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Abstract—State-of-the-art and future spaceborne SAR systems 

increasingly often face the requirement of providing high-
resolution images with reduced revisit times, requiring coverage 
of wide swaths. Since these are contradicting drivers in terms of 
system design, different alternatives for High-Resolution Wide 
Swath (HRWS) SAR imaging have been investigated, relying on 
digital beamforming (DBF) and the use of multiple receiver 
channels, both in elevation and azimuth dimensions. In this 
context, Staggered SAR, which operates with a pulse repetition 
frequency variation, using a single channel in azimuth proves 
itself as a promising alternative for covering wide continuous 
swaths with moderate azimuth resolution, whereas the use of 
multiple azimuth receiver channels bears the potential of 
improving the azimuth resolution over a given swath, but has yet 
only been applied to systems with a fixed pulse repetition 
frequency. This paper introduces and analyzes in detail 
processing techniques suitable for the combination of these 
techniques, leading to novel multichannel Staggered SAR 
imaging modes with the potential for very fine azimuth resolution 
over ultra-wide swaths. A system concept with 2.0 m azimuth 
resolution over a 400 km swath in quad-pol is provided as an 
example. 
 

Index Terms— Radar, Radar imaging, Spaceborne radar, 
Synthetic aperture radar, Digital beamforming, High resolution 
wide swath 
 

I. INTRODUCTION 

EMOTE sensing of the Earth by means of spaceborne 
Synthetic Aperture Radar (SAR) has received great interest 

in recent years, owing to the numerous possible applications and 
virtually weather- and daylight independent operation. Clearly, 
both high (spatial) image resolution and short revisit times 
(equivalent to a high temporal resolution) translate into a larger 
information content which is highly desirable for numerous 
applications. State-of-the-art and next-generation SAR systems 
[1],[2],[3] are in fact required to simultaneously provide high 
spatial and temporal resolutions in order to enable nearly-
continuous scientific observation of important dynamic Earth 
processes. 
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The requirement of a short revisit time can only be fulfilled if 
an adequately wide swath is imaged. This needs to be done 
without sacrificing the high spatial resolution, which poses a 
challenging problem to system design, as a compromise between 
swath width and azimuth resolution is inherent to conventional 
single-channel SAR systems [4],[5],[6]. High-Resolution Wide-
Swath (HRWS) SAR imaging [4],[5],[7],[8],[9],[10],[11],[12],  
has thus become a very active research topic, in order to enable 
system design to achieve the demanding goals of near-future 
SAR missions.  

Digital beamforming and the use of multiple channels in both 
elevation and azimuth dimensions play an important role in the 
extension of the system capabilities. In particular, systems with 
multiple receive channels in azimuth allow a gain in the 
sampling rate over azimuth, thus supporting an improved 
azimuth resolution compared to single-channel SAR systems, 
without an increase of the pulse repetition frequency (PRF). This 
is illustrated conceptually in Fig.1 (a) and in practice, i.e. for 
realistic antenna lengths, enables the acquisition of moderately 
wide swaths with high azimuth resolution [9],[10]. From [10]: 

𝑃𝑃𝑃𝑃𝑃𝑃 <
𝑐𝑐0

2 ⋅ 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ⋅ sin (𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖)  , (1) 

where 𝑐𝑐0 is the speed of light, 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 is the incidence angle and 
𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ is the swath width on ground. Moreover, assuming the 
uniform sampling condition as reference, the azimuth antenna 
length should be in the order of 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 =
2 ⋅ 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 

𝑃𝑃𝑃𝑃𝑃𝑃   , (2) 

where 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠  is the satellite velocity. This in turn means that 

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ <
𝑐𝑐0 ⋅ 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎

4 ⋅ 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ sin (𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖)  , (3) 

and shows more clearly the reason for the limitation in the swath 
width, namely that the azimuth antenna length tends to become 
too large for space deployment in the case of very low PRF, as 
required by ultra-wide swaths. For instance, to keep the antenna 
length smaller than 20 m, assuming 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 = 7 km/s and 
𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 = 60°, the maximum swath width is limited to 236 km. 
Conversely, a 32.4 m long antenna operated at 𝑃𝑃𝑃𝑃𝑃𝑃 = 433 Hz 
would be required to achieve a swath of 400 km. 
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For a fixed PRF given by the maximum achievable antenna 
length, extending the imaged swath eventually leads to echo 
signals from different portions of the swath being received 
simultaneously. This phenomenon is known as range ambiguities 
in conventional SAR.  In this context, the usage of SCORE 
(SCan-On-Receive [13]) with multiple simultaneous elevation 
beams [9],[10] is an interesting alternative, allowing the swath to 
be extended beyond the limits imposed by range ambiguities. 
The basic principle is namely that, even though simultaneous, 
the main signal and the ambiguities show different directions of 
arrival. They may thus be separated relying on digital elevation 
beamforming, provided that the system architecture allows 
several beams to be formed simultaneously by means of different 
weightings. This can be interpreted as an extension of SCORE to 
follow the returns on ground in different sub-swaths 
simultaneously, by using multiple (as many as required by the 
number of sub-swaths) time-dependent weights, as depicted in 
Fig.1 (b) for the case of a reflector SAR system. Note that this 
also implies a new interpretation of range ambiguities, as they 
become useful signals which are imaged through different sub-
swaths and no longer a nuisance effect. 

Though quite effective at increasing the total imaged swath by 
stacking several sub-swaths, the later technique is subject to a 
limitation in the sense that the sub-swaths are separated by gaps 
caused by the transmission events. This cannot be avoided in a 
fixed-PRF monostatic system, as the echoes cannot be recorded 
simultaneously with transmission. The gap lengths are given by 

Δ𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 2 ⋅
𝑐𝑐 ⋅ 𝑇𝑇𝑝𝑝 

2 =
𝑐𝑐 ⋅ 𝑇𝑇𝑑𝑑𝑑𝑑 

𝑃𝑃𝑃𝑃𝑃𝑃   , (4) 

where 𝑇𝑇𝑝𝑝 denotes the pulse length and 𝑇𝑇𝑑𝑑𝑑𝑑  describes the duty 
cycle of the system. The factor two accounts for the full 
reception of the echoes of duration 𝑇𝑇𝑝𝑝, hence the duration refers 
to gaps in the full range-resolution image. If e.g. 𝑇𝑇𝑑𝑑𝑑𝑑 = 10% the 
blind ranges achieve a length of 12 km for a PRF of 2500 Hz. 

This however can be avoided by staggering of the system PRF 
[14],[15]. In a staggered SAR mode, the pulse repetition interval 
(PRI) is changed cyclically from pulse to pulse. The blockage of 
the receive signal by transmission events still occurs, but at 
different ranges for each azimuth position. This creates a 
blockage pattern which no longer shows blind ranges at fixed 
range positions (in the sense of all azimuth pulses being lost at 
particular ranges) but rather lost pulses which are distributed 
over the swath in a cyclical azimuth-dependent manner (cf. Fig.1 
(c)). In [11],[15],[16] a design procedure for the sequences is 
reported, which allows after interpolation the recovery of data 
equivalent to a conventional single azimuth channel SAR 
acquisition. This approach enables a continuous gapless wide 
swath, a feature typically highly desirable from the perspective 
of applications, at the price of increased system complexity. The 
maximum azimuth resolution of this class of system is 
nonetheless limited, since a single azimuth channel is employed.   

Given the limitations of the aforementioned approach, 
resorting to the use of multiple azimuth channels in combination 

with staggered SAR – as illustrated conceptually in Fig.1 (d) –
presents itself as an opportunity for image acquisitions with very 
high resolution over ultra-wide swaths, combining the strength 
of both methods. The signal processing for such a system is 
however challenging: for instance, whenever the timing dictates 
the loss of a pulse, a 𝑁𝑁𝑐𝑐ℎ channel system also loses 𝑁𝑁𝑐𝑐ℎ samples, 
amplifying the non-uniformity. In addition, new techniques are 
required, as the conventional multichannel processing strategies 
rely on frequency-domain processing, which cannot be 
straightforwardly extended to a staggered SAR system due to the 
PRI variation. 

Fig.1: Schematic representation of HRWS concepts and imaging modes.                  
(a) shows a system with multiple azimuth channels on receive, enabling a finer 
sampling of the signal and thus supporting a higher resolution; (b) illustrates the 
formation of multiple elevation beams, combining simultaneously imaged sub-
swaths separated by blind ranges related to transmission events which are azimuth 
invariant, due to the uniform pulse repetition interval (PRI); (c) shows a staggered 
SAR system, in which the different PRIs cause the transmission-induced blockage 
to affect different ranges for each azimuth position, allowing posterior interpolation 
and recovery; (d) shows a multichannel staggered-PRI system, which is a 
combination of (a) and (c) in the azimuth dimension. 

This paper closely examines new techniques suitable for 
processing multichannel staggered SAR modes – briefly 
introduced in [17] and object of [18] – and provides different 
examples of the capabilities of these techniques. Simulations 
show the feasibility of imaging a 400 km wide continuous swath 
with up to 2.0 m azimuth resolution. 

A. Paper Structure 
The rest of this paper is organized as follows: Section II 

describes the modelling of the problem from a processing 
perspective (Section II.A) and the different digital beamforming 
algorithms developed to solve it (Sections II.B-II.G), starting 
from the general framework. Sections III and IV.A present 
simulation results showing the performance of the methods. On 
the one hand, Section III examines closely a particular case of 
the resampling operation, giving insight into the processing and 

      (a)                (b) 

      (c)                (d) 
 



TGRS-2016-01308  
 

3 

the performance trade-offs made possible by adjusting the 
method’s parameters. Section IV.B on the other hand focuses on 
system design and performance analysis over a swath of interest, 
showing how the methods can be used to fulfil demanding 
HRWS mission requirements. Finally, a review and summary are 
provided in Section V. 

II. MULTICHANNEL STAGGERED SAR AND THE REQUIRED 
AZIMUTH RESAMPLING 

This section starts by presenting the modeling of the 
Staggered SAR resampling problem in Section II.A, followed 
by a general framework for its solution in Section II.B. 
Section II.C presents a first particular solution which is 
especially important for the physical interpretation of the 
procedure and discusses its limitations. Section II.D provides 
then the core description of the proposed method, relying on a 
novel modelling that transforms the problem at hand into a 
beamforming problem that can be solved by cost function 
minimization. Sections II.E and II.F examine in addition two 
cost function alternatives which particularize the solution 
presented in Section II.D, in order to account for different 
aspects of system performance and introduce compromises in 
the final solution. Finally, Section II.G provides a further 
refinement of the solution that seeks to give the outputs a more 
uniform performance, regardless of the choice of the cost 
function. 

A. Problem Overview and Signal Model 
The received azimuth signal of a staggered SAR is sampled in 

a periodically non-uniform manner and is subject to range-
dependent gaps induced by blockage of the received pulses, 
corresponding to pulse transmission events [11]. Furthermore, a 
system with multiple azimuth channels is assumed, capable of 
recording 𝑁𝑁𝑐𝑐ℎ samples per received (or transmitted) pulse. In 
order to apply conventional SAR processing to such a signal, the 
task is to convert the effective 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 staggered PRI pulses per 
cycle into an output signal that is regularly sampled at a rate of 
𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃������𝑒𝑒𝑒𝑒𝑒𝑒 , where 𝑃𝑃𝑃𝑃𝑃𝑃������𝑒𝑒𝑒𝑒𝑒𝑒 is the effective 
average sampling rate of the pulses, accounting for blockage at 
the specific range1. The desired resampling operation is 
represented schematically in Fig.2 (a). Out of the 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃  
transmitted pulses within a cycle, 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃 are effectively 
received, yielding 𝑁𝑁𝑐𝑐ℎ samples each. The goal is to combine a 
suitable number of azimuth samples within a window of length 
𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤  to recover a uniformly sampled SAR signal composed of 
𝑁𝑁 = 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑁𝑁𝑐𝑐ℎ samples per cycle.  

 
 

1 Note that 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 varies with range, according to the specific PRI sequence 
which is adopted, and that range-dependent interpolation is applied. At each 
range, 𝑃𝑃𝑃𝑃𝑃𝑃������𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒

𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃
⋅ 𝑃𝑃𝑃𝑃𝑃𝑃������, where 𝑃𝑃𝑃𝑃𝑃𝑃������ is the mean PRF of the sequence. As 

a constant 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃������ across the swath is desirable, one may either 
resample each range to its particular 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅) and introduce an 
interpolation to 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃������ (for the simulation results in Section IV.B this was 
done by zero-padding before azimuth compression) or use the method to 
resample directly to 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃������ at every range. 

B. General Framework for Solution 
As the next sections show, the resampling may be achieved 

computing each output sample as a linear combination of 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤  
input samples, where the weights depend on the output sample 
position 𝑘𝑘 within the cycle. In other words, 

𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] = 𝒘𝒘[𝑘𝑘]𝑇𝑇 ⋅ 𝒔𝒔𝒊𝒊𝒊𝒊, (5) 

where 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘], 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑁𝑁𝑐𝑐ℎ is a sample in a cycle of the 
output grid and 𝒘𝒘[𝑘𝑘] and 𝒔𝒔𝒊𝒊𝒊𝒊 are 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤-element complex column 
vectors representing respectively a set of resampling weights and 
the signal samples gathered over the input window.  

Fig.2: Required resampling operation focusing on a cycle of pulses of duration 
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃. (a) gives an overview showing the input grid composed of a set of 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 
staggered PRI pulses  received per cycle, in a multichannel configuration yielding 
𝑁𝑁𝑐𝑐ℎ samples per pulse. The overall sampling results in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑁𝑁𝑐𝑐ℎ samples per 
cycle, to be rearranged uniformly in the output grid, which is equivalent to a 
single channel system at a higher sampling rate. (b) focuses on the formation of a 
single sample of index 𝑘𝑘 in the output grid, which is derived from the 
combination of 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 input samples with complex weights. 

Due to the periodical nature of the sampling of the inputs, a 
consequence of the cyclical PRI variation, the same set of 
weights may be applied over several cycles and it is thus 
sufficient to analyze the outputs over a single period. As 
elaborated in the next sections, the corresponding weight vector 
𝒘𝒘[𝑘𝑘] is designed to achieve a suitable phase relation of the 
output patterns that characterize each sample in a cycle of the 
output grid. The approach for determining the weights is 
considered novel, since it uses a physical interpretation of the 
antenna illumination phase center to obtain a set of desired 
virtual antenna patterns that correspond to regular sampling and 
can be synthesized using a modification of known beamforming 
techniques. Furthermore, the general framework is seen to 
introduce the possibility of employing information not only from 
the different channels in a given pulse, as is done in standard 

(a) 

(b) 
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beamforming techniques (𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤  =  𝑁𝑁𝑐𝑐ℎ), but also take the 
information from neighboring pulses into consideration. This can 
be interpreted as the use of virtual antenna patterns (cf. Section 
II.D) while mathematically being equivalent to a form of 
interpolation. Note that in the case 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 < 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 a sliding 
neighborhood consisting of an output-position dependent subset 
of the cycle of pulses is employed as input for the uniformly 
sampled signal recovery.  In the case 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 ≥ 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  either 
the full cycle of pulses or more – introducing an overlap between 
cycles – are employed as inputs.  

C. Resampling through Primary Beam Steering 
Acquisition of the azimuth signal through multiple phase 

centers [5] is the key to the uniform signal reconstruction 
capability. In the time domain, the resampling task can be 
interpreted as positioning a suitable set of phase centers, namely 
the one that implements the desired regular sampling. In this 
context, beamforming techniques to alter the available phase 
center are of interest as possible solutions to the resampling 
problem under study. 

For a reflector antenna uniform array steering [19],[20] with 
the feed (primary) beam may be employed to obtain patterns 
with different phase centers which still observe the same Doppler 
spectrum on the ground. The concept is illustrated schematically 
in Fig. 3. The phase center diversity is achieved by illuminating 
different regions of the reflector’s surface, by means of which the 
spatial center of the induced current distributions is altered and 
so is the secondary pattern’s phase center. Illuminating a subset 
instead of the whole of the reflector narrows the induced current 
distribution on the reflector’s surface and thus broadens the 
resulting patterns on ground, reducing the gain. Nonetheless, the 
ability to continuously vary the primary beam’s position allows 
adjustment of the phase centers, which has several potential 
applications [20].  

Fig. 3: Schematic description of phase center diversity by steering the primary 
beam of a reflector antenna system with a multichannel feed in azimuth. (a) 
shows in different colors the primary and secondary beams of the individual 
elements, which illuminate different Doppler regions with the same phase center. 
(b) shows in different colors the steering of the primary beams to different 
regions, with the result of broadening  the secondary patterns and changing  the 
phase centers. 

In particular, this technique can be used to achieve the needed 
sample regularization and corresponds to a particular case of the 

aforementioned problem with 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑁𝑁𝑐𝑐ℎ, meaning 
conventional beamforming is employed, combining the channels 
independently for each of the 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  available pulses. Let the 
complex patterns of the 𝑁𝑁𝑐𝑐ℎ azimuth channels be denoted by 
𝐺𝐺𝑛𝑛(𝜃𝜃), 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑐𝑐ℎ . The antenna system is thus described by 
an array manifold vector [21]  

𝒗𝒗(𝜃𝜃) = [𝐺𝐺1(𝜃𝜃) … 𝐺𝐺𝑁𝑁𝑐𝑐ℎ
(𝜃𝜃)]𝑇𝑇 , (6) 

which collects the 𝑁𝑁𝑐𝑐ℎ complex antenna patterns as a function of 
the azimuth angle 𝜃𝜃. From classical antenna theory [19],[21], if 
the feed array is uniform with inter-element spacing 𝑑𝑑𝑎𝑎𝑎𝑎 in 
azimuth and 𝜆𝜆 is the wavelength, in order to shift the maximum 
of the resulting primary pattern 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃) = 𝒘𝒘𝑯𝑯 ⋅ 𝒗𝒗(𝜃𝜃) to a 
certain 𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , a phase-only weighting of the form 

𝒘𝒘 (𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= [1 𝑒𝑒𝑗𝑗⋅𝛽𝛽(𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) … 𝑒𝑒𝑗𝑗⋅(𝑁𝑁𝑐𝑐ℎ−1)⋅𝛽𝛽(𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)]𝐻𝐻 (7) 

may be applied, where 

𝛽𝛽(𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) =  2⋅𝜋𝜋⋅𝑑𝑑𝑎𝑎𝑎𝑎

𝜆𝜆
⋅ sin(𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺), 

valid for |𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺| ≤ arcsin � 𝜆𝜆
2⋅𝑑𝑑𝑒𝑒𝑒𝑒

�. 
(8) 

In order to use this technique, we denote the time instants of 
the received pulses, which may be obtained by timing analysis of 
the PRI sequence [11],[15],[16], by 𝑡𝑡𝑅𝑅𝑅𝑅[𝑖𝑖], 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 , and 
the positions of the regular output grid by  

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] =
𝑘𝑘 − 1

𝑁𝑁𝑐𝑐ℎ ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃������𝑒𝑒𝑒𝑒𝑒𝑒
,   (9) 

for 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  

Assuming a mapping 𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(Δ𝑥𝑥) describing the relationship 
between the steering angle and the achieved phase center shift is 
available (this can be obtained by either a geometrical model or 
fitting of simulations, given knowledge of the complex antenna 
patterns), one may calculate the set of required shifts  

Δ𝑥𝑥[𝑛𝑛, 𝑖𝑖] = 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ (𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[𝑁𝑁𝑐𝑐ℎ ⋅ 𝑖𝑖 + 𝑛𝑛] − 𝑡𝑡𝑅𝑅𝑅𝑅[𝑖𝑖])   (10) 

for each 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 and for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑐𝑐ℎ. Note that this 
means that the 𝑁𝑁𝑐𝑐ℎ samples from each received pulse – with 
coinciding phase centers in the reflector case – are used to 
generate a set of 𝑁𝑁𝑐𝑐ℎ samples which are part of the output grid. 
The phase center shift required for the samples of each received 
pulse (index i) is different, according to the deviation of each 
pulse’s position with respect to the regular grid, as can be 
observed in Fig.2. By using the mapping 𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(Δ𝑥𝑥) and (7), (8), 
a set of 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑁𝑁𝑐𝑐ℎ weights of dimension 𝑁𝑁𝑐𝑐ℎ is thus determined, 
which achieves the resampling.   

The phase center diversity relies on changing the position of 
the illuminated region of the reflector’s surface, thus the 
available span of phase center shifts is inherently limited by the 
physical dimensions of the reflector. Furthermore, the element 
patterns of the feed are expected to show some attenuation near 
the reflector borders, reducing the gain of the steered pattern. 

   (a)                (b) 
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Border effects contribute further to pattern degradation and 
performance loss for large phase center shifts, meaning it is 
desirable to reduce their maximum extent. This can be achieved 
in the stage of PRI sequence design, by increasing the mean 
PRF, since in the case of a one-pulse gap, the maximum phase 
center shift is half of the maximum distance between samples, 
i.e. 

Δ𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 <
2 ⋅ 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑃𝑃𝑃𝑃𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

2   = 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑃𝑃𝑃𝑃𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚. (11) 

For instance, for an orbit velocity of 7 ⋅ 103 m/s and a minimum 
PRF of 2 kHz, a maximum required shift of around Δ𝑥𝑥 = ±3.5 
m is expected, which in turn already requires a rather large 
reflector of diameter 15 m. Recall that the phase center 𝑝𝑝𝑐𝑐 =
(𝑝𝑝𝑐𝑐

𝑇𝑇𝑇𝑇 + 𝑝𝑝𝑐𝑐
𝑅𝑅𝑅𝑅)/2 is not changed on transmit, meaning that only 

half of the geometrical change translates into a phase center shift. 
Since the mean PRF cannot be increased without other 
implications on the system performance, such as e.g. degradation 
of range ambiguity levels, the azimuth performance of such a 
system is in last consequence subject to a compromise between 
the mean PRF and the reflector size, in the sense that a larger 
reflector supports a wider range of shifts and allows the usage of 
a lower PRF, though at increased hardware costs.  

D. Resampling through Virtual Beam Synthesis (VBS): 
General Formulation 

In spite of its possible limitations in the context of this 
application, the method introduced in Section II.C introduces the 
interesting concept of using beamforming techniques and 
exploring the interchangeability between the pattern’s phase 
center and the corresponding sample position to achieve 
resampling. In this section a method is proposed which builds on 
these concepts, in the more general scenario of combining 𝑁𝑁𝑐𝑐ℎ 
channels over an arbitrary number of pulses 𝑁𝑁𝑝𝑝, totaling 
𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤  =  𝑁𝑁𝑝𝑝 ⋅ 𝑁𝑁𝑐𝑐ℎ input samples, as described in Section II.A.  

In order to proceed, the different sampling positions over the 
𝑁𝑁𝑝𝑝 different received pulses must be accounted for. Though only 
𝑁𝑁𝑐𝑐ℎ physical channels exist, an extended array manifold vector 
of length 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑁𝑁𝑝𝑝 ⋅ 𝑁𝑁𝑐𝑐ℎ can be considered for the system, 
augmenting the manifold vector of the physical channels (6) with 
a phase ramp describing the pulse position in the sampling over 
the window. Due to the correspondence between the azimuth 
angle 𝜃𝜃 and the Doppler frequency 𝑓𝑓𝑑𝑑, both may be used 
interchangeably as independent variables of the array manifold. 
We keep the notation 𝑡𝑡𝑅𝑅𝑅𝑅[𝑖𝑖], 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑝𝑝 for the time instants of 
the received pulses, and now express the complex patterns of the 
𝑁𝑁𝑐𝑐ℎ azimuth channels by 𝐺𝐺𝑛𝑛(𝑓𝑓𝑑𝑑), 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑐𝑐ℎ. The elements of 
the extended manifold vector 𝒗𝒗(𝑓𝑓𝑑𝑑), which models the input 
samples over all 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑁𝑁𝑐𝑐ℎ virtual elements, may then be 
written as  

 𝑣𝑣𝑚𝑚(𝑓𝑓𝑑𝑑) = 𝐺𝐺𝑘𝑘1[𝑚𝑚](𝑓𝑓𝑑𝑑) ⋅ 

                              exp(−𝑗𝑗 ⋅ 2 ⋅ 𝜋𝜋 ⋅ 𝑡𝑡𝑅𝑅𝑅𝑅[𝑘𝑘2[𝑚𝑚]] ⋅ 𝑓𝑓𝑑𝑑 ),     
(12) 

for 1 ≤ 𝑚𝑚 ≤ 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 , where  

𝑘𝑘1[𝑚𝑚] = 1 + (𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑐𝑐ℎ) 

𝑘𝑘2[𝑚𝑚] = 𝑚𝑚 % 𝑁𝑁𝑐𝑐ℎ, 
(13) 

with 𝑚𝑚𝑚𝑚𝑚𝑚 denoting the modulo (integer division remainder) 
operator, and % denoting the quotient of integer division. This 
expresses mathematically that, as 𝑚𝑚 varies, the pattern indices 
𝑘𝑘1[𝑚𝑚] vary cyclically from 1 to 𝑁𝑁𝑐𝑐ℎ, and the sample indices 
𝑘𝑘2[𝑚𝑚] repeat themselves 𝑁𝑁𝑐𝑐ℎ times before being incremented by 
one. This ensures that all azimuth channels for a given pulse 
position are taken as part of the manifold. Note that the pulse 
positions thus translate into an equivalent baseline for the virtual 
patterns of the extended manifold vector.  

It should be recalled that a total of 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  unique sample 
positions per cycle exist, but samples from neighboring cycles 
may be modelled by considering input sampling instants 
𝑡𝑡𝑅𝑅𝑅𝑅[𝑖𝑖] ± 𝑛𝑛 ⋅ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 , 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 and integer n. Thus, arbitrary 
input window strategies can be considered by proper 
implementation of (12). 

The desired output samples form as before a regular grid at 
the increased sampling rate of 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  samples per 
cycle. This can also be described by a set of 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 output patterns 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑, 𝑘𝑘), one for each sample 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 ,  with phase 
relations implied by 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑 ,  𝑘𝑘) = 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) ⋅ 

                              exp(−𝑗𝑗 ⋅ 2 ⋅ 𝜋𝜋 ⋅ 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] ⋅ 𝑓𝑓𝑑𝑑 ),    (14) 

where 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) is the common (i.e. 𝑘𝑘-invariant) component 
of the patterns of the output samples, representing the desired 
azimuth pattern of the regular grid which the beamforming is 
implementing,  and  

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] =
𝑘𝑘 − 1

𝑁𝑁𝑐𝑐ℎ ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃������𝑒𝑒𝑒𝑒𝑒𝑒
+ 𝛿𝛿𝛿𝛿,   (15) 

denotes the sampling instants of the output grid, being regular by 
definition. The parameter 𝛿𝛿𝛿𝛿 is an arbitrary time shift which 
doesn’t change the regularity property of the grid and can be 
used as a degree of freedom in the design. Minimizing the 
maximum required sample position shift is a reasonable criterion 
for its choice. The significance of this parameter is better 
explained by comparison of two possible choices, as depicted in 
Fig. 4. The first grid employs 𝛿𝛿𝑡𝑡1 = 0, leading to a set of shifts 
Δ𝑡𝑡1 with minimum 𝑚𝑚𝑚𝑚𝑚𝑚{Δ𝑡𝑡1} = 0 for the first output sample but 
a possible large 𝑚𝑚𝑚𝑚𝑚𝑚{Δ𝑡𝑡1}. On the other hand the choice of 
𝛿𝛿𝑡𝑡2 = 0.5 ⋅ (min{Δ𝑡𝑡1} + max{Δ𝑡𝑡1}) leads to a regular grid 2 
whose maximum shift is half of the original one. The azimuth 
shift introduced by a 𝛿𝛿𝛿𝛿 ≠ 0 can be easily compensated at 
posterior processing steps (for example azimuth compression) 
after regularization of the data. 

One can think of 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) in (14) as the desired azimuth 
pattern of the equivalent single-channel system sampled at 
𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  which the multichannel system with azimuth 
beamforming seeks to emulate. The other component, the phase 
ramps with respect to 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] enforce the regularity of the  
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desired output grid, which is necessary for further processing 
with a conventional SAR processor. 

Fig. 4: Comparison of two regular grids (grid 1 and grid 2) highlighting the 
importance of the parameter 𝛿𝛿𝛿𝛿 and illustrating the optimum shift minimizing the 
worst-case phase center shift. 

The desired output patterns in (14) represent virtual patterns 
approximated by the combination of the channels over different 
pulses (cf. (12)). As 𝑡𝑡𝑅𝑅𝑅𝑅[𝑚𝑚] changes in the non-uniform input 
grid, a varying degree of success is obtained (cf. Section II.G) 
and a residual fluctuation occurs (cf. Fig. 15), but proper design 
of 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) and a suitable level of oversampling on overage 
allow good resampling performance. 

The resampling of the multichannel staggered data is also the 
goal of the uniform array steering technique in Section II.C, 
[20], although in that method a single pulse contributes to the 
beamforming at each time and 𝑁𝑁𝑝𝑝 = 1. In the steering method, 
the phase relations are determined by the scan angle 𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  to 
which the feed pattern is steered to; and the resulting illuminated 
area on the reflector is implicitly defined by the mapping 
𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(Δ𝑥𝑥). The patterns achieved by this method also follow the 
structure of (14) in the sense that they possess a common 
component which can be assumed to be invariant for small phase 
center shifts, meaning the pattern is not considerably distorted, in 
spite of the phase center shift. This means that 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) is 
under certain conditions equal to the sum pattern of all physical 
channels 

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑) =
1

𝑁𝑁𝑐𝑐ℎ
⋅ � 𝐺𝐺𝑖𝑖(𝑓𝑓𝑑𝑑)

𝑁𝑁𝑐𝑐ℎ

𝑖𝑖=1

,   (16) 

a pattern which effectively corresponds to steering to the center 
of the reflector and results in a broader secondary pattern that 
illuminates approximately the combined beamwidth of the 
individual elements. The sum pattern of the physical channels 
remains a reasonable choice for the design of 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) in 
(14), though this degree of freedom may also be exploited (cf. 
Section II.G). It should be noted that the proposed modeling of 
each sample by means of an equivalent pattern through (12) and 
(14) effectively transforms the initial resampling problem of 
Section II.A into a more tractable pattern synthesis problem. The 
method is for this reason referred to as the virtual beam synthesis 

(VBS) method, and has as main feature the representation of the 
input and output samples by means of their corresponding 
patterns, which are considered to be elements of an extended 
manifold vector. The patterns may be referred to as “virtual” in 
the sense that they do not represent physical array antenna 
elements, but rather mathematical constructs incorporating the 
information of the antenna patterns alongside the timing of the 
pulses. 

What remains to be answered is how to determine the weights 
that map the inputs modeled by (12) into the outputs modeled by 
(14). In general, we propose to solve this problem by adaptive 
beamforming which minimizes a cost function of the form 

𝜉𝜉(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑓𝑓𝑑𝑑 ,  𝑘𝑘�, 𝑣𝑣𝑖𝑖(𝑓𝑓𝑑𝑑)),  

1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 , 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜.  
(17) 

Particular choices of the cost function will give rise to variants of 
the method, which allow emphasizing certain properties of the 
solution and introducing compromises if necessary, as will be 
made clear in the next two sections. 

E. Mean Squared Error (MSE) Cost Function 
The first choice of the cost function (17) is  based on the least-

squares (LS) pattern synthesis [21] technique. The original LS 
pattern synthesis problem may be described as follows: given an 
arbitrary 𝑁𝑁-element array manifold vector 𝒗𝒗(𝑓𝑓𝑑𝑑), derive the 
beamforming weight vector 𝒘𝒘 that leads to the closest 
approximation 𝐺𝐺�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑) = 𝒘𝒘𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑) of a desired pattern 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑). The solution is achieved by minimizing a cost 
function that measures the integral of the mean squared error 
(MSE) between the goal pattern and the approximation, i.e., 

𝜉𝜉𝑀𝑀𝑀𝑀𝑀𝑀 = � �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑) − 𝒘𝒘𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑)�
2

𝑑𝑑𝑑𝑑𝑑𝑑 ,
𝑓𝑓2

𝑓𝑓1

 (18) 

where the region of integration has to be appropriately chosen, 
and a Doppler-frequency dependent weighting of the integral 
may also be applied. In the multichannel resampling context, 
𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is for instance a meaningful choice.  

Applying (18) for 𝒗𝒗(𝑓𝑓𝑑𝑑) defined by (12) and each 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑, 𝑘𝑘) in the output grid is a natural choice for (17). For 
each output grid sample index 𝑘𝑘, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜, the solution to 
the optimum weights in the MSE sense can be obtained by 
minimizing (18) by means of its complex gradient [21]. This 
yields weights proportional to the cross-correlation between the 
goal pattern and the array manifold vector, 

𝝈𝝈𝑮𝑮[𝑘𝑘] ≜ � 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
∗ (𝑓𝑓𝑑𝑑 , 𝑘𝑘) ⋅ 𝑣𝑣(𝑓𝑓𝑑𝑑) 𝑑𝑑𝑓𝑓𝑑𝑑 (19) 

weighted by the inverse of the array manifold’s cross-
correlation matrix  

𝑹𝑹𝒗𝒗 ≜ � 𝒗𝒗(𝑓𝑓𝑑𝑑) ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑)𝐻𝐻 𝑑𝑑𝑑𝑑𝑑𝑑 . (20) 

The set of optimum MSE weights is then given by 
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𝒘𝒘𝑀𝑀𝑀𝑀𝑀𝑀[𝑘𝑘] = 𝑹𝑹𝒗𝒗
−𝟏𝟏 ⋅ 𝝈𝝈𝐺𝐺[𝑘𝑘]. (21) 

This solution has the desirable property of achieving the closest 
possible implementation of the desired set of output patterns. Let 
the power of the goal pattern be described by 

𝑝𝑝𝑮𝑮 ≜ � �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑)�
2

 𝑑𝑑𝑓𝑓𝑑𝑑 . (22) 

Then, using the definitions (19) and (20), (18) can also be written 
as 

𝜉𝜉𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒘𝒘𝐻𝐻 ⋅ �𝑹𝑹𝒗𝒗 ⋅ 𝒘𝒘 − 𝝈𝝈𝐺𝐺� − 𝒘𝒘𝑇𝑇 ⋅ 𝝈𝝈𝐺𝐺
∗ + 𝑝𝑝𝑮𝑮, (23) 

and the optimum MSE solution of (20) leads to  

𝜉𝜉𝑀𝑀𝑀𝑀𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑮𝑮 − 𝝈𝝈𝐺𝐺 ⋅ 𝑹𝑹𝒗𝒗
−1 ⋅ 𝝈𝝈𝐺𝐺

𝐻𝐻, (24) 
where the last term is a scalar and thus equal to its transpose and 
the 𝑘𝑘 (output grid sample index) dependence is omitted to 
simplify the notation, though it should be kept in mind. 

The structure of (21), notably the dependence on 𝝈𝝈𝐺𝐺 , implies 
that the method automatically selects – from the physical 
channels in different positions during the pulse cycles – the 
elements with higher correlation to a particular output position. 
Even though the pulse separation induced baselines introduce, as 
expected, a notable decorrelation between the elements of the 
proposed extended manifold, no degradation ensues from the use 
of additional channels. Should they be too distant from the 
desired sample position and thus uncorrelated (leading to an 
element of 𝝈𝝈𝐺𝐺 with low magnitude), the corresponding weights 
are accordingly very low in magnitude. The small gain avoids 
therefore a possible degradation from uncorrelated samples. In 
fact, (24) implies that the MSE corresponding to the best 
approximation (which is in general nonzero) is given by the goal 
pattern’s power minus the norm of 𝝈𝝈𝐺𝐺  weighted by 𝑹𝑹𝒗𝒗

−1. This 
means that extending the manifold (and thus getting a longer 𝝈𝝈𝐺𝐺) 
in principle cannot reduce the quality of the approximation, since 
it causes 𝜉𝜉𝑀𝑀𝑀𝑀𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  to get smaller2. Clearly, the entries of 𝝈𝝈𝑮𝑮 show 
lower and lower magnitudes with increasing distance from the 
goal pattern’s phase center position, leading to a saturation effect 
in the sense that additional elements start having little impact. 
The fact that for a staggered SAR system an overall 
oversampling in azimuth is expected, means that some 
correlation and therefore performance gain is however possible 
from the usage of neighboring pulses.  

The method introduced in this section will be referred to as 
MSE-VBS, to emphasize the choice of the cost function, in the 
remainder of this paper. An alternative cost function is examined 
in the following section. 

 
 

2 This is true as long as the model (12) holds, though in practice the delay 
(phase ramp) is not an adequate representation for the relationship between 
arbitrarily distant pulses, as effects like range cell migration (RCM) and scene 
decorrelation come into play if the corresponding baseline is too large, 
resulting in an effective limitation of the feasible pulse neighborhood. 

F. Joint Mean Squared Error (MSE) and Signal-to-Noise 
Ratio (SNR) Cost Function: a MSE-SNR Compromise 

As was also true for the primary beam steering method in 
Section II.C., the spatial restriction of the reflector’s surface 
illumination (cf. Fig. 3 (b)) and the corresponding broadening of 
the secondary patterns result in a lower gain in comparison to the 
feed element’s patterns (cf. Fig. 8 for an example of 𝐺𝐺𝑖𝑖(𝑓𝑓𝑑𝑑) and 
𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑)). Using only a part of the reflector’s surface at a time 
is the price for achieving the phase center diversity, but it also 
means that the MSE-VBS method in Section II.D bears the 
inherent risk of degrading the SNR of the data.  

Moreover, the manifold extension may lead to the use of 
several potentially poorly correlated channels, in turn yielding a 
beamformer with poor signal-to-noise ratio (SNR) gain in 
comparison to other alternatives, especially when obtaining 
samples within the gaps. To counter these effects, a normalized 
SNR measurement [21] with respect to white noise 

𝜉𝜉𝑆𝑆𝑆𝑆𝑆𝑆 =
𝒘𝒘𝐻𝐻 ⋅ 𝑹𝑹𝒗𝒗 ⋅ 𝒘𝒘

𝒘𝒘𝐻𝐻 ⋅ 𝒘𝒘 ,    (25) 

may be incorporated into the cost function. Using (20), one may 
write 

𝜉𝜉𝑆𝑆𝑆𝑆𝑆𝑆 =
∫ �𝒘𝒘𝐻𝐻 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑)�2 𝑑𝑑𝑑𝑑𝑑𝑑

𝒘𝒘𝐻𝐻 ⋅ 𝒘𝒘 , (26) 

which is equivalent to an average of the output pattern gain over 
the Doppler region in which the correlations are estimated.  
Considering a signal with a spectrum shaped as the antenna 
pattern after DBF, 𝒘𝒘𝐻𝐻 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑), and a flat white noise spectrum, it 
is also clear that (26) represents a form of normalized SNR 
measurement. Denoting the elements of the 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤  by 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤  matrix 
𝑹𝑹𝒗𝒗 by 𝑟𝑟𝑖𝑖𝑖𝑖  and the elements of the 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤-element weight vector 𝒘𝒘 
by 𝑤𝑤𝑖𝑖 , one may also write 

𝜉𝜉𝑆𝑆𝑆𝑆𝑆𝑆 =
∑ 𝑟𝑟𝑖𝑖𝑖𝑖 ⋅ |𝑤𝑤𝑖𝑖|2𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤

𝑖𝑖=1 + ∑ ∑ 𝑟𝑟𝑗𝑗𝑗𝑗 ⋅ 𝑤𝑤𝑖𝑖
∗ ⋅ 𝑤𝑤𝑗𝑗

𝑁𝑁
𝑖𝑖=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑗𝑗=1

∑ |𝑤𝑤𝑖𝑖|2𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤
𝑖𝑖=1

, (27) 

a form in which some SNR properties of the manifold and 
pattern after beamforming may be highlighted. Recalling that 𝑟𝑟𝑖𝑖𝑖𝑖  
is proportional to the power in each manifold element and 𝑟𝑟𝑗𝑗𝑗𝑗 , 
𝑗𝑗 ≠ 𝑖𝑖 is the cross-correlation between the manifold element’s 
patterns, it is apparent that, for a given set of weights, a better 
SNR is obtained if the manifold elements are more correlated, 
whereas a completely uncorrelated manifold yields poor gain. 
Conversely, given a manifold, the solution to optimize the SNR 
involves activating the elements to the extent that the additional 
signal power brought by their self and cross-correlation 
outweighs the penalty for activating additional elements (more 
entries 𝑤𝑤𝑖𝑖  and thus a larger denominator). In contrast to 
(18)/(23), which as discussed in the previous section tends to 
always improve as more elements are added to the manifold (cf. 
(24)), (27) is seen to be adversely affected by the manifold 
extension beyond a certain correlation threshold. This also means 
it is reasonable to use a term proportional to this cost function in 
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addition to (18)/(23), in order to restrict the choice of samples to 
be used, in the interest of improving the output SNR. Doing so 
leads to a joint MSE-SNR cost function of the form3 

𝜉𝜉𝐽𝐽 = (1 − 𝛼𝛼) ⋅
𝜉𝜉𝑀𝑀𝑀𝑀𝑀𝑀

𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀
+ 𝛼𝛼 ⋅

𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆

𝜉𝜉𝑆𝑆𝑆𝑆𝑆𝑆
 , (28) 

where 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 are normalization factors, which allow the 
MSE and SNR to be matched in terms of numerical values, and 
𝛼𝛼 is a design parameter in the interval [0, 1]4. 𝛼𝛼 = 0 leads to the 
optimal MSE solution seen before, while increasing values up to 
𝛼𝛼 = 1 results in a limiting case where the goal pattern 
(sampling) is completely disregarded, since the full emphasis is 
on  the SNR of the solution.  

Since the MSE is directly linked to the regularity of the 
achieved output grid and irregularity translates into aliasing and 
residual azimuth ambiguities, the MSE may be viewed as a 
proxy for the residual ambiguity levels. Therefore the 
compromise being introduced is that of noise rejection on the 
one hand and ambiguity rejection on the other, which is a well-
known trade-off for other multichannel SAR system processing 
alternatives [7].  

Applying the complex gradient operator to (28) leads to a 
nonlinear system of equations to determine the 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 optimal 
complex weights, which nonetheless may be solved numerically 
using the closed form solutions available for the limiting cases 
𝛼𝛼 = 0 or 𝛼𝛼 = 1 as first guesses, namely 

1 − 𝛼𝛼
𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀

⋅ �𝑹𝑹𝒗𝒗 ⋅ 𝒘𝒘 − 𝝈𝝈𝑮𝑮[𝑘𝑘]� + 𝛼𝛼 ⋅ 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 

   
�𝒘𝒘𝐻𝐻 ⋅ 𝑹𝑹𝒗𝒗 ⋅ 𝒘𝒘� ⋅ 𝒘𝒘 − �𝒘𝒘𝐻𝐻 ⋅ 𝒘𝒘� ⋅ �𝑹𝑹𝒗𝒗 ⋅ 𝒘𝒘�

�𝒘𝒘𝐻𝐻 ⋅ 𝑹𝑹𝒗𝒗 ⋅ 𝒘𝒘�2 = 𝟎𝟎. 
(29) 

A possible figure of merit for the SNR of the pattern achieved 
by means of arbitrary weights 𝒘𝒘 is given by the integral of the 
patterns’ gain inside the processed bandwidth 𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 
normalized by the same integral for a reference pattern. This 
reference is chosen here to be 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑), yielding the quantity 

Φ𝑆𝑆𝑆𝑆𝑆𝑆�𝒘𝒘� =
1

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
⋅

1
𝒘𝒘𝐻𝐻 ⋅ 𝒘𝒘

⋅ � �𝒘𝒘𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑)�
2𝑑𝑑𝑓𝑓𝑑𝑑,

𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (30) 

where the normalization factor is given by  

 
 

3 A similar strategy is adopted in [7], though in a different optimization 
context. 

4 Numerically speaking only the ratio of the weights between the 
coefficients of the two cost functions in (28) matters for the solution, so that a 
single parameter would suffice. The separation into the three parameters is 
however preferred to enable a more obvious interpretation of the design goal 
of the algorithm. 

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 =
1

𝑁𝑁𝑐𝑐ℎ
⋅ � �� 𝐺𝐺𝑖𝑖�𝑓𝑓𝑑𝑑�

𝑁𝑁𝑐𝑐ℎ

𝑖𝑖=1
�

2

𝑑𝑑𝑓𝑓𝑑𝑑.
𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 
(31) 

 
The method described in this section, whose goal is to 

introduce a SNR-MSE compromise, will be referred to, in short, 
as the SNR-VBS method, and can be interpreted as an extension 
that complements the MSE-VBS method. 

The next section - in contrast to this and the previous one - 
does not introduce a new cost function, but rather addresses the 
so far neglected issue of equalizing the performance over the 
output grid by introducing an iterative technique that may be 
applied regardless of the cost function. 

G. Iterative Pattern Synthesis: Accommodating Pattern 
Distortions to Equalize Performance over The Grid 

The optimality of the MSE method in the least-squares (cf. 
Section II.E) sense means that the implemented patterns are as 
close as possible to the goal patterns. Nonetheless, residual 
distortions occur as a rule, and the implemented patterns are 
imperfect approximations of the goals. As the procedure is 
repeated over all samples to form the output grid, owing to the 
irregularity of 𝑡𝑡𝑅𝑅𝑅𝑅[𝑖𝑖], some pattern approximations are less 
successful than others. This is especially true for the output 
samples that span the Tx blockage-induced gaps, as these require 
larger shifts of the phase centers. Moreover, regardless of 
whether (18) or (28) are minimized, the optimization takes place 
using information from a single output sample at a time, thus the 
knowledge of the other desired outputs over the grid is not used 
in the design and their varying degree of success cannot be 
accounted for. Conceptually, means to use the information from 
other output samples in the grid to implement a given pattern 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑, 𝑘𝑘) in order to better equalize the performance over the 
output samples are thus desirable. 

A simple way of doing this is to exploit the degree of freedom 
of choosing 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) in (14). As long as the phase relations 
regarding 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] hold, the output grid remains regular, and 
enforcing 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) = 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑) is not strictly necessary, 
though physically meaningful for reflector systems. The 
common pattern can also be shaped such that the output grid is 
more readily implementable by the given input manifold, in the 
sense of improving the worst-case implementation. The 
incorporation of an average distortion to the common component 
of the design goals may lead to more readily achievable patterns 
without violating the regularity, the main objective of the 
resampling. Moreover, if the design is done iteratively, the 
information from the other patterns in the grid is readily 
available at the end of each iteration. One may thus propose the 
following logic for the common pattern design. The previous 
choice is maintained for the first iteration, i.e., 

𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
0 (𝑓𝑓𝑑𝑑) = 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑). (32) 

However, at iteration  𝑖𝑖,  
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𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖+1 (𝑓𝑓𝑑𝑑) =

1
𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤

⋅ 

�  (𝒘𝒘𝒊𝒊 [𝑘𝑘]) 𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑) ⋅ exp(+𝑗𝑗 ⋅ 2 ⋅ 𝜋𝜋 ⋅ 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] ⋅ 𝑓𝑓𝑑𝑑 ),  
𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤

𝑘𝑘=1

 

(33) 

where 𝒘𝒘𝒊𝒊 [𝑘𝑘] denotes the weights for the 𝑘𝑘𝑡𝑡ℎ pattern in the grid at 
the iteration under consideration and both the manifold and the 
weights have dimension 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 . This means that the mean 
common pattern effectively achieved by the implementation is 
calculated, and passed on as a less strict design goal to the next 
iteration. This allows lower MSEs to be achieved in the worst 
cases over the grid and thus improves the overall approximation. 
It should be noted that, if (32) and (33) are used in combination 
with (18), lower MSEs than those of the MSE-VBS method in 
Section II.D may be obtained because of the change in the design 
goal, hence without contradiction to the optimality of that 
method. A degradation of 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) in comparison to the 
initial sum pattern is possible, but the impact is small as long as 
the worst-case distortions are not excessive. The effect can be 
controlled by proper design of the PRI sequence.  

A stop criterion for the iteration is needed, and one possibility 
is improvement of the average MSE over the grid from the 
current iteration to the previous. If (28) is used, it is also possible 
to use an average of the SNR figure of (30). In the latter case, a 
feedback of the parameter 𝛼𝛼 into the design goal tends to 
enhance the emphasis on the SNR and improve the performance 
with this regard, though increasing the minimum achievable 
MSE and possibly slowing convergence to lower MSE values. 

To conceptually sum up the methods discussed in this section, 
a flow chart of the inputs employed for the weight calculations is 
provided in Fig. 5, comparing the different alternatives described 
in the subsections therein. 

Fig. 5: Flow chart highlighting the information needed for the weight calculation. 
Knowledge of the antenna patterns and sampling conditions is common for all the 
variations of the VBS method (cf. Section II.D). The choice of the cost function 
(cf. Sections II.E and II.F) determines the weight calculation strategy, whereas the 
iterative method of Section II.G is a possibility to introduce feedback from other 
samples in the output grid into the weight calculation. 

III. ANALYSIS AND COMPARISON OF METHODS 
This section illustrates the application of the aforementioned 

methods and discusses some aspects of their performance. The 
structure is as follows: Section III.A provides the common 
background of the simulation scenario, Section III.B analyses the 
synthesis of a single pattern or output sample with varying 
sensitivity parameter 𝛼𝛼 values, and, finally section III.C analyses 
the synthesis of the whole output grid required for a particular 
case of resampling. 

A. Description of Simulation Scenario 

In order to analyze and compare the performance of the 
different methods, an illustrative scenario is considered, taking as 
reference one of the high azimuth resolution modes of the 
Tandem-L mission proposal [1]. The goal is to image from an 
orbit height of 745 km a swath of 350 km on ground with 3.0 m 
azimuth resolution in L-band, using a parabolic reflector antenna 
architecture [8], as depicted in Fig. 6.  

Fig. 6: Antenna system geometry highlighting multichannel feed and reflector 
rim. The feed system consists of 32 elements in elevation and 6 in azimuth, 
combined pairwise to form 3 azimuth channels. 

The 3-m imaging mode is being considered as an option for 
implementation in Tandem-L (in addition to the 7-m imaging 
mode with one azimuth channel). 

As an example, a simulated point target in the center of the 
scene at a ground range of 485 km is considered. A periodically 
non-uniformly sampled multichannel signal as discussed in 
Section II.A results from the use of a staggered PRI sequence on 
a system with 3 channels on receive in azimuth. In this case, the 
3 channels are obtained by the pairwise combination of 6 
azimuth feed elements spaced at 0.6 𝜆𝜆 in azimuth. The relevant 
system parameters are summarized in TABLE I.  

The description of the PRI cycle and the physical antenna 
patterns provides the basis for the characterization of the 
extended manifold used as input for the resampling. With respect 
to the former, timing analysis [15],[16] shows that for this 
particular range the 3rd and the 32nd pulse from the sequence of 
𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃 =  33 pulses are lost due to transmission events. This leads 
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(a) 

(b) 

to an effective 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =  31 number of pulses as shown in the 
sampling configuration in Fig. 7.  

TABLE I 
SIMULATION SCENARIO PARAMETERS 

Platform and swath parameters 

Quantity Symbol Value 

Orbit height ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 745 km 
Swath width on ground 𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 350 km 

Minimum/maximum look angle 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚/𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 23.4 /40.9 deg 

Reflector and feed parameters 

Quantity Symbol Value 

Diameter 𝐷𝐷 15.0 m 
Focal length 𝐹𝐹 13.5 m 
Feed offset in elevation 𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂 9.0 m 
Center frequency 𝑓𝑓0 1.2575 GHz 
Number of channels in 
elevation/azimuth 𝑁𝑁𝑒𝑒𝑒𝑒/𝑁𝑁𝑎𝑎𝑎𝑎 32 / 3 

Channel spacing in elevation/azimuth 𝑑𝑑𝑒𝑒𝑒𝑒/𝑑𝑑𝑎𝑎𝑎𝑎 0.68 𝜆𝜆 / 1.2 𝜆𝜆 
Elevation tilt angle w.r.t. nadir 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 32.4 deg 

Pulse sequence parameters 

Quantity Symbol Value 

Average PRF 𝑃𝑃𝑃𝑃𝑃𝑃 2700 Hz 
Initial PRI 𝑃𝑃𝑃𝑃𝐼𝐼0 386 ms 
PRI sequence step Δ -0.98 ms 
PRI sequence length 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃  33 
Pulse length 𝑇𝑇𝑃𝑃 14.8 ms 
Duty cycle 𝑇𝑇𝑑𝑑𝑑𝑑 4% 

Processing parameters 

Quantity Symbol Value 

Goal azimuth resolution 𝛿𝛿𝑎𝑎𝑎𝑎  3 m 
Processed bandwidth 𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2494 Hz 
Number of pulses in azimuth            
beamformer window 𝑁𝑁𝑝𝑝 31 

Target ground range 𝑅𝑅0 485 km 

In the next sections, the particular case of 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒, 
meaning the window of inputs for formation of the output grid is 
chosen to be a cycle of the PRI sequence, is considered. 

In turn, the magnitude of the far-field (secondary) antenna 
patterns 𝐺𝐺𝑖𝑖(𝑓𝑓𝑑𝑑) of the 3 azimuth channels, as well as the 
corresponding 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑), are shown in Fig. 8. The patterns were 
simulated using the software TICRA GRASP [22] and show no 
appreciable phase difference between the elements.  

 

 

 

 

 

 

 

 

 

Fig. 7: Analysis of the transmit-event induced loss of pulses over range. (a) shows 
the blockage diagram for the whole swath, with ground range as abscissa and the 
pulse index (1-33) as ordinate. For each ground range, red boxes indicate the 
indices of the lost pulses, and the fact that two consecutive losses never occur for 
the considered ranges – a consequence of the sequence design criterion – can be 
observed. (b) depicts the azimuth sampling (in blue) and blocked pulses (in grey) 
over one PRI sequence cycle at the particular ground range of 485 km, roughly 
the center of the swath. 

As expected for an ideal reflector (cf. Section II.C), the phase 
centers coincide but the Doppler region covered by each element 
differs. The sum pattern (dashed line) is seen to be much broader, 
and its width is approximately given by the combined 
beamwidth of all elements. 

Fig. 8: Antenna pattern magnitude for the 3 Rx physical channels (solid lines) 
and corresponding sum pattern (dashed line). The outer vertical dashed lines 
highlights the limits of the effective multichannel 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 7609 Hz and the 
inner ones the processed bandwidth 𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 
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B. Synthesis of a single Goal Pattern: The Impact of The SNR 
Sensitivity Parameter 𝛼𝛼 

As a first example, the synthesis of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑓𝑓𝑑𝑑 ,  0�, i.e., the 
pattern corresponding to the first sample of the output grid is 
considered. Fig. 9 shows the sampling configuration of the 
extended manifold as well as the desired phase center position. 
Due to the assumption of 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑁𝑁𝑐𝑐ℎ ⋅ 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒, the extended 
manifold has 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  =  93 elements (represented by blue 
circles), corresponding to the physical channels over the whole 
cycle of received pulses (shown as arrows). The output regular 
grid (represented through an ‘x’) has as well 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜  =  93 
samples over a PRI cycle. The first output sample is highlighted 
in red. In this case, a shift of -0.65 m is required with respect to 
the position of the nearest pulse, namely, the first one of the 
cycle. 

In order to illustrate the performance of the methods in 
Sections II.D and II.F, as well as to provide a better 
understanding of the inherent MSE-SNR compromise, the 
implementation of this particular pattern with varying values of 
the sensitivity parameter 𝛼𝛼 in the interval [0, 1] is considered in 
the following. The joint cost function (28) is used with the 
following parameters: 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 is taken to be the power of the sum 
pattern 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑) given by (16) and 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 is equal to the SNR 
figure of the same sum pattern 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠of (31) divided by 100. This 
choice of parameter values is motivated by the fact that the 
normalized MSE figure for this example was found to be in the 
order of -20 to -30 dB, while the normalized SNR figure Φ𝑆𝑆𝑆𝑆𝑆𝑆 
(cf. (30), (31)) is in the order of 0.0 to -10 dB, and hence the 
factor 100 was chosen to better match numerically the values of 
the two figures and thus adjust the sensitivity to 𝛼𝛼. The 
correlations between the manifold elements, as well as the MSE 
measurements (cf. (18), (19), (20)) are done by integration over 
𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . 

Fig. 9:  Sampling configuration for extended manifold and desired regular grid. 
Arrows represent the received pulse position, highlighting the 31 available pulses. 
The blue circles represent the phase center position of the samples from the 
different azimuth channels. The desired regular grid positions are represented by 
an “x”, and the particular phase center position for the pattern under analysis is 
highlighted in red. (a) shows the configuration for the whole PRI sequence and (b) 
a zoom around the first gap. 

Firstly, Fig. 10 shows examples of the achieved patterns for 
five equally spaced values of 𝛼𝛼 in the sweep from 0.0 to 1.0. The 

patterns are represented in terms of gain and phase error, the 
latter with respect to the phase ramp dictated by the required 
phase center position 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜[0]. It should be highlighted that the 
gain mentioned here refers to the usual definition [21], i.e. 

𝑄𝑄(𝑓𝑓𝑑𝑑, 𝛼𝛼) =
�𝒘𝒘(𝛼𝛼)𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑)�

2

𝒘𝒘(𝛼𝛼)𝑯𝑯 ⋅ 𝒘𝒘(𝛼𝛼)
 , (34) 

and should not be confused with the pattern approximation 
𝐺𝐺�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑓𝑓𝑑𝑑,  𝛼𝛼� = 𝒘𝒘(𝛼𝛼)𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑) itself. This distinction is 
important in this context as the pattern (here understood as the 
mere linear combination, without normalization of the weight 
magnitude) influences the MSE, while the gain in (34) 
influences the SNR. 

Fig. 10: Analysis of achieved patterns 𝐺𝐺�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑓𝑓𝑑𝑑,  𝛼𝛼� = 𝒘𝒘(𝛼𝛼)𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑) as a 
function of 𝛼𝛼, in terms of gain and phase. (a) shows the pattern’s gain and (b)    
the error with respect to the desired phase center position. The inner and outer 
dashed lines delimitate 𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, respectively. 

As discussed in Section II.F, increasing values of 𝛼𝛼 increase 
the importance of the SNR component in the joint cost function 
(cf. (28)). Correspondently, it can be seen from the plots that, as 
α  increases, the pattern’s gain also does, reflecting an improved 
SNR. Conversely, the phase errors are also seen to increase, 
indicating an MSE worsening. The shape of most patterns in Fig. 
10 (a) is nonetheless seen to be stable and resemble very closely 
that of 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑), as visible in the figure. An exception occurs 
for 𝛼𝛼 = 1.0, a case of theoretical interest leading to the best 
achievable SNR without actually implementing any resampling. 
In the latter case, the shape of the pattern is unrelated to the 
previous one. Another interesting aspect is the considerable 
change in the gain when 𝛼𝛼 changes from 0.0 to 0.25, even 

   (a)   

   (b)   
 

(a) 

(b) 
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though neither the shape of the pattern nor the phase error 
changes abruptly. This is an indication of the non-linear behavior 
of (29), which the few examples in Fig. 10 do not fully allow to 
characterize. 

A more complete characterization follows from the analysis in 
Fig. 11, where the normalized MSE (with respect to 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀) and 
Φ𝑆𝑆𝑆𝑆𝑆𝑆 of the achieved approximation 𝐺𝐺�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑓𝑓𝑑𝑑,  𝛼𝛼� are plotted 
against the value of 𝛼𝛼 for 400 values within the interval [0,1]. 

Fig. 11: Analysis of achieved patterns 𝐺𝐺�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑓𝑓𝑑𝑑,  𝛼𝛼� = 𝒘𝒘(𝛼𝛼)𝑯𝑯 ⋅ 𝒗𝒗(𝑓𝑓𝑑𝑑) as a 
function of 𝛼𝛼 in terms of normalized MSE and SNR figures. (a) shows the 
pattern’s MSE with respect to the goal pattern, normalized to the power of the 
sum pattern and (b) the SNR figure Φ𝑆𝑆𝑆𝑆𝑆𝑆.  

As expected, both the MSE and the SNR increase with 
increasing values of 𝛼𝛼, highlighting the aforementioned trade-off 
between the two parameters. It is nonetheless interesting to note 
that the sensitivity of the two curves is different, in another 
indication of non-linear behavior. The MSE varies slowly with 𝛼𝛼 
up to circa 0.8 and then increases abruptly, indicating the 
increasing disregard of the sampling conditions by the cost 
function. On the other hand, the SNR increases quickly with 𝛼𝛼 
for values up to 0.2, remains fairly stable up to 0.8 and then 
quickly increases again up to the optimum value. This behavior 
also explains what was visualized in Fig. 10: the change from 0.0 
to 0.25 kept the pattern shape and phase errors (and hence the 
MSE) fairly constant while causing a visible difference in the 
gain (and hence the SNR); the changes from 0.25 up to 0.75 had 
visually little effect in both regards; and the final change to 1.0 
led to a high-gain pattern (the best SNR figure) which is 
however completely different from the goal and shows a 
correspondingly high phase error (hence the high MSE). 

The numerical values of the boundaries of the 𝛼𝛼 regions 
clearly depend on the normalization parameters 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆, 
which adjust the sensitivity of the cost function to 𝛼𝛼. However, 
as the extreme cases do not change, a change in these parameters 
represents a mere scaling of the curve with respect to the 
abscissa values, not changing the general behavior. In terms of 
pattern design, the interesting point is that a considerable 
increase in the SNR can be achieved without a great degradation 
of the MSE by increasing 𝛼𝛼 up to certain threshold. In fact, the 
optimum MSE solution incurs a relatively high SNR penalty by 
using all possible extended manifold elements including fairly 
uncorrelated elements (corresponding to distant pulses), which 

do not contribute to a great improvement of the MSE, while 
degrading the SNR considerably. With moderately low values of 
𝛼𝛼, very similar patterns are achieved with a lower weight 
magnitude, what can be interpreted as a better distribution of the 
activation energy, made possible by disregarding these fairly 
uncorrelated extended manifold elements.  

C. Synthesis of Full Output Grid: Comparison between 
Methods 

In this section, the achieved patterns are analyzed over the 
whole output grid, to complete the resampling process and 
achieve the final goal of the method.  

First of all, the MSE-VBS method described in Section II.E 
(or equivalently the SNR-VBS one of Section II.F with 𝛼𝛼 = 0) is 
considered as a solution to the resampling problem, so as to 
assess the closest possible implementation of the patterns. 
Evaluating the optimal MSE weights for every sample using (14) 
and (15) with 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) = 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑) (cf. (16)) leads to the 
93 patterns depicted in Fig. 12 in terms of power and phase error, 
i.e., after removal of the goal phase ramp of (14), (15) 
independently for each of the output samples. The similarity 
between the amplitude of the patterns in Fig. 12 and the sum 
pattern in Fig. 8 is clear, indicating an implementation close to 
the desired patterns. Within the main beam, the patterns show 
stable magnitudes and very low residual phase errors with 
respect to the desired phase center positions, indicating that 
successful regularization was achieved over the grid.  

Given the advantages of using the SNR-VBS method (cf. 
Section III.B), the implementation of the grid using (28) with 
𝛼𝛼 = 0.6 is also considered, both directly and with the addition of 
the iterative method explained in Section II.G. 

Fig. 12: Set of output patterns obtained from the optimal MSE method. (a) depicts 
pattern magnitude and (b) phase after removal of the sample-specific linear phase 
ramp (cf. (14) and (15)), highlighting residual phase errors with respect to ideal 
regular sampling. 𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are marked by red and black dashed 
lines, respectively, in both plots.  

The normalized MSE (with respect to 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀, the power of 
 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑑𝑑)) and the SNR scaling Φ𝑆𝑆𝑆𝑆𝑆𝑆�𝒘𝒘� of (30) over the output 
patterns are shown for the mentioned methods in Fig. 13.  The 
plots on the top refer to the MSE-VBS method of Section II.D. 
The ones in the middle were obtained with the SNR-VBS 
method of Section II.F, evaluated with 𝛼𝛼 = 0.6. The plots on the 

(a)                (b) 

(a)              (b) 
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bottom show the results for the iterative method of Section II.G, 
again using (28) with 𝛼𝛼 = 0.6. 

 

Fig. 13: Normalized MSE and Φ𝑆𝑆𝑆𝑆𝑆𝑆 over output patterns/samples for different 
methods: (a) shows results for the MSE-VBS, (b) for the non-iterative SNR-VBS 
and (c) for the iterative SNR-VBS LS regularization methods. For the last two 
methods, 𝛼𝛼 = 0.6 was adopted. 

A comparison of the results on the top and in the middle of  
Fig. 13 highlights once again the compromise between the MSE 
and the SNR as shown in Section III.B, embodied by the design 
parameter 𝛼𝛼. Introducing the iterative procedure ((b) vs. (c)) 
enhances, on average, both MSE and SNR, with a larger 
improvement for the worst cases, as was the goal. The ripple in 
Φ 𝑆𝑆𝑆𝑆𝑆𝑆 over the samples is also reduced, indicating that a more 
uniform performance was achieved. In all cases, the performance 
for the samples within the region of the blockage-induced gaps is 
clearly worse. This is expected and due to the larger phase center 
shift with respect to the input grid required to fill those gaps.  

As a final illustration of the method’s characteristics, the 
actual illumination of the reflector in each position 
corresponding to the received pulse is plotted in Fig. 14. The 
abscissa of the sub-plots corresponds to azimuth in meters, and 
each sub-plot consists of an illustration of the sampling 
configuration of a particular output sample (bottom) and the 
corresponding reflector surface illumination (top). In the top 
plots, the projection of the reflector surface and its illumination is 
represented for each of the 31 available pulses at the 
corresponding Rx positions over azimuth. At each pulse position, 
the physical channels are combined according to the weights of 

the MSE-SNR method with 𝛼𝛼 = 0.6, and the color coding 
indicates the resulting power levels. 

 

 

 

Fig. 14: Illustration of reflector illumination. (a) Output sample of index 61, a case 
in which the phase center shift is minor and no great contribution from 
neighboring pulses is observed. (b) Output sample of index 76, as an illustration 
of a case in which mainly two neighboring pulses are used to form the output 
pattern. (c) Output sample of index 88, which occurs during the second Tx-event 
induced gap, showing how several pulses are combined, which degrades the SNR.  

(a) 

(b) 
 

(c) 
 

(c) 

(b) 

(a) 
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Note that each output sample’s pattern is a result of the sum of 
the contributions of all pulses, even though the illumination is 
represented separately for each pulse. The vertical red dashed 
line indicates the desired output sample phase center position and 
the azimuth sampling as in Fig. 9 is represented below for 
reference. The figure contains three cases showing distinct 
behavior regarding the contribution of the neighboring pulses. 

IV. SIMULATION RESULTS 
The last section has addressed extensively the patterns of each 

sample in the regularly sampled output grid, to allow a better 
understanding of the introduced methods and of the 
compromises involved. In this section, focus is turned to the 
SAR performance achieved by them. Section IV.A continues the 
example described in Section III.A for a particular range, 
considering now the effect of the resampling on the simulated 
SAR data. Section IV.B in contrast introduces a new system 
design and analyses its SAR performance over the whole swath. 

A. Impulse Response Function (IRF) Analysis 
This subsection provides an Impulse Response (IR) analysis 

for the output of the VBS methods, with the parameters 
described in TABLE I.   

Fig. 15 shows the magnitude of the simulated azimuth raw 
data after resampling with the optimal MSE weights. Fig. 15 (a) 
depicts the channel’s magnitude in time domain plotted against 
instantaneous Doppler, and its shape shows an ensemble of the 
patterns seen in Fig. 12. The simulation is noise-free, yet the 
sidelobe regions appear to be noisy, an effect which is caused by 
the fast residual variation of the patterns between samples, being 
more pronounced in this region. This variation is more clearly 
visualized in Fig. 15 (b), where three cycles of the output grid are 
seen, starting from the center of the regularized channel. The 
abscissas represent sample indices, to emphasize the 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜  =  93 
sample periodicity of the residual modulation. 

Fig. 15: Magnitude of raw data after resampling with the optimal MSE weights. 
(a) shows the whole resampled channel in time domain against instantaneous 
Doppler frequency (solid blue line) and the reference pattern (dashed red line);  
(b) a zoom over three cycles of 93 samples each, starting from the center of the 
regularized channel, to highlight the residual modulation of the resampled signal. 
The relevant frequency regions 𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are marked by red and 
black dashed lines, respectively, in the left plot. 

The sample indices are those of the resampled channel’s time 
axis, sampled at 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 7609 Hz. In Fig. 15 (a), the 

instantaneous Doppler frequency of the target is calculated from 
the geometry for each of the corresponding time instants. The 
zoom (with respect to the ordinates) is taken starting from zero 
Doppler, a region where this effect is seen to be small, as is the 
case over the main beam and in particular over the processed 
bandwidth, of greater importance to the final focused signal 
quality. The relevance of the effect in the sidelobe region and 
especially outside the multichannel PRF area is reduced by the 
low gain levels of this part of the signal, which contributes 
mostly to residual azimuth ambiguities. 

The focused impulse responses of the data regularized by the 
MSE-VBS and non-iterative SNR-VBS methods are plotted in  
Fig. 16, versus the instantaneous Doppler frequency. The IR for 
the iterative SNR-VBS is not shown due to its similarity to the 
other plots.  

Fig. 16: Impulse responses of regularized data (red) and alias-free reference 
regularly sampled at 𝑃𝑃𝑃𝑃𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (black), for the MSE-VBS method (a) and (non-
iterative) SNR-VBS method (b). 

Several azimuth ambiguities are seen in the impulse responses of 
the regularized data. Their peak levels are nonetheless very low, 
indicating successful application of the methods for resampling. 
The ambiguities occur at multiples of 𝑃𝑃𝑃𝑃𝑃𝑃������𝑒𝑒𝑒𝑒𝑒𝑒 / 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 , as a result 
of residual regularization errors. It should be noted that 𝑃𝑃𝑃𝑃𝑃𝑃������𝑒𝑒𝑒𝑒𝑒𝑒 / 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  = 1 / 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃  is the rate at which the PRI sequence repeats 
itself, and that the residual deviations between the achieved 
patterns and the ideal 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑑𝑑 , 𝑘𝑘) lead to a periodical 
modulation of the samples in the output channel at this rate. 

Figures of merit for the regularizations’ output patterns and 
the impulse responses are summarized in TABLE II. There, 
𝛿𝛿𝐴𝐴𝐴𝐴 is the 3-dB azimuth resolution, 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and AASR describe 
respectively peak and total azimuth ambiguity levels, while 𝑀𝑀𝑀𝑀𝑀𝑀������ 
and Φ𝑆𝑆𝑆𝑆𝑆𝑆�������  are averages (taken in linear units and then converted 
to dB) of the quantities in Fig. 13. The estimation of the AASR 
in staggered SAR is addressed in [25] in detail. 

The resolution goal of 3.0 m is achieved and acceptably low 
AASR levels are obtained for all methods. Furthermore, the 
proposed joint optimization (SNR-VBS) is seen to allow a 
considerable gain in SNR at the expense of an acceptably small 
loss in MSE and AASR levels. Since the design goal of (18) is to 
enforce regularity, the MSE and AASR levels are directly linked 
and the MSE-SNR compromise translates into an AASR-SNR 
one. It should, however, be noted that 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑑𝑑) also affects 
the final MSE levels, and the change in this parameter between 

(a)                      (b) 

(a)                (b) 
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the two last methods (non-iterative and iterative SNR-VBS) is 
the reason why the iterative method achieved a slightly worse 
AASR despite better 𝑀𝑀𝑀𝑀𝑀𝑀������. 

TABLE II 
COMPARISON BETWEEN LS METHODS IN TERMS OF  

ACHIEVED PATTERN AND IMPULSE RESPONSE FIGURES OF MERIT  

FIGURE OF 
MERIT 

SYMBOL [UNIT] 

METHOD 

MSE-VBS 
(𝛼𝛼 = 0.0) 

SNR-VBS           
(𝛼𝛼 = 0.6) 

ITERATIVE SNR-VBS 
( 𝛼𝛼 = 0.6) 

𝛿𝛿𝐴𝐴𝐴𝐴 [m] 2.4 2.4 2.4 
𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 [dB] -55.3 -53.1 -53.3 

AASR [dB] -40.2 -37.3 -36.85 
𝑀𝑀𝑀𝑀𝑀𝑀������ [dB] -28.9 -25.4 -27.6 
Φ𝑆𝑆𝑆𝑆𝑆𝑆�������  [dB] -1.9 1.4 2.2 

As a reference, Φ 𝑆𝑆𝑆𝑆𝑆𝑆 for a frequency-adaptive MVDR beam 
[8] yields 3.2 dB for regular sampling. This technique requires 
Doppler-dependent weights and cannot directly be implemented 
without a regularly sampled input, but may be employed as an 
SNR upper bound. The proximity of the levels indicates that the 
performance achieved by means of the joint optimization is also 
satisfactory with regard to noise rejection, as intended. 

B. Performance Simulation over Swath 
Sections III and IV.A have provided an analysis of the 

synthesis of a single pattern and then of all the required patterns 
over the output grid, taking into account the sampling conditions 
imposed by a particular range. The goal of this section is in 
contrast to provide first-order designs for a fully polarimetric 
HRWS system in L-band and assess the achievable performance 
over a whole swath. For this, a reflector antenna system operated 
in a very fine 2.0 m resolution mode is considered, with a swath 
width of 400 km, enough to provide global coverage in 7 days. 
Note that this system is different from the one presented in 
TABLE I and presents more challenging HRWS requirements. 

In order to image the swath in quad-pol, the pulses with H and 
V polarization are interleaved on transmission and received 
simultaneously, and the sequence design follows the approach of 
[15], meaning the design is performed for a reference single-pol 
case with half of the mean PRI and then each PRI in the 
sequence is repeated twice for the interleaved dual-pol 
transmission sequence.  

The interleaved polarization transmission has two noteworthy 
effects. First, with regard to the azimuth sampling, the spacing of 
the V (assumed to be the first polarization in the sequence) and 
the H transmitted pulses differs (namely by Δ between 
corresponding pulses), making the azimuth performance – 
notably the AASR levels – dependent on the transmit 
polarization. Second, the signal is affected by both co-pol (even 
order) and cross-pol (odd order) range ambiguous returns, with a 
spacing corresponding to 2 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃, which degrades the range 
ambiguity performance in comparison to an equivalent single-

 
 

5 The low AASR levels indicate even a higher azimuth bandwidth could be 
processed, leading to a better resolution. 

pol case operated at the same 𝑃𝑃𝑃𝑃𝑃𝑃, making the quad-pol 
operation over wide swaths particularly challenging. The cross-
pol returns show closer proximity in comparison to the co-pol 
returns. This means that the former tend to dominate the range 
ambiguity-to-signal ratio (RASR) performance, unless the 
backscatter levels in cross-pol are much lower than in co-pol and 
compensate for the differences in range. Considering the L-band 
backscatter model of [26], the proximity effect is indeed 
dominant, which leads the cross-pol range ambiguity levels to be 
the design driver.  

The design guideline is therefore to keep 𝑃𝑃𝑃𝑃𝑃𝑃 as low as 
possible to counter range ambiguities. The lower 𝑃𝑃𝑃𝑃𝑃𝑃 tends to 
degrade azimuth performance, but this is compensated in the 
antenna design. The antenna system and the mode’s operational 
characteristics are described in TABLE III. The most relevant 
design modification with impact on the azimuth performance in 
comparison to the system of TABLE I is the reduction of the 
channel spacing and the usage of a larger reflector.  

TABLE III 
QUAD-POL SIMULATION SCENARIO PARAMETERS 

Platform and swath parameters 

Quantity Symbol Value 

Orbit height ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 700 km 
Swath width on ground 𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 400 km 

Swath minimum/maximum look angle 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚/𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 22.0  / 42.8 deg 

Reflector and feed parameters 

Quantity Symbol Value 

Diameter 𝐷𝐷 18.0 m 
Focal length 𝐹𝐹 18.0 m 
Feed offset in elevation 𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂 12.0 m 
Center frequency 𝑓𝑓0 1.2575 GHz 
Number of channels in 
elevation/azimuth 𝑁𝑁𝑒𝑒𝑒𝑒/𝑁𝑁𝑎𝑎𝑎𝑎 65 / 6 

Channel spacing in elevation/azimuth 𝑑𝑑𝑒𝑒𝑒𝑒/𝑑𝑑𝑎𝑎𝑎𝑎 0.6 𝜆𝜆 / 0.8 𝜆𝜆 
Elevation tilt angle 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 34.3 deg 
Feed ohmic losses 𝐿𝐿Ω  2.0 dB 

Pulse and Tx/Rx hardware parameters 

Quantity Symbol Value 

Average PRF (both polarizations) 𝑃𝑃𝑃𝑃𝑃𝑃 2 x 1750 Hz 
Initial PRI 𝑃𝑃𝑃𝑃𝐼𝐼0 313 ms 
PRI sequence step (between pulses of 
same polarization) Δ -1.34 ms 

PRI sequence length 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃  2 x 41 
Pulse length 𝑇𝑇𝑃𝑃 22.9 ms 
Duty cycle 𝑇𝑇𝑑𝑑𝑑𝑑 2 x 4% 
Pulse (chirp) bandwidth 𝐵𝐵𝐵𝐵𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 85 MHz 
Peak transmit power of a Transmit-
Receive Module (TRM) 𝑃𝑃𝑇𝑇𝑇𝑇 25.0 W 

Average transmit power 𝑃𝑃�𝑇𝑇𝑇𝑇 780.0 W 
System noise temperature 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 649 K 

Transmitted polarizations - H, V 
(interleaved) 
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Processing parameters 

Quantity Symbol Value 

Goal azimuth resolution 𝛿𝛿𝑎𝑎𝑎𝑎 2 m 

Processed bandwidth 𝐵𝐵𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 3752 Hz 
Number of simultaneous elevation 
beams 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  6 

Elevation beamforming sidelobe 
constraint 𝜖𝜖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆    -40 dB 

Number of pulses in azimuth            
beamformer window 𝑁𝑁𝑝𝑝 81 

SNR emphasis parameter 𝛼𝛼 0.0 

The smaller spacing improves the steering capabilities of the 
feed array and increases the grating-lobe free steering region for 
the primary beam; whereas the larger reflector increases the 
maximum possible phase center shift (cf. Section II.C). As a 
consequence, the performance of the resampling (operated by 
illuminating different areas of the reflector) is improved and a 
reduction of the mean PRF without severely impairing the 
azimuth performance levels achieved in the previous 
configuration is made possible. Another advantage of the large 
reflector is the large aperture area, which boosts antenna gain 
and improves the SNR for the same transmitted power. In light 
of this fact, the MSE-VBS is chosen as azimuth beamformer, 
shifting the AASR-SNR compromise in favor of improved 
AASR. 

The DBF processing of the data starts over the elevation 
channels, with the goal of forming a high gain SCORE beam for 
each range. In practice, this assumption requires time-varying 
weighing of the channels to follow the echoes on ground and in 
the case of reflectors requires adaptive beamforming techniques, 
with knowledge of the antenna patterns, as e.g. the MVDR 
beamformer [8]. Furthermore, up to 6 simultaneous elevation 
beams are assumed. 

Even though elevation beamforming is not the focus of this 
paper, it should be noted that the choice of the technique is 
crucial for the performance in terms of the range ambiguities and 
the signal-to-noise ratio. To simultaneously achieve the 
demanding performance levels required, the technique of [23] is 
employed, meaning the weights are result of an optimization to 
maximize the gain in the direction of the signal of interest (as in 
the MVDR case) while simultaneously imposing a sidelobe level 
constraint over the region over which the range ambiguities 
arise, resulting in a broad minimum (40 dB below the beam 
maximum) over a grid of elevation angles. This elevation 
beamforming technique is explained in [24] in more detail. At 
each range, 11 of the 65 elevation elements are combined to 
form the SCORE beams. For the RASR calculations, the model 
of range ambiguities for staggered SAR discussed in [25] and the 
L-band backscatter model of [26] are employed.         

Alongside the AASR and RASR, a key performance 
parameter for the mode is the noise equivalent sigma zero 
(NESZ). Estimation of the NESZ for multichannel systems takes 
into account the geometry, antenna patterns and RF hardware 

parameters, but also requires some special considerations [28]. 
The estimation results shown here are based on a single-channel 
system with the sum pattern (16) and the multichannel PRF, 
augmented by the SNR scaling factor calculated as an average 
over the output grid, as in (30). 

The performance in terms of the aforementioned parameters is 
depicted over the swath in Fig. 17. The 2.0 m resolution goal is 
achieved over the 400 km swath with an AASR better than -30.2 
dB and a RASR better than -26.4 dB. The local AASR 
fluctuations in Fig. 17 (a) are related to the range-dependent 
changes in the azimuth sampling due to the different positions of 
the Tx-induced gaps. The local minima correspond to ranges in 
which no pulses are lost, whereas the performance is worst for 
positions in which the gaps are larger.  

Fig. 17: Key performance parameters over a 400 km swath for a quad-pol mode 
with a reflector SAR system. (a) shows the AASR, (b) the RASR, (c) the NESZ 
and (d) the azimuth resolution. Different polarizations are highlighted in the 
pictures in different colors. 

The NESZ, better than -26.0 dB, shows a system with very 
good sensitivity in spite of the selected azimuth beamforming 
method (the MSE-VBS solution, not particularly aimed at 
preserving or enhancing the SNR) and the moderate average 
transmit power, owing to the large reflector’s gain. 

V. REVIEW AND FINAL REMARKS 
This paper introduced novel methods to combine the usage of 

staggered SAR and multichannel system architectures in 
azimuth, enabling new imaging modes with added flexibility. 
The digital beamforming procedures discussed transform the 
multichannel periodically non-uniformly sampled input signal 
into an equivalent single-channel signal sampled regularly at a 
higher rate, using antenna beamforming concepts and a “virtual” 
array manifold, extended by the combination of information not 
only from different Rx channels but also from additional pulses. 
This allows exploiting the channel diversity to increase the 

(a)                (b) 

(c)                (d) 
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azimuth resolution while still benefiting from wide gapless range 
swaths, provided by the staggered PRI operation with multiple 
simultaneous elevation beams.  

It was shown that the new mode and its associated processing 
enables promising HRWS performance scenarios both for single 
and multiple polarizations for reflector antenna architectures.  

The use of additional channels adds costs and complexity to 
the resulting systems, and the resulting data rate is identified as a 
critical point with current technology. As the beamforming uses 
manifold information, proper calibration of the systems is also an 
underlying assumption. Further work on the topic thus includes 
the impact of residual pattern uncertainties and the incorporation 
of data reduction techniques to the framework. An analysis of the 
use of the VBS techniques for HRWS systems with a planar 
phased array antenna will be the subject of a follow-on 
publication. 
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