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Deep Covariance Alignment for Domain Adaptive
Remote Sensing Image Segmentation

Linshan Wu, Ming Lu, and Leyuan Fang, Senior Member, IEEE

Abstract—Unsupervised domain adaptive (UDA) image seg-
mentation has recently gained increasing attention, aiming to
improve the generalization capability for transferring knowledge
from the source domain to the target domain. However, in high
spatial resolution remote sensing image (RSI), the same category
from different domains (e.g., urban and rural) can appear to be
totally different with extremely inconsistent distributions, which
heavily limits the UDA accuracy. To address this problem, in
this paper, we propose a novel Deep Covariance Alignment
(DCA) model for UDA RSI segmentation. The DCA can ex-
plicitly align category features to learn shared domain-invariant
discriminative feature representations, which enhance the ability
of model generalization. Specifically, a Category Feature Pooling
(CFP) module is first employed to extract category features
by combining the coarse outputs and the deep features. Then,
we leverage a novel Covariance Regularization (CR) to enforce
the intra-category features to be closer and the inter-category
features to be further separate. Compared with the existing
category alignment methods, our CR aims to regularize the
correlation between different dimensions of the features, and
thus performs more robustly when dealing with the divergent
category features of imbalanced and inconsistent distributions.
Finally, we propose a stagewise procedure to train the DCA in
order to alleviate the error accumulation. Experiments on both
Rural-to-Urban and Urban-to-Rural scenarios of the LoveDA
dataset [1] demonstrate the superiority of our proposed DCA
over other state-of-the-art UDA segmentation methods. Code is
available at https://github.com/Luffy03/DCA.

Index Terms—Deep covariance alignment (DCA), remote sens-
ing image (RSI), semantic segmentation, unsupervised domain
adaptation (UDA).

I. INTRODUCTION

REMOTE sensing image (RSI) segmentation aims at as-
signing the corresponding pixel-wise land-cover type at

every image pixel, which plays an increasingly significant role
for many applications [2]–[5]. However, the large requirement
of labeled training samples and the diverse styles among
geographic areas (e.g., urban and rural) heavily limited the
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development of RSI segmentation. One common solution
for the lack and discrepancy of data is the unsupervised
domain adaptation (UDA), whose goal is to improve the
model generalizability from different domains. UDA aims to
adapt the models trained from the labeled source domain to
the unlabeled target domain, and thus alleviate the lack of
annotated training samples, which has been attracting much
attention in RSI segmentation task.

Recently, with the success of semantic segmentation meth-
ods [6]–[12] based on deep CNNs [13], [14], UDA segmen-
tation has been rapidly developed. In UDA segmentation, the
recent works can be generally divided into two groups, i.e.,
adversarial training (AT) methods [15]–[18] and self-training
(ST) methods [19]–[21]. The AT methods adopt a feature
extractor to capture domain-invariant features and perform a
discriminator to distinguish them. Tsai et.al [15] construct
a multi-level adversarial network (AdaptSeg) to effectively
perform output space domain adaptation at different feature
levels. Luo et.al [16] design a category-level adversarial
network (CLAN) to conduct a more delicate level domain
calibration. Wang et.al [17] proposed a fine-grained adversarial
learning framework (FADA) to align shared features. A trans-
ferable normalization (TransNorm) method in [18] was further
proposed to improve the transferability in UDA. However,
these methods are almost based on GAN [22] for adversarial
training, which is difficult to train.

In addition, the ST methods have been also widely utilized
in UDA segmentation task, which involves the model trained
in the source domain to generate pseudo labels for the target
domain and finally finetunes the model. Typically, Lian et.al
[19] proposed PyCDA to construct self-motivated pyramid
curriculums for UDA. Zou et.al [20] further proposed a class-
balanced self-training (CBST) strategy to avoid the gradual
dominance of large classes in pseudo-label generation, and
introduce spatial priors to refine the generated pseudo-labels.
An instance adaptive self-training (IAST) method is also
proposed in [21] to select balanced samples. The ST methods
always work in a coarse-to-fine manner, which are usually
trained with a stagewise mechanism.

The previous UDA methods have been also applied to
RSI segmentation task [23]–[27]. Most of them aim to pre-
form photometric alignment by generative adversarial network
(GAN) [22], which can be classified as AT methods. Despite
some promising results of these methods have been achieved,
actually, the advancements of these algorithms are limited
for several reasons. First, as in the RSIs, the manifestation
of the land-cover is always completely different. Particularly,
the same category from diverse areas, i.e., urban and rural,
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Fig. 1. The difference between urban and rural scenes in LoveDA dataset
[1]. (a) shows the discrepancy of categories between different domains, (b)
shows the imbalanced and inconsistent category distributions. The details can
be seen in [1].

can appear to be totally different in object scales and spectral
values. As shown in Fig. 1 (a), buildings and roads from urban
areas and rural areas are with extremely large discrepancy.
Second, the imbalanced and inconsistent category distributions
also pose a special challenge for the UDA RSI segmentation.
As shown in Fig. 1 (b), the urban and rural areas have greatly
different category distributions, which further increases the dif-
ficulty of model generalization in the UDA RSI segmentation
task.

To tackle these issues, one direction is to align category-
level features between two different domains. The works in
[28], [29] adopt category anchors computed on the source
domain to guide the alignment between the two domains,
which constrains the category centers with a simple Euclidean
distance. The problem of this design is that it does not consider
the relationship of inter-category features. Thus, triplet loss
is further utilized in [30] to regularize the distance between
inter-category features. Although the above category alignment
methods have produced some promising results, for UDA RSI
segmentation task, there are still some urgent issues. First,
for RSIs, the larger intra-category variance and the more
imbalanced category distributions between two domains will
heavily mislead the calculation of distance between different
category features. In addition, it is very difficult to learn
the decision boundary when adjusting the relative magnitude
of intra-category and inter-category simultaneously, which
always requires a complex handcrafted threshold setting.

To address the above issues, in this paper, we propose a
novel Deep Covariance Alignment (DCA) method for UDA
RSI segmentation. This model explicitly aligns category fea-
tures to learn shared domain-invariant discriminative knowl-
edge from the source domain to the target domain. First,
a Category Feature Pooling (CFP) module is employed to
extract category features by combining the coarse outputs
and the deep features. Then, we leverage a novel Covariance
Regularization (CR) to enforce the intra-category features to
be closer and the inter-category features to be further separate.
Compared with existing category alignment methods, our CR
aims to regularize the correlation between different dimensions
of the features, and thus perform more robustly when dealing
with the divergent category features of imbalanced and in-

consistent distributions. In addition, our CR can be trained
without any other complex handcrafted settings. Finally, in
order to alleviate the error accumulation, we propose a ST
based stagewise training mechanism for our proposed DCA.

The remainder of this paper is organized as follows: Section
II reviews the related works. Section III describes the details
of out proposed method. Section IV conducts the experiments
to verify the effectiveness of our proposed method and com-
parisons with other methods. Finally, we conclude this paper
and suggest some future works in Section V.

II. RELATED WORK

A. UDA RSI Segmentation

Recently, UDA RSI segmentation has achieved great
progress with several methods proposed [23]–[27]. Most of
these methods focus on preforming photometric alignment via
generative adversarial network (GAN) [22] to align the source
images and the target images in the image space, feature
space, and output space. Tasar et.al. [23] proposed color
mapping generative adversarial networks (ColorMapGANs)
to generate fake training images for fine-tuning the already
trained classifiers. Ji et.al. [24] further use GAN to align
multi-source RSIs. However, these AT based models are hard
to train, and they generally align distributions from different
domains, but do not actually obtain mappings between features
from different domains. Other approaches adopt the idea of ST
by generating pseudo-labels for samples in the target domain
and providing extra supervision to the classifier [31], [32]. For
example, Tong et.al. [31] proposed a ST based method for
UDA land-cover semantic segmentation, using a transferrable
deep model. However, error-prone pseudo-labels will easily
mislead the classifier and accumulate errors, which limit the
effectiveness of the ST methods.

Despite some promising results have been achieved, most
of these methods ignore the diverse styles among different
geographic areas. While for urban and rural areas, in par-
ticular, the manifestation of the land cover is completely
different in the class distributions, object scales, and pixel
spectra. In order to improve the model generalizability for
UDA RSI segmentation, Wang et.al. [1] originally created a
groundbreaking LoveDA dataset, which contains diverse urban
and rural RSIs. The dataset aims to promote the capacity
of model generalization between the urban domain and the
rural domain, which is seriously limited by the large category
features discrepancy and inconsistent category distributions.

B. Category Alignment methods in UDA

Although the fact that the domain gap can be minimized
by GAN based AT methods mentioned above, there is no
guarantee that features from different categories can be well
separated. Thus, the idea of category-level feature alignment
was also exploited in [16], [33] for UDA segmentation. Other
approaches were proposed to match the local joint distributions
of features and categories [34], [35]. Category labels were fur-
ther introduced in [36] to enforce global semantic constraints
on the distribution of predicted labels. The ideas of minimizing
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the entropy (uncertainty) of the output [37] have also been
exploited to implicitly enforce category-level alignment.

In contrast to the implicit feature alignment in the afore-
mentioned methods, some works [28]–[30] propose to directly
aligns category-wise features in both domains based on a
category anchor-guided method, which have achieved more
competitive performance. Among them, [28], [29] adopt cat-
egory anchors computed on the source domain to guide the
alignment between the two domains, which can be regarded as
a hard constraint on the category centers. The hard constraint
is a distance d between different category features f1 and f2,
which can be simply defined by a mean square error (MSE)
function as

d(f1, f2) =∥ f1 − f2 ∥ (1)

where ∥∥ represents a Euclidean distance. f1 and f2 represent
two features of the same category from two different domains,
respectively. This distance d is used to drive the intra-category
closer by a loss function Lmse:

Lmse(f1, f2) =
1

N ∗N

N∑
i

d(f i
1, f

i
2) (2)

where N represents the total number of categories, f i
1 and f i

2

are the ith category feature from source domain and target
domain, respectively.

However, this strategy does not explicitly enlarge the mar-
gins between the different category features centers. Thus,
Ma et.al. [30] proposed a category-oriented triplet loss for
the source domain that imposes a soft constraint to regularize
category centers, actively making inter-category distances in
a high-level feature space larger than intra-category distances
by a specified margin. The triplet loss Ltriplet is formulated
as follows:

Ltriplet(f1, f2)

=
1

N ×N

N∑
i

N∑
j

max(d(f i
1, f

i
2)
∣∣
i=j
− d(f i

1, f
i
2)
∣∣
i ̸=j

+ α, 0)

(3)
where α represents a prescribed margin. However, for different
categories with large discrepancy, the best margins for training
are also different, which requires a well-experienced hand-
crafted setting. Thus, work in [30] only applies the Ltriplet to
the source domain images, which have reliable category labels
to supervise.

III. PROPOSED DCA METHOD

In this section, we introduce the architecture of our proposed
DCA and the detailed training process. First, we introduce the
category feature pooling (CFP) module to extract the category
features. Then, we describe the formulation and motivations
of our proposed Covariance Regularization (CR), and its
application to align intra-domain and cross-domain features.
Finally, we introduce how to train our proposed DCA.

A. Category Feature Pooling (CFP) module

Specifically, we employ Deeplab v2 [38] as the base seg-
mentation model, where ResNet50 [13] is used as the encoder

Fig. 2. The framework of the Category Features Pooling (CFP) module.

Enc. According to [28], pixels in the same category cluster in
the feature space, where the centroids of the features of each
category can represent the category feature distributions. Thus,
we propose the CFP module to extract the category features
from the input image X by combining the coarse outputs and
the deep features. As shown in Fig. 2, we first extract the
deep features Enc(X) ∈ RC×H×W and the coarse output
Y

′ ∈ RN×H×W from a given input image X , where C and N
indicates the number of channels and the number of categories,
H and W represent the height and width. Afterwards, the
category features f ∈ RN×C is calculated as:

f = δ(f1, f2) (4)

where

δ(f1, f2) =
1

H ×W

H×w∑
k

Y
′

k × Enc(X) (5)

Likewise, the category features f extracted by CFP are also
used as the category centroids of the features of each category
as a representative of the feature distribution. However, it is
worth noting that different from the methods in [28]–[30], our
f are calculated in only one batch of images instead of all the
images in the domain, which produces enormous time savings
and an enhancement of efficiency. Also, we do not use the
labels Y to rectify the category features f as in [28]–[30],
since the coarse outputs Y

′
have been already supervised by

the reliable labels Y .

B. Covariance Regularization (CR)

1) Motivations of CR: To align the category features,
we hope that the intra-category features can be closer and
the inter-category features can be further apart. Given two
category features f1 and f2 extracted by CFP module, we
propose a Covariance Regularization (CR) method to align
the features, which is defined as:

Corr(f1, f2) =
E[(f1 − µf1)(f2 − µf2)]

σf1σf2

(6)

where σf1 and σf2 are the average values of f1 and f2, µf1

and µf2 represent the variance of f1 and f2, respectively. E
represents the Expectation function. Corr(f1, f2) builds a N×
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Fig. 3. An explainable experiment for the proposed Covariance Regularization (CR). (a) is the comparison between our proposed Covariance matrix and the
Euclidean distance used in [28]–[30]. (b) further shows the discrepancy of category features from different domain, which is represented by our proposed
Covariance matrix. It is worth noting that, the shared source-only pretrained network is used in both (a) and (b). The Ground-Truth Rectify is not used in the
actual training as described in Section III A.

N Covariance matrix to represent the relationship between
different category features. Corr(f1, f2) is also known as the
linear correlation coefficient in the field of mathematics, which
is a Mahalanobis distance, instead of the Euclidean distance
using in the aforementioned methods [28]–[30].

To further illustrate our motivations of CR, we conduct
an explainable experiment for the proposed CR as shown
in Fig. 3. In Fig. 3(a), we divide two groups of images
from source domain and input them through a source-only
pretrained network. Then the category features comparisons
are conducted for the f1 and f2 extracted by the CFP modules.
It can be seen in Fig. 3(a) that, compared with the Euclidean
distance using in [28]–[30], our proposed CR can represent the
relationship between different category features much more
explicitly. In addition, as shown in Fig. 3(b), we input the
source images and the target images into the network to
calculate the covariance matrix. We can see in Fig. 3(b) that the
discrepancy between the source domain and the target domain
can be clearly represented by the covariance matrix. With a
covariance matrix, we hope the diagonal elements close to
1 and the off-diagonal elements less than 0, thus the CR is
formulated as:

LCR(f1, f2) =
1

N ×N

N∑
i

N∑
j

log(Aij(Corr(f1, f2))) (7)

where

Aij(Corr) =

{
Corr i = j

max(1− Corr, ϵ) i ̸= j
(8)

where ϵ is a small value to avoid logarithm with zero.
We summarize the novelty of CR from three aspects.

First, as shown in Fig. 3, our proposed CR is more robust
when calculating the distance between category features. Since

the large intra-category variance in RSIs will mislead the
calculation of category features, Euclidean distance used in
[28]–[30] cannot represent the category distance distinctly. But
according to Eq. (6), our CR is normalized with the variance
σf , thus alleviate the impact of the intra-category variance.
In addition, with the extremely imbalanced and inconsistent
category distributions from two domains, the calculation of
Euclidean distance almost depends on the category that with
larger proportion, which cannot regularize the category fea-
tures effectively. However, as a kind of Mahalanobis distance,
our CR is also scale-invariant and not affected by dimensions,
which means the category with small proportion can also
impact the calculation of distance heavily. Thus, for RSIs
with larger intra-category variance and inconsistent category
distributions, our proposed CR can better align the category
features between two domains than the existing category
alignment methods.

Second, unlike the Euclidean distance that only depends
on the value difference, our CR concerns more about the
relationship between different dimensions of the vectors. With
high-dimension category features extracted, the existing meth-
ods [28]–[30] utilize the Euclidean distance to impose a hard
constraint to regularize the category features, but ignore the
relationship between different dimensions. Instead, our CR
encourages the model to extract linear-correlated or linear-
independent features. For example, for the same categories, the
CR enforces the same dimensions of features to be stimulated
in the model, while invariant dimensions of features are
stimulated for different categories. Thus, our CR can align
the category features from the dimension aspects, instead of
the unstably calculated value difference.

Finally, our proposed CR can adapt the UDA model more
effectively compared with the existing category alignment
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Fig. 4. Comparisons between our proposed CR and the existing category alignment methods.

methods. As shown in Fig. 4, our CR has outstanding ad-
vantages compared with the methods in [28]–[30]. First, the
MSE used in [28], [29] does not align different category
features.Although the Triplet proposed in [30] can regularize
different category features, it is very difficult to learn the
decision boundary when adjusting the relative magnitude of
intra-category and inter-category simultaneously, which al-
ways requires a complex handcrafted threshold setting accord-
ing to Eq. (3). However, our CR can not only align different
category features, but also save the step to set the threshold,
since the corvariance = 0 is a native threshold. With
corvariance > 0, the category features are linear-correlated,
while for corvariance ≤ 0 they are linear-independent or
negative-correlated. Thus, the corvariance = 0 is the best de-
cision boundary for aligning intra-category and inter-category
features, which does not require any other handcrafted settings.

2) Intra-domain CR and Cross-domain CR: Intra-domain
covariance regularization (ICR) and Cross-domain covariance
regularization (CCR). As shown in Fig. 5(a), for ICR, given
a batch of images, we first divide them into two groups
randomly, then we perform CR to regularize the two group
of category features. Inspired by [39], in ICR, we stop the
gradient for outputs to optimize the learning of deep repre-
sentations only, since the outputs are with reliable supervision
from labels. It is worth noting that ICR is only employed
in the source domain, since the coarse outputs in the source
domain are supervised by reliable labels, which are much more
accurate. The regularization loss LICR is denoted as:

LICR = LCR(f
1
s , f

2
s ) (9)

where f1
s and f2

s are the category features from different
groups in the source domain, respectively.

CCR is further employed to align the category features
between different domains. While in CCR, category features
from the source domain and outputs from both domains are
fixed, the category features captured from target images are
optimized only. Since the source domain are with more correct
supervision, we assign them as credible reference, we can align

the target features to the source features. Similarly, the LCCR

is defined as:
LCCR = LCR(fs, ft) (10)

where fs and ft are the category features from the source
domain and the target domain, respectively.

With the ICR and the CCR, we encourage the intra-category
features closer and the inter-category features further separate
in both of two domains, which adapts the proposed DCA
model more progressively.

Algorithm 1: Stagewise training the DCA model
Data: training dataset: (Xs, Ys, Xt), maximum stages:

K, maximum iterations I
Result: Model MK and (Y

′

s , Y
′

t )
1 while i ≤ I do
2 if k = 0 then
3 Pretraining: M0 ← (Xs, Ys);
4 ICR: LICR ← (Xs, Y

′

s ) according to Eq.(9);
5 end
6 for k ← 1 to K do
7 Generate Y p

t ← Mk−1;
8 ICR: LICR ← (Xs, Y

′

s ) according to Eq.(9);
9 CCR: LCCR ← (Xs, Y

′

s , Xt, Y
′

t ) according to
Eq.(10);

10 Training Mk on (Xs, Ys, Xt, Y
p
t , LICR, LCCR)

according to Eq.(14)
11 end
12 Mk−1 ← Mk

13 end

C. Training of DCA

Similar to the aforementioned ST methods, we train the
DCA model with a stagewise procedure. The training pro-
cedure is proposed to avoid the accumulation of error-prone
pseudo-labels generated in ST, which will produce incorrect
supervision signals, leading to more erroneous pseudo-labels
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Fig. 5. The architectures of the proposed (a) ICR and (b) CCR.

iteratively and trap the network to a local minimum with poor
performance eventually. The procedure is shown in Algorithm
1. First, we pretrain the segmentation model [38] on the source
domain. A standard cross-entropy loss function CE(Y

′
, Y ) is

used to supervise as:

Ls
CE = CE(Y

′

s , Ys) (11)

where

CE(Y
′
, Y )

= − 1

H ×W

H×W∑
k

N∑
i

[Ykilog(Y
′

ki) + (1− Yki)log(1− Y
′

ki)]

(12)
Meanwhile, the ICR is used to align the category features

in the source domain. At the beginning of each stage, we
generate or update the pseudo labels Y p

t to supervise the target
predictions Y

′

t as:

Lt
CE = CE(Y

′

t , Y
p
t ) (13)

Next, we trained the DCA with Ls
CE , Lt

CE and the proposed
LICR and LCCR for several stages:

L = Ls
CE + Lt

CE + LICR + LCCR (14)

IV. RESULTS OF EXPERIMENTS

To verify the effectiveness of our proposed method, we
conducted extensive experiments on the advanced UDA RSI
segmentation dataset LoveDA [1]. In this section, we first
introduce the dataset and the implementation details. Then,
we perform detailed extensive ablation experiments on the
dataset. Finally, we report our results on both Rural-to-Urban
and Urban-to-Rural scenarios, including the visual results from
different methods.

A. Datasets

The LoveDA dataset contains 5987 high-spatial-resolution
images (1024 × 1024 pixels) from three different cities.

Compared to the existing datasets, the LoveDA dataset en-
compasses two domains (urban and rural), which focuses
on improving the generalization capability of model from
different urban and rural scenes. For Rural-to-Urban task, there
are 1366 source images (rural) and 677 target images (urban)
for training, and 820 target images (urban) for testing. As
for Urban-to-Rural task, 1156 source images (urban) and 992
target images (rural) are used for training, while 976 target
images (rural) for testing. The detailed data splits are described
in [1].

B. Experimental Settings
1) Experimental Environment : All experiments were pro-

cessed on a server computer with an NVIDIA A100 GPU.
The implementation of the framework was based on the open-
source toolbox Pytorch. Each experiment is conducted for five
times and the average results are reported.

2) Implementation Details: We use the intersection over
union (IoU) to report the semantic segmentation accuracy.
With respect to the IoU for each class, the mIoU represents
the mean of the IoUs over all the categories.

All the methods adopt the same feature extractor and
discriminator, Specifically, DeepLabV2 [38] with ResNet50
[13] was utilized as the extractor, and the discriminator was
constructed by fully convolutional layers [15]. The backbones
used in all the networks were pre-trained on ImageNet [41].
According to the experiments in [1], during the training, we
used the Stochastic Gradient Descent (SGD) optimizer with a
momentum of 0.9 and a weight decay of 0.0005. The learning
rate was initially set to 0.01, and a poly schedule with power
0.9 was applied. For the data augmentation, 512×512 patches
were randomly cropped from the raw images (1024 × 1024
pixels) for training, with random mirroring and rotation. While
in the testing part, we perform slide-predictions for the raw
images, in order to alleviate the resolution’s impact on the
segmentation results. In the stagewise training Algorithm 1, the
maximum stages K was set to 5 and the maximum iterations
I was set to 10000 for both two experiments.
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TABLE I
PERFORMANCE COMPARISONS WITH BASELINE METHODS AND CATEGORY ALIGNMENT METHODS

Domain Method IoU (%) mIoU (%)
Background Building Road Water Barren Forest Agriculture

Source-only 42.45 26.76 25.08 70.63 12.98 17.97 26.83 31.86
Baseline 39.76 43.78 33.91 69.65 8.69 41.71 22.67 37.17

Rural-To-Urban +MSE [28] 44.79 42.12 34.97 79.97 16.06 31.44 36.59 40.85
+Triplet [30] 40.69 43.78 37.09 80.76 16.27 20.78 32.85 38.89

DCA 45.82 49.60 51.65 80.88 16.70 42.93 36.92 46.36
Source-only 25.27 44.01 22.64 54.30 6.97 31.00 39.93 32.02

Baseline 26.72 45.87 25.71 58.46 7.36 38.73 45.82 35.52
Urban-To-Rural +MSE [28] 26.49 46.28 34.19 60.45 1.15 38.03 54.65 37.60

+Triplet [30] 27.65 45.12 25.03 58.68 11.22 37.93 50.62 36.61
DCA 36.38 55.89 40.46 62.03 22.01 38.92 60.52 45.17

1 Note: +MSE and +Triplet means employ MSE based alignment [28] and Triplet based alignment [30] with the Baseline, respectively.
And Baseline is the common ST strategy described in Section IV.C(1).

Fig. 6. A contrastive analysis of the proposed DCA and the baseline method on the Rural-to-Urban experiment. (a) is a source image from rural domain, (b)
is a target image from urban domain. (c) and (d) are the segmentation results of the baseline method and our DCA method, respectively. We then map the
high-dimension features of (c) and (d) to a 2D space with t-SNE [40], shown in (e) and (f).

C. Ablation Study for DCA

1) Comparisons with Category Alignment methods: To
validate the efficiency of our DCA, we first compare our DCA
method with the source-only method and the baseline method.
Here, we define the baseline method as using the common
ST strategy, which simply pretrained the model in the source
domain and generated the pseudo labels to supervise the target
images according to Eq. (13) directly without any other prior.
Next, we further conducted a fair comparison between the
proposed CR and other category alignment methods, i.e., MSE
based alignment in [28], Triplet based alignment in [30]. As
for Triplet alignment method, we tried several times to find
the best α according to Eq. (3) and finally set to 0.5. The
detailed results are shown in Table I.

As shown in Table I, the ST baseline can promote the
generalization of source-only pretrained model by a large
margin. In addition, the MSE alignment method brings im-
provements in mIoU, which illustrates the effectiveness of
category alignment methods. However, the Triplet alignment
method is not effective to enhance the accuracy. The reason
may be that the training of triplet is complex and not available
for UDA RSI segmentation. In addition, our proposed DCA
can achieve a remarkable improvement compared with other
methods. In Rural-to-Urban experiment, our DCA yields a
9.19% improvement in mIoU and 9.65% improvement in
mIoU for Urban-to-Rural experiment, which outperforms the
other methods with a large margin. This demonstrates that our
approach can greatly improve the generalization capability of
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model by aligning category features.
2) Visualization Results of Category Features Distributions:

To further illustrate the novelty of our proposed DCA, we
visualize the deep category features distributions in latent
space. To this end, given a source image and a target image
with large domain discrepancy, we map their high-dimensional
deep features to a 2D space with t-SNE [40], as shown in
Fig. 6. We focus on the feature distributions between different
categories from two domains. As shown in Fig. 6(e), for
the baseline method, the learned features of buildings, roads,
forests are separate due to the domain shift. It can be seen that
without CR alignment, the baseline method cannot explicitly
learn the shared representations of the same categories from
different domains. Instead, we can observe in Fig. 6(f) that our
proposed DCA can drive the intra-category features closer and
inter-category features further apart, which build more accurate
UDA segmentation results shown in Fig. 6(d).

3) Comparisons with UDA Segmentation methods: The
LoveDA dataset contains two scenarios: Rural-to-Urban and
Urban-to-Rural. We carry out experiments for the both sce-
narios on the LoveDA dataset [1] to evaluate the effectiveness
of our DCA compared with other state-of-the-art UDA seg-
mentation methods, as shown in Tables II and III.

It can be seen in Table II, in the Rural-to-Urban experi-
ments, the DCA achieves the highest mIoU of 46.36%, which
outperforms the state-of-the-art method CBST by 5.04%.
Specifically, the DCA brings a great improvement of the IoU
of buildings, roads and forests. However, for background and
barren, the IoUs do not improve obviously. The reason may
be that the features of these two categories are too complex
to align. For the Urban-to-Rural experiments shown in Table
III, DCA also achieves a mIoU of 45.17% with a large
gap compared with other methods. The improvements are
mainly from buildings and roads, which means our DCA can
effectively extract the shared features of these categories from
the rural domain to urban domain. The results demonstrate the
efficiency of our proposed DCA method.

4) Visualization Results: The qualitative results are shown
in Figs. 7 and 8. Since we do not have the corresponding
Ground Truth on the Test dataset, we also display the results
on the Val dataset in Fig. 7 in order to compare with the
Ground-Truths. Fig. 8 shows the visualization results on the
Test dataset.

It can be seen that our DCA can produce better UDA seg-
mentation predictions than the source-only method and CBST
[20]. Specifically, in Rural-to-Urban experiments, our DCA
predicts more complete constructions for the buildings and
roads. As in the Urban-to-Rural experiments, the segmentation
results of agriculture are more accurate. The visualization
results can also demonstrate the effectiveness of our proposed
framework.

V. CONCLUSION

In this paper, we presented a novel Deep Covariance Align-
ment (DCA) framework for unsupervised domain adaptive
remote sensing image segmentation. Our proposed DCA used
a novel Covariance Regularization (CR) to enforce the intra-
category features to be closer and the inter-category features

to be further separate, and thus explicitly extracted shared
domain-invariant discriminative feature representations to en-
hance the ability of model generalization. Extensive experi-
ments on the LoveDA dataset demonstrated the effectiveness
and efficiency of the proposed DCA compared with other state-
of-the-art methods.

In the future, we will explore the development of the quan-
titative experiments to analyze the visualization and interpre-
tation of results performed by our DCA and compared to other
approaches. Moreover, we will investigate the proficiency of
the domain adaptive segmentation task in remote sensing
images and consider other alignment approaches to further
improve segmentation performance.
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