataset quality
is measured by the diversity of manipulation methods and perturbation types, as well as the inclusion of hard examples. Dataset popularity
is quantified by the number of benchmarks it has been established on.

Graphic-based Manipulation forges face images by
modeling source face landmarks and deforming it to match
the landmarks of target images, which often followed by a
blending operation [16]. Within existing forensic datasets,
FaceForensics++ adopts 3D-Faceswap [1] to manipulated
1,000 videos and DFDC uses MM/NN face swap method
proposed in [16] to forge parts of videos.

2.1.2 Forensic Datasets

According to our analysis and classification of deepfake
creation approaches, existing forensic datasets commonly
comprise of deepfake videos and images generated by lim-
ited types of manipulated approaches due to the high con-
sumption of resources and time. For example, UADFV,
DeepFake-TIMIT, Celeb-DF [24], DeeperForensics-1.0 and
ForgeryNet are constructed by one or two types of forgery
approaches. Only two well considered datasets, FaceForen-
sics++ and DFDC, utilize complete forgery types to offer
a more complex and practical dataset. The existing pop-
ular forensic datasets have been summarized and listed in
Table 1. For the datasets with multiple facial forgery types
like deepfake, expression editing, and attribute manipula-
tion, we list the information about fake data manipulated by
deepfake and their related real data.

Additionally, to better simulate real-world scenar-
ios and prevent detection bias, the newer proposed
DeeperForensics-1.0, DFDC and ForgeryNet datasets intro-
duce hidden/private test sets respectively, guaranteeing ma-
nipulation diversity and visual quality of fake videos. How-
ever, some shortages of these three test sets are unrevealed.
DeeperForensics-1.0 carries out a user study to ensure the
visual reality of the fake videos, while the data distribution
and data diversity are unknown. On the contrary, DFDC and
ForgeryNet clearly describe the details of their hidden test
sets, while the manipulated data are not manually checked
to ensure their imperceptibility to human eyes.

2.2. Forgery Detection

To defend the abused synthetic media, considerable ef-
forts have been undertaken by researchers and communities
these years, promoting the raise of multiple detection meth-
ods. We roughly categorize the existing forgery detection
methods into intra-frame detection and inter-frame detec-
tion with several subclasses.

2.2.1 Intra-Frame Detection

Intra-frame detection refers to the image-level detection,
performing an image-level supervised binary classification
on frame images. Its inference predictions contain image-
level prediction and video-level prediction. Image-level
prediction assigns a prediction score to each image, while
video-level prediction aggregates the image-level scores by
voting or averaging and assigns the aggregating score to
each video. According to the principle difference of de-
tection methods, intra-frame detection can be further subdi-
vided into knowledge-driven detection, data-driven detec-
tion and multi-stream-driven detection.

Knowledge-Driven detection incorporates the domain
knowledge to pre-define an interpretable artifact generated
by manipulation, as distinctive embeddings to train a model
for classification. To ensure learning interpretability, such
kind of detection methods often need to extract artifacts re-
lated features or generate artifacts-emphasized supervised
information in the data pre-processing phase. For exam-
ple, Headpose [34] extracts features of landmark differ-
ence, F3Net [29] extracts features of frequency difference,
FWA [23] generates training data with emphasized resolu-
tion inconsistency and Face X-ray [21] generates masks rep-
resenting blending boundary.

Data-Driven detection relies on the large-scale dataset
and the robust learning capability of DNN, aiming to adopt
or design an efficient deep neural network to automatically
learn the multi-scale difference features between real and



fake images for classification [5, 9, 13]. Typically, through
such detection, the intuition behind the learning process and
the distinguishable activated features are commonly ana-
lyzed.

Multi-Stream-Driven detection is a fusion of the above
two types of strategies. Such kind of methods usually de-
velops multiple streams to concurrently learn interpretable
features and latent features, and finally fuses multi-stream
features to achieve forgery detection [10, 36].

2.2.2 Inter-Frame Detection

Inter-frame detection, also known as video-level detection,
attempts to learn the temporal artifacts from sequential ma-
nipulated video frames. Most existing works adopt a CNN
to extract per-frame features and then use recurrent neural
networks to explore inter-frame inconsistencies [15,26,31].
Moreover, some popular techniques for video classification,
such as Long Short Term Memory (LSTM) and I3D [17],
are also adopted for deepfake detection.

2.3. Evaluation Metrics and Forensic Benchmarks

The most widely used evaluation metrics for deepfake
detection are AUC [21, 23, 34], precision [9], and accu-
racy [30]. Besides these classic evaluation metrics, DFDC
puts forward Weighted PR, assigning a weight to false pos-
itives of precision due to the large class imbalance of fake
and real videos in organic traffic. Although the above eval-
uation metrics are commonly used for evaluation, it is not
enough to explore the comprehensive utility of detection
methods in practical scenes, as the metrics only consider
the prediction correctness but ignore other important prac-
tical evaluation criteria.

As for existing benchmarks, in addition to the aforemen-
tioned FaceForensics Benchmark and DFDC, FaceForen-
sics++ evaluates six intra-frame forgery detection meth-
ods on its dataset. Celeb-DF evaluates ten methods using
the publicly released pre-trained models. DeeperForensics-
1.0 integrates five baselines including both intra-frame and
inter-frame methods. However, most of these benchmarks
fail to fairly evaluate existing deepfake detection methods
by re-implementing these methods with same training data,
which introduces an evaluation bias.

3. Evaluation Methodology

As face manipulation is being increasingly easy to ac-
cess by mature algorithms and even off-the-shelf software,
practical forensic approaches are in desperate need. How-
ever, among existing popular deepfake detection methods,
it is difficult to measure which one is more applicable when
facing real threats due to the lack of fair and proper evalu-
ated benchmark. To address this issue and further promote

the research in this field, we propose a fair, comprehen-
sive, and strict benchmark by integrating 7 popular forensic
datasets and 11 representative forgery detection methods.
At the same time, we additionally apply 4 complementary
curves to thoroughly evaluate their robustness and practi-
cability. According to our categorization, this benchmark
investigates the detection capabilities of each type of state-
of-the-art forensic methods against different types of ma-
nipulations. What’s more, we perform comprehensive ex-
periments on our ID test set to explore their generalization
capabilities in realistic scenarios.

3.1. Evaluation Datasets and Algorithms

3.1.1 Standard Datasets

The standard datasets consist of real and manipulation data
from autoencoder-based UADFV, Celeb-DF, DF-1.0, GAN-
based DF-TIMIT(higher quality), and mixed-manipulation-
based FF++(Raw), DFDC and ForgeryNet. The data scales
extracted from these 7 datasets are proportional to reflect
their original scale difference. Specifically, taking the frame
number of 2,527,384 frames in FaceForensics++ as a base-
line, the extracted frame number from other datasets dou-
bles or decreases. Each dataset in the standard datasets was
split to training, validation and test to perform method re-
implementing and evaluation. Specifically, the video-level
split of each dataset complies with the default dataset set-
ting if it is released, instead, we carry out a reasonable split
for the datasets as illustrated in Table 1. The frame-level
data adopted in experiments were randomly extracted from
split videos and keep a frame-level split ratio of 14:1:1, fol-
lowing the split strategy of FaceForensics++. Moreover,
we maintain the distribution of real and fake data of each
dataset while balance them in experiments.

3.1.2 Imperceptible and Diverse Test (ID Test) Set

To explore the robustness of forensic approaches when con-
fronting the threats of fake videos with high visual authen-
ticity and rich content diversity, we construct a high-quality
Imperceptible and Diverse test (ID test) set by integrating
the hard (high imperceptible) examples from our bench-
marking 7 public datasets and our hosted private dataset.
The hard examples from public datasets undergo a two-
phase selection pipeline, namely detection model selection
and user perception selection. The detection model selec-
tion retains falsely accepted fake examples with high con-
fidence. Then the user perception selection carries out a
blind experiment and preserves the high-quality fake videos
considered real by 15 out of 30 participants, which means
that these examples are indistinct to both detection mod-
els and human visions. The hard examples from our pri-
vate dataset are our self-generated fake examples manip-
ulated by recent introduced GAN-based FSGAN [27] and



Figure 1. Illustration of frame data and sequential frame data dis-
tribution of each manipulation methods in ID test set.

autoencoder-based MegaFS [37] approaches, of which the
original data are images of CelebA [25] and raw videos of
FaceForensics++. These manipulated hard examples also
go through the selection pipeline to guarantee their visual
reality and finally 40 videos manipulated by FSGAN and
2937 images manipulated by MegaFS are preserved. Over-
all, ID test set comprises 976 fake videos and 2348 real
videos, from which 25,697 fake images and 25,697 real im-
ages are extracted, respectively.

AE GAN Graphic Unknown
Video 522 202 22 230
Image 10,514 10,778 2,171 2,234

Table 2. Overview of manipulation type distribution of ID test set.
The unknown manipulation type indicates that the related infor-
mation of these data were unavailable from its source dataset.

To guarantee the diversity, fake data in ID test set
achieves full coverage of manipulation types and at least 13
manipulation approaches. The specific manipulation type
distribution and forgery approach distribution of ID test set
are shown in Table 2 and Figure 1. We extract almost equal
quantity of frames and sequential frames of each manip-
ulation method, which enables fair evaluation of image-
level and video-level detection methods trained by different
datasets. Moreover, to simulate the restricted video qual-
ity caused by the video pre-processing pipeline, 5 types of
common perturbations, as shown in Figure 2, are added to
videos and images for extra evaluation.

3.1.3 Forensic Detection Algorithms

We evaluate 11 declared state-of-the-art forensic detection
approaches (9 algorithms) covering the categories described
in Forgery Detection, Table 3. Within the intra-frame detec-
tion category, we select knowledge-driven Headpose [34],
Face X-ray [21], FWA [23], and data-driven Xception [30],
Mesonet [5], MesoInception4 [5], Patch-forensics [9],
FFD [14] and Multiple-attention [35]. Among inter-frame

Figure 2. Illustration of face images in ID test set with differ-
ent perturbations. From left to right are raw face images and face
images with color contrast change perturbation, color saturation
change perturbation, Gaussian blur perturbation, JPEG compres-
sion perturbation and white Gaussian noise perturbation.

detection, we evaluate Convolutional LSTM [15]. For the
methods with multiple backbones, we attach the backbone
gained best reported performance.

Pre-processing. Common data pre-processing pipeline
includes frame extraction, face cropping and face align-
ment. The image processing toolkit Dlib [18] is applied to
do the face detection and alignment. For the detection algo-
rithms with additional data pre-processing, including Head-
Pose, FWA, Face X-ray and FFD, we follow their imple-
mentations and attach the specific implementation details in
the Appendix A.

Implementation Details. We re-implement most algo-
rithms without released training codes and directly adopt
the source code for the four open-sourced algorithms. Con-
sidering fair comparison, for each experiment, we re-train
all these algorithms on the same training set and optimize
the parameters according to the dataset scale. The re-
training process completely refer to the original proposed
papers. To ensure the implementation correctness, we also
conduct verification experiments to show the consistency
between our results and the reported results in the origi-
nal papers. The comparative results are attached in the Ap-
pendix B.

3.2. Proposed Evaluation Metrics

In response to the inconsiderate limitation of commonly
adopted evaluation metrics, we apply four complementary
correlation plots to comprehensively analyze the robust-
ness, practicability and efficiency of forensic classifiers.

AUC versus Perturbation. The AUC/perturbation trade-
off shows the robustness of forensic classifiers when facing
the challenge of different types and extents of perturbations
in realistic scenes. As shown in Figure 2, we have applied
five types of perturbation on our ID test set. The videos are
distorted by each type of perturbation with random inten-
sity, which is constrained within a rational range to guaran-



Methods Category OS Data Pre Backbone/Method Param(M) GFLOPs Infer T(ms)
HeadPose Frame-Know yes no SVM - - 159.70
FWA-Resnet50 Frame-Know part D Resnet50 25.56 8.24 101.21
Face X-ray Frame-Know no D HRNet-W48-C 77.47 42.58 35.62
Xception Frame-Data part D XceptionNet 20.81 16.84 5.25
Meosonet-4 Frame-Data part D + A 4-layer Conv 0.28 0.12 5.11
MeosoInception-4 Frame-Data part D + A 2-Inception+2-Conv 0.28 0.11 7.31
Patch Resnet Layer1 Frame-Data yes D + A Resnet18 0.15 2.10 0.73
Patch Xception Block2 Frame-Data yes D + A XceptionNet 0.19 3.34 1.17
FFD Frame-Know yes D XceptionNet + Reg. Map 20.82 16.84 6.04
Multiple-attention Frame-Know part D+A EfficientNet-b4 18.83 6.80 25.48
Conv LSTM Video no D InceptionV3 & LSTM 30.36 229.48 221.64

Table 3. Overview of our evaluated forensic detection algorithms. OS represents their open source situation. Data Pre is data pre-processing
procedure, in which D stands for face detection and A stands for face alignment. Infer T represents inference time.

tee the visual effect of pristine data.
AUC versus FLOPs. Maintaining a high AUC score

with low FLOPs indicates that the model owns an excellent
forgery detection ability and consists of an optimized archi-
tecture with low computational complexity. Since efficient
computing power is commonly required in the actual ap-
plication environment, this AUC/FLOPs trade-off provides
insights into the practicability of forensic classifiers.

AUC versus Number of Parameters. The correlation be-
tween AUC and number of parameters provides a deeper
understanding of practicability. Outperformed classifier
with less number of parameters requires less memory con-
sumption, which is a crucial measurement in practical
scenes.

AUC versus Inference Time. The AUC/inference time
trade-off reveals the efficiency of deploying forensic classi-
fiers for testing a single image.

3.3. Environment

For fair evaluation, we conduct all the experiments and
evaluate the benchmarking algorithms in a uniform environ-
ment, NVIDIA 2080Ti GPU and 128GB of RAM.

4. Evaluation Results and Discussions

We respectively present the evaluation results of the
forgery detection ability, generalization ability, detec-
tion robustness, practicability, and efficiency/effectiveness
trade-off of our benchmarking forgery detection methods,
showing in the following subsections. In addition to the
evaluation of forgery detection ability, all the results are
evaluated on our ID test set. Due to the space restriction,
for the evaluation of detection robustness, practicability and
efficiency, we illustrate the representative experimental re-
sults in this section.

4.1. Evaluation Results of Forgery Detection Ability

We illustrate the forgery detection ability of our bench-
marking methods in this section. For each experiment,
all the detection methods are trained and evaluated on the
same domain distributed data and measured by frame-level
AUC. This evaluation demonstrates their detection ability
for different kinds of manipulations. As shown in Table 4,
most approaches can achieve superior performance when
the distribution of training and test set are in the same do-
main. Multiple-attention gains the best average AUC score
of 97.2%(99.4%), indicating its outstanding detection abil-
ity across different datasets. Models trained on DFDC and
ForgeryNet are generally gain lower performance owning
to the addition of new type of manipulation data or pertur-
bation in their test dataset.

4.2. Evaluation Results of Generalization Ability

In this section, different popular algorithms are trained
on different training datasets and evaluated on our ID test
set. Since the data in ID test set is diverse and high-quality
enough to simulate the real-world situation, this evaluation
enables to reflect the generalization ability of forensic al-
gorithms. It can be seen from Table 5, the forgery detec-
tion ability of all 11 popular deepfake detection approaches
drops significantly, indicating the existing methods remain
far from the expectations for real-world deployment. We
attribute this performance drop to the multi-domain distri-
bution and imperceptible artifacts of our challenging ID test
set.

It can be seen from the results that Multiple-attention,
Patch-Resnet-Layer1, and Patch-Xcpetion-Block2 gain
relatively top average AUC scores of 60.5%(56.5%),
57.8%(57.7%), and 57.2%(57.7%). This indicates that dif-
ferent manipulations leave common forgery clues in low-
level features and focusing on exploring these features ben-



Train UADFV DF-TIMIT Celeb-DF DF-1.0 FF++/DF FF++/FS FF++/FShifter DFDC ForgeryNet Average
AUC%Test UADFV DF-TIMIT Celeb-DF DF-1.0 FF++/DF FF++/FS FF++/FShifter DFDC ForgeryNet

Face X-ray 97.1 98.5 97.8 84.7 99.8 99.8 99.7 - - 96.7(96.7)
FWA-Resnet50 57.3 99.1 60.3 60.5 80.6 61.2 50.0 47.6 50.3 63.6(67.0)
HeadPose 88.3 62.3 - 57.2 57.0 52.3 61.2 - - 63.0(63.0)
Meosonet-4 97.7 100.0 99.0 100.0 99.1 99.4 99.6 93.8 71.2 95.5(99.2)
MeosoIncept-4 97.8 100.0 98.7 100.0 98.9 96.8 99.5 94.8 67.0 94.8(98.8)
Patch-resnet 98.4 100.0 89.8 99.9 99.5 99.7 99.5 90.1 60.5 92.4(98.1)
Patch-xception 97.4 100.0 90.9 100.0 99.9 99.6 99.7 92.8 60.1 93.3(98.2)
Xception 95.3 100.0 84.7 98.6 99.3 98.4 99.3 79.7 64.4 91.0(96.5)
FFD 99.1 100.0 99.5 75.9 99.7 99.6 100.0 - - 96.2(96.2)
Multi-attention 97.6 100.0 99.9 99.9 99.2 99.7 99.6 99.1 80.0 97.2(99.4)
Conv LSTM 99.8 100.0 91.9 99.9 99.9 98.7 100.0 81.4 64.5 92.9(98.6)

Table 4. Results of forgery detection ability of different detection methods measured by frame-level AUC. We report the evaluation
results of each method tested on the test data of each dataset. The results of Face X-ray and FFD on DFDC and ForgeryNet are un-
available due to the unavailability of additional supervised information without knowledge of mapping relation between source and target
videos. The results of HeadPose on Celeb-DF-v2, DFDC and ForgeryNet are not reported because it is difficult to train SVM models
on large-scale datasets. Patch-resnet and patch-xception refer to patch-resnet-layer1 and patch-xception-block2. FF++/FShifter refers to
FF++/FaceShifter. The last column calculates the average AUC of methods, in which the results without parentheses are the average AUC
across all datasets and the results within parentheses are that across commonly trained datasets excluding DFDC and ForgeryNet.

Train UADFV DF-TIMIT Celeb-DF DF-1.0 FF++/DF FF++/FS FF++/FShifter DFDC ForgeryNet Average
AUC%Test IDtest IDtest IDtest IDtest IDtest IDtest IDtest IDtest IDtest

Face X-ray 53.9 52.1 64.3 66.4 54.8 59.3 54.9 - - 57.9(57.9)
FWA-Resnet50 54.7 55.1 49.9 54.3 49.8 54.3 50.0 53.2 50.0 52.3(52.5)
HeadPose 52.1 48.3 - 50.4 51.8 54.0 50.7 - - 51.2(51.2)
Meosonet-4 57.2 59.4 59.9 47.4 53.7 57.6 48.6 61.6 66.5 56.8(54.8)
MeosoIncept-4 60.0 55.8 59.6 48.3 54.5 63.0 49.8 60.5 54.7 56.2(55.8)
Patch-resnet 57.1 55.9 54.1 54.5 60.0 64.9 57.7 59.8 56.7 57.8(57.7)
Patch-xception 53.3 53.5 56.4 53.2 60.3 63.4 64.0 52.8 58.3 57.2(57.7)
Xception 55.9 61.9 52.9 59.8 61.6 52.1 48.0 56.3 57.0 56.1(56.0)
FFD 53.9 63.4 62.1 64.3 57.8 57.4 43.5 - - 57.4(57.4)
Multi-attention 52.0 54.0 64.1 59.3 54.8 54.5 57.4 74.7 74.5 60.5 (56.5)
Conv LSTM 56.3 57.7 59.9 50.0 62.9 55.5 39.9 52.2 50.1 53.8(54.6)
Average AUC% 55.3 55.8 58.5 55.3 58.2 58.5 51.7 60.4 61.3 -

Table 5. Results of generalization ability of detection methods measured by frame-level AUC. Models trained by different datasets are
evaluated on ID test set. The last row calculates the average AUC of detection methods trained on each dataset.

efit detection generalization. Moreover, Face X-ray and
FFD also show relatively outstanding generalization ability,
indicating that paying more attention to the pixel level ma-
nipulation region also helps to learn more fine-grained and
precise features and benefits to the generalization. From the
results of average AUC among different detection methods
for datasets, we can conclude that DFDC including 6 types
of manipulation helps generalize to IDtest set.

4.3. Evaluation Results of Detection Robustness

Detection robustness is reported in this section on our
perturbed ID test set. As shown in Figure 3, we report the
average detection performance of each algorithm when fac-
ing five kinds of perturbations. The average AUC in these
two figures are that across all datasets and that across com-
monly trained datasets. From the results, the detection per-
formance of all methods has experienced varying levels of
fluctuations, while the white Gaussian noise can cause a sig-
nificant degradation of detection performance of most mod-
els. Among plotting perturbation versus AUC curves, the



Figure 3. Illustration of the impact of different types of perturba-
tion on average AUC.

Figure 4. Illustration of the relationship of FLOPs and average
AUC score evaluated on ID test set.

curve of Xception is the most smooth one. By calculat-
ing the population standard deviation of perturbed average
AUCs of each algorithm, Xception gains the smallest value
of 1.36(1.69). It indicates that this approach, with accept-
able performance, is more robust to different kinds of per-
turbations. Moreover, Mesonet-4 and MesoInception-4 also
gain relatively small value of 2.47(1.83) and 2.15(2.05).

4.4. Evaluation Results of Practicability

We assess the practicability of forgery detection meth-
ods by analyzing AUC versus FLOPs curve and AUC ver-
sus number of parameters curve in this section, as shown in
Figure 4 and Figure 5. As illustrated in these plots, we can
observe that the lightweight Patch-xception-block2 model
possesses an acceptable and stable performance, which can
be more suitable for practical scenes.

4.5. Evaluation Results of Efficiency/Effectiveness
Trade-off

The evaluation results of efficiency and effectiveness
trade-off are shown in Figure 6. We measure this metric
by exploring the relationship between single-frame infer-
ence time of a model and its average AUC score on ID test
set. By observing the ratio of AUC to inference time and
the quantitative results in Table 3 and Table 5, we can con-
clude that Patch-resnet-layer1 achieves relatively superior
performance with very low inference time and high AUC
score. In addition, as illustrated in Table 3, the inference
time per frame for most methods is longer than 5 millisec-

Figure 5. Illustration of the relationship of number of parameters
and average AUC score evaluated on ID test set.

Figure 6. Illustration of the relationship of inference time and av-
erage AUC score evaluated on ID test set.

onds, indicating the existing deepfake detection algorithms
can be time-consuming and less practical on very large-
scale forgery data detection in realistic scenarios.

5. Conclusion

In this paper, a comprehensive and consistent bench-
mark has been established for holistic and fair evaluation
of existing deepfake detection approaches. By performing
large-scale experiments with several fair-minded and prac-
tical evaluation metrics, we have concluded that the dataset
inconsistencies can lead to unfair comparison among popu-
lar approaches. A challenging ID test set including manipu-
lated samples that are indistinguishable to both humans and
detection algorithms, is collected for a better evaluation and
understanding of state-of-the-art deepfake detection meth-
ods. The evaluation results reveal that the existing popular
deepfake detection algorithms remain far from the expecta-
tions for real-world deployment. The evaluation from mul-
tiple perspectives indicates different algorithms have their
own advantages and no one method shows comprehensively
superiority over others.
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[15] David Güera and Edward J Delp. Deepfake video detection
using recurrent neural networks. In 2018 15th IEEE Inter-
national Conference on Advanced Video and Signal Based
Surveillance (AVSS), pages 1–6. IEEE, 2018. 4, 5, 11, 12

[16] Dong Huang and Fernando De La Torre. Facial action trans-
fer with personalized bilinear regression. In European Con-
ference on Computer Vision, pages 144–158. Springer, 2012.
3

[17] Liming Jiang, Ren Li, Wayne Wu, Chen Qian, and
Chen Change Loy. Deeperforensics-1.0: A large-scale

dataset for real-world face forgery detection. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2886–2895. IEEE, 2020. 2, 4

[18] Davis E King. Dlib-ml: A machine learning toolkit.
The Journal of Machine Learning Research, 10:1755–1758,
2009. 5, 11
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6. Appendix A: Evaluation Details

We summarize our evaluated 11 forgery detection meth-
ods (9 algorithms) and the corresponding parameter set-
tings in our experiment in this section. In general, we set
the number of training iterations and epochs to an adap-
tive value according to the quantity relationship between
the data scale of our training datasets and that in original
papers. And the other specific training parameters are all
identical to the original papers. For each method, we tune
the parameter to achieve the best possible performance.

6.1. Algorithm Introduction and Implementation
Details

Face X-ray [21] is an intra-frame level knowledge-driven
detection method. This method applies Face X-ray, the
blending boundary produced by the blending procedure in
face manipulation, as its interpretable artifacts to guide
the model to learn this additional supervised information
and then do the classification. The original paper uses BI
dataset, containing self-supervised learning generated data,
as well as public dataset to perform model training. We
merely adopt public dataset to train the model in our work
for fair evaluation of benchmarking datasets. We adopt
HRNet-W48-C [32] as backbone network in the experiment
and set batch size to 32. The total number of iterations,

numbers of warming start iterations and fine-tuning itera-
tions are set to adaptive values. In addition, the learning rate
setting is identical to original paper as 0.0002 using Adam
optimizer and it is linearly decayed to 0 for the last adaptive
iterations.

FWA [23] is classified as an intra-frame level knowledge-
driven method. Exploring the artifacts caused by affine
transform procedure in deepfake production pipeline, this
method leverages the resolution inconsistency between ma-
nipulated face region and its surrounding region as inter-
pretable artifact. To impose detection model to focus on
this artifact, this method adopts self-supervised learning to
generate negative examples for training and we implement
this strategy on the half training positive examples of each
dataset in our data preprocessing step. We use ResNet50 as
detection model and set batch size as 64. For the number of
learning rate decay steps, fine-tuning epochs and hard min-
ing epochs, we set them to adaptive values. Additionally,
following the original experimental setup, learning rate re-
spectively starts from 0.001 in fine-tuning stage and starts
from 0.0001 in hard mining stage, and decay rate is 0.95.

HeadPose [34] is considered as an intra-frame level
knowledge-driven method. It uses inconsistent head poses
estimated between facial landmarks of the whole face and
that of the central face region as interpretable artifact. And
then it adopts the SVM classifier to distinguish this differ-
ence for deepfake detection.

Mesonet-4/MesoInception-4 [5] is an intra-frame level
data-driven method. By analyzing images at a mesoscopic
level, this method introduces two networks, Meosonet-4
and MesoInception-4. Mesonet-4 is a shallow network with
a sequence of four layers of successive convolutions and
pooling, and followed by a dense network with one hid-
den layer. MesoInception-4 has a similar network structure
which replaces the first two convolutional layers by the in-
ception module with dilated convolutions. In the experi-
ment, we set batch size to 75 and use Adam optimizer in
the training process. The learning rate starts from 10−3 and
is divided by 10 every adaptive iterations down to 10−6.

Patch Resnet Layer1/Patch Xception Block2 [9] be-
longs to the intra-frame level data-driven method. By trun-
cating Resnet and Xception after intermediate blocks, this
method analyzes images based on patch level predictions.
In our experiment, we adopt patch level labels and predic-
tions to calculate losses and metrics to force the model to
learn local features in training phase. While in test phase,
we aggregate the patch level predictions in an average man-
ner to get the image level predictions and then calculate the



image level losses and metrics. Following the original pa-
per, we set batch size as 32, consisting 16 real and 16 fake
images, and use Adam optimizer with default parameters
and learning rate.

Xception [30] is classified as an intra-frame level data-
driven method. This method adopts XceptionNet [12] as
backbone to implement a binary classification. Similar as
the original paper, we set batch size as 32 and train the net-
work with a learning rate of 0.0002 using Adam optimizer.
We stop the training process when the validation AUC does
not change for 10 consecutive checks.

FFD [14] can be considered as an intra-frame level
knowledge-driven method. This method applies an atten-
tion mechanism to detect and localize manipulation regions.
The author proposes two types of attention-based layer,
named manipulation appearance model and direct regres-
sion, to guide the network to focus on discriminative re-
gions. Meanwhile, three types of loss function are proposed
to supervise the learning progress. In our implementation,
we adopt the XceptionNet [12] as the backbone and direct
regression as the attention-based layer to train the model.

Multiple-attention [35] is an intra-frame level
knowledge-driven method, which considers deepfake
detection as a fine-grained classification problem and
proposes a multi-attentional deepfake detection network.
This network applies an attention module to generate
multiple attention maps assisting explore local discrimi-
nation, utilizes densely connected convolutional layers to
enhance subtle texture artifacts in shallow feature map, and
uses bilinear attention pooling to aggregate the low-level
textural feature and high-level semantic features guided
by the attention maps. What’s more, this method designs
a regional independent loss to learn multiple attention
maps and applies AGDA mechanism to force the attention
to mine more useful information. Following the original
paper, we use EfficientNet-b4 [33] as the backbone network
and set the SLt and SLa as L2 and L5.

Conv LSTM [15] is an inter-frame level detection
method. It takes consecutive frame images as input and de-
signs a network with InceptionV3 to extract frame level fea-
tures and uses LSTM to detect the anomaly between frames.
To achieve the best performance, instead of directly feed-
ing consecutive frame images into network in original pa-
per, we implement face detection in data pre-processing and
use consecutive face images as network input. We train our
model using a sequence of 20 images and a batch size of
4. The optimizer is set to Adam with an initialized learning
rate of 1e-5.

6.2. Data Pre-processing Pipeline

We apply the image processing toolkit Dlib [18] and
OpenCV-Python [7] to implement the common data pre-
processing, including frame extraction, face cropping, face
detection and face alignment. Here we specially describe
the additional data pre-processing pipeline in details for
the algorithms requiring those processes but without cor-
responding open-sourced codes.

Face X-ray requires the additional mask data, named
Face X-ray to supervise the learning process. It defines Face
X-ray as an image I with

Ii,j = 4 ·Mi,j · (1−Mi,j) (1)

where M is the soft non-binary mask which delimits the
manipulated region. Following the paper, we generate the
ground-truth Face X-ray for fake images. Firstly, the bi-
nary difference mask can be generated by computing the
absolute element-wise difference between manipulated im-
age and its mapping swapped target image. Then a Gaussian
blur followed by normalization is applied to generate soft
non-binary mask. Finally, we use the above formulation to
generate Face X-ray.

FWA adopts self-supervised learning to generate negative
examples in the model training phase. Following its pa-
per, we firstly align the face image to multiple scales and
randomly select an aligned image. Then we apply Gaus-
sian blur to the aligned image and affine warp it back to
the original size. Finally, we randomly change the image
color information and paste the whole face region or land-
mark region to the original frame image to get the negative
example.

FFD requires the ground-truth binary modification mask
to get the attention map loss. Following the paper, we
compute the absolute pixel-wise difference of RGB image
pairs between manipulated images and their corresponding
source images. Then we convert them to grayscale images
and attain the binary masks by thresholding the normalized
grayscale images.

7. Appendix B: Evaluation of Re-
Implementation Correctness

To ensure the correctness of our re-implemented de-
tection algorithms, we have conducted verification exper-
iments of those methods not or partially open-sourced to
show the consistency between our results and the reported
results. The comparative results are shown in Table 6.

For Conv LSTM, since its test data used in original pa-
per is unavailable, we use FF++/DF to test the model and



Method Reported Result Our Result
Test Dataset Metric Result Test Dataset Metric Result

Face X-ray FF++/DF AUC 99.17 [21] FF++/DF AUC 99.4
FF++/FS AUC 99.20 [21] FF++/FS AUC 99.8

FWA-resnet DeepfakeTIMIT AUC 87.4 DeepfakeTIMIT AUC 99.1
UADFV AUC 79.0 UADFV AUC 57.3

MeosoInception-4 paper released data ACC 91.7 [5] paper released data ACC 91.2
Xception FF++/DF ACC 99.59 [30] FF++/DF ACC 96.7
Multiple-attention FF++ AUC 99.29 [35] FF++/DF, FF++/FS AUC 99.4
Conv LSTM Unavailable data ACC 96.7 [15] FF++/DF ACC 97.9

Table 6. Results of evaluation of re-implementation correctness.

show that we can get a better result. For all the other
methods, we utilize the same domain distributed data to ex-
ecute the verification. Since the unavailability of totally
same frame data, we randomly extract frame data from
each test dataset for fair comparison. It can be seen from
the table, for Face X-ray, FWA-resnet (DeepfakeTIMIT),
MesoInception-4, Multiple-attention and Conv LSTM ap-
proaches, our re-implementation can achieve better or com-
parable results. While the results of FWA-resnet and Xcep-
tion exists some gaps of the reported results. For FWA-
resnet, we speculate that such approach strongly relies on
the image quality of the generated training samples. We
find it is easy to generate high quality negative examples
based on DeepfakeTIMIT. Therefore, we can achieve supe-
rior performance on this dataset. And the low quality nega-
tive examples generated based on UADFV lead to poor per-
formance of this dataset. For Xception, we are unable to get
the superior result reported in the original paper. A similar
claim that they only manage to fine-tune Xception to obtain
a accuracy score of 96.1% has also been mentioned in [5].
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