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Abstract—The min-entropy is a widely used metric to quantify
the randomness of generated random numbers, which measures
the difficulty of guessing the most likely output. It is difficult
to accurately estimate the min-entropy of a non-independent
and identically distributed (non-IID) source. Hence, NIST Spe-
cial Publication (SP) 800-90B adopts ten different min-entropy
estimators and then conservatively selects the minimum value
among ten min-entropy estimates. Among these estimators, the
longest repeated substring (LRS) estimator estimates the collision
entropy instead of the min-entropy by counting the number
of repeated substrings. Since the collision entropy is an upper
bound on the min-entropy, the LRS estimator inherently provides
overestimated outputs. In this paper, we propose two techniques to
estimate the min-entropy of a non-IID source accurately. The first
technique resolves the overestimation problem by translating the
collision entropy into the min-entropy. Next, we generalize the
LRS estimator by adopting the general Rényi entropy instead
of the collision entropy (i.e., Rényi entropy of order two). We
show that adopting a higher order can reduce the variance
of min-entropy estimates. By integrating these techniques, we
propose a generalized LRS estimator that effectively resolves
the overestimation problem and provides stable min-entropy
estimates. Theoretical analysis and empirical results support that
the proposed generalized LRS estimator improves the estimation
accuracy significantly, which makes it an appealing alternative
to the LRS estimator.

I. INTRODUCTION

Random numbers are essential for generating cryptographic

information such as secret keys, nonces, salt values, etc. The

security of cryptographic systems crucially relies on the ran-

domness of the generated random numbers [1]–[4]. Hence, it is

critical to quantify the randomness of the generated numbers

accurately. Among several ways to quantify randomness of

generated random numbers, entropies are widely used metrics

in standards such as AIS.31 [5], NIST Special Publication (SP)

800-22 [6], and NIST SP 800-90B [1].

There are several kinds of entropies such as Shannon

entropy, Rényi entropy, and min-entropy. Among them, the

min-entropy is a well-justified metric in cryptographic appli-

cations [1], [3] since the min-entropy measures the difficulty

of guessing the most likely output. Furthermore, the min-

entropy is a lower bound on the Shannon entropy and the

Rényi entropy, i.e., one of the most conservative metrics.
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For independent and identically distributed (IID) sources,

the min-entropy can be readily estimated by the empirical

estimator [1]. However, it is difficult to estimate the min-

entropy of non-IID sources accurately. Hence, NIST SP 800-

90B proposes ten different min-entropy estimators for non-

IID sources (see Table I). These estimators independently

perform their own estimations based on different statistics

of the examined non-IID sources. Then, NIST SP 800-90B

conservatively selects the minimum among these ten different

values as the final estimate of min-entropy.

Among the ten min-entropy estimators, the longest repeated

substring (LRS) estimator estimates the collision entropy (the

Rényi entropy of order two) based on the number of repeated

substrings, i.e., collision counts [1]. Since the collision entropy

is an upper bound on the min-entropy, the LRS estimator

overestimates the min-entropy, which violates the conservative

estimation of NIST SP 800-90B. NIST SP 800-90B selects

the minimum among ten estimates as the final min-entropy

estimate; hence, the overestimated value by the LRS estimator

would typically not affect the final estimate, which could

undermine the justification to include the LRS estimator in

NIST SP 800-90B.

In this paper, we propose two techniques to amend the

LRS estimator for accurate min-entropy estimation. The first

technique resolves the overestimation problem by enabling

the estimation of the min-entropy instead of the collision

entropy. The proposed technique leverages the inequality of

[7, Theorem 6], which characterizes the relation between

the min-entropy and the Rényi entropy. For this technique,

we show that the proposed estimator is almost unbiased for

binary sources, which are the most common sources. Next,

we generalize the LRS estimator by parameterizing the order,

i.e., α of the Rényi entropy. By adopting a higher order α

than two of the collision entropy, the variance of min-entropy

estimates can be reduced, which leads to more stable estimates.

We analytically show that the variance of estimates decreases

with α, although the reduction of the variance diminishes as

α increases.

By integrating these two techniques, we propose a general-

ized LRS estimator that improves the estimation accuracy by

twofold: 1) the bias is reduced by resolving the overestimation

problem of the LRS estimator; 2) the variance of the min-

entropy estimates is reduced by adopting the higher order of

the Rényi entropy. Theoretical analysis and empirical results

support that the generalized LRS estimator significantly im-

proves the estimation accuracy of the LRS estimator, although

both the LRS estimator and the proposed estimator rely on

the same statistics, i.e., counts of repeated substrings. We
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TABLE I
CLASSIFICATION OF NIST SP 800-90B ESTIMATORS [1], [8]

Statistic-based estimator [2] Prediction-based estimator [3]

Most common value estimator MultiMCW prediction estimator

Collision estimator Lag prediction estimator

Markov estimator MultiMMC prediction estimator

Compression estimator LZ78Y prediction estimator

t-Tuple estimator

LRS estimator

believe that the generalized LRS estimator is an appealing

alternative to the LRS estimator of NIST SP 800-90B since

the generalized LRS estimator outputs a more accurate and

stable min-entropy estimate from the same statistics of a given

sequence.

The rest of this paper is organized as follows. Section II

briefly explains the several types of entropies and the LRS

estimator of NIST SP 800-90B. Section III presents the

improved LRS estimator that accurately estimates the min-

entropy. Section IV proposes the generalized LRS estimator

that enables more stable estimation. Section V provides nu-

merical results and Section VI concludes.

II. PRELIMINARIES: ENTROPIES AND LRS ESTIMATOR

A. Entropies and Power Sum

Suppose that the input sequence s = (s1, . . . , sL), where

si ∈ {x1, . . . , xk} is generated from a given source S. The

Shannon entropy is defined as

H(S) = H(p) = −
k∑

i=1

pi log2 pi, (1)

where p = (p1, . . . , pk) denotes the distribution of S.

The Rényi entropy of order α ∈ (0, 1) ∪ (1,∞) is defined

as

Hα(S) = Hα(p) =
1

1− α
log2

k∑

i=1

pαi . (2)

For α = 2, the Rényi entropy corresponds to the collision

entropy H2(S) as follows:

H2(S) = H2(p) = − log2

k∑

i=1

p2i . (3)

The min-entropy is defined as

H∞(S) = H∞(p) = − log2 θ, (4)

where

θ = max
i∈{1,...,k}

{pi}. (5)

Definition 1 (Power Sum): The power sum of order α (i.e.,

the αth moment) for a distribution p is defined as

Mα(p) =

k∑

i=1

pαi . (6)

Remark 2 (Collision Probability): The power sum of order

α = 2 (i.e., M2(p)) is equivalent to the collision probability,

Algorithm 1 LRS estimator of NIST 800-90B [1]

Input: Sequence s = (s1, . . . , sL) where si ∈ {x1, . . . , xk}.

Output: Collision entropy H2(S).

1: Find the smallest u such that the number of occurrences

of the most common u-tuple in s is less than 35.

2: Find the largest v such that the number of occurrences of

the most common v-tuple in s is at least 2. ⊲ Longest

repeated substring problem

3: for w ∈ {u, u+ 1, . . . , v} do

4: Estimate the estimated w-tuple collision probability:

Pw :=

∑
i

(
Ci

2

)
(
l
2

) , (9)

where Ci is the number of occurrences of the ith unique

w-tuple and l is the total number of w-tuples.

5: Compute the collision probability per sample:

P̃w := P 1/w
w . (10)

6: end for

7: p̂c := max
{
P̃u, . . . , P̃v

}
.

8: p̃c := min

{
1, p̂c + 2.576

√
p̂c(1−p̂c)
L−1

}
.

9: H2(S) := − log2 p̃c.

which is the probability that two arbitrary source outputs are

equal.

Remark 3: The Rényi entropy of order α is Hα(p) =
1

1−α log2Mα(p).
Remark 4: The following relations are well known:

H(S) = lim
α→1

Hα(S), (7)

H∞(S) = lim
α→∞

Hα(S). (8)

Remark 5: The Rényi entropy is non-increasing in α [9].

Hence, ∀α,H∞(S) ≤ Hα(S), i.e., the min-entropy is a lower

bound on the Shannon entropy and the Rényi entropy.

B. LRS Estimator and Its Overestimation Problem

For non-IID sources, NIST SP 800-90B proposes ten dif-

ferent min-entropy estimators (see Table I). These estimators

independently perform their own estimations based on differ-

ent statistics calculated from the examined non-IID sources.

Among these ten estimators, the t-tuple estimator and the

LRS estimator compute entropies based on the frequency

of substrings (tuples) in the input sequence s. The t-tuple

estimator estimates the min-entropy based on the frequency

of some fixed-length repeated substrings. The LRS estimator

handles substring sizes that are too large for the t-tuple

estimator [1], [8].

Algorithm 1 describes the LRS estimator in NIST SP 800-

90B. Step 1 finds the smallest u such that the number of

occurrences of the most common u-tuple is less than 35. Step

2 solves the well-known longest repeated substring problem

and set v as its length. Then, the range of w becomes

{u, u + 1, . . . , v}. In contrast, the t-tuple estimator finds the

largest t such that the number of occurrences of the most
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common t-tuple is at least 35 and the range of w in that test

equals {1, . . . , t} where t < u. Note that the t-tuple estimator

and the LRS estimator calculate the entropies based on disjoint

substring lengths, where the LRS estimator handles the longer

substrings. Hence, the t-tuple estimator and the LRS estimator

are complementary.

The LRS estimator estimates collision entropy instead of

the min-entropy. Step 4 calculates the empirical collision

probability of length-w substrings. The LRS estimator of NIST

SP 800-90B uses overlapped tuples, i.e., l = L − w + 1 in

Step 4. For non-overlapped tuple counts, the total number of

w-tuples becomes l =
⌊
L
w

⌋
.

The collision probability estimation by (9) is a key step

of the LRS estimator, which was considered in [10], [11] for

testing whether a distribution is close to uniform. Note that

(9) is an unbiased estimator of the collision probability [12].

Step 5 computes the collision probability per sample (to

normalize the estimated entropy) and Step 7 conservatively

chooses the maximum (across w) collision probability (i.e.,

the minimum collision entropy). Step 8 ensures the confidence

level of 99 % under the Gaussian assumption. Although Step

7 and Step 8 follow the conservative approach of NIST SP

800-90B, the LRS estimator overestimates the min-entropy

since Step 9 estimates the collision entropy instead of the min-

entropy.

Fig. 1 shows the ramifications from the fact that the LRS

estimator estimates the collision entropy instead of the min-

entropy. The bias between the actual min-entropy and the

estimate by the LRS estimator is considerable except for

p = 0.5. The numerical results in [13, Table 2 and 3] also

confirm this overestimation problem for the first-order Markov

source and several pseudo-random data.

NIST SP 800-90B conservatively selects the minimum

among estimated values by ten estimators. Hence, an over-

estimated value by the LRS estimator would not affect the

final estimate. Since the LRS estimator computes based on

larger sizes of susbtrings than the t-tuple estimator, the LRS

estimator takes around ten times longer execution time than

the t-tuple estimator [8, Table V]. In spite of this considerable

execution time, the LRS estimator rarely affects the final min-

entropy estimate due to overestimation problem noted above.

III. MIN-ENTROPY ESTIMATION BY LRS ESTIMATOR

A. Min-entropy Estimation by LRS Estimator

In this section, we propose a method to resolve the overes-

timation problem of the LRS estimator. The proposed method

attempts to estimate the min-entropy instead of the collision

entropy by using the estimation values of the LRS estimator

and the following bound.

Lemma 6 ([7, Theorem 6]): Suppose that θ =
maxi∈{1,...,k}{pi}. Then, the following inequality holds:

Hα(S) ≤
1

1− α
log2

(
θα +

(1− θ)α

(k − 1)α−1

)
(11)
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Fig. 1. Comparison of min-entropy, collision entropy and estimated value
by LRS estimator for binary memoryless source (BMS) with parameter p.
While the LRS estimator has a small underestimation gap to the true collision
entropy (due to Step 8 in Algorithm 1), its overestimation gap (bias) to the
min-entropy is significant.

for α 6= 1. The bound is achieved with equality by the near-

uniform distribution pNU(θ) = (p1, . . . , pk) where

pi =

{
θ, if i = 1;
1−θ
k−1 , otherwise.

(12)

Without loss of generality, p1 ≥ . . . ≥ pk is assumed.

The bound (11) is the counterpart of Fano’s inequality,

which applies to the Shannon entropy.

Theorem 7: For the estimated collision probability p̂c by

Algorithm 1, the following inequality holds:

θ ≤
√
(k − 1)(pck − 1) + 1

k
, (13)

where pc = E(p̂c). Since the near-uniform distribution

achieves (11) with equality, (13) is the sharp upper bound.

Proof: For α > 1, (11) leads to

Mα(p) ≥ θα +
(1 − θ)α

(k − 1)α−1
. (14)

Since M2(p) is equivalent to the collision probability pc [12],

we can set pc ≥ θ2 + (1−θ)2
(k−1) . By (5), it is clear that θ ≥ 1

k .

Since θ2+ (1−θ)2
(k−1) is a non-decreasing function of θ for θ ≥ 1

k ,

(13) holds.

Based on Theorem 7, we estimate θ̂ as follows:

θ̂ =

√
(k − 1)(p̂ck − 1) + 1

k
, (15)

which is a conservative min-entropy estimation. It is because

an upper bound on θ leads to a lower bound on H∞(S), i.e.,

H∞(S) = − log2 θ ≥ − log2 θ̂ (16)

if p̂c = pc.

Algorithm 2 describes the proposed min-entropy estimator.

Algorithm 2 enables estimating the min-entropy instead of

the collision entropy by leveraging the LRS estimator. Step

1 of Algorithm 2 estimates the collision probability by using
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Algorithm 2 Proposed Estimator (Improved LRS Estimator)

Input: Sequence s = (s1, . . . , sL) where si ∈ {x1, . . . , xk}.

Output: Min-entropy H∞(S).

1: Estimate p̂c from s by Algorithm 1.

2: if p̂c >
1
k then

3: θ̂ :=

√
(k−1)(p̂ck−1)+1

k .

4: else

5: θ̂ := 1
k .

6: end if

7: θ̃ := min

(
1, θ̂ + 2.576

√
θ̂(1−θ̂)
L−1

)
.

8: H∞(S) := − log2 θ̃.

Algorithm 1. Theoretically, pc ≥ 1
k where the equality is

achieved by the uniform distribution. If p̂c <
1
k , then we know

that it results from estimation errors. Hence, in this case we set

p̂c =
1
k , which leads to θ̂ = 1

k . Step 7 ensures the confidence

level of 99 % as in Step 8 of Algorithm 1.

The proposed estimator attempts to estimate a lower bound

on the min-entropy whereas the LRS estimator estimates

an upper bound on the min-entropy (i.e., collision entropy).

The proposed estimator matches the conservative approach of

NIST SP 800-90B. It is worth mentioning that the collision

estimator and the compression estimator of NIST SP 800-

90B (Table I) also estimate lower bounds on the min-entropy

by using the near-uniform distribution as in the proposed

estimator. Hence, the proposed estimator is better aligned with

other estimators of NIST SP 800-90B than the LRS estimator.

Importantly, the proposed estimator is unbiased for binary

sources (i.e., it estimates the min-entropy itself instead of the

lower bound since any binary distributions are near-uniform).

In the next subsection, we further investigate the proposed

estimator’s bias properties.

B. Bias of Proposed Estimator

We investigate the biases of the conventional LRS estimator

and the proposed estimator. For the analysis, we neglect the

step for 99 % confidence interval. Hence, p̂c and θ̂ instead of

p̃c and θ̃ are considered in our analysis.

The bias of the LRS estimator is given by

bLRS(S) = E(− log2 p̂c)−H∞(S). (17)

Proposition 8: The LRS estimator is overestimating, i.e.,

bLRS(S) > 0.

Proof: We show that bLRS(S) > 0 as follows:

bLRS(S) = E(− log2 p̂c)−H∞(S)

> − log2 E(p̂c)−H∞(S) (18)

= H2(S)−H∞(S) (19)

≥ 0 (20)

where (18) follows from Jensen’s inequality. Since − logx is

strictly convex and p̂c is not constant for non-deterministic

sources (18) holds. Also, (20) follows from Remark 5. Hence,

bLRS(S) > 0.

As shown in Fig. 1, H2(S)−H∞(S) can be large for BMS

with p < 0.5. Hence, the LRS estimator suffers from the severe

overestimation problem.

The bias of the proposed estimator is given by

bproposed(S) = E(− log2 θ̂)−H∞(S) > log2
θ

E(θ̂)
, (21)

where log2
θ

E(θ̂)
≤ 0 since θ̂ is an estimate of the upper bound

on θ (see Theorem 7). If E(− log2 θ̂) ≃ − log2 E(θ̂), then the

proposed estimator would be an underestimated estimator.

Since NIST SP 800-90B conservatively estimates the min-

entropy, the proposed estimator is better aligned with NIST

SP 800-90B than the LRS estimator. Further, we will show

that the proposed estimator is unbiased for binary sources (see

Corollary 14 and Remark 15).

We characterize the bias bproposed(S) by the sharp1 lower and

upper bounds on θ for a given collision probability pc. The

sharp upper bound on θ is given in Theorem 7. We derive the

sharp lower bound on θ by using the inverted near-uniform

distribution. In [2], the inverted near-uniform distribution is

defined as pINU(ψ) = (p1, . . . , pk) where

pi =





ψ, if i ∈
{
1, . . . ,

⌊
1
ψ

⌋}
;

1−
⌊

1
ψ

⌋
ψ, if i =

⌊
1
ψ

⌋
+ 1;

0, otherwise.

(22)

Note that ψ = max{pINU(ψ)}.

Lemma 9: For 1
n+1 < ψ ≤ 1

n where n ∈ N, the following

relation holds: ⌊
1

ψ

⌋
=

⌊
1

M2(pINU(ψ))

⌋
= n. (23)

Proof: If ψ = 1
n , then

M2(pINU(ψ)) =
1

n
. (24)

Hence, (23) holds.

If 1
n+1 < ψ < 1

n , then M2(pINU(ψ)) is an increasing

function of ψ. It is because
dM2(pINU(ψ))

dψ = 2n(n + 1){ψ −
1

n+1} > 0. By (24), we obtain 1
n+1 < M2(pINU) <

1
n . Then,

(23) holds.

Remark 10: For an inverted near uniform distribution,

Lemma 9 shows that the collision entropy is close to the min-

entropy since ψ ≃ M2(pINU). If ψ = 1
n , then the collision

entropy is the same as the min-entropy.

Theorem 11: For any distribution p = (p1, . . . , pk) with

n =
⌊

1
pc

⌋
, the following inequalities hold:

ψ ≤ θ ≤ θ̂ (25)

where

ψ =

√
n {pc(n+ 1)− 1}+ n

n(n+ 1)
, (26)

θ̂ =

√
(k − 1)(pck − 1) + 1

k
. (27)

1The term “sharp bound” means that there exists a distribution that achieves
this bound with equality.
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Proof: Since θ̂ is derived in Theorem 7, we need to

derive only the sharp lower bound ψ. The lower bound ψ

is achieved with equality by the inverted near-uniform distri-

bution pINU(ψ) [2], [14]. Hence, we need to identify pINU(ψ)
satisfying M2(pINU(ψ)) = pc. Suppose that 1

n+1 < ψ ≤ 1
n

where n ∈ N (i.e.,
⌊

1
ψ

⌋
= n). By (22) and Lemma 9, we

obtain M2(pINU(ψ)) = nψ2 + (1 − nψ)2 = pc, which leads

to (26).

Remark 12: For a given collision probability pc, the sharp

lower and upper bounds on the min-entropy are given by

− log2 θ̂ ≤ H∞(p) ≤ − log2 ψ, (28)

where H∞(p) = − log2 θ.

We note that ψ depends only on pc because n =
⌊

1
pc

⌋
. On

the other hand, θ̂ depends on pc and k (alphabet size |S|). For

given pc and k, we define the estimation gap of θ as

g(pc, k) = θ̂ − ψ, (29)

which is the maximum possible bias. The following theorem

shows that the estimation gap increases with k.

Theorem 13: For non-deterministic sources, the estimation

gap g(pc, k) = θ̂ − ψ increases with k.

Proof: Since ψ does not depend on k, we show that θ̂(k)
is an increasing function of k. The derivative of θ̂(k) is given

by

dθ̂(k)

dk
=
pck + k − 2− 2

√
(k − 1)(pck − 1)

2k2
√
(k − 1)(pck − 1)

. (30)

We can set pc >
1
k because pc = 1

k means that p is the

uniform distribution, i.e., ψ = θ̂ = 1
k and H∞(p) = log2 k.

By the arithmetic-geometric mean inequality,

pck+k−2 = (pck−1)+(k−1) ≥ 2
√
(k − 1)(pck − 1). (31)

Hence,
dθ̂(k)
dk > 0 for pc < 1. Note that pc < 1 for non-

deterministic sources.

Corollary 14: For binary sources with k = 2, the estimation

gap is zero, i.e., g(pc, k = 2) = 0.

Proof: For binary sources, it is clear that θ ≥ 1
2 . For

θ = 1
2 , p corresponds to the binary uniform distribution, the

gap is zero. For θ > 1
2 , we can set n = 1 in (23) because

1
2 < ψ < 1. By setting n = 1 and k = 2, (26) and (27) are

identical, i.e., θ = ψ = θ̂ =
√
2pc−1+1

2 .

Remark 15 (Unbiasedness): The proposed estimator is un-

biased for binary sources. Since most random sources are

binary or can be represented by binary sequences, the proposed

estimator improves the accuracy of the LRS estimator.

Fig. 2(a) shows that the near-uniform distribution and the

inverted near-uniform distribution correspond to the upper and

lower bounds on θ, respectively. Also, it shows that ψ = θ̂

for k = 2, i.e., the proposed estimator is unbiased for binary

souces. Fig. 2(b) shows the relation between the collision en-

tropy and the min-entropy where the near-uniform distribution

and the inverted near-uniform distribution correspond to the

lower and upper bounds on the min-entropy.

We note that the final min-entropy estimation could not be

perfectly unbiased because of the two steps of the original LRS
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Fig. 2. The relation of (a) the collision probability pc and θ =
maxi∈{1,...,k} pi and (b) the collision entropy and the min-entropy for pNU

and pINU.

estimator. First, Step 7 of Algorithm 1 selects the maximum

collision probability among v−u+1 candidates, which lowers

the min-entropy estimates. Also, Step 8 of Algorithm 1 (or

Step 7 of Algorithm 2) reduces the min-entropy estimates to

ensure the confidence level of 99 %. These steps result from

the conservative approach of NIST SP 800-90B. These extra-

confidence steps are also included in the other estimators of

NIST SP 800-90B.

IV. GENERALIZED LRS ESTIMATOR

In this section, we propose a generalized LRS estimator by

using the power sum of order α ≥ 2 instead of the collision

probability (the power sum of order α = 2). We show that the

generalized LRS estimator reduces the variance of estimates

as the order α increases beyond 2.

A. Generalized LRS Estimator

The generalized LRS estimator is based on 1) the gener-

alized power sum Mα(p) and 2) the proposed technique in

Algorithm 2.
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Algorithm 3 Generalized LRS estimator

Input: Sequence s = (s1, ..., sL) and an integer α ≥ 2
Output: Min-entropy H∞(S).

1: Find the smallest u such that the number of occurrences

of the most common u-tuple in s is less than 35.

2: Find the largest v such that the number of occurrences of

the most common v-tuple in s is at least α.

3: for w ∈ {u, u+ 1, . . . , v} do

4: Estimate the w-tuple power sum of order α:

M̂α,w :=

∑
i

(
Ci

α

)
(
l
α

) , (32)

where Ci is the number of occurrences of the ith unique

w-tuple and l is the total number of w-tuples.

5: M̃α,w := M̂
1
w
α,w.

6: end for

7: M̃α := max{M̃α,u, . . . , M̃α,v}.

8: if M̃α >
1

kα−1 then

9: By the bisection method, solve the following equation

for θ̂ ∈
[
1
k , 1

]
:

M̃α = θ̂α +
(1 − θ̂)α

(k − 1)α−1
. (33)

10: else

11: θ̂ := 1
k .

12: end if

13: θ̃ := min

(
1, θ̂ + 2.576

√
θ̂(1−θ̂)
L−1

)
.

14: H∞(S) := − log2 θ̃.

The generalized LRS estimator is described in Algorithm 3.

First, it estimates the power sum Mα(p) for a given α by Steps

1–7. Step 2 of Algorithm 3 is modified to estimate Mα(p).
Step 4 estimates the w-tuple power sum of order α by counting

the α-wise collisions. Step 5 computes the power sum of order

α per sample (to normalize the estimated min-entropy) and

Step 7 conservatively chooses the maximum among estimated

power sums of α, which is denoted by M̃α.

The estimation M̂α(p) by (32) is a key step, which

generalizes (9) in Algorithm 1. The estimation by (32) is

unbiased [12], [15]. However, M̃α in Step 7 is an overestimate

of Mα(p), which leads to an underestimate of the min-

entropy. We maintain this conservative approach as in the LRS

estimator of Algorithm 1.

Afterward, we estimate θ̂ from M̃α in Steps 8–12. First,

we note that M̃α ≥ 1
kα−1 where the equality is achieved by

the uniform distribution. Hence, we set θ̂ = 1
k in Step 11

if M̃α <
1

kα−1 . If M̃α >
1

kα−1 , then θ̂ is estimated by (14),

which is the sharp upper bound on θ. Especially, θ̂ is unbiased

for binary sources k = 2 (see Corollary 14). Step 13 ensures

the confidence level of 99 % under the Gaussian assumption.

Finally, Step 14 estimates the min-entropy from θ̃.

The proposed Algorithm 3 improves the bias and reduces

the variance compared to the LRS estimator (Algorithm 1).

The bias is improved since Algorithm 3 estimates the min-

entropy whereas the LRS estimator estimates the collision

entropy as discussed in Section III-B. The variance can be

reduced by using the higher-order power sum instead of the

collision probability, which is supported by empirical results

in Section V. In the following subsection, we provide a

theoretical analysis of how the order α affects the variance

of estimation.

B. Variance of Generalized LRS Estimator

In this subsection, we attempt to characterize how the order

α affects the variance of θ̂ calculated by (33) in Algorithm 3.

Suppose that θ̂α and θ̂α+1 are the estimated θ̂ in Algorithm 3

by using M̃α and M̃α+1, respectively. We characterize the

relation between α and Var(θ̂) = E(θ̂2)− E
2(θ̂). We assume

that the length-w tuples counted in Algorithm 3 are non-

overlapping to simplify the analysis.

Theorem 16: For a uniformly distributed s = (s1, . . . , sL)
with a large L, the variance ratio’s dependence on α is as

follows:

ξ(α) =
Var(θ̂α+1)

Var(θ̂α)
≈

(
α

α+ 1

)4

, (34)

where ≈ hides multiplicative terms that tend to 1 as L goes

to infinity.

Proof: The proof is given in Appendix B.

Since ξ(α) < 1, Var(θ̂) decreases with α for high-entropy

sources. The reduction of Var(θ̂α) diminishes as α increases.

The range of w ∈ {u, . . . , v} is an important parameter that

affects the variance of θ̂. It is clear that

vα ≥ vα+1, u = uα = uα+1, (35)

where vα and vα+1 are calculated by Step 2 of Algorithm 3 for

α and α+1, respectively. Note that u in Algorithm 3 does not

depend on α. The proof of Theorem 16 relies on this relation

since the reduction of v leads to the reduction of Var(θ̂).

Theorem 16 characterizes Var(θ̂) by (33), i.e., for M̃α >
1

kα−1 . If M̃α < 1
kα−1 , then Step 11 sets θ̂ := 1

k . It is

because the power sum of order α cannot be lower than
1

kα−1 (attained by the uniform distribution). It is difficult to

analyze the probability of M̃α < 1
kα−1 due to Step 7 of

M̃α := max{M̃α,u, . . . , M̃α,v} in Algorithm 3.

Although Theorem 16 focuses on uniformly distributed

sources, the following section empirically supports that Var(θ̂)
decreases with α even for non-uniformly distributed sources.

V. NUMERICAL RESULTS

We evaluate our proposed estimators for simulated and

real-world data samples. The empirical results show that the

proposed estimator effectively reduces the bias problem of the

LRS estimator.

The following representative samples are considered as in

[3], [16]:

• Binary memoryless source (BMS): Samples are generated

by Bernoulli distribution with P (S = 1) = p and P (S =
0) = 1− p (IID);
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Fig. 3. (a) Estimated min-entropy and (b) the variance of min-entropy
estimates by the proposed generalized LRS estimator for the BMS sources
with p.

• Markov source: Samples are generated using the first-

order Markov model with P (Si+1 = 1|Si = 0) =
P (Si+1 = 0|Si = 1) = p (non-IID);

• Near-uniform distribution: Samples are generated by the

near-uniform distribution with k = 64 (see (12)) (IID);

• Inverted near-uniform distribution: Samples are gener-

ated by the inverted near-uniform distribution with k =
64 (see (22)) (IID).

For each of the above sources, one thousand simulated sources

were created in each of the above datasets. BMS source and

Markov source generate a sequence of L = 100, 000 bits. The

other sources generate a sequence of L = 10, 000 bits and

k = 64.

Fig. 3 compares the min-entropy estimators for BMS as

a function of p. The theoretical min-entropy and collision

entropy are given by H∞(S) = − log2 max{p, 1 − p} and

H2(S) = − log2{p2 + (1 − p)2}, respectively. As discussed

in Section II (viz. Fig. 1), the LRS estimator estimates the

collision entropy instead of the min-entropy. Since H∞(S) ≤
H2(S), the LRS estimator undesirably overestimates the min-

entropy. For p = 0.3, the bias of the LRS estimator is around
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Fig. 4. (a) Estimated min-entropy and (b) the variance of min-entropy by the
proposed generalized LRS estimator for the first-order Markov sources with
p = p(1|0) = p(0|1).

0.28.

The proposed estimator accurately estimates the min-

entropy as shown in Fig. 3(a). As p → 0.5 (i.e., uniformly

distributed sources), the higher α reduces Var(θ̂), which

supports Theorem 16. We note that the reduction of Var(θ̂)
diminishes as α increases as shown in Fig. 3(b).

We observe in Fig. 3(a) that the higher α slightly improves

the bias as p → 0.5. It is surprising because (32) is unbiased

estimator for any α. The bias improvement results from Step

11 of Algorithm 3. Since the power sum of order α cannot be

lower than 1
2α−1 for binary sources (i.e., k = 2), we set θ̂ = 1

2

for M̃α < 1
2α−1 , which leads to H∞(S) = 1. For a BMS

source with p = 1
2 , the estimated min entropy would be 1 (for

M̃α ≤ 1
2α−1 ) or lower than 1 (for M̃α > 1

2α−1 ). Hence, the

increase of α can simultaneously reduce Var(θ̂) and improve

the bias for high-entropy sources.

It is worth mentioning that because of the finite sample size

L, the higher order α reduces the number of valid Ci due to the

requirement of Ci ≥ α in (32). Then, (32) could underestimate

the power sum of α. Given the sample size L, an α value

should be picked so as to satisfy Ci ≥ α for values of w as
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Fig. 5. Comparison of min-entropy estimators for (a) near-uniform distributed
sources and (b) inverted near-uniform distributed sources.

large as of interest to the randomness tester. In our experiments

with L = 100, 000, we recommend α ∈ {3, 4, 5, 6} by taking

into account valid Ci and diminishing variance reduction of

α.

For the first-order Markov sources, the min-entropy es-

timators estimate the min-entropy rate. By [17], [18], the

accurate min-entropy rate and the collision entropy rate are

given by H∞(S) = − log2 max{p, 1 − p} and H2(S) =
− log2{p2+(1−p)2}, respectively. Note that the entropy rates

of the first-order Markov sources are the same as the entropies

of the BMS.

Fig. 4 compares the min-entropy estimators for the first-

order Markov sources with parameter p. The LRS estimator of

NIST SP 800-90B undesirably overestimates the min-entropy

of the Markov sources as shown in Fig. 4(a). The proposed

estimator effectively improves the accuracy of min-entropy

estimates. As in Fig. 3, the generalized estimator improves not

only the variance of estimates but also the bias as p → 0.5.

Note that the improvement of Var(θ̂) diminishes as α increases

as shown in Fig. 4(b).

Fig. 5 compares the min-entropy estimators for near-

uniform distributed sources and inverted near-uniform dis-

tributed sources where the alphabet size is 64, i.e., k = 64.

TABLE II
MIN-ENTROPY ESTIMATES FOR REAL-WORLD SOURCES

α = 2 α = 4 α = 6

RANDOM.ORG 0.8889 0.9549 0.9572

Ubld.it 0.8277 0.8598 0.8941

LKRNG 0.9364 0.9843 0.9844

The sequences generated by these non-binary sources are

represented by binary values. Then, we estimate the min-

entropies from these binary sequences.

Fig. 5(a) shows that the LRS estimator undesirably overes-

timates the min-entropy for near-uniform distributed sources

since the gap between the collision entropy and the min-

entropy is significant. On the other hand, the proposed es-

timators estimate the min-entropy accurately. We note that the

generalized LRS estimator with α > 2 (Algorithm 3) is more

accurate than the improved LRS estimator (Algorithm 2).

For the inverted near-uniform distributed sources, the LRS

estimator is relatively accurate (but still overestimating) since

the collision entropy is close to the min-entropy as discussed

in Remark 10. Fig. 5(b) also supports Remark 10. We observe

that the LRS estimator is close to the collision entropy

(and the min-entropy) although it slightly overestimates the

min-entropy. The proposed estimators underestimate the min-

entropy, which can be explained by (15). Since θ̂ > p̂c in

(15), we observe that θ̂ > p̂c ≃ θ for inverted near-uniform

distributed sources. Fortunately, the underestimation bias can

be reduced by adopting a higher order α as shown in Fig. 5(b).

It is worth mentioning that the compression estimator of

NIST SP 800-90B also suffers from this underestimation

problem for inverted near-uniform distributed sources [1], [16].

Compared to the compression estimator, our proposed estima-

tors are much more accurate. For an inverted near-uniform

distributed source with H∞(S) = 5, the estimated value by

the proposed estimator with α = 6 is around 4.3, which is

much better than the compression estimator’s value of 1.55

(see [16, Fig. 6(b)]). Since NIST SP 800-90B conservatively

selects the minimum estimates among ten different estimators

including the compression estimator, the proposed generalized

LRS estimator does not degrade the final estimation accuracy

even for this exceptional inverted near-uniform distribution.

We also evaluate min-entropy estimates using random num-

ber generators deployed in the real-world as in [3], [16]. The

true min-entropies for these sources are unknown even though

they are believed to be high-entropy sources. We evaluate

RANDOM.ORG, Ubld.it, and Linux kernel random number

generator (LKRNG). RANDOM.ORG [19] is a service that

provides random numbers based on atmospheric noise and

Ubld.it generates random numbers by a TrueRNG device

by [20]. The min-entropy estimates of the real-world sources

are presented in Table II. We observe that the generalized

LRS estimator improves the accuracy of min-entropy estimates

by assuming that these real-world sources are high-entropy

sources.

We observe that the LRS estimator suffers from significant

overestimation problem for most cases of BMS, Markov

sources, and near-uniform distributed sources. Hence, the
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proposed estimator would be an appealing alternative to the

original LRS estimator.

VI. CONCLUSION

We proposed accurate min-entropy estimators to resolve

the overestimation problem of the LRS estimator. Although

the proposed estimator (improved LRS estimator) relies on

the estimated collision probability as in the LRS estimator, it

effectively reduces the bias by leveraging the relation between

the collision entropy and the min-entropy. Furthermore, we

proposed the generalized LRS estimator by parameterizing α

instead of setting α = 2. It was shown that the generalized

LRS estimator can improve the bias and variance of min-

entropy estimates.

APPENDIX A

ANALYSIS ON v

In this appendix, we analyze v (i.e., the maximum value

of w), which is used in Algorithms 1 and 3. We denote the

number of α-wise collisions as Dα,w for the w-tuples in Step

4 of Algorithm 3, which is given by

Dα,w =

kw∑

i=1

(
Ci

α

)
, (36)

where Ci is the number of occurrences of the ith w-tuple. We

suppose that
(
Ci

α

)
= 0 if Ci < α. Note that (36) is the same

as the numerator of (32).

The following lemma shows the relation between the tuple

size w and the number of α-wise collisions (36).

Lemma 17: For a large L, E(Dα,w+1) ≈Mα(p) ·E(Dα,w).
Proof: Denote {a1, . . . , akw} as the alphabet of w-tuples

and {c1, . . . , ckw} as the number of occurrences of each w-

tuple in s. For a w-tuple element aj for j ∈ {1, . . . , kw}, we

can represent aj as (aj,1, . . . , aj,w) where aj,i ∈ {x1, . . . , xk}
for i ∈ {1, . . . , w}.

For each w-tuple aj = (aj,1, . . . , aj,w), there are k dif-

ferent ways to add a symbol and obtain a (w + 1)-tuple.

The expected numbers of occurrences with aj as prefix are

{cj · p1, cj · p2, . . . , cj · pk}. Hence, the expected number of

α-wise collisions for (w + 1)-tuples is given by

E(Dα,w+1) =

kw∑

j=1

k∑

i=1

(
cjpi

α

)

≈
kw∑

j=1

k∑

i=1

cαj p
α
i

α!
≈

kw∑

j=1

cαjMα(p)

α!
(37)

≈
kw∑

j=1

(
cj

α

)
·Mα(p) (38)

=Mα(p) · E(Dα,w), (39)

where (37) follows from
(
cjpi
α

)
≈ cαj p

α
i

α! for cjpi ≫ α (i.e., for

a large L) and Definition 1. If a cjpi is not much greater than

α, then it can be neglected. Also, (38) follows from
(
cj
α

)
≈ cαj

α! .

Finally, (39) follows from (36).

For the proof of Theorem 16, we will take the value of v

to be v, which is defined to be the tuple length at which the

distribution attains in expectation the cutoff property of having

at least one tuple occurring at least α times in the sequence

(see Step 2 in Algorithm 3).

Lemma 18: For a large L, v ≈ log 1
Mα

(
l
α

)
.

Proof: By the definition of v and (36), v is the largest

value such that E(Dα,v) ≥ 1. Hence, E(Dα,1) · (Mα)
v−1 ≥ 1

and E(Dα,1) · (Mα)
v < 1 by Lemma 17. Then, we can obtain

log 1
Mα

E(Dα,1) < v ≤ log 1
Mα

E(Dα,1) + 1 (40)

log 1
Mα

(
l

α

)
Mα < v ≤ log 1

Mα

(
l

α

)
Mα + 1 (41)

log 1
Mα

(
l

α

)
− 1 < v ≤ log 1

Mα

(
l

α

)
. (42)

For l ≫ α, v ≈ log 1
Mα

(
l
α

)
.

Lemma 19: For a uniformly distributed s = (s1, . . . , sL)
with a large L,

vα+1

vα
≈ α2 − 1

α2
, (43)

which is less than one. Note that vα denotes the v with order

α.

Proof: We can obtain

vα+1

vα
=

logk
(
lα+1

α+1

)

α
· α− 1

logk
(
lα
α

) (44)

=
α− 1

α
·
ln
(
lα+1

α+1

)

ln
(
lα
α

) (45)

≈ α− 1

α
· lnL

α+1 − ln vα+1
α+1 − ln(α+ 1)!

lnLα − ln vαα − lnα!
(46)

≈ α− 1

α
· lnL

α+1

lnLα
(47)

=
(α− 1)(α+ 1)

α2
, (48)

where (44) follows from Lemma 18 and Mα = k−(α−1) for a

uniformly distributed source. For a large L, (46) follows from(
lα
α

)
≈ lαα

α! and lα =
⌊
L
vα

⌋
≈ L

vα
. Also, (47) follows from

Lα ≫ vαα and Lα ≫ α! for a large L.

APPENDIX B

PROOF OF THEOREM 16

For every subset I ⊆ {1, . . . , l =
⌊
L
w

⌋
} of size α, we define

XI be a 0-1 random variable that gets the value 1 iff all the

values xi are the same (i.e., I forms a α-wise collision). By

(36), it is clear that

Dα,w =
∑

|I|=α
XI (49)

and

E(XI) =Mα,w, (50)

where Mα,w is the w-tuple power sum of order α. Also, we

set XI = XI −Mα,w as in [15].

For two subsets I and J such that |I| = |J | = α, E(XI ·
XJ) = E(XI) · E(XJ ) = 0 if I ∩ J = ∅. If I ∩ J 6= ∅, then
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XI ·XJ is a 0-1 random variable that gets the value 1 iff all

the values in I ∪ J are the same. Hence,

E(XI ·XJ) =Mα+t,w −M2
α,w (51)

if |I ∪ J | = α + t < 2α [15]. Since Mα,w = 1
kw(α−1) for a

uniformly distributed source, we obtain

E(XI ·XJ ) =
1

kw(α+t−1)
− 1

k2w(α−1)
. (52)

The variance of Dα,w is given by

Var(Dα,w)

=

α−1∑

t=0

∑

|I∪J|=α+t
E(XI ·XJ) (53)

=

α−1∑

t=0

∑

|I∪J|=α+t

(
1

kw(α+t−1)
− 1

k2w(α−1)

)
(54)

=

α−1∑

t=0

(
l

α

)(
l − α

t

)(
α

t

)(
1

kw(α+t−1)
− 1

k2w(α−1)

)
(55)

≈ 1

kw(α−1)

(
l

α

) α−2∑

t=0

(
l

t

)(
α

t

)(
1

kwt
− 1

kw(α−1)

)
, (56)

where (54) follows from (52). Also, (56) follows from
(
l−α
t

)
≈(

l
t

)
for l ≫ α and 1

kwt − 1
kw(α−1) = 0 for t = α− 1.

By taking into account normalization in Step 5 of Algo-

rithm 3, we obtain

Var(M̃α,w) = Var

(
M̂

1
w
α,w

)

≈ 1

w2
· E(M̂α,w)

2(1−w)
w · Var(M̂α,w) (57)

=
1

w2
· k2(α−1)(w−1) · Var(Dα,w)(

l
α

)2 (58)

≈ k(α−1)(w−2)

w2
·
∑α−2

t=0

(
l
t

)(
α
t

) (
k−wt − k−w(α−1)

)
(
l
α

) , (59)

where (57) follows from the first-order Taylor approximation

(i.e., Var(f(x)) ≈ f ′(E(x))2 · Var(x) where f(x) = x
1
w ).

Since (32) is an unbiased estimator (i.e., E(M̂α,w) =Mα,w =
k−w(α−1)), (58) holds. Finally, (59) follows from (56).

Now we show that Var(M̃α,w) ≤ Var(M̃α,w+1) for w ≥ 3.

For each term of (59),

k(α−1)(w−2)

w2
·
(
l
t

)(
α
t

) (
k−wt − k−w(α−1)

)
(
l
α

)

<
k(α−1)(w−2)

(w + 1)2
· k

α−1

kt
·
(
l
t

)(
α
t

) (
k−wt − k−w(α−1)

)
(
l
α

) (60)

=
k(α−1)(w−1)

(w + 1)2
·
(
l
t

)(
α
t

) (
k−(w+1)t − k−{w(α−1)+t})

(
l
α

) (61)

<
k(α−1)(w−1)

(w + 1)2
·
(
l
t

)(
α
t

) (
k−(w+1)t − k−(w+1)(α−1)

)
(
l
α

) , (62)

where (60) follows from
(

w
w+1

)2

· kα−1

kt > 1 for k ≥ 2 and

w ≥ 3. Also, (62) follows from t < α− 1. Hence,

Var(M̃α,w) < Var(M̃α,w+1) (63)

for w ≥ 3.

In Step 7 of Algorithm 3, the maximum among

{M̃α,u, . . . , M̃α,v} is chosen as M̃α. It is difficult to charac-

terize which M̃α,w for w ∈ {u, . . . , v} is the maximum value.

As a conservative approach, we set Var(M̃α) ≈ Var(M̃α,v).
Then,

Var(M̃α) ≈
k(α−1)(vα−2)

v2α

·
∑α−2

t=0

(
lα
t

)(
α
t

) (
k−tvα − k−(α−1)vα

)
(
lα
α

) , (64)

where we denote v = vα and l = lα since both v and l depend

on α.

By the first-order Taylor approximation,

Var(θ̂α) ≈ z(θ̂α, α)
2 · Var(M̃α), (65)

where z(θ̂α, α) is given by

z(θ̂α, α) =
dθ̂α

dM̃α

=
1

α

{
θ̂α−1
α −

(
1−θ̂α
k−1

)α−1
} , (66)

which is derived from (33).

If M̃α = 1
kα−1 , then z(θ̂α, α) → ∞. However, Algorithm 3

sets θ̂α = 1
k for M̃α ≤ 1

kα−1 instead of solving (33). Hence,

z(θ̂α, α) should be considered only if M̃α = 1
kα−1 + δ where

0 < δ ≪ k for uniformly distributed sources. Then, we can

set θ̂α = 1
k + δ′ where 0 < δ′ ≪ k. By [16, Theorem 4],

z(θ̂α, α) ≈ kα−3

α(α−1) · k−1
δ′ . Then,

z(θ̂α+1, α+ 1)

z(θ̂α, α)
≈ α− 1

α+ 1
· k. (67)

Then, we obtain

ξ(α) =
Var(θ̂α+1)

Var(θ̂α)

≈ z(θ̂α+1, α+ 1)2

z(θ̂α, α)2
· Var(M̃α+1)

Var(M̃α)
(68)

=

(
α− 1

α+ 1

)2

·
(

vα

vα+1

)2

·
(
lα
α

)
(
lα+1

α+1

) · k{αvα+1−(α−1)vα}

·
∑α−1

t=0

(
lα+1

t

)(
α+1
t

) (
k−tvα+1 − k−αvα+1

)
∑α−2

t=0

(
lα
t

)(
α
t

) (
k−tvα − k−(α−1)vα

) (69)

≈
(
α− 1

α+ 1

)2

·
(

vα

vα+1

)2

·
∑α−1

t=0

(
lα+1

t

)(
α+1
t

) (
k−tvα+1 − k−αvα+1

)
∑α−2

t=0

(
lα
t

)(
α
t

) (
k−tvα − k−(α−1)vα

) , (70)

where (68) follows from (65). Also, (69) follows from (64)

and (67). By Lemma 18 (see Appendix A) and Mα = 1
kα−1 ,

we obtain vα ≈ logkα−1

(
lα
α

)
= 1

α−1 logk
(
lα
α

)
, which leads to

kvα ≈
(
lα

α

) 1
α−1

. (71)

Then, (70) follows from k{αvα+1−(α−1)vα} ≈ (lα+1
α+1 )
(lαα )

.
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Also, we obtain

ξ(α) ≈
(

α

α+ 1

)4

·
∑α−1

t=0

(
lα+1

t

)(
α+1
t

) (
k−tvα+1 − k−αvα+1

)
∑α−2

t=0

(
lα
t

)(
α
t

) (
k−tvα − k−(α−1)vα

) (72)

=

(
α

α+ 1

)4

·

∑α−1
t=0

(
lα+1

t

)(
α+1
t

){(
lα+1

α+1

)− t
α −

(
lα+1

α+1

)−1
}

∑α−2
t=0

(
lα
t

)(
α
t

){(
lα
α

)− t
α−1 −

(
lα
α

)−1
} (73)

≈
(

α

α+ 1

)4

·
∑α−1

t=0

(
lα+1

t

)(
α+1
t

)(
lα+1

α+1

)− t
α

∑α−2
t=0

(
lα
t

)(
α
t

)(
lα
α

)− t
α−1

, (74)

where (72) and (73) follow from Lemma 19 and (71), respec-

tively. Also, (74) follows from
(
lα

α

)− t
α−1

≫
(
lα

α

)−1

(75)

for t ≤ α− 2 and a large L. We derive (75) as follows:
(
lα

α

)− t
α−1

≥
(
lα

α

)−1

·
(
lα

α

) 1
α−1

(76)

>

(
lα

α

)−1

·
(
lα

α

)1+ 1
α−1

(77)

≫
(
lα

α

)−1

, (78)

where (76) follows from t ≤ α − 2 and (77) follows from(
lα
α

)
> ( lαα )α for lα > α. Also, (78) holds because lα ≫ α.

Finally, we show that (74) converges to
(

α
α+1

)4

. For a large

L, lα =
⌊
L
vα

⌋
≈ L

vα
and

(
lα
t

)
≈ ltα

t! . Then,

α−1∑

t=0

(
lα+1

t

)(
α+ 1

t

)(
lα+1

α+ 1

)− t
α

≈
α−1∑

t=0

(
α+ 1

t

)
· (lα+1)

t(1−α+1
α

)

t! · {(α+ 1)!}− t
α

(79)

≈
α−1∑

t=0

(
α+ 1

t

)
·

(
L

vα+1

)− t
α

t! · {(α+ 1)!}− t
α

(80)

=
α−1∑

t=0

(
α+ 1

t

)
· {(α+ 1)! · vα+1} t

α

t!
· L− t

α . (81)

Also,

α−2∑

t=0

(
lα

t

)(
α

t

)(
lα

α

)− t
α−1

≈
α−2∑

t=0

(
α

t

)
· (α! · vα)

t
α−1

t!
· L− t

α−1 . (82)

For a large L, (81) converges to one because the highest

degree of L− t
α is zero by t = 0. Similarly, (82) converges to

one. Hence, ξ(α) ≈
(

α
α+1

)4

for a large L.
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