
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Nov 11, 2024

Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data:
An Integrated Multidisciplinary Approach

Pauwels, Valentijn; Balenzano, Anna; Satalino, Giuseppe; Skriver, Henning; Verhoest, Niko; Mattia,
Francesco

Published in:
I E E E Transactions on Geoscience and Remote Sensing

Link to article, DOI:
10.1109/TGRS.2008.2007849

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pauwels, V., Balenzano, A., Satalino, G., Skriver, H., Verhoest, N., & Mattia, F. (2009). Optimization of Soil
Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach. I E
E E Transactions on Geoscience and Remote Sensing, 47(2), 455-467.
https://doi.org/10.1109/TGRS.2008.2007849

https://doi.org/10.1109/TGRS.2008.2007849
https://orbit.dtu.dk/en/publications/e36ac145-2305-4fe4-bde2-013410966e63
https://doi.org/10.1109/TGRS.2008.2007849


IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 2, FEBRUARY 2009 455

Optimization of Soil Hydraulic Model Parameters
Using Synthetic Aperture Radar Data: An

Integrated Multidisciplinary Approach
Valentijn R. N. Pauwels, Anna Balenzano, Giuseppe Satalino, Henning Skriver,

Niko E. C. Verhoest, and Francesco Mattia, Senior Member, IEEE

Abstract—It is widely recognized that Synthetic Aperture Radar
(SAR) data are a very valuable source of information for the
modeling of the interactions between the land surface and the at-
mosphere. During the last couple of decades, most of the research
on the use of SAR data in hydrologic applications has been focused
on the retrieval of land and biogeophysical parameters (e.g., soil
moisture contents). One relatively unexplored issue consists of
the optimization of soil hydraulic model parameters, such as, for
example, hydraulic conductivity values, through remote sensing.
This is due to the fact that no direct relationships between the
remote-sensing observations, more specifically radar backscatter
values, and the parameter values can be derived. However, land
surface models can provide these relationships. The objective of
this paper is to retrieve a number of soil physical model parame-
ters through a combination of remote sensing and land surface
modeling. Spatially distributed and multitemporal SAR-based soil
moisture maps are the basis of the study. The surface soil moisture
values are used in a parameter estimation procedure based on
the Extended Kalman Filter equations. In fact, the land surface
model is, thus, used to determine the relationship between the
soil physical parameters and the remote-sensing data. An analysis
is then performed, relating the retrieved soil parameters to the
soil texture data available over the study area. The results of the
study show that there is a potential to retrieve soil physical model
parameters through a combination of land surface modeling and
remote sensing.

Index Terms—Calibration, hydrology, parameter estimation,
remote sensing, synthetic aperture radar (SAR).

I. INTRODUCTION

DURING THE last decades, the benefit of Synthetic Aper-
ture Radar (SAR) data for the modeling of land surface

processes has become widely accepted. The advantages of SAR
data in this respect are twofold. On the one hand, a number
of parameters needed for this type of modeling, for example,
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land cover parameters, can be retrieved directly and used as
model input. Examples of these parameters are land cover class,
vegetation water content, and Leaf Area Indices (LAIs) [1]–
[9]. On the other hand, remotely sensed observations of model
outputs, more specifically surface soil moisture values, can be
used to validate model results. Examples of studies that have
focused on the retrieval of these variables can be found in
[10]–[15]. Furthermore, these data can also be assimilated into
the models, reducing the error in the model predictions. Since
the pilot study of [16], a large number of studies have put
hydrologic data assimilation in practice.

It is clear that up until now, most of the research on the
use of SAR data in hydrologic applications has been focused
on the retrieval of land cover and biogeophysical parameters,
more specifically surface soil moisture values [17], [18]. One
relatively unexplored issue is the retrieval of soil hydraulic
parameters, such as, for example, hydraulic conductivity values,
through remote sensing. This is due to the fact that no direct
relationships between the remote-sensing observations, more
specifically the radar backscatter values, and the parameter val-
ues can be derived. However, land surface models can provide
these relationships. Attempts have already been performed to
estimate saturated hydraulic conductivity values bypassing the
use of a land-surface model, for example, through the extrap-
olation of a regression between changes in soil water content
and the hydraulic conductivity [19], or the application of neural
networks to multiple drying cycle brightness temperature data
[20]. However, these studies suffer from the drawback of the
requirement of in situ measurements of the remotely sensed
soil parameter in order to establish the regression relationships.
Furthermore, it is well known that soil parameter values are
scale dependent, which is mainly caused by heterogeneity [21].
Hydraulic conductivity determined at a small scale is mainly
caused by flow across heterogeneous soil particles, whereas at
large scale, high-conductivity heterogeneities (preferential flow
paths) will lead to large values for the hydraulic conductivity
of the same soil. Many remote-sensing studies have already
investigated the discrepancy between the scale of observation
and the scale at which the parameter values are required (e.g.,
[22] and [23]). Reference [24] showed that soil moisture obser-
vations can be used to obtain the soil textural composition, but
did not apply their methodology in order to retrieve spatially
distributed parameter values. The objective of this paper is to
develop a methodology to estimate spatially distributed soil
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hydraulic parameters, with two clear advantages. First, the
parameters are retrieved at the spatial scale at which they are
required. Second, the need to collect in situ soil moisture data
or parameter values is bypassed. Accurate estimates of these
parameters are important because they determine soil moisture
profiles, which determine the partitioning of the precipitation
into surface runoff and infiltration, and the net radiation into
sensible, latent, and ground heat fluxes. In other words, these
parameters are crucial for an accurate modeling of the processes
occurring at the land surface.

The study has been performed as part of the AgriSAR 2006
campaign. The basis of the study is the integration of remotely
sensed soil moisture values with the TOPMODEL [25]-based
Land Atmosphere Transfer Scheme (TOPLATS) [26]. Volu-
metric soil moisture values are retrieved from multitemporal
L-band SAR data at HH polarization. The moisture content
refers to the top 10 cm of the soil, covering the thickness of
the layer whose moisture content is estimated by the L-band
data, unless extremely dry conditions are faced [1]. The algo-
rithm applies to agricultural areas cultivated with winter wheat
and inverts a surface scattering model, thus disregarding the
small effect of wheat canopy on HH backscatter. This approxi-
mation stems from previous theoretical studies [27] and from a
sensitivity analysis performed on L-band ESAR data acquired
during the AgriSAR 2006 campaign [28]. The algorithm was
developed for the possible use of data acquired by the Advanced
Land Observing Satellite Phased Array-type L-band SAR sys-
tem in default mode acquisitions [29]. A parameter estimation
procedure is then applied to the soil parameter values, in order
for TOPLATS to reproduce the remotely sensed soil moisture
values. The spatial distribution of the obtained soil parameter
values is then further examined, the remotely sensed values are
compared to data from literature, and the potential to retrieve
soil hydraulic parameters through a combination of remote
sensing and land surface modeling is then assessed.

II. SITE DESCRIPTION

The study has been performed in the framework of the
AgriSAR 2006 campaign, for which the test site was located
in Mecklenburg–Vorpommern in North-East Germany, approx-
imately 150 km North of Berlin. Reference [30] give a detailed
description of the campaign. Only a short summary will be
given here. The test site has been the subject of a number of
research projects, of which the most important is the Durable
Environmental Multidisciplinary Monitoring Information Net-
work (DEMMIN, ) project. The test site is based on a group
of farms within a farming association covering approximately
250 km2. Field sizes are very large in this area, averaging
between 2 and 2.5 km2. The main crops are winter wheat,
winter barley, winter rape, corn, and sugar beet. The altitudinal
range within the test site is approximately 50 m. During the
data acquisition period, which lasted from April to July 2006,
several airborne radar and optical data acquisitions were per-
formed. More specifically, the German Aerospace Center op-
erated their Experimental SAR during 16 overpasses along
two different tracks, whereas the Spanish Instituto Nacional de
Técnica Aeroespacial carried out four flights, operating their

Airborne Hyperspectral Scanner and the Compact Airborne
Spectrographic Imager (CASI-1500) for obtaining hyperspec-
tral optical imagery [31]. Simultaneously, ground measure-
ments, over a few selected fields, in terms of soil moisture
contents and fresh and dry biomass, were carried out. In ad-
dition to these systematic measurements, three intensive cam-
paigns of in situ measurements were carried out during the
AgriSAR campaign. The first was held from April 19 to 21, the
second from June 6 to 8, and the third from July 4 to 6. During
these three campaigns, a large number of surface parameters
were measured. In particular, surface roughness profiles of
three bare or sparsely vegetated fields were measured in the
first intensive campaigns. All the characterized fields presented
values of the standard deviation of surface heights (s) within
the range of validity of the Small Perturbation Model at L-band
(i.e., ks < 0.5, k being the wavenumber). Furthermore, during
each intensive campaign, Time Domain Reflectometry mea-
surements of volumetric soil moisture content were carried out
along geolocated transects on the study area. Over wheat fields,
more than 370 points, covering a wide range of soil moisture
conditions, were sampled. A Bowen Ratio Energy Balance sta-
tion and a Large Aperture Scintillometer station were installed
in a winter wheat field during the campaign. A detailed descrip-
tion of these stations is given in [32]. Finally, meteorologic data
were continuously monitored by the weather stations at Görmin
(53.98◦ N, 13.25◦ E) and Buchholz (53.94◦ N, 13.16◦ E).

III. REMOTELY SENSED SURFACE

SOIL MOISTURE VALUES

The developed algorithm transforms a temporal series of
L-band HH SAR data into soil moisture values of bare and
winter wheat fields. Reference [27] demonstrated that the dom-
inant contribution to L-band wheat backscatter, acquired at HH
polarization and low-medium incidence angles, comes from the
ground. This implies that there exists an important sensitivity of
L-band SAR signals to soil moisture content during the entire
wheat growing season, and that the interaction between the
wheat canopy and the SAR signal at HH polarization can be dis-
regarded. The validity of such an approximation has been con-
firmed by the analysis of L-band ESAR data acquired during
the AgriSAR 2006 campaign [29]. Under these circumstances,
the method adopted in the developed retrieval algorithm in-
verts a surface scattering model, more specifically the Integral
Equation Method (IEM) model [33], by means of a constrained
optimization technique, integrating a priori information on soil
parameters [14]. To improve the robustness and accuracy of the
algorithm, the minimization technique has been used to invert
a time series of N SAR images instead of a single image [29].
The multitemporal information is beneficial for the accuracy
of the retrieved soil moisture content under the condition that
the surface roughness remains almost constant during the time
span (T ) of the N acquisitions. In this case, disregarding the
presence of vegetation, and assuming an exponential autocor-
relation function [34], the number of surface parameters to be
estimated is N + 2 (N soil moisture values and two surface
roughness parameters, namely, the roughness s and the corre-
lation length l). N equal to one corresponds to the worst ratio
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Fig. 1. Flowchart of the soil moisture retrieval algorithm.

(i.e., 1/3) between independent measurements and parameters
to be estimated (highly inaccurate retrieval). For large N , the
ratio tends to one (accurate retrieval). Reference [35] showed
that, using three images, the soil moisture content can be
retrieved with an rmse of 5%, if the a priori information on
soil moisture content is accurate to within approximately 8%.

The 12 soil moisture maps analyzed in this paper were
obtained by processing the ESAR images, acquired from April
to August 2006, over the DEMMIN site along the West-East
track, in four independent runs. This corresponds to a value of
three for N and approximately 21 days for T . Fig. 1 shows a
flowchart of the implemented algorithm. Ancillary information
concerning land cover as well as the initial guess values for
vertical surface roughness and soil moisture content are re-
quired. A priori information concerning soil moisture content
was obtained from weekly in situ measurements on one wheat
field (i.e., field 230). For the surface roughness, a constant value
of 1.5 cm for s was adopted. The choice of this value is based
on the fact that the most likely value for s for agricultural fields
ranges between 0.6 and 5 cm [36], and more specifically, for
sown fields, s usually varies between 0.5 and 2.5 cm, and the
average value for the latter type of tillage was adopted. Al-
though this choice is arbitrary, it should be noted that this is just
an initial guess with a limited influence on the final retrieved
values. Concerning the correlation length l, no a priori infor-
mation is used because: 1) it is extremely difficult to provide
reliable values of l since this parameter is characterized by a
large measurement variability and thus a large uncertainty [34]
and 2) in the inversion procedure, the use of l as a free parameter
may allow one to better match the observed SAR data with the
IEM model [37], [38].

As an example, Fig. 2 shows the estimated map of soil
moisture contents on July 5 (i.e., Day of Year 186, during the
July intensive campaign). This date was at the end of a very
hot and dry period, and field observations confirm the rather
uniform very low soil moisture conditions throughout the test
site during that period [32]. In order to quantify the accuracy of

Fig. 2. ESAR derived soil moisture map over the study area on July 5, 2006.

Fig. 3. Validation of the retrieved soil moisture values using the in situ
observations. The solid line is the 1:1 line, the dotted line the regression line.
The different symbols indicate different dates as explained in the bottom right-
hand side legend.

the algorithm, the retrieved soil moisture values were compared
to the TDR measurements performed during the three intensive
campaigns carried out in April, June, and July. Fig. 3 shows
the comparison of the SAR retrieved soil moisture values to the
in situ TDR observed soil moisture values, estimated on Day
of Year 109, 158, and 186. The low bias and rmse, combined
with a regression line close to the 1:1 line, indicate that the soil
moisture values, obtained using this method, are reliable, and
can be used for the analysis in the next sections.

IV. HYDROLOGIC MODEL

The hydrologic model used in this paper, the TOPLATS,
has as its foundation the concept that shallow groundwater
gradients set up spatial patterns of soil moisture that influence
infiltration and runoff during storm events, and evaporation
and drainage between these events. The assumption is made
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that these gradients can be estimated from local topography
(through a soil-topographic index [39]). From this foundation,
the model was expanded to include infiltration and resistance-
based evaporation processes, a surface vegetation layer, and a
surface energy balance equation with an improved ground heat
flux parameterization, and the effect of atmospheric stability on
energy fluxes [26], [40]. The model was originally developed to
simulate the surface water and energy balance for warm seasons
[26], [40]. Afterward, winter processes (frozen ground and a
snow pack), an improved water and energy balance scheme for
open water bodies, and a two-layer vegetation parameterization
were added [41]. For a detailed model description, we refer
to [26], [40], and [41]. Application to the Zwalm catchment
[42]–[44], the Upper Kuparuk River Basin in Alaska [45], the
Red-Arkansas River Basin [46], [47], the Dill catchment in
central Germany [48], and to field experiments such as FIFE
[40], BOREAS [49], [50], SGP97 [51], SGP99 [52], SMEX02
[53], and AgriSAR 2006 [32] have shown that the model can
adequately simulate surface energy fluxes, soil temperature, and
soil moisture.

V. PARAMETER ESTIMATION PROCEDURE

A. Mathematical Formulation

The methodology used to estimate the parameters has
been explained in detail in [54]. Only a short description is
given here.

The algorithm is based on the equations of the Extended
Kalman Filter (EKF). In the system considered, the state vector
(consisting of n parameter values) at iteration k(xk) is propa-
gated to iteration k+1, taking into account the process noise wk

xk+1 = xk + wk. (1)

The observation vector at iteration k (yk, with m observations)
is related to the system parameters as follows:

yk = c(xk,vk) (2)

vk is the measurement noise. c is a nonlinear function, which
relates the observation at iteration k to the parameter values at
iteration k. vk and wk are assumed to be independent of each
other, to be white, with covariances Rk and Qk, respectively.

Equation (2) can be linearized as follows:

yk = ŷ−
k + Hk

(
xk − x̂−

k

)
+ Vkvk (3)

xk and yk are the actual parameter and observation vectors,
and x̂−

k and ŷ−
k are the a priori estimates of the parameter

and observation vectors (before the parameter update). The
Jacobian matrices Hk (m rows and n columns), and Vk (n rows
and columns) are calculated as follows:

⎧⎨
⎩

Hk[i, j] =
∂c(x̂−

k
,0)[i]

∂x[j]

Vk[i, j] =
∂c(x̂−

k
,0)[i]

∂v[j]

(4)

The zero means that for the calculation of these partial deriva-
tives a noise level of zero is assumed. Vk is assumed to be the
identity matrix, and Hk is calculated numerically.

For our research, the EKF is applied in an iterative manner
as follows. For each iteration level k, the model is applied for
the entire simulation period. The model simulations are stored
in the vector ŷ−

k , and the corresponding observations in the
vector y. The system parameter vector x̂k is propagated from
iteration k − 1 to iteration k as follows:

x̂−
k = x̂+

k−1. (5)

Then, using the a posteriori (after the parameter update) error
covariance from the previous iteration, the a priori error covari-
ance at the current iteration P−

k is calculated

P−
k = Pk−1 + Qk−1. (6)

The parameter vector and the error covariance are updated as
follows:

⎧⎨
⎩

Kk = P−
k HT

k

[
HkP−

k HT
k + Rk

]−1

x̂+
k = x̂−

k + Kk

(
yk − ŷ−

k

)
Pk = [I − KkHk]P−

k

(7)

x̂+
k is the a posteriori estimate of the parameter vector. The

values of x̂+
k are then stored into the parameter vector x̂−

k+1,
and the algorithm is repeated until convergence is achieved or
when a predefined number of iterations has been reached.

The parameter estimation procedure can be applied using
either directly observed backscatter coefficients, or inverted soil
moisture products. However, (4) and (7) show that, if in both
cases the same backscatter model is used, and the gradients and
observation errors are calculated correctly, both approaches will
lead to the same results. Since it is easier for a modeler to use
observations in the same units as the model results (because the
need to implement a forward backscatter model is bypassed),
we have chosen to use inverted soil moisture values in the
parameter estimation procedure.

B. Application to the Test Site

A sensitivity analysis of the hydrologic model indicated that
the three most important soil parameters in the determination
of the soil moisture content are the saturated hydraulic con-
ductivity (Ks), the pore size distribution index (λ), and the
bubbling pressure (ψc). Therefore, these three parameters were
estimated.

Application of the parameter estimation algorithm in a full
3-D manner would require a large parameter vector, with on the
order of 100 000 entries. This would make the matrix operations
[particularly the matrix inversion of (7)] extremely difficult.
Therefore, a simplified method was applied.

Measurements indicate that the water table was rather deep
below the surface throughout the experiment (on the order of
2 m). Lateral water flow thus had a very limited impact on the
soil moisture contents of the top soil. For this reason, the cali-
bration procedure was applied to each pixel separately, instead
of to the fully distributed simulations. The resulting parameter
values were then stored, and a fully distributed model run was
then performed using the new parameters. Furthermore, the soil
moisture observations of two different pixels were assumed to
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be the same if, for every time step for which remotely sensed
soil moisture values were available, the differences between
the observations for the two pixels were lower than 2.5%.
The parameter estimation procedure thus had to be applied
to only one pixel instead of to both. These simplifications
resulted in a strong reduction of the required computational
effort. Moreover, the parameter estimation procedure was only
applied to those pixels for which at least six observations were
available, and for which the topographic index was at the most
ten, in order to eliminate pixels with a too shallow modeled
water table (less than 1 m).

The same initial parameter values were used for each pixel.
These were 0.5 for λ, 0.3 m for ψc, and 10 mm · h−1 for Ks.
In order to determine the entries in Rk, the standard deviation
of the noise in the observations was set to 0.05 volumetric soil
moisture. The diagonal entries in Qk were set to the square of
25% of their respective parameter value, while the nondiagonal
entries were set to zero. P0 was set equal to Q0 (the value of
Qk at the onset of the iteration procedure). The remote-sensing
observations are assumed to correspond to the upper 10 cm of
the soil profile. For this reason, they depth of the upper layer in
the soil was set to 10 cm.

The parameter estimation procedure was applied using the
first nine soil moisture images. In order to validate the obtained
parameters, the model was applied using these parameters,
and the modeled soil moisture values were compared to the
remotely sensed values for the final three images.

VI. RESULTS

A. Model Initialization

The meteorological data needed for the model application
were provided by the meteorological station at Görmin. The
uncalibrated soil parameters were determined based on the
texture class following [55]. The land cover parameters for
each vegetation class were determined following [40]. For each
land cover class LAI values were observed a number of times
throughout the study period. These LAI values were assumed
to be representative for all fields with the same land cover class
and were used as model input. Model simulations were per-
formed with a spatial resolution of 25 m and a time step of 1 h.

Fig. 4 shows the comparison of the hydrologically modeled
soil moisture values to the in situ observations. Comparing
these results to the results from Fig. 3, it can be concluded
that the remotely sensed soil moisture values are much closer to
the observations than the uncalibrated hydrologic model results.
These results justify the use of remotely sensed data to optimize
the hydrologic model predictions.

Fig. 5 shows the comparison of the modeled soil moisture to
the remote-sensing observations for the first three overpasses.
Fig. 6 shows the same comparison for overpasses four through
six, and Fig. 7 shows this comparison for overpasses seven
through nine. These plots show that, while the observed values
are well distributed, the simulated values are strongly centered
around two values. This can be explained on the one hand by
the fact that the soil moisture observations are only available
for winter wheat fields, which cancels the land cover type as
a potential source of variability in the model results. Further-

Fig. 4. Validation of the hydrologically modeled soil moisture values using
the in situ observations. The solid line is the 1:1 line, the dotted line the
regression line. The different symbols indicate different dates as explained in
the bottom right-hand side legend.

more, only four different soil texture classes characterized the
different pixels for which remotely sensed soil moisture values
were available. Table I shows that the two dominant soil texture
classes are loamy sand and strong loamy, while the other two
soil texture classes are only marginally represented. For each
soil class uniform parameters are used throughout the study
site, although the variability of soil parameters within a specific
soil class can be quite large [55]. This fact, combined with the
limited effect of topography in the study site, will cause the
modeled soil moisture values to be centered around two differ-
ent values.

From the results described in this section, it is clear that the
use of soil texture class data, combined with a lookup table, is
not sufficient to provide acceptable modeled soil moisture values.

B. Calibrated Parameters

In order to bypass the above described problem, soil parame-
ter values were determined for each pixel, using the algorithm
outlined in Section V-B. Fig. 8 shows the spatial distribution
of the resulting parameter values and the original soil texture
classes.

Examining the top and bottom panels of Fig. 8, one can
notice that the values for Ks are consistently lower at the
locations for which the original soil texture class is strong
loamy. The same observation can be made for λ, and to a
lesser extent for ψc. Table I shows the spatial averages of these
parameters for the entire study area, the standard deviation, and
the values from [55] originally used in the model application.
Since the texture class “slightly loamy” contains 81% sand, the
value for sand from [55] was used for this class. For the class
“strong loamy,” the value for loam was used. A number of con-
clusions can be drawn from this table. First, for all soil texture
classes except sandy loam (which is only marginally present),
the standard deviations of all parameter values are relatively
similar. Furthermore, for λ, if the values for λ are sorted in
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Fig. 5. Comparison of the modeled soil moisture to the observations before and after the calibration procedure for the first three overpasses. The solid line is the
regression line.

decreasing order, the resulting order of the soil texture classes
is similar for the values from [55] and for the remotely sensed
values. However, the remotely sensed values show less variabil-
ity. These differences in parameter values can be attributed on
the one hand to the scale at which they were determined: the
values in [55] were obtained at the laboratory scale, while the
retrieved parameters in this paper are valid for a pixel resolution
of 25 m. As stated in the introduction, the scale at which

parameter values were obtained can have a strong influence
on the parameter values themselves. Furthermore, the simpli-
fication of the flow processes in the unsaturated zone adapted
by TOPLATS will also have an impact on the retrieved soil
parameters. More specifically, approximate analytical solutions
to the Richards equation are used to model the flow of water
between the different soil layers. This implies that the use of
measured soil parameters will lead to erroneous soil moisture
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Fig. 6. Comparison of the modeled soil moisture to the observations before and after the calibration procedure for overpasses four through six. The solid line is
the regression line.

values. Consequently, if these parameters are estimated using
observed soil moisture data, the resulting parameter values will
be different from their true values.

The same conclusion can be drawn for the Ks values, but
not for ψc, for which the remotely sensed values for the strong
loamy texture class are an exception.

Fig. 9 shows the relationship between the texture class and
the soil parameter value for each individual field. For all three

parameters, the values for the class “strong loamy” are almost
consistently the lowest. For the hydraulic conductivity and the
pore size distribution index, this is in agreement with the values
from [55], but not for the bubbling pressure. For the other
classes, the behavior is not as clear, but this can be explained
by their textural composition. Table II shows that for all classes
except “strong loamy” the textural composition is relatively
similar. It can thus be expected that the retrieved parameter
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Fig. 7. Comparison of the modeled soil moisture to the observations before and after the calibration procedure for overpasses seven through nine. The solid line
is the regression line.

values among these three classes will be more similar than the
values of the “strong loamy” class. If the original soil texture
classes are lumped into sandy or loamy, a clear distinction
between the retrieved values for these classes can be observed.

A general conclusion from Table I and Fig. 9 is, thus, that a
relationship exists between the texture class and the calibrated
soil parameter values. For the hydraulic conductivity and the
pore size distribution index, this relationship is similar as for

laboratory values, but for the bubbling pressure an inverse
relationship has been found.

C. Calibration Run

The calibrated parameters were then used in a final model
application. Figs. 5–7 show the comparison of the modeled
soil moisture values using the calibrated soil parameters to the
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TABLE I
SPATIAL MEAN AND STANDARD DEVIATION FOR ALL PARAMETERS THROUGHOUT THE STUDY AREA. λ IS THE PORE SIZE DISTRIBUTION INDEX,

ψc THE BUBBLING PRESSURE, AND Ks THE SATURATED HYDRAULIC CONDUCTIVITY. N STANDS FOR THE NUMBER OF PIXELS WITHIN THE CLASS,
RBS FOR THE RAWLS et al. [1982] VALUES, μ FOR THE AVERAGE OF THE RETRIEVED PARAMETER VALUES, AND σ FOR THE STANDARD DEVIATION

Fig. 8. Resulting soil parameters from the parameter estimation procedure
over the test site.

remote-sensing observations. As can be expected, a strong im-
provement in the modeled soil moisture values can be observed.
Since the remotely sensed soil moisture values are prone to
degree of uncertainty on the order of 5% (see Fig. 3), it can be
expected that the rmse between the modeled and the remotely
sensed soil moisture values will be of the same order. Even
though this rmse for Day of Year 186 is almost 10%, the com-
bined rmse for all nine overpasses is 4.62%, with an average
remote-sensing value of 16.38%, and an average modeled value
of 16.93%. The slightly worse model performance on Day of
Year 186 can be explained by the fact that very low soil mois-
ture conditions were obtained only at the end of the calibration
period. Only one date with very low soil moisture contents

was thus used in the parameter estimation. It is therefore not
surprising that, at the onset of the dry period at the end of the
calibration period, the model performs slightly worse. However,
the extra validation described in the next paragraph shows that
during this dry period the model performance is similar as for
wetter days. It can thus be concluded that the estimated soil
parameters lead to modeled soil moisture values that are of the
same accuracy as the remote-sensing observations with which
they were obtained.

Fig. 10 shows the comparison of the modeled soil moisture
values to the observations, for the three overpasses that were
not used in the parameter estimation. For day 193, a strong
reduction in the rmse can be observed. For the two other days,
the calibration procedure does not significantly alter the rmse.
However, it should be noted that the rather low soil moisture
values resulted in a low value of the rmse before the calibration.
For these two days, the regression line close to the 1:1 line
indicates that the spatial variability in the surface soil moisture
content is better matched.

VII. CONCLUSION

A methodology has been developed, using remotely sensed
soil moisture values and hydrologic modeling, to estimate soil
hydraulic parameters in a spatially distributed manner. When
the hydrologic model uses average soil parameters determined
using soil texture classes, a lack of spatial variability in the
model results has been obtained. When remotely sensed soil
moisture values are used to estimate the three most impor-
tant soil parameters (the hydraulic conductivity, the bubbling
pressure, and the pore size distribution index), a relationship
between the original texture classes and the retrieved parameter
values can be observed at the level of the study area. This
relationship is in agreement with the relationships found in
[55], except for the bubbling pressure. The variation of the
parameter values obtained through remote sensing between the
texture classes is not as strong as for the values obtained by
[55]. This can be attributed on the one hand to the scale at
which the parameters have been obtained. While the values
from [55] have been obtained at the laboratory scale, the values
obtained in this paper are obtained at a pixel resolution of 25 m.
Furthermore, the simplifications of the unsaturated zone
processes adapted by the hydrologic model will also have an
impact on the retrieved parameter values. At the field level, the
same relationship between the texture class and the retrieved
parameters has been found when the soils are subdivided into
classes predominantly consisting of loam or sand.
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Fig. 9. Soil parameters per field and per original texture class. The thick solid line is the loamy class, the other lines are the sandy classes.

TABLE II
TEXTURAL COMPOSITION OF THE FOUR SOIL

TEXTURE CLASSES IN THE STUDY AREA

Overall, this paper leads to the conclusion that the possibility
exists to retrieve soil hydraulic parameters through a combina-
tion of remote sensing and hydrologic modeling. In order for
hydrologic models to operate optimally, accurate meteorologic

forcings are of primary importance, but it will probably never be
possible to provide these forcings with a uniform accuracy in a
spatially distributed way. Therefore, optimization using remote-
sensing data is needed. Although the parameter values may be
different than values found in the literature, this difference can
be attributed to the difference in scale at which the parameters
are measured, and to the effects of a simplification of the phys-
ical reality by the model. Since hydrologic models generally
need to be applied at a spatial scale that is much larger than the
laboratory scale, the methodology described in this paper could
serve as a basis to derive soil physical parameters at multiple
spatial scales. Future research will focus on the application of
the proposed methodology using different hydrologic models
using remotely sensed soil moisture contents at different spatial
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Fig. 10. Comparison of the modeled soil moisture to the observations before and after the calibration procedure for the three overpasses used for model validation.
The solid line is the regression line.

scales, in order to assess an impact of the effects of model
structure and spatial scale on the estimated soil parameters.
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