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Abstract—The unmanned aerial vehicle (UAV) enabled mobile
edge computing (MEC) has been deemed a promising paradigm
to provide ubiquitous communication and computing services for
the Internet of Things (IoT). Besides, by intelligently reflecting the
received signals, the reconfigurable intelligent surface (RIS) can
significantly improve the propagation environment and further
enhance the service quality of the UAV-enabled MEC. Motivated
by this vision, in this paper, we consider both the amount of
completed task bits and the energy consumption to maximize the
energy efficiency of the RIS-assisted UAV-enabled MEC systems
with non-orthogonal multiple access (NOMA) protocol, where the
bit allocation, transmit power, phase shift, and UAV trajectory
are jointly optimized by an iterative algorithm with a doubl e-loop
structure based on the Dinkelbach’s method and block coordinate
decent (BCD) technique. Simulation results demonstrate that: 1)
our proposed algorithm can achieve higher energy efficiencythan
baseline schemes while satisfying the task tolerance latency; 2)
the energy efficiency first increases and then decreases withthe
increase of the mission period and the total amount of task-
input bits of IoT devices; 3) the energy efficiencies of schemes
with imperfect channel state information (CSI) are lower than
corresponding schemes with perfect CSI, and the performance
gain of NOMA over OMA diminishes under the imperfect CSI.

Index Terms—Energy efficiency, reconfigurable intelligence
surface (RIS), mobile edge computing (MEC), unmanned aerial
vehicles (UAV), resource allocation, phase shift, trajectory design.

I. I NTRODUCTION

In recent years, with the rapid development of Internet
of Things (IoT), the number of IoT devices are dramat-
ically increasing, which spurs the emerging of more and
more novel intelligent applications, such as augmented reality,
virtual reality, face recognition, and so forth [1]. The tasks
generated by these applications usually demand for higher
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computation capacity and lower latency. However, it is not
reliable to depend on the IoT devices themselves to satisfy
such computation demands, due to the limited computation
capacity and energy budget. In this context, mobile edge
computing (MEC) appears as a promising paradigm to support
IoT devices’ computation-intensive and latency-criticaltasks
[2]. By deploying the MEC server at a wireless access point
(AP) or base station (BS), it provides offloading opportunities
for IoT devices, and thus can help IoT devices compute tasks
and save energy. Despite the benefits of infrastructure-based
MEC systems, the fixed location of MEC server restricts the
coverage and the service will not be restored in a short time if
the infrastructure is destroyed. Recently, the unmanned aerial
vehicles (UAVs) characterized by their mobility, flexibility,
and maneuverability have drawn considerable attentions. It is
envisioned that the UAV-enabled MEC can be widely deployed
to provide ubiquitous communication and computing supports
for IoT devices, which has received growing popularity [3]–
[5].

By equipping an MEC server, the UAV can provide com-
puting and communicating services for IoT devices. Thanks
to the inherent advantages such as flexible deployment and
high mobility, the benefits of integrating the UAV into MEC
are multifold. For example, the UAV can be rapidly deployed
on the hotspots to cooperate with ground base stations, and
thus enhance the computing capacity of the network to tackle
the surge of computation demands during rush hours [6]. In
addition, due to the high altitude of UAV, the probability of
line-of-sight (LoS) links can be improved, which is beneficial
for IoT devices’ energy saving when they perform task offload-
ing [7]. Moreover, the flexible trajectory of UAV brings an
additional degree of freedom for communication performance
enhancement [8]. By optimizing the trajectory, the UAV can
move closer toward the IoT devices to obtain better channel
conditions and achieve lower energy consumption in task
offloading [9]–[11].

However, the UAV-enabled MEC systems still face many
challenges. For example, the direct links among the UAV and
IoT devices may be blocked by buildings in urban areas, which
heavily degrades the channel conditions. Besides, due to the
limited energy budget of UAV, it is essential to jointly optimize
the UAV trajectory and computing energy consumption to
achieve higher energy efficiency. In order to fully reap the
benefits of integrating the UAV into MEC and further improve
the IoT devices’ task offloading performance, an emerging
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paradigm called reconfigurable intelligent surface (RIS) has
drawn great attentions [12]–[15] . The RIS is a planar array
consisting of a large number of reflecting elements [16].
Through adjusting the phase shift of RIS element, the con-
catenated virtual LoS link is formed between the transmitter
and receiver. Thus, the reflected signals can be combined
coherently to improve the received signal power [17]. In
addition, compared with conventional relay systems, the RIS
passively reflects signals without power amplification, which
is more environment-friendly and can improve the energy
efficiency of the whole system [18]. Moreover, the RIS can be
flexibly deployed on various structures, such as the building
facades, roadside billboards, and indoor walls, which makes
it trivial to integrate the RIS into existing wireless networks
[19]–[22].

Recently, aiming to theoretically exploiting the benefits of
RIS, there are much literature dedicates to the optimization
problems in the RIS-assisted networks. For instance, in [23],
the RIS is deployed in the MEC system to assist the task
offloading of devices. Aiming to evaluate the computational
performance, the sum computational bits are maximized by
jointly optimizing the CPU frequency, the transmit power and
time allocation of computational offloading, as well as the
phase shifts of the RIS. Later in [24], the total completed
task-input bits maximization problem in the RIS-assisted MEC
networks is first solved by a block coordinate descending
(BCD) algorithm. Then in order to reduce the computational
complexity, the deep learning architecture is constructedto
facilitate the online implementation of the proposed BCD
algorithm. Recently, the wireless energy transfer (WET) is
considered for the RIS-assisted MEC network in [25] to satisfy
both the energy supply and computation requirements of IoT
devices, where the total computation bits are maximized by
an iterative algorithm. It is validated that the RIS-enhanced
wireless powered MEC can significantly enhance the compu-
tational performance over the scheme without RIS.

In the RIS-assisted UAV networks, the RIS can be deployed
for overcoming the blockages and enhancing the achievable
rate. To this end, in [26], the sum rate of users in the downlink
is maximized by jointly optimizing UAV’s trajectory, the
phase shift of RIS, the allocation of THz sub-bands, and the
power control. As expected, the largest sum rate is achieved
by the proposed joint optimization algorithm. In order to
guarantee the secure communication between the UAV and
the legitimate user, in [27], the RIS is deployed to enhance
the quality of the legitimate transmission while degradingthat
of the eavesdropping, and an iterative algorithm is proposed
to maximize the average achievable secrecy rate. Similarly,
the secure transmission problem is investigated in the UAV
and RIS assisted mmWave networks, where the near-optimal
positions of RIS and UAV are obtained by an exhaustive
searching method [28]. Besides, in order to overcome the
highly dynamic stochastic environments in the RIS-assisted
UAV networks, in [29], a decaying deep Q-network (D-
DQN) based algorithm is proposed to minimize the energy
consumption of the UAV by jointly optimizing the phase shift
of RIS, UAV trajectory, decoding order, and power allocation.
Simulation results show that the proposed D-DQN algorithm

can strike a balance between accelerating training speed and
converging to the local optimal, as well as avoiding oscillation.

The above-mentioned RIS-assisted networks concentrate
either on the RIS-assisted MEC networks, where the UEs’
computational performance can be enhanced by using the
computing resources at the APs; or the RIS-assisted UAV
architectures to improve the achievable communication rate of
UEs by exploiting the flexible trajectory of the UAV. However,
to the best of our knowledge, there are still few studies
focusing on the performance improvement brought by the RIS
in the UAV-enabled MEC. In [30], although the UAV-mounted
RIS is deployed to assist the communication between the
ground users and an MEC server, the computation capability
of UAV is not considered, and the users offload task-input
data to the MEC server by OMA protocol which cannot fully
utilize the time and frequency resources. Then, in [31], the
non-orthogonal multiple access (NOMA) is introduced into the
RIS-aided UAV-MEC system, where the aim is to maximize
UAV’s computation capacity and the simulation results show
that the NOMA scheme outperforms OMA. Nevertheless, we
note that in [31] the energy consumption of UAV is only
imposed as a budget constraint and the position of UAV is
fixed. The deployment of RIS to a certain extent facilitates
the task offloading of IoT devices, but when a large amount
of task bits is offloaded to the UAV-mounted MEC server,
it will threaten the system’s operating time since the energy
storage of the UAV is heavily limited. Hence, considering this
contradiction between the RIS and the UAV-enabled MEC, it
is of great importance to investigate the energy efficiency by
simultaneously paying attentions to the energy consumption
and the amount of completed task bits. Besides, in order to
fully exploit the benefits of UAV’s mobility in the RIS-assisted
UAV-enabled MEC system, the trajectory of UAV needs to be
jointly designed with the resource allocation and the phase
shift optimization.

Motivated by these observations, in this paper, under the
NOMA protocol, we investigate the RIS-assisted UAV-enabled
MEC systems with the objective to maximize the energy
efficiency, by jointly optimizing the task bit allocation between
IoT devices and the MEC server, transmit power of IoT
devices, phase shift of RIS, and the UAV trajectory. The main
contributions of this paper can be summarized as follows.

1) RIS-assisted UAV-enabled MEC: We first establish a
novel RIS-assisted UAV-enabled MEC framework to explore
the potential benefits of RIS in UAV-enabled MEC systems,
where the RIS is deployed on the surrounding building wall
to assist IoT devices’ task offloading, and the UAV equipped
with an MEC server provides offloading opportunities and
computing services for multiple IoT devices. During the task
offloading, both the direct links from IoT devices to the UAV
and the reflecting links via the RIS are considered. Besides,
partial offloading scheme is applied in the IoT devices and all
devices access the UAV by NOMA protocol.

2) Iterative algorithm with a double-loop structure : By
taking both the amount of completed task bits and energy con-
sumption into consideration, an energy efficiency maximiza-
tion problem is formulated for the RIS-assisted UAV-enabled
MEC system. Due to the fractional structure and highly-
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Fig. 1. The RIS-assisted UAV-enabled MEC system.

coupled variables of the formulated problem, an iterative
algorithm with a double-loop structure is proposed, where the
outer loop is used to update the energy efficiency based on the
Dinkelbach’s method, and the inner loop is decomposed into
three subproblems to iteratively optimize the bit allocation,
transmit power, phase shift, and UAV trajectory. For the three
subproblems in the inner loop, the Langrange dual method
is utilized to solve the bit allocation and transmit power
optimization problem; the phase shift of RIS is optimized by
the difference of convex functions (DC) programming; and the
successive convex approximation (SCA) technique is exploited
to tackle the UAV trajectory optimization.

3) Performance improvement: Extensive simulation results
verify that with the deployment of RIS, our proposed algorithm
can achieve higher energy efficiency compared to the schemes
with random phase, without trajectory optimization, without
RIS, and the full offloading scheme. Interestingly, it can be
found that with the increase of the mission period, the energy
efficiency first increases and then decreases since the flyingen-
ergy consumption of UAV continues to increase and dominates
the total energy consumption. Most importantly, it is observed
that the energy efficiencies of schemes with imperfect channel
state information (CSI) are lower than the corresponding
schemes with perfect CSI, and under the imperfect CSI, the
performance gain of NOMA over OMA diminishes since the
channel estimation error results in more inter-user interference
for IoT devices with the NOMA protocol.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and problem formulation for
energy efficiency maximization. Section III elaborates on the
proposed algorithms for solving the formulated problem. Some
numerical results are shown in Section IV, and conclusions are
finally drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

An RIS-assisted UAV-enabled MEC system is shown in Fig.
1, where an UAV equipped with an MEC server provides

computing services toI IoT devices1. An RIS with M
reflection elements is installed on the surrounding building
wall to assist IoT devices’ task offloading. To ease of expo-
sition, the IoT devices and reflection elements are denoted
by i ∈ I ∆

= {1, 2, ..., I} and m ∈ M ∆
= {1, 2, ...,M},

respectively.
We suppose the system operates during an appointed mis-

sion period ofT , which is divided intoN time slots and
indexed byn ∈ N ∆

= {1, 2, ..., N}. The time slot length
t = T/N is sufficiently small so that the UAV flies through
a small distance and the channel gain is approximately un-
changed within each time slot. Without loss of generality, a
3D Cartesian coordinate system is adopted to describe the
positions of UAV, RIS, and the IoT devices. Specifically,
the horizontal position of the UAV at time slotn can be
represented asq[n] = (xU[n], yU[n]). Similar to [11], [32],
it is assumed that the UAV flies at a fixed altitudeH > 0.
The horizontal position and the altitude of the first element
on the RIS with an uniform linear array (ULA) are given
by wR = (xR, yR) and hR, respectively. It is worth noting
that our work can be easily extended to the uniform planar
array (UPA) by utilizing the Kronecker product to perform
mathematical transformation [24], [33] or regarding the UPA
as different groups of ULAs [34]. In addition, thei-th IoT
device is fixed at the ground with zero altitude and the
horizontal positionwi = (xi, yi) is known to the RIS and
the UAV.

1) Communication Model:Since the UAV flies at a high
altitude and the RIS is placed on the façade of a building, the
communication link between the UAV and RIS is assumed to
be a LoS channel. Thus, the channel gain between the UAV
and the RIS at then-th time slot can be given by

hU
R[n] =

√

ρd−2
RU [n]

[

1, ..., e−j 2π
λ (M−1)dϕRU[n]

]

, (1)

where ρ is the path loss at the referenceD0 = 1m;

dRU[n] =

√

(H − hR)2 + ‖q[n]−wR‖2 denotes the distance
between the UAV and the RIS at then-th time slot;d is the
antenna separation;λ is the carrier wavelength;ϕRU[n] =
(xR − xU[n])/dRU[n] represents the cosine of the angle of
departure (AoD) of the signal from the RIS to the UAV at the
n-th time slot.

The direct links from the IoT devices to the UAV are
assumed to be blocked by obstacles [34]–[36]. Thus, the
channel gain from thei-th IoT device to the UAV at then-th
time slot can be expressed as

hUi [n] =
√

ρd−ε
iU [n]giU, (2)

where diU[n] =

√

‖q[n]−wi‖2 +H2 is the distance be-
tween the UAV and thei-th IoT device at then-th time
slot; ε is the path loss exponent andgiU represents the
random scattering component modeled by a zero-mean and
unit-variance circularly symmetric complex Gaussian random
variable.

1Note that only one UAV is considered in our proposed RIS-assisted
UAV-enabled MEC system. For the multi-UAV scenarios, each UAV can
independently execute our proposed algorithm.
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For the communication links from the IoT devices to the
RIS, we assume that they are Rician fading channels [34],
which consist of the LoS and non-LoS (NLoS) components.
Hence, the channel gain between thei-th IoT device and the
RIS at then-th time slot can be given by

hR
i [n] =

√

ρd−γ
iR [n]

(
√

β

1 + β
hLoS
iR +

√

1

1 + β
hNLoS
iR

)

,

(3)

wherediR =

√

‖wi −wR‖2 + hR
2 is the distance between

the i-th IoT device and the RIS;γ denotes the path loss
exponent;β represents the Rician factor;hLoS

iR andhNLoS
iR are

the LoS component and NLoS component, respectively. For
hLoS
iR , we have

hLoS
iR [n] =

[

1, e−j 2π
λ dϕiR , ..., e−j 2π

λ (M−1)dϕiR

]T

, (4)

whereϕiR = (xi − xR)/diR is the cosine of the angle of
arrival (AoA) of the signal from thei-th IoT device to the
RIS. The NLoS componenthNLoS

iR is the complex Gaussian
distributed variable with zero mean and unit variance.

With the help of the RIS, it is possible to achieve the virtual
LoS connections between the UAV and the IoT devices by
adjusting the phase shift of RIS. Since the phase shift of each
reflecting element of the RIS can be dynamically adjusted by
a controller, in this paper, the phase-shift matrix of the RIS is
modeled as

Φ[n] =
{

ejθ1[n], ..., ejθM [n]
}

, (5)

where θm[n] ∈ [0, 2π] is the phase shift of them-th RIS
element at then-th time slot. Thus, the combined channel
gain from thei-th IoT device to the UAV at then-th time slot
can be given by2

hi[n] = hUi [n] + (hR
i [n])

Hdiag(Φ[n])hU
R[n]. (6)

Denote the bandwidth of the system asB. Benefiting from
the partial offloading paradigm in MEC, at each time slot, the
IoT devices can offload parts of their task-input data to the
UAV with the aid of RIS. When the IoT devices offload tasks,
the NOMA protocol is adopted to further improve the energy
efficiency. To be specific, at each time slot, the IoT devices
are ranked by the UAV in the ascending order of channel gain.
Therefore, the order of the IoT devices for the UAV at then-th
time slot is denoted byΠ = {π1 [n] , π2 [n] , ..., πI [n]}, where
πi [n] is the index of the IoT device with thei-th smallest
channel gain to the UAV during time slotn.

After receiving the IoT device’s signal, the successive
interference cancellation (SIC) technique is adopted by the
UAV to decode signals from multiple IoT devices. When the
UAV decodes the signal from IoT deviceπi [n], the received
signals from IoT deviceπ1 [n] to IoT device πi−1 [n] are

2The instantaneous CSI can be obtained by recently proposed channel
estimation methods, such as [37]–[39], where the Doppler frequency offset
induced by the UAV movement is also considered. The development of more
sophisticated CSI estimation techniques is an interestingtopic for our future
work. In the simulation results, we will demonstrate the impacts of imperfect
CSI on the energy efficiency of the RIS-assisted UAV-enabledMEC systems.

regarded as interference. Thus, the offloading data rate of IoT
deviceπi [n] at then-th time slot can be expressed as [40]

Roff
πi

[n] = B log

(

1 +
pπi [n]|hπi [n]|2

∑i−1
j=1 pπj [n]

∣

∣hπj [n]
∣

∣

2
+ σ2

)

, (7)

wherepπi [n] is the transmit power of IoT deviceπi[n] when
offloading tasks to the UAV at then-th time slot, andσ2 is
the noise power. If the time slot index can be shown clearly in
the variables, the order indexπi[n] in the subscript is reduced
to πi for ease of exposition.

2) Computation Model:Denote the task of each IoT device
as a positive tuple{Li, Ci}, whereLi is the minimal amount
of task-input bits of IoT devicei in the mission period, andCi

is the CPU cycles required for computing 1-bit of task-input
data. At each time slot, the IoT devices can perform local
computing and task offloading simultaneously. Denotelloci [n]
as the task bits computed locally at IoT devicei during time
slotn. Considering the limitation of IoT device’s computation
capacity, we have

lloci [n]Ci

t
≤ Fi, ∀i ∈ I, n ∈ N , (8)

whereFi is IoT devicei’s maximum CPU-cycle frequency.

Similarly, denote the maximum CPU-cycle frequency of the
UAV as FUAV. We have

∑I
i=1 l

UAV
i [n]Ci

t
≤ FUAV, ∀n ∈ N , (9)

where lUAV
i [n] denotes the amount of task bits that is com-

puted by the UAV for IoT devicei at time slotn. Since the
UAV can only compute the task that has been offloaded and
received, we have

Roff
i [n] t ≥ lUAV

i [n] , ∀i ∈ I, n ∈ N . (10)

In addition, to meet all IoT devices’ minimum computation
requirements, we have

N
∑

n=1

(

lloci [n] + lUAV
i [n]

)

≥ Li, ∀i ∈ I. (11)

3) Energy consumption model:The energy consumption
of the IoT devices consists of two parts, i.e., the energy
consumption for task offloading and that for local computing.
Firstly, at time slotn, the task offloading energy consumption
of IoT devicei is given by

Eoff
i [n] = pi[n]t. (12)

Then, based on [40], the local computing energy consumed
by IoT devicei at then-th time slot can be modeled as

Ecom
i [n] =

κIoT
(

lloci [n]
)3

t2
, (13)

whereκIoT is the effective capacitance coefficient of the IoT
device that depends on the processor’ s chip architecture. Thus,
the total energy consumption of all IoT devices at time slotn
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can be expressed as

EIoT[n] =

I
∑

i=1

(

Ecom
i [n] + Eoff

i [n]
)

. (14)

The UAV mounted by an MEC server flying in the sky pro-
vides computing services for the IoT devices. With a similar
model to the IoT device, the computing energy consumption
of the UAV at time slotn is given by

Ecom
U [n] =

I
∑

i=1

κUAV

(

lUAV
i [n]

)3

t2
, (15)

whereκUAV is the UAV’s effective capacitance coefficient.

In this paper, the flying energy consumption of the UAV
is also taken into account. We deploy the fixed-wing UAV
in the proposed system as an example, and its flying energy
consumption at time slotn can be modeled as [41]

Efly
U [n] = t

(

τ1v
3 [n] +

τ2
v [n]

)

, (16)

wherev[n] = ‖q[n]− q[n− 1]‖/t represents the speed of the
UAV at time slotn. τ1 and τ2 are two parameters related to
the UAV’s weight, wing area, wing span efficiency, and air
density, etc.

Hence, the energy consumption of the UAV at time slotn
can be represented as

EUAV[n] = µEfly
U [n] + Ecom

U [n]. (17)

whereµ is the weight of UAV’s flying energy consumption.

B. Problem Formulation

In this paper, we aim to maximize the energy efficiency
of the RIS-assisted UAV-enabled MEC system. At each time
slot, the total amount of completed task bits are comprised of
the offloading task bits and those computed locally at the IoT
devices. Thus, the total amount of completed task bits at time
slot n can be given by [42], [43]

L [n] =

I
∑

i=1

(

lloci [n] +Roff
i [n] t

)

. (18)

Meanwhile, the total energy consumption includes all IoT
devices’ energy consumption and the UAV’s energy consump-
tion, which can be expressed as

E[n] = EIoT[n] + EUAV[n]. (19)

The energy efficiency is defined as the ratio of the total amount
of completed task bits over the total energy consumption in
the mission period. Thus, the energy efficiency maximization
problem for RIS-assisted UAV-enabled systems can be formu-

lated as

max
z

∑N
n=1 L [n]

∑N
n=1 E [n]

(20a)

s.t.

N
∑

n=1

(lloci [n] + lUAV
i [n]) ≥ Li, ∀i ∈ I, (20b)

∑I
i=1 l

UAV
i [n]Ci

t
≤ FUAV, ∀n ∈ N , (20c)

lloci [n]Ci

t
≤ Fi, ∀i ∈ I, n ∈ N , (20d)

Roff
i [n]t ≥ lUAV

i [n], ∀i ∈ I, n ∈ N , (20e)

|θm[n]| = 1, ∀m ∈M, n ∈ N , (20f)

q[1] = q0,q[N + 1] = qF , (20g)

||v[n]|| ≤ VMax, ∀n ∈ N , (20h)

where z =
{

lloci [n], lUAV
i [n], pi[n], θm[n],q[n]

}

. Constraint
(20b) ensures the minimum computation requirements of IoT
devices can be satisfied. Constraints (20c) and (20d) mean
that the workloads of UAV and IoT devices cannot exceed
their maximum CPU frequencies. Constraint (20f) represents
the feasible set of RIS’s phase shift. Constraint (20g) is
UAV’s initial and final horizontal locations. Constraint (20h)
represents that the speed of UAV must be less than the
maximum speed.

III. SOLUTION TO THE FORMULATED PROBLEM

Due to the fractional structure of the objective function, and
the closely coupled optimization variables in (20), it is difficult
to obtain the globally optimal solution in polynomial time.To
tackle these challenges, we propose an iterative algorithmwith
a double-loop structure to maximize the energy efficiency and
optimize the bit allocationlloci [n] andlUAV

i [n], transmit power
pi[n], phase shift of RISθm[n], and the UAV trajectoryq[n]. In
the outer loop, the Dinkelbach’s method is exploited to handle
the fraction programming and obtain the energy efficiency.
With the given energy efficiency, the coupled variables are
iteratively optimized by the block coordinate descent (BCD)
method in the inner loop.

Firstly, we equivalently transform problem (20) into the
following parametric problem:

max
z,α

N
∑

n=1
L[n]− α

N
∑

n=1
E[n],

s.t.(20b)− (20h),
(21)

whereα is the introduced auxiliary parameter. Assumingα∗

is the optimal objective value of problem (20), we have the
following Theorem.

Theorem 1: The optimal solutionz∗ of problem (20) can
be obtained if and only if

max
z

(

N
∑

n=1

L[n]− α∗
N
∑

n=1

E[n]

)

= 0. (22)

Proof: See Appendix A.
However, the optimalα∗ cannot be obtained in advance.

Hence we propose an iterative algorithm based on the Dinkel-
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Algorithm 1 Dinkelbach’s algorithm for maximizing the en-
ergy efficiency

1. Initialize z, iterative numberk = 1.
2. repeat:
3. Solve problem (21) by Algorithm 4 for givenα(k),

and obtain the optimal solutionz(k).

4. CalculateF (α(k)) =

∣

∣

∣

∣

N
∑

n=1
L[n]− α

N
∑

n=1
E[n]

∣

∣

∣

∣

(k)

.

5. if F (α(k)) ≤ δ then

6. α∗ =
∑N

n=1 L[n](k)

∑

N
n=1 E[n](k) ; z∗ = z(k); break.

7. elseα(k+1) =
∑N

n=1 L[n](k)

∑N
n=1 E[n](k) ; k = k + 1.

8. Until k ≥ Nmax.
9. Output : the optimal energy efficiencyα∗ and the

corresponding solutionz∗.

bach’s method to updateα. The details can be seen in
Algorithm 1.

In Algorithm 1, the outer-loop is used to updateα, while
the inner-loop is executed to solve problem (21) with given
α(k). However, with given energy efficiencyα(k), problem
(21) is still non-convex due to the coupling among UAV
trajectoryq[n], phase shift of RISθm[n], and other optimiza-
tion variables. Therefore, in order to tackle problem (21),
it is decomposed into three subproblems by adopting the
BCD technique, namely, bit allocation and transmit power
optimization, phase shift optimization, and UAV trajectory
optimization. And then an iterative algorithm is proposed to
solve them in an alternating manner.

A. Bit Allocation and Transmit Power Optimization

With given α(k), a subproblem of problem (21) is the bit
allocation and transmit power optimization, where the phase
shift θm[n] and UAV trajectoryq[n] are given as fixed. Thus,
the bit allocation and transmit power optimization problemcan
be reformulated from (21) as

max
lloci [n],lUAV

i [n],pi[n]

N
∑

n=1

L[n]− α
N
∑

n=1

E[n] (23a)

s.t.(20b)− (20e). (23b)

Theorem 2: Define Sπi [n] =
∑i

j=1 pπj [n]
∣

∣hπj [n]
∣

∣

2
+σ2.

The task offloading energy consumption of all IoT devices
in the mission period can be expressed as

N
∑

n=1

I
∑

i=1

pπi [n]t=

N
∑

n=1

I
∑

i=1

t

(

1

hπi [n]
2−

1

hπi+1 [n]
2

)

2

i
∑

j=1
Roff

πj
[n]

B .

(24)

Proof: See Appendix B.

By substituting (24) into the objective function of problem
(23) and definingΩ1 =

{

lloci [n] , lUAV
i [n] , Roff

ri [n]
}

, problem

(23) can be transformed into

max
Ω1

N
∑

n=1

I
∑

i=1

(

lloci [n] +Roff
πi
[n]t− ακIoT

(

lloci [n]
)3

t2

−αt( 1

hπi [n]
2−

1

hπi+1 [n]
2 )2

i
∑

j=1
Roff

πj
[n]

B −ακUAV

(

lUAV
i [n]

)3

t2





(25a)

s.t.(20b)− (20d), (25b)

Roff
πi

[n] t ≥ lUAV
πi

[n] . (25c)

Remark 1: It can be found that the transmit power op-
timization pi [n] in (23) is transformed to the optimization
of offloading rateRoff

πi
[n]. Constraint (20e) is also expressed

as (25c) related toRoff
πi

[n]. By solving problem (25), the
offloading rate can be obtained, and then the transmit power
of IoT deviceπi [n] can be calculated according to Appendix
B. Define a functionΨ(i, n) to indicate the decoding order
of IoT devicei for the UAV in time slotn when adopting the
NOMA protocol. Thus, the transmit power of IoT devicei at
time slotn can be obtained aspπΨ(i,n)

[n].
Note that the objective function of (25) is convex with

respect tolloci [n], lUAV
i [n], andRoff

πi
[n]. Meanwhile, the con-

straints of problem (25) are linear. Thus, problem (25) is a
convex optimization problem, which can be solved by CVX.
In order to obtain more insights, we further derive its closed-
form solution in the following Theorem 3.

Theorem 3: For problem (25), the optimal bit allocation
and transmit power can be expressed as

lloci [n]∗ =

√

(

1 + ωi +
ψi,nC

t

)

t2

3ακIoT
, (26)

lUAV
i [n]∗ =

√

(

ωi + ξrΨ(i,n),n +
ζnC

t

)

t2

3ακUAV
, (27)

pπi [n]
∗=

Bξi,nt

α ln 2

(

hπi+1 [n]
2

hπi+1 [n]
2−hπi[n]

2−
hπi−1 [n]

2

hπi [n]
2−hπi−1[n]

2

)

,

(28)
where {ωi}i∈I , {ψi,n}i∈I,n∈N , {ςn}n∈N , {ξi,n}i∈I,n∈N are
Lagrange multipliers associated with constraints (20b)-(20d)
and (25c), respectively.

Proof: See Appendix C.

B. Phase Shift Optimization

In this section, another subproblem of (21), denoted as the
phase shift optimization is considered to optimizeθm[n] with
given bit allocationlloci [n] andlUAV

i [n], transmit powerpπi [n],
and UAV trajectoryq [n], which can be reformulated as

max
θm[n]

N
∑

n=1

I
∑

i=1

Bt log

(

1 +
pπi [n]|hπi [n]|2

∑i−1
j=1 pπj [n]

∣

∣hπj [n]
∣

∣

2
+ σ2

)

,

(29a)

s.t. |θm[n]| = 1, ∀m ∈M, n ∈ N . (29b)

It can be observed that problem (29) is actually an offloading
rate maximization problem. When the bit allocation, transmit
power, and UAV trajectory are given, the RIS only has impacts
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on the offloading rate by controlling the phase shift of reflected
signals. Moreover, due to the objective function, problem (29)
is still non-convex and difficult to tackle directly.

To solve problem (29), we first transform it into a more
tractable form. DefinehRIS

πi
[n] = hR

πi
[n]Hdiag

(

hU
R[n]

)

. The
channel gain between IoT deviceπi[n] and the UAV at time
slot n can be expressed as

|hπi [n]|2 =
∣

∣

∣hUπi
[n] + (hR

πi
[n])

H
diag(Φ[n])hU

R[n]
∣

∣

∣

2

= Tr (Hπi [n]Θ[n])+
(

hUπi
[n]
)2
,

(30)

where Hπi [n] =

(

hRIS
πi

[n]HhRIS
πi

[n] hRIS
πi

[n]HhU
πi
[n]

hU
πi
[n]hRIS

πi
[n] 0

)

,

and Θ[n] = Φ̄[n]
(

Φ̄[n]
)H

is a positive semidefinite matrix
with Φ̄[n] = [ejθ1[n], ..., ejθM [n], x]T . x is an auxiliary scalar.
By substituting (30) into the objective function of problem
(29), we have

log(1 +
pπi

[n]|hπi
[n]|2

∑i−1
j=1 pπj

[n]|hπj
[n]|2+σ2

)

= log2

(

i
∑

j=1

pπj [n]

(

Tr(Hπj [n]Θ[n])+
(

hUπj
[n]
)2
)

+ σ2

)

−log2

(

i−1
∑

j=1

pπj [n]

(

Tr(Hπj [n]Θ[n])+
(

hUπj
[n]
)2
)

+ σ2

)

=W i
1[n]−W i

2[n].
(31)

Thus, problem (29) can be transformed into

max
Θ[n]

N
∑

n=1

I
∑

i=1

(

W i
1 [n]−W i

2 [n]
)

(32a)

s.t.Θm,m[n] = 1, ∀m ∈M, n ∈ N , (32b)

rank(Θ[n]) = 1, ∀n ∈ N . (32c)

In problem (32), the objective function is still non-convex
with respect to the phase-shift-related variablesΘ[n]. More-
over, the rank one constraint (32c) makes the problem more
difficult to solve. To tackle these challenges, it can be found
that the objective function of (32) is the difference of con-
cave functions, which can be handled by exploiting the DC
programming technique [24]. Thus, in the(l+ 1)-th iteration
of the DC programming, the second term of the objective
function is approximated by its linear upper bound, i.e.,

W i
2 [n]≤

∑i−1
j=1 pπj

[n]
〈

(Θ[n]−Θ[n](l)),∇ΘTr(Hπj
[n]Θ[n])|

Θ=Θ
(l)

〉

ln 2

(

∑i−1
j=1 pπj

[n]

(

Tr(Hπj
[n]Θ[n](l))+

∣

∣

∣
hD
πj

[n]
∣

∣

∣

2
)

+σ2

)

+(W i
2[n])

(l) = W̃ i
2[n]

(33)
As for the rank one constraint (32c), we introduce the semi-

definite programming relaxation (SDR) technique by dropping
the rank-one constraint [44]. To this end, problem (32) can be
expressed as

max
Θ[n]

N
∑

n=1

I
∑

i=1

(

W i
1[n]− W̃ i

2[n]
)

(34a)

s.t.Θm,m[n] = 1, ∀m ∈ M, n ∈ N , (34b)

Θ[n] ≻ 0, ∀n ∈ N , (34c)

Algorithm 2 Proposed algorithm for solving problem (29)

1. Initialize {θm[n]}, iterative numberl = 1.

2. while

∣

∣

∣

∣

N
∑

n=1

I
∑

i=1

(

W i
1[n]−W i

2[n]
)(l+1)

−
N
∑

n=1

I
∑

i=1

(

W i
1[n]−W i

2[n]
)(l)
∣

∣

∣

∣

≥ δ do

3. CalculateW̃ i
2 [n] based on (33).

4. Solve the convex problem (34) to obtainΘ[n].
5. Utilize the Gaussian randomization technique to

recoverθm[n].
6. l ← l + 1
7. end while

Note that problem (34) is a standard convex semi-definite
programming (SDP) and can be solved via classic convex
toolboxes, such as the SDP solver in the CVX tool [44].
Then, we iteratively updateΘ[n] by solving problem (34)
to tighten the lower bound of the objective function of (32)
until convergence. During the iteration, when the rank ofΘ[n]
is larger than one, the Gaussian randomization method is
adopted to recoverΦ[n] from Θ[n] [45]. To be specific, a
set of vectors which obey the distribution ofCN (0,Θ[n])
is first generated. And then, we choose the candidate which
maximizes the objective function of (34) as the phase shift of
RIS. The detailed optimization procedure of RIS’s phase shift
is outlined in Algorithm 2.

C. UAV Trajectory Optimization

Finally, supposing the bit allocationlloci [n] and lUAV
i [n],

transmit powerpπi [n], and phase shiftθm[n] are given, the
subproblem for UAV trajectory optimization can be reformu-
lated as

max
q[n]

N
∑

n=1

I
∑

i=1

Bt log

(

1 +
pπi [n]|hπi [n]|2

∑i−1
j=1 pπj [n]

∣

∣hπj [n]
∣

∣

2
+ σ2

)

− tµα
N
∑

n=1

(

τ1v
3[n] +

τ2
v[n]

)

(35a)

s.t.Roff
πi
[n]t ≥ lUAV

πi
[n], i ∈ I, n ∈ N , (35b)

(20g), (20h). (35c)

Due to constraint (35b) and the objective function, problem
(35) is non-convex and hard to solve. Thus, we introduce
several auxiliary variables and then leverage the SCA tech-
nique to transform problem (35) into a convex problem.
Firstly, defineM i

1[n] = B log
(

∑i
j=1 pπj [n]

∣

∣hπj [n]
∣

∣

2
+ σ2

)

and M i
2[n] = B log

(

∑i−1
j=1 pπj [n]

∣

∣hπj [n]
∣

∣

2
+ σ2

)

. The of-

floading rate of IoT deviceπi[n] at time slotn can be given
by Roff

πi
[n] =M i

1[n]−M i
2[n]. With optimal phase shiftθm[n],

the channel gain between IoT deviceπi[n] and the UAV at
time slotn can be expressed as [46]

hπi [n] = hUπi
[n] + (hR

πi
[n])HΦ[n]hU

R[n]

=
√
ρ|gπiU|
d
ε/2
πiU

[n]
+

√
ρ
∑M

m=1 |hπiR,m|
dRU[n] .

(36)
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Then, the auxiliary variablesuπi [n] andw[n] are introduced
with dπiU[n] ≤ uπi[n], dRU[n] ≤ w[n]. By replacing the term
dπiU[n] and dRU[n] in M i

1[n] with uπi [n] andw[n], we can
obtain

M̃ i
1[n] = B log





i
∑

j=1

pπi [n] Ξ(uπi [n], w[n])
2
+ σ2



 , (37)

whereΞ (uπi [n], w[n]) =
√
ρ|gπiU|

u
ε/2
πiU

[n]
+

√
ρ
∑M

m=1 |hπiR,m|
w[n] . Simi-

larly, for M i
2[n], we have

M̃ i
2[n] = B log





i−1
∑

j=1

pπi [n] Ξ(uπi [n], w[n])
2
+ σ2



 . (38)

In addition, for the termv[n] in the denominator of objective
function, another auxiliary variablēv[n] is introduced with
v̄[n] ≤ v[n]. Thus, problem (35) can be transformed into

max
uπi

[n],w[n],v̄[n],q[n]

N
∑

n=1

I
∑

i=1

t
(

M̃ i
1[n]− M̃ i

2[n]
)

− tµα
N
∑

n=1

(

τ1v
3[n] +

τ2
v̄[n]

)

(39a)

s.t.dπiU[n] ≤ uπi [n], (39b)

dRU[n] ≤ w[n], (39c)

v̄[n] ≤ v[n], (39d)
(

M̃ i
1[n]− M̃ i

2[n]
)

t ≥ lUAV
πi

[n], (39e)

q[1] = q0,q[N + 1] = qF , (39f)

||v[n]|| ≤ VMax. (39g)

Theorem 4: M̃ i
1[n] is convex with respect touπi [n] and

w[n].

Proof: See Appendix D.

Since any convex function is globally lower bounded by its
first-order Taylor expansion at any point, based on Theorem
4, a lower-bound ofM̃ i

1[n] at thel-th iteration of SCA can be
expressed as

M̃ i
1[n] ≥ M̂ i

1[n] = logAi[n] +
Bi[n]

Ai[n] ln 2 (uπi [n]− uπi [n]
(l))

+ Ci[n]
Ai[n] ln 2 (w[n] − w[n]l),

(40)
where

Ai[n] =
∑i

j=1
pπj [n]Ξ

(

uπj [n]
(l)
, w[n]

(l)
)2

+ σ2, (41)

Bi[n] = −pπi[n]Ξ
(

uπi [n]
(l)
, w[n]

(l)
) ε
√
ρ |gπiU |

u
ε/2+1
πi [n]

, (42)

Ci[n] = −pπi [n]Ξ
(

uπi[n]
(l)
, w[n]

(l)
)

√
ρ
∑M

m=1 |hπiR,m|
w2[n]

.

(43)

Similarly, constraints (39b)-(39d) can be approximated as

(dπiU [n])
2 + (uπi [n]

(l))2 − 2uπi [n]
(l)uπi [n] ≤ 0, (44)

(dRU [n])
2 + (w[n](l))2 − 2w[n](l)w[n] ≤ 0, (45)

Algorithm 3 Proposed algorithm for solving problem (35)

1. Initialize the vectoruπi[n]
(0), w[n](0), v̄[n](0),q[n](0)

and set the iteration number asl = 0.
2. while

∣

∣

∣E(q[n])
(l+1) − E(q[n])

(l)
∣

∣

∣ ≥ δ do

3. CalculateM̂ i
1[n] and M̃ i

2[n] based on (40) and
(38), respectively.

4. Solve the convex optimization problem (47) and
obtainuπi [n]

(l), w[n](l), v̄[n](l),q[n](l).
5. l ← l + 1
6. end while

v̄[n]2t2 +
∥

∥

∥q[n]
(l)−q[n− 1]

(l)
∥

∥

∥

2

−2
(

q[n]
(l) − q[n− 1]

(l)
)T

(q[n]−q[n− 1])≤0.
(46)

After the above operations, problem (39) can be reformu-
lated as

max
uπi

[n],w[n],v̄[n],q[n]

N
∑

n=1

I
∑

i=1

(

M̂ i
1[n]− M̃ i

2[n]
)

− tµα
N
∑

n=1

(

τ1v
3[n] +

τ2
v̄[n]

)

(47a)

s.t.
(

M̂ i
1[n]− M̃ i

2[n]
)

t ≥ lUAV
πi

[n], (47b)

q[1] = q0,q[N + 1] = qF , (47c)

|v[n]|| ≤ VMax, (47d)

(44)− (46). (47e)

Problem (47) is a convex optimization problem, and thus
can be solved efficiently by standard solvers. Then, based to
the SCA method, the auxiliary variablesuπi[n], w[n], v̄[n] and
UAV trajectoryq[n] are iteratively updated to tighten the lower
bound of the objective function of (35) until convergence.
Finally, problem (35) is effectively solved and the optimized
UAV trajectory can be obtained. Denote the objective function
of (35) at thel-th iteration asE(q[n])

(l). The proposed algo-
rithm for UAV trajectory optimization is outlined in Algorithm
3.

D. Joint Optimization of Bit allocation, Transmit Power, Phase
Shift, and UAV Trajectory

Based on the obtained solutions to the three subproblems,
the proposed BCD algorithm for solving problem (21) with
given energy efficiency is summarized in Algorithm 4. There-
fore, according to Algorithm 1, the original non-convex prob-
lem (20) can be effectively solved by iteratively updating the
energy efficiency in the outer-loop and jointly optimizing the
bit allocation, transmit power, phase shift, and UAV trajectory
in the inner-loop via Algorithm 4.

E. Convergence and Complexity Analysis

According to Algorithm 1 and Algorithm 4, the energy
efficiency maximization problem can be solved via an iterative
algorithm with a double-loop structure. In the outer loop, the
energy efficiencyα is updated via the Dinkelbach’s method.
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Algorithm 4 BCD algorithm for solving Problem (21)

1. Initialize αk, iterative numberl = 1.
2. repeat:
3. Solve the convex problem (23) to obtain

lloci [n]
(l)
, lUAV

i [n]
(l), andpi[n]

(l) for given θm[n]
andq[n].

4. Exploit Algorithm 2 to obtainθm[n](l) according
to the updatedlloci [n](l), lUAV

i [n](l), pi[n]
(l), and

the givenq[n].
5. Run Algorithm 3 to obtainq[n](l) with updated

lloci [n]
(l)
, lUAV

i [n]
(l), pi[n]

(l), andθm[n](l).

6. CalculateF
(

z(l)
)

=
∣

∣

∣

∑N
n=1L[n]−αk

∑N
n=1E[n]

∣

∣

∣.
7. Update the iterative indexl = l + 1.
8. Until : l > Nmax or

∣

∣F (z(l+1))− F (z(l))
∣

∣ ≤ δ.
9. Output : bit allocationlloci [n]∗ andlUAV

i [n]∗, transmit
powerpi[n]∗, phase shiftθm[n]∗, and UAV trajectory
q[n]∗.

The convergence of the Dinkelbach’s method has been proved
in [47]. The update rule ofα can be given by

α(k+1) =
∑N

n=1 L[n](k)

∑N
n=1 E[n](k)

= α(k) −
∑N

n=1 L[n](k)−α(k) ∑N
n=1 E[n](k)

−∑

N
n=1 E[n](k)

= α(k) − F (α(k))
F ′(α(k))

,

(48)

which implies the super-linear convergence rate of Dinkel-
bach’s method [48]. The inner loop is the joint optimizationof
bit allocation, transmit power, phase shift, and UAV trajectory.
A BCD-based algorithm is proposed to solve problem (21) and
the convergence is verified in Theorem 5.

Theorem 5: Algorithm 4 monotonically increases the ob-
jective function of problem (21) at each iteration and finally
converges.

Proof: See Appendix E.
Therefore, with Theorem 5 and the update rule ofα, the

proposed energy efficiency maximization algorithm converges
within a limited number of iterations [49].

The computational complexity of Algorithm 1 depends on
the number of iterations required for convergence, and the
complexity required to solve problem (21) via Algorithm 4
in the inner-loop. Thus, we first analysis the computational
complexity of Algorithm 4 which consists of three subprob-
lems. For subproblem 1, the interior point method can be
applied since it is a standard convex optimization problem.
Hence, the computational complexity of theε̃-optimal solution
can be expressed asO

(

ln(1/ε̃)n3
)

, wheren = 3IN is the
number of decision variables. The subproblem 2 is solved by
DC programming and SDP. Denote the number of iterations as
L1. The complexity of Algorithm 2 can be expressed asO2

∆
=

O
(

L1 ln(1/ε̃)(N (M + 1))
3.5
)

[14]. For subproblem 3, the
SCA technique is applied to optimize the UAV trajectory. The
computation complexity can be given byO

(

L2 ln(1/ε̃)n
3
3

)

,
whereL2 is the iteration number andn3 = KN . Supposing
the iteration number of outer loop isL3, the computational
complexity of the overall algorithm can be expressed as

TABLE I
SIMULATION PARAMETERS [9] [24]

Parameters Values Parameters Values
Total bandwidth 30 MHz τ1, τ2 0.00614, 15.976

VMax 10 m/s β0 -30 dB
Number of time slot 20 Noise power -50 dBm

H 40 m hR 20 m
Fi 3 GHz FUAV 12 GHz
γ 2.8 ε 3.5

1 2 3 4 5 6 7 8
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Fig. 2. Energy efficiency versus the iteration index.

O
(

L3

(

ln(1/ε̃)n3 +O2 + L2 ln(1/ε̃)n
3
3

))

. It can be observed
that the proposed energy efficiency maximization algorithmis
in polynomial complexity.

IV. SIMULATION RESULTS

In this section, we present simulation results and compare
the proposed energy efficiency maximization algorithm with
other baselines. In the simulations, we consider an RIS-
assisted UAV-enabled MEC system, where the UAV flies from
q0 = [30, 50]m to qF = [30, 0]m with the maximum speed
of VMax = 10m/s providing computing services forI = 6
IoT devices. The horizontal position of the first element on
the RIS is[50, 25]m, and the height is 20m. We assume the
IoT devices have the same amount of task-input bits, i.e.,
L1 = L2 = ... = LI . Some other simulation parameters are
listed in Table I.

A. Convergence Behavior and the UAV Trajectory

We first illustrate the convergence behavior and the UAV
trajectory of our proposed algorithm for the RIS-assisted UAV-
enabled MEC systems. As can be seen from Fig. 2, the
energy efficiency is increased rapidly at first and converges
after around 5-6 iterations. Moreover, under different sizes of
IoT devices’ total task-input bits, the proposed algorithmstill
converges fast.

Fig. 3 illustrates the trajectory of UAV under two different
scenarios, i.e., our proposed algorithm and the scheme without
RIS. Under the scheme without RIS, it can be observed that the
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Fig. 3. UAV trajectories under two different scenarios: ourproposed algorithm
and the scheme without RIS.

UAV tends to fly closer to the IoT devices in order to achieve
higher channel gains. On the contrary, in our proposed RIS-
assisted UAV-enabled MEC system, we observe that the UAV
tends to fly closer to the RIS. The reasons behind this can be
explained as follows. When the RIS is deployed to help IoT
devices’ task offloading, there is a compromise for the UAV
between the direct links and the links reflected by the RIS.
By exploiting our proposed algorithm to adjust the phase shift
of RIS, the reflected signals can be combined coherently to
greatly improve the UAV’s received signal power. Therefore,
the UAV tends to fly closer to the RIS rather than the IoT
devices in order to fully utilize the channel gains brought by
the RIS and increase the energy efficiency.

B. Performance Evaluation of the Energy Efficiency

We now evaluate the energy efficiency for the RIS-assisted
UAV-enabled MEC system. Fig. 4 shows the energy efficiency
of the system versus the total amount of task-input bits of IoT
devices, where our proposed energy efficiency maximization
algorithm is compared with other four schemes: 1) Without
trajectory optimization: The trajectory of UAV follows a
straight line from the initial position to the final position. 2)
Random phase: The phase shifts of RIS are randomly chosen
from [0, 2π]. 3) Without RIS [42]: The IoT devices offload
their tasks without the aid of RIS. 4) Full offloading: The IoT
devices are supposed to offload all task bits to the UAV for
edge computing. It can be observed that with the deployment
of RIS, our proposed algorithm can achieve a higher energy
efficiency than the other schemes, since the transmit power,
bit allocation, phase shift, and UAV trajectory are jointly
optimized. Moreover, besides the full offloading scheme, itcan
be seen that the energy efficiency of the other schemes first
increases and then decreases. The reasons is that the total of-
floading energy consumption of IoT devices can be expressed
as an exponential function related with the offloading data rate
according to Theorem 2. Since the increase rate of exponential
function is faster than the linear function, with the increase of
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Fig. 4. Energy efficiency versus the total amount of task-input bits of IoT
devices.
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Fig. 5. Energy efficiency versus the mission period.

offloading data rate, the term
∑N

n=1

∑I
i=1R

off
πi
[n]t
/

Υ in the
energy efficiency first increases and then decreases, whereΥ is
the right-hand-side (RHS) of (24). Thus, when the total amount
of task-input bits increases, the energy efficiency first increases
and then decreases. While for the full offloading scheme, the
energy efficiency only shows a decrease trend due to the fact
that the amount of offloading bits of IoT devices in the full
offloading scheme is greatly larger than the other schemes.
Besides, it can also be observed that the performance gain
brought by the RIS over the scheme without RIS is negligible
if the phase shifts are randomly chosen. This is because for
the random phase scheme, the channel gain of the reflecting
link is nearly equal to zero when those reflected signals via
RIS are combined at the UAV. This result demonstrates the
significance of phase shift optimization in the RIS-assisted
UAV-enabled MEC system.

Fig. 5 shows the impact of the mission periodT on the
energy efficiency. It is observed that our proposed algorithm
can achieve higher energy efficiency compared with the other
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Fig. 6. Energy efficiency and the total amount of offloading bits versus the
CPU cycles required for computing 1-bit of task-input data,Ci.

schemes. In addition, we also observe that the energy effi-
ciency of all schemes increase with the mission period when
the mission period is less than 12 sec. The reason is that a
larger mission period enables the UAV to adjust its trajectory
adequately. Thus, the channel conditions between the UAV and
IoT devices can be effectively improved, which reduces the
energy consumed by task offloading and accordingly improves
the energy efficiency. Besides, with larger mission period,the
task offloading and edge computing can be executed with
longer time, which further reduce the energy consumed by
computing. Nevertheless, with the further increase of mission
period, the flying energy consumption of UAV continues to
increase and dominates the total energy consumption. Thus,
the energy efficiency gradual declines with the increase of
mission period. Moreover, it can be seen that the increase
of mission period brings more benefits for the full offloading
scheme. This is because the amount of offloading bits for
full offloading is larger than the other schemes and the IoT
devices can take full advantages of the RIS. Therefore, when
the IoT devices need to offload more tasks to the UAV-mounted
MEC server, the energy efficiency can be greatly improved by
properly increasing the mission period.

Fig. 6 illustrates the energy efficiency and the total amount
of offloading bits versus the CPU cycles required for comput-
ing 1-bit of task-input data (i.e.,Ci), whereT = 10 sec and the
total amount of task-input bits of IoT devices is 200 Mbits.
It can be seen that the energy efficiency decreases with the
increase ofCi. This is because the increase ofCi leads to more
energy consumption for computing, and therefore results inthe
decrease of energy efficiency. Moreover, we observe that the
amount of offloading bits increases whenCi becomes larger.
The reason is that the computing capacities of IoT devices are
weaker than the UAV-mounted MEC server. In order to ensure
the tasks can be completed within the mission period, the IoT
devices have to offload more tasks to the UAV. In addition,
compared with the scheme without RIS, we also observe that
our proposed algorithm always offloads more task bits to the

UAV in order to fully utilize the channel gains brought by the
RIS to achieve higher energy efficiency.

C. Impacts of Imperfect CSI

We next investigate the impacts of imperfect CSI on the
energy efficiency of the RIS-assisted UAV-enabled MEC sys-
tems. In the previous sections, we have assumed the perfect
CSI is available at the UAV and RIS. However, the perfect
CSI is considered idealistic in practice due to the channel
estimation error [50]. In order to characterize the channel
uncertainties, we adopt the bounded CSI model [51]. To be
more specific, the direct channel and the cascaded channel via
the RIS from thei-th IoT device to the UAV at then-th time
slot can be expressed as

h̄Ui [n] = hUi [n] + ∆ĥUi [n], Ḡi[n] = Gi[n] + ∆Ĝi[n], ∀i, n,
(49)

whereGi[n] = diag
(

hR
i [n]

)

hU
R[n]. ∆ĥ

U
i [n] and∆Ĝi[n] rep-

resent the channel estimation errors of the direct channel and
cascaded channel, respectively. Since the CSI error naturally
belongs to a bounded region, we have [52]

Ωi,n =
{∥

∥

∥
∆ĥUi [n]

∥

∥

∥

2
≤ ξ,

∥

∥

∥
∆Ĝi[n]

∥

∥

∥

2
≤ ζ
}

, ∀i, n, (50)

whereξ andζ are the radii of the uncertainty regions known
at the UAV.

With the CSI uncertainty sets (50), constraint (20e) will have
infinite possibilities. Besides, the CSI uncertainty sets (50) is
also valid on the SIC decoding order. Thus, we have
∣

∣

∣h̄Uπi+1
[n]+Φ[n]Ḡπi+1[n]

∣

∣

∣

2

≥
∣

∣h̄Uπi
[n]+Φ[n]Ḡπi[n]

∣

∣

2
,Ωπi,n.

(51)
Under the imperfect CSI, we can fist transform constraints
(20e) and (51) into finite linear matrix inequalities (LMIs)
by S-procedure and the general sign-definiteness [52]. Then,
similar to our proposed algorithm for solving problem (21),by
introducing several auxiliary variables and adopting the BCD
algorithm, the solution to problem (21) under the imperfect
CSI can be obtained.

In Fig. 7, we demonstrate the normalized channel esti-
mation error bound versus the energy efficiency, where the
normalized channel estimation error bound is defined as
χ = ξ2/

∥

∥hUi [N ]
∥

∥

2

2
= ζ2/ ‖Gi[N ]‖22 . Our proposed algorithm

and OMA with perfect CSI do not vary withχ, which can
serve as a benchmark for algorithm design with the imperfect
CSI. On the contrary, the energy efficiency of schemes with
imperfect CSI decrease with the increase ofχ. This is because
under the imperfect CSI, the channel gains that are used
to schedule the task offloading decline when the channel
estimation error increases. Thus, the energy consumption for
task offloading increases and the energy efficiency decreases
with the increase ofχ. Besides, under the imperfect CSI,
we can also observe that the performance gain of NOMA
over OMA diminishes. This is because under the NOMA
protocol the channel estimation error results in more inter-user
interference, while the IoT devices under the OMA protocol
do not experience the inter-user interference.
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D. Impacts of the Number of RIS Elements

Finally, we investigate the impacts of the number of RIS
elements on the energy efficiency. In order to further demon-
strate the superiority of our proposed algorithm, besides the
schemes without trajectory optimization, with random phase,
and the full offloading scheme, we compare our proposed
algorithm with more advanced benchmarks, including OMA
with perfect CSI [30], NOMA with imperfect CSI, and OMA
with imperfect CSI. As can be observed from Fig. 8, except
the scheme without RIS, the energy efficiency of all schemes
increases as the number of RIS elements grows. The reason
is that additional reflection elements will provide extra DoFs
for designing more efficient phase shift strategy. Our proposed
algorithm always outperforms the schemes without trajectory
optimization, with random phase, and the full offloading
scheme. This is because the UAV trajectory, phase shift, and
resource allocation are jointly considered in our proposed
algorithm. We also note that the performance gap between the
proposed algorithm and the random phase scheme becomes

larger as the number of RIS elements increase, which further
verifies the necessity of joint optimization of UAV trajectory,
phase shift, and resource allocation.

Moreover, due to the channel estimation error, the energy
efficiencies of schemes with imperfect CSI are lower than
the corresponding schemes with perfect CSI. In addition, the
NOMA schemes can achieve higher energy efficiency than
OMA schemes. To be specific, whenM = 10, our proposed
algorithm is capable of enjoying 10% higher energy efficiency
than OMA with perfect CSI, while under imperfect CSI, the
performance gain of NOMA over OMA is 7%. These results
imply that the accuracy of CSI is more important for NOMA
systems.

V. CONCLUSIONS

In this paper, the RIS-assisted UAV-enabled MEC systems
were investigated where the partial offloading scheme and
the NOMA protocol were adopted for IoT devices’ task
offloading. Aiming to maximize the energy efficiency, an
iterative algorithm with a double-loop structure was proposed
based on the Dinkelbach’s method and BCD technique to
jointly optimize the bit allocation, transmit power, phaseshift,
and UAV trajectory. Simulation results have shown that our
proposed algorithm outperformed other baselines. It was also
observed that with the aid of RIS, the energy efficiency can
be greatly improved only when the phase shift was carefully
designed, and the UAV tended to fly closer to the RIS to
obtain a better channel condition, which was quite different
from the UAV-enabled MEC without RIS. Besides, under the
imperfect CSI, the energy efficiency of the RIS-assisted UAV-
enabled MEC system was decreased compared to the scheme
with perfect CSI, and the performance gain of NOMA over
OMA was also declined.

APPENDIX A
PROOF OF THEOREM 1

Proof: We prove the theorem by the sufficient and nec-
essary conditions. On one hand, according to (22), we
have

(

∑N
n=1 L [n] (z∗)− α∗∑N

n=1E [n] (z∗)
)

= 0. For any

other z,
(

∑N
n=1 L[n] (z)− α∗∑N

n=1E[n] (z)
)

< 0. Thus,
∑N

n=1 L[n](z∗)
∑

N
n=1 E[n](z∗)

>
∑N

n=1 L[n](z)
∑

N
n=1 E[n](z)

and z∗ is the optimal solution
of the energy efficiency maximization problem (20).

On the other hand, ifz∗ is the optimal solution of (20), we
have

max
z∗

∑N
n=1 L [n]

∑N
n=1E [n]

= α∗. (52)

Then, the equation (22) can be obtained from (52) after simple
transformation. Theorem 1 is proved. �

APPENDIX B
PROOF OF THEOREM 2

Proof: According to (7), it can be found that2R
off
πi

[n]/B−1 =
pπi

[n]|hπi
[n]|2

∑i−1
j=1 pπj

[n]|hπj
[n]|2+σ2

. Then, with the definition ofSπi [n],

the recursion expression can be obtained as

Sπi−1 [n]
(

2R
off
πi

[n]/B − 1
)

= Sπi [n]− Sπi−1 [n]. (53)
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Then we can further obtainSπi [n] = Sπi−1 [n]2
Roff

πi
[n]/B, i ∈

I\{1}. If letting Sπ1 [n] = pπ1 [n]|hπ1 [n]|2 + σ2, we have

Sπi [n] = 2

∑i
j=1 Roff

πj
[n]

B , i ∈ I\{1}. Thus, the transmit power
of IoT deviceπi[n] at time slotn can be obtained as

pπi [n] =
Sπi [n]− Sπi−1 [n]

|hπi [n]|2
, i ∈ I\{1}. (54)

Equation (54) is also valid fori = 1 if we set
∑0

j=1 R
off
πj
[n] =

0. Therefore, the total offloading energy consumption of IoT
devices during the mission period can be expressed as (24).
Theorem 2 is proved. �

APPENDIX C
PROOF OF THEOREM 3

Proof: The Lagrangian function of problem (25) can be
expressed as

L(Ω2) =
N
∑

n=1

I
∑

i=1

(

lloci [n] + tRoff
πi
[n]− ακIoT(lloci [n])

3

t2

−αt
(

1
hπi

[n]2
− 1

hπi+1
[n]2

)

2

∑i
j=1 Roff

πj
[n]

B − ακUAV(lUAV
i [n])3

t2

)

+
I
∑

i=1

ωi

(

N
∑

n=1

(

lloci [n] + lUAV
i [n]

)

− Li

)

+
N
∑

n=1

I
∑

i=1

ψi,n

(

lloci [n]C
t − Fi

)

+
N
∑

n=1
ςn





I
∑

i=1

lUAV
i [n]Ci

t − FUAV





+
N
∑

n=1

I
∑

i=1

ξi,n
(

lUAV
πi

[n]−Roff
πi
[n]t
)

,

(55)
where Ω2 =

{

lloci [n], lUAV
i [n], Roff

πi
[n], ωi, ψi,n, ςn, ξi,n

}

.
Then, the derivations ofL(Ω2) with respect tolloci [n], lUAV

i [n]
andRoff

πi
[n] can be given by

∂L (Ω2)

∂lloci [n]
= 1− 3ακIoT

(

lloci [n]
)2

t2
+ ωi +

ψi,nC

t
, (56)

∂L (Ω2)

∂lUAV
i [n]

= −3ακUAV

(

lUAV
i [n]

)2

t2
+ ωi + ξπΨ(i,n),n +

ζnC

t
,

(57)
∂L(Ω2)
∂Roff

πi
[n]

= −αt ln 2
B

(

1
hπi

[n]2
− 1

hπi+1
[n]2

)

2

∑i
j=1 Roff

πj
[n]

B

+t− ξi,nt.
(58)

According to the KKT conditions, by setting the derivations
of L(Ω2) to zero, the optimal solution to problem (25) can be
obtained as (26), (27) and

2

∑i
j=1 Roff

πj
[n]

B =
1− ξi,n

α ln 2
B

(

1
hπi

[n]2
− 1

hπi+1
[n]2

) . (59)

And then, by substituting (59) into (54), the optimal transmit
power of IoT deviceπi[n] at time slotn can be obtained as
(28). Theorem 3 is proved. �

APPENDIX D

PROOF OF THEOREM 4

Proof: At first, we define the functionf(x, y) =

log
(

k1

xε + k2

xε/2y
+
∑i

m=1 (bm/y + cm)
2
+k3

)

, with cm ≥ 0,
andk1, k2, k3, bm > 0. Then, the second-order partial deriva-
tives of f(x, y) can be given by

∂2f

∂x2
=

1

A ln 2

(

ε (ε+ 1) k1
xε+2

+
k2ε (ε/2 + 1)

2xε/2+1y

)

, (60)

∂2f

∂y2
=

1

A ln 2

(

2k2
xε/2y3

+
4b2m
y3

+
2bmcm
y2

)

, (61)

∂2f

∂x∂y
=

1

2A ln 2

ε

xε/2+1

k2
y2
, (62)

whereA = k1

xε + k2

xε/2y
+
∑i

m=1 (bm/y + cm)
2
+ k3. Then,

we have ∂2f
∂x2 > 0 and ∂2f

∂x2
∂2f
∂y2 − ∂2f

∂x∂y
∂2f
∂y∂x > 0. Thus, the

Hessian matrix off(x, y) is positive definite andf(x, y) is
convex with respect tox and y. Therefore,M̃ i

1[n] is convex
with respect touπi [n] andw[n]. �

APPENDIX E
PROOF OF THEOREM 5

Proof: Given the energy efficiencyαk, the objective func-
tion of problem (21) is denoted asF (z(l)) after thel-th itera-
tion of Algorithm 3. Then, we have the following inequalities
as shown at the top of the next page. The first inequality holds
becauselloci [n](l+1), lUAV

i [n](l+1), andpi[n](l+1) is the optimal
solution to problem (21) when givenθm[n]

(l) andq[n](l). The
second inequality follows the fact thatθm[n](l+1) is solved via
Algorithm 2 with given lloci [n](l+1), lUAV

i [n](l+1), pi[n](l+1),
and q[n](l). The third inequality holds because the solution
to problem (35) does not decrease the objective function of
problem (21). SinceF (z) is upper bounded, Algorithm 4 must
converge after limited numbers of iterations. �
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