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Actuator Saturation Compensation
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Abstract—This brief designs an observer-based adap-
tive finite-time neural control for a class of constrained
nonlinear systems with external disturbances, and actuator
saturation. First, a neural network (NN) state observer is
developed to estimate the unmeasurable states. Combining
the improved Gaussian function and an auxiliary compen-
sation system, the actuator saturation can be solved. The
”explosion of complexity” problem is tackled by the finite-
time command filter, and the filtering-error compensation
system is constructed to resolve the filtering error. More-
over, the barrier Lyapunov function is incorporated into the
controller design to satisfy the state constraints. By inte-
grating the NN technique and the virtual parameter learning
to approximate the bound of the lumped disturbance, the
number of learning parameters is decreased. It can be
proved that all the states do not transgress the predefined
bounds and the tracking errors converge to bounded re-
gions in finite time. Eventually, we provide comparative
results to show the feasibility of the obtained results.

Index Terms—Actuator saturation, full-state constraints,
finite-time control, neural networks, state observer.
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I. INTRODUCTION

BACKSTEPPING technology as a recursive Lyapunov

policy has attracted wide attention, and many constructive

results have been reported to control nonlinear systems in

[1]–[5]. However, the ”explosion of complexity” issue severely

hinders the application of backstepping control (BC) [1]. To

overcome this issue, a dynamic surface control (DSC) was

primarily in [2] by using the low-pass filter to approximate the

derivative of the virtual control law in each iteration. In [3], the

event-triggered DSC was investigated for autonomous surface

vehicles. However, the DSC does not consider the filtering

errors, which could destroy the system performance.

To circumvent the filtering error, the command filtered

backstepping (CFB) was developed via the error compensation

mechanism (see [6]–[9]). The work [6] initially discussed the

impact of the command filter for the system stability, and

then, this team presented an adaptive BC for the land vehicles

[7]. Hao et al. [8] developed a multi-objective CFB for the

active suspension systems. However, the above approaches are

not adequate for nonlinear systems with unknown functions.

By means of high reliability and strong approximation, a

composite neural control was proposed to reduce the system

errors and avoid high-frequency oscillations [10]. By applying

the nonlinear transformed function, a command-filtered neural

controller was presented in [11]. In [12], fuzzy technology

was applied to the framework of the adaptive radial basis

function NN (RBFNN). Although the above controllers-based

NN technology can achieve good performance, it is not a

straightforward way to update the NN’s weight, which is

because the controller requires many learning parameters. In

particular, the number of learning parameters obviously grows

as the weight dimension of the NN grows. This leads to high

computational load and approximation errors. As an alternative

method, a neuron-adaptive learning policy was presented in

[13], but many threshold parameters are difficult to choose. In

this setting, it is meaningful for the design of NN control with

a lower computational burden.

The aforementioned works only consider the system states

that can be directly measured and observed, which prevents the

state-feedback controller from being implemented smoothly

[14]. To solve the obstacle induced by unmeasurable states,

a linear state observer was integrated into the adaptive NN

controller [15]. But, most systems are nonlinear, and the linear

observer has limitations in theory and practice. A piecewise



observer was constructed to observe the system states [16].

The CFB combined with the neural state observer was consid-

ered [17]. Even though many conclusions have been developed

to estimate the unavailable states, the convergence time cannot

be reached as the time goes to finite. For this point, the control

goal requires that the errors are close to the equilibrium when

the time approaches infinity, such as the rigid spacecraft [18],

quadrotor systems [19], and manipulators [20], etc. In [21],

Bhat and Bernstein developed pioneering results in the finite-

time control (FTC), which is a generalization for nonlinear

systems that do not conform to the Lipschitz condition. After

that, the study [22] discussed the FTC matters for linear

systems, while the study [23] considered the FTC matters

for nonlinear systems. The traditional FTCs require that the

Lyapunov function V (·) satisfies V̇ (·) ≤ aV b(·) + ϱ1 with

a < 0, 0 < b < 1 and ϱ1 ≥ 0 [21], [22], [24], however its

convergence rate is even lower than that of V̇ (·) ≤ cV (·)+ϱ2
with c < 0 and ϱ2 ≥ 0 when the function V (·) becomes

large [25]. To accelerate the convergence rate, a criterion

called fast finite-time stability is proposed and satisfies V̇ (·) ≤
cV (·) + aV b(·) + ϱ with ϱ ≥ 0 [9], [27]–[29], which has

been extensively applied, such as the study [20] designed the

DSC method for the manipulator system, and the study [30]

proposed an observer-based neural control to realize a faster

arrival time. From the above analysis, the study on the fast

FTC problem is very important for the controller design, hence

this is what we are committed to focusing on.

In practice, various constraints such as actuator saturation

and state constraints are common [31]–[34]. Once these con-

straints can not be tackled properly, it would cause system

instability. The smooth function was introduced to approxi-

mate the saturation function at the sharp corners [5], but the

approximation error is ignored. To solve this problem, Yu et

al. [26] adopted the Nussbaum-type function to compensate

for the nonlinear term. As an alternative manner, an auxiliary

compensation system (ACS) was constructed to mitigate the

effects of the input saturation [35], [36], but it can not handle

the issue that the control input is not smooth. In [37], the

designed ACSs can address the input saturation effectively,

but they require that the input deviation is supposed to be

bounded. In [32], the smooth function was adopted to obtain

a smooth control law, and the difference between the control

law and the output of the smooth function was utilized to drive

the ACS. Although the above approaches can resolve the input

saturation, there is still room for improvement. For the system

constraint problem, Tee et al. [38] applied the barrier Lya-

punov function (BLF) to guarantee that the output constraint

is never violated. Zhao et al. [39] studied an adaptive NN

controller for uncertain helicopters with output constraints.

Compared to just considering the output constraint. To do

this, Zhang et al. [24] proposed a fuzzy FTC to avoid the

violation of full-state constraints. Liu et al. [40] designed

a BLF-based FTC to address the full-state constraints and

nonaffine terms. An adaptive fuzzy controller was presented in

[41] for the permanent magnet synchronous motors. In [42],

the integral BLF-based backstepping control was investigated,

but the problem of feasibility condition is still not solved.

By synthesizing the above observations, we will design

an observer-based adaptive finite-time neural controller for

constrained nonlinear systems subject to unmeasurable states,

external disturbances, and actuator saturation. The primary

innovations of this study are highlighted, as

(1) Unlike the multi-objective adaptive CFB [8], the neural

CFB [10], and the event-triggered DSC [3], the proposed

controller, which integrates the CFB technology and the

filtering-error compensation system, not only solves the

problems of ”explosion of complexity” and the filtering

error but also realizes the fast finite time convergence.

Compared to previous studies in [1]–[3], [20], [36], this

study does not require the availability of system states,

which means that the state observation and the controller

can be designed independently. This makes proposed

controller more flexible for practical applications.

(2) To approximate the actuator nonlinearity, this study de-

signs an improved Gaussian function that provides a

higher approximation accuracy than the continuous func-

tions in [26], [32]. Different from previous studies in

[32], [35]–[37] to solve the saturation-approximation error,

the designed ACS not only quickly eliminates the satura-

tion effect ∆u without the boundedness of ∆u but also

guarantees the smooth output of the ACS and avoids the

singularity problem. Moreover, the BLFs are integrated

into each step of the controller design so that all states

are kept within the predefined sets.

(3) By combining the NN technique and the virtual learning

parameter to compensate for external disturbances and

nonlinear functions, the computational burden is reduced

due to fewer learning parameters in comparison with the

traditional NN controllers [30], [35], [39]. Thus, this helps

to extend the controller to other controlled systems.

The remaining sections are arranged as: The problem for-

mulation is described in Section II. Section III gives the steps

of the controller development and the convergence analysis.

Section IV illustrates the validity of the proposed scheme, and

then Section V to give the conclusions.

II. PROBLEM PRELIMINARIES

A. System Description

Consider a class of constrained nonlinear systems, as






ẋi = fi(x) + gixi+1 + di(t)
ẋn = fn(x) + gnτ + dn(t)
y = x1, i = 1, · · · , n− 1

(1)

where x̄i = [x1, . . . , xi]
T and x = [x1, . . . , xn]

T are system

states; x̄1 = x1, x̄n = x; fi(x) and fn(x) are the unknown

functions; gi and gi are known nonzero functions; di(t) and

dn(t) are the external disturbances and satisfy di(t), dn(t) ≤ d̄
with d̄ > 0 being an unknown scalar; fi(x) and fn(x)
are system uncertainties; τ and y are the control input sub-

ject to the saturation and control output, respectively; Let

Fi(x̄i) = fi(x)+di(t) and Fn(xn) = fn(x)+dn(t) be lumped

disturbances. All states are constrained in a compact set, that

is, there is a constant kai > 0 such that |xi| ≤ kai.
Remark 1: Apart from the theoretical concerns, the system

(1) is more general than the systems considered in [30], [40]



due to the simultaneous consideration of external disturbances,

actuator saturation, and full-state constraints. Moreover, many

physical systems can be transformed into (1) by proper state

transformations, such as mechanical manipulators [20], land

vehicles [7], helicopters [39], spacecraft systems [18], etc.

Since the actuator saturation is a widespread problem in

actual systems, the control input τ is considered as

τ = sat(u) =







ūr, if u > ūr
u, if ul ≤ u ≤ ūr
ul, if u < ul

(2)

where u is the actual control input; ūr > 0 and ul < 0
are the upper and lower bounds of u. However, since τ is a

piecewise function with nonsmooth nonlinearity, the backstep-

ping technique cannot be applied directly. For resolving this

issue, this study introduces an improved Gaussian function to

approximate the saturation nonlinearity via the work [32], as

h(u) = u∗H
(√

πu

2u∗

)

(3)

where the function H(•) is denoted as H(•) =
2φ1√
π

∫ •
0
exp−φ2x

2

dx with φ1 > 0 and φ2 > 0 being adjustable

parameters, and u∗ = 0.5(ūr + ul) + 0.5(ūr − ul) sign(u).
Due to the existence of approximation error, h(u) cannot

completely substitute sat(u) in (2). Further, it is reasonable

that sat(u) can be rewritten by sat(u) = h(u) + ∆u, where

the approximation error ∆u can be constrained by

|∆u| = |sat(u)− h(u)| ≤ ∆ū (4)

in which ∆ū > 0 represents an unknown constant. From the

mean-value theorem, the function h(u) can be rewritten by

h(u) = h(ŭ) + κ(u− ŭ) (5)

where κ = ∂h(u)
u

|u=ub0 = exp
(
− (

√
πub0)/(2u∗)

)
∈ (0, 1],

ub0 = b0u + (1 − b0)ŭ and 0 < b0 < 1. By considering

h(0) = 0 for ŭ = 0, one has

sat(u) = κu+∆u (6)

where κ > 0 represents a computable variable.

Remark 2: The models of symmetric saturation and asym-

metric saturation can be built by changing the values of ūr
and ul. If |ūr| = |ul|, it is symmetric saturation model; else

if |ūr| ̸= |ul|, it is symmetric saturation model. Although the

function H(•) = 2√
π

∫ •
0
exp−x

2

dx in [32] provides higher ap-

proximate accuracy than the hyperbolic tangent function [26],

its approximation error can not be adjusted to small enough.

To solve this challenge, an improved Gaussian function (3)

is introduced. As an example, it can be observed that from

the enlarged part of Fig. 1, the function (3) indeed solves the

actuator saturation with symmetric and asymmetric cases,

Assumption 1: (See [25]) The desired trajectory yd and its

derivative ẏd are known and bounded signals, that is, yd and

ẏd satisfy |yd| ≤ Y1 and |ẏd| ≤ Y2 with Y1 and Y2 being

positive and known constants.

Assumption 2: (See [25]) The function gi(x̄i) for 1 ≤ i ≤ n
is unknown but its sign is known, and there exists two

constants g > 0 and ḡ > 0 hold the following:

0 < g ≤ |gi(·)| ≤ ḡ. (7)
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(a) Symmetric saturation model
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(b) Asymmetric saturation model

Fig. 1. Curves of control input τ and its saturation: (a) ūr = 2, u
l
= −2

and u(t) = 4 sin(1.6t); (b) ūr = 2, u
l
= −1, and u(t) = 3 sin(1.6t).

where gi(·) is strictly positive or negative. Without loss of

generality, gi(·) is supposed to be strictly positive.

Remark 3: Some explanations are stated about Assumptions

1 and 2: (i) Compared with approximation-based BC schemes

[26], [29], where the knowledge of yjd(t), j = 0, 1, . . . , n is

needed, Assumption 1 only requires yd(t) and its derivative to

be bounded, which means that the controller is less constrained

and is more suitable for high-order systems. (ii) Assumption

2 is general such as [11], [25], and g and ḡ are only used to

analyze the system stability rather than the controller design.

Therefore, the given assumptions are reasonable.

Lemma 1: (See [39]) For any positive constant kb ∈ R and

any vector z ∈ R
n with ∥z∥ ≤ kb, one obtains

log
k2b

k2b − zTz
≤ zTz

k2b − zTz
. (8)

Lemma 2: (See [40]) Consider the nonlinear system, as

ẋ = f(x, u), f(0, 0) = 0, x ∈ R
n, u ∈ R

m (9)

wherein x and u are the state and input vectors, respectively,

and f :W → R
n is continuous on an open neighbourhood W .

If there is a Lyapunov function V (x) as V̇ (x) ≤ −π1V (x)−
π2V

π3(x) + π4, ∀t > t0 with 0 < π4 < ∞, π1 > 0, π2 > 0
and 0 < π3 < 1, the system (9) is fast finite-time stability and

drives into the bounded region, as

Ω =

{

lim
t→T

V (x) ≤ min

{
π4

(1− ι)π1
,
( π4
(1− ι)π2

) 1
π3

}}

(10)

where 0 < ι < 1, and the convergence time is estimated as

T ≤ t0 +max

{
1

ιπ1(1− π3)
ln
ιπ1V

1−π3(t0) + π2
π2

,

1

π1(1− π3)
ln
π1V

1−π3(t0) + ιπ2
ιπ2

}

(11)

where t0 is the initial time.

Lemma 3: (See [30]) There are two constants p > 0 and

q > 0, and a real-valued function o(x, y) such that

|x|p|y|q ≤ po(x, y)|x|p+q
p+ q

+
qo(x, y)−

p
q |y|p+q

p+ q
. (12)

Lemma 4: (See [24]) Consider a given constant 0 < m ≤ 1
and any vector w = [w1, . . . , wn] ∈ R

n, it follows that
( n∑

i=1

|wi|
)m

≤
n∑

i=1

|wi|m ≤ n1−m
( n∑

i=1

|wi|
)m

. (13)



Lemma 5: (See [43]) The finite-time command filter (FTCF)

is applied via the following form:

ϑ̇1 =− L1|ϑ1 − α| 12 sign(ϑ1 − α) + ϑ2

ϑ̇2 =− L2sign(ϑ2 − ϑ̇1) (14)

where α and ϑ1 are the virtual signal and the output signal

of the filter, L1 > 0 and L2 > 0 are the filter’s gains, and

ϑ1(0) ≥ 0 and ϑ2(0) ≥ 0. There are two cases: If α is not

disturbed by noises, it satisfies ϑ1 = α0 and ϑ̇1 = α̇0 after

finite time, where α = α0; else if α is not disturbed by noises,

it satisfies ϑ1 = α0 and ϑ̇1 = α̇0 after finite time.

B. RBFNN Approximation System

As we know, the RBFNN technique is extensively applied

to control the nonlinear system f(Z), i.e.,

f(Z) =W ∗TΞ(Z) + ζ(Z), ∥ζ(Z)∥ ≤ ζ̄ (15)

where W ∗, δ(X), and ζ̄ are the ideal weight vector, approxi-

mation error, and positive scalar, respectively. From theoretical

perspective, the ideal weight vector W ∗ can be given by

W ∗ = arg min
W∈Rs×m

{

sup
Z∈Ω

∣
∣
∣f(Z)−WTΞ(Z)

∣
∣
∣

}

. (16)

where W = [w1, · · · , ws]T ∈ R
s where s > 1 is network

node number; Z ∈ ΩZ ⊂ R
n is the network input; and

Ξ(X) ∈ R
s expresses the Gaussian function with Ξi(Z)

being Ξi(Z) = exp
(
− (Z − ςi)

T(Z − ςi)
/
ν2i

)
, where

ςi = [ςi1, · · · , ςin]T ∈ R
n and νi are the center and width

of Ξi(Z). Before proceeding further, the estimation of θ∗

is defined as θ̂, while the estimation error θ̃ is denoted as

θ̃ = θ∗ − θ̂. We provide an important analysis, as

f(Z) ≤
[
W̄
ζ̄

]T [
Ξ(Z)
1

]

≤
∥
∥
∥
∥

[
W̄
ζ̄

]T ∥
∥
∥
∥

∥
∥
∥
∥

[
Ξ(Z)
1

] ∥
∥
∥
∥

=W̄∥Ξ(Z)∥+ ζ̄ ≤ θ∗Ψ(Z) (17)

wherein θ∗ ≥ max
{
W̄ , ζ̄

}
and Ψ(Z) = 1 + ∥Ξ(Z)∥ > 0

are a virtual parameter and a computable scalar function.

In particular, this study just needs to adjust one parameter

rather than each element of W ∗, thus the number of adaptive

parameters is greatly decreased.

III. MAIN RESULTS

A. NN State Observer Design

First, the system dynamics (1) is rearranged by






ẋ = Ax+Ky +
n∑

i=1

BigiFi
(
x̄i|θ∗i

)
+Bngnτ

y = Cx
(18)

where C = [1, . . . , 0, . . . , 0]T, Bi = [0, . . . , 0,
︸ ︷︷ ︸

i−1

1, 0, . . . , 0]T,

x = [x1, . . . , xn]
T, Bn = [0, . . . , 1]T, K = [k1, . . . , kn]

T, and

A =






−k1
... In−1

−kn 0 · · · 0




 is the Hurwitz matrix. Thus, for

any symmetric positive-definite matrix N , there exists a matrix

M such that ATN +NA = −M .

Construct the following NN state observer, as






˙̂x = Ax̂+Ky +
n∑

i=1

BigiF̂i(ˆ̄xi|θ̄) +Bngnτ

ŷ = Cx̂
. (19)

Let the state observation error x̃ as x̃ = x − x̂ = [x1 −
x̂1, . . . , xn − x̂n]

T. Then, by combining (18)-(19), one has

˙̃x =Ax̃+

n∑

i=1

Bigi
(
Fi(x̄i|θ∗i )− F̂i(ˆ̄xi|θ̄)

)
(20)

where θ̄ = max{θ∗21 , · · · , θ∗2n } and its estimation is θ̂, while

the estimation error is denoted as θ̃ = θ̄ − θ̂.

Select the Lyapunov function V0 about the estimation error

x̃ as V0 = x̃TNx̃, and then its derivative is calculated by

V̇0 = −
(

Ax̃+

n∑

i=1

Bigi

(

Fi(x̄i|θ∗i )− F̂i(ˆ̄xi|θ̄)
))T

Nx̃

+ x̃TN
(

Ax̃+

n∑

i=1

Bigi

(

Fi(x̄i|θ∗i )− F̂i(ˆ̄xi|θ̄)
))

=x̃T(ANT +NA)x̃+ 2x̃TN

n∑

i=1

Bigiθ̃Ψi

≤− λmin(M)∥x̃∥2 + 2∥x̃∥∥N∥ḡΨ̄|θ̃|. (21)

where Ψ̄ = max{Ψ1, . . . ,Ψn}.

Utilizing Young’s inequality, results in

2∥x̃∥NḡΨ̄|θ̃| ≤ ∥x̃∥2 +Φθ̃2 (22)

where Φ = ḡ2∥N∥2∥Ψ̄∥.

By substituting (22) into (21), it follows that

V̇0 ≤−
(
λmin(N)− 1

)
∥x̃∥2 +Φθ̃2. (23)

as long as λmin(N) − 1 > 0, the estimation error converges

to the bounded region. It should be noticed that the o(23) is

an intermediate process where the term Φθ̃2 will be solved in

the controller design.

B. Controller Design

First, the tracking errors are denoted as

z1 = x̂1 − yd, zi = x̂i −ϖi, i = 2, · · · , n (24)

where ϖi is the the FTCF’s output with a virtual input αi−1.

To evade recursive differentiation, a FTCF is constructed as

ϑ̇j,1 =− L1|ϑj,1 − αj |
1
2 sign(ϑi,1 − αi) + ϑi,2

ϑ̇j,2 =− L2sign(ϑj,2 − ϑ̇j,1), j = 1, · · · , n− 1 (25)

where ϖj can be approximated by ϑj,1, i.e., ϖj = ϑj,1.

To the filtering error, a filtering–error compensation system

is proposed as

υ̇i =− ciυi + gi(ϖi+1 − αi) + giυi+1 − hiυ
b
i ,

υ̇n =− cnυn − hnυ
b
n, i = 1, · · · , n− 1 (26)

where υi(0) = 0, υn(0) = 0, gi, ci, hi, cn, and hn are positive

constants, and the parameter b holds 1
2 < b = b1

b2
< 1 with



b1 and b2 being positive odd integers. Define the compensated

error signals as

si = zi − υi, i = 1, . . . , n (27)

Step 1: Based on (1) and (27), we obtain

ṡ1 = g1α1 + g1(ϖ2 − α1) + g1z2 + F1 − ẏd − υ̇1. (28)

To avoid the differentiation of α1, the FTCF is applied as

ϑ̇1,1 =− L1|ϑ1,1 − α1|
1
2 sign(ϑ1,1 − α1) + ϑ1,2

ϑ̇1,2 =− L2sign(ϑ1,2 − ϑ̇1,1) (29)

where α1 and ϖ2 = ϑ1,1 can be viewed as the input and

output signals of the FTCF, and ϑ1,1(0) = 0 and ϑ1,2(0) = 0.

The RBFNN is adopted to cope with the nonlinear function

F1, and then we recall (17) to get the result, as

F1 ≤W̄1∥Ξ1(Z1)∥+ ζ̄1 ≤ θ∗1Ψ1 (30)

where Z1 = [x̂1, yd, ẏd]
T is the RBFNN’s input, θ∗1 ≥

max
{
W̄1, ζ̄1

}
and Ψ1 = 1 + ∥Ξ1(Z)∥.

We define compact set Ωz : {|si| < kdi}, where kdi > 0
is a prespecified constant. Then, we select the following BLF,

which grows to infinity whenever s1 closes to kd1, as

V1 =
1

2
log

k2d1
k2d1 − s21

+
1

2
υ21 (31)

where kd1 > 0. Next, the time derivative of V1 along (26),

(28) and (30) can be derived by

V̇1 ≤ s21

2p21
(
k2d1 − s21

)2 θ
∗2
1 Ψ2

1 +
1

2
p21 +

s1
k2d1 − s21

(

g1α1 − ẏd

+ g1(ϖ2 − α1) + g1z2 − υ̇1

)

+ g1(ϖ2 − α1)υ1 − c1υ
2
1

+ g1υ1υ2 − h1υ
b+1
1 . (32)

From Lemma 5 and Assumption 2, one knows that |ϖ1−α1| ≤
χ1 can be guaranteed after finite time T1 and |g1| ≤ ḡ. Then,

we apply the Young’s inequality to get the following:

g1υ1υ2 ≤ 1

2
ḡυ21 +

1

2
ḡυ22 , (33a)

g1(ϖ2 − α1)υ1 ≤ 1

2

ḡ

σ1
υ21 +

1

2
ḡσ1χ

2
1. (33b)

where σ1 is a positive scalar.

Integrating (33) into (32) yields

V̇1 ≤ s21

2p21
(
k2d1 − s21

)2 θ
∗2
1 Ψ2

1 +
1

2
p21 +

s1
k2d1 − s21

(

g1α1

+ g1(ϖ2 − α1) + g1z2 − ẏd − υ̇1

)

+
ḡσ1χ

2
1

2

−
(

c1 −
ḡ1
2

− ḡ

2σ1

)

υ21 +
ḡ1
2
υ22 − h1υ

b+1
1 . (34)

To guarantee the system stability, a virtual control input α1 is

designed as

α1 =
1

g1

(

− q1z1 −
1

2p21

s1
k2d1 − s21

θ̂1Ψ
2
1 −

( s1
k2d1 − s21

) b−1
2

× β1s
b+1
2

1 + ẏd −
h1
b+ 1

( s1
k2d1 − s21

)b
)

(35)

where p1 > 0, q1 > 0 and β1 > 0 are design constants.

Substituting (35) and the first equation of (26) into (34)

leads to the following result:

V̇1 ≤ s1
k2d1 − s21

g1s2 −
s1

k2d1 − s21
q1s1 − β1

( s1
k2d1 − s21

) b+1
2

× s
b+1
2

1 − h1
b+ 1

( s1
k2d1 − s21

)b+1

+ h1
s1

k2d1 − s21
υb1

+
Ψ2

1

2p21

s21
(
k2d1 − s21

)2

(

θ∗21 − θ̂1

)

+
1

2
p21 −

(

c1 −
ḡ

2

− ḡ

2σ1

)

υ21 +
ḡ

2
υ22 +

ḡσ1χ
2
1

2
− h1υ

b+1
1 . (36)

By recalling Lemma 3, one arrives at

h1
s1

k2d1 − s21
υb1 ≤ h1

b+ 1

( s1
k2d1 − s21

)b+1

+
h1b

b+ 1
υb+1
1 . (37)

Along with (36) and (37), one can deduce that

V̇1 ≤ s1
k2d1 − s21

g1s2 −
s1

k2d1 − s21
q1s1 − β1

( s1
k2d1 − s21

) b+1
2

× s
b+1
2

1 − h1
b+ 1

υb+1
1 +

h1
b+ 1

( s1
k2d1 − s21

)b+1

+
Ψ2

1

2p21

× s21
(
k2d1 − s21

)2

(

θ∗21 − θ̂1

)

+
1

2
p21 −

(

c1−
ḡ

2
− ḡ

2σ1

)

× υ21 +
ḡ

2
υ22 +

ḡσ1χ
2
1

2
. (38)

Step i (i = 2, · · · , n − 1): The derivative of the error

compensation signal si = zi − υi can be given by

ṡi = gixi+1 + Fi − α̇i − υ̇i

= giαi+ gi(ϖi+1− αi)+ gizi+1+ Fi− ϖ̇i − υ̇i. (39)

To address the problem of exponential explosion, we adopt

the following FTCT via Lemma 5, as

ϑ̇i,1 =− L1|ϑi,1 − αi|
1
2 sign(ϑi,1 − αi) + ϑi,2

ϑ̇i,2 =− L2sign(ϑi,2 − ϑ̇i,1) (40)

where αi+1 and ϖi = ϑi,1 can be regarded as the input and

output signals of the FTCF, respectively; and ϑi,1(0) = 0 and

ϑi,2(0) = 0.

Similarly, we apply the RBFNN to deal with Fi in (39), as

Fi ≤W̄i∥Ξi(Zi)∥+ ζ̄i ≤ θ∗iΨi (41)

where Zi = [x̂1, . . . , x̂i, yd, ẏd]
T, θ∗i ≥ max

{
W̄i, ζ̄i

}
and

Ψi = 1 + ∥Ξi∥ > 0.

Define the composite BLF for the i−th subsystem, as

Vi = Vi−1 +
1

2
log

k2di
k2di − s2i

+
1

2
υ2i (42)



where kdi > 0 stands for a prespecified constant. Taking the

derivative of (42) along (39) and (41) yields

V̇i =V̇i−1 +
si

k2di − s2i

(

giαi + gi(ϖi+1 − αi) + gizi+1

+ Fi −ϖi − υ̇i

)

+ gi(ϖi+1 − αi)υi + giυiυi+1

− ciυ
2
i − hiυ

b+1
i

≤V̇i−1 +
s2i

2p2i
(
k2di − s2i

)2 θ
∗2
i Ψ2

i +
1

2
p2i +

si
k2di − s2i

×
(

giαi + gi(ϖi − αi) + gizi+1 −ϖi − υ̇i

)

− ciυ
2
i

+ gi(ϖi+1 − αi)υi + giυiυi+1 − hiυ
b+1
i . (43)

Based on Lemma 5 and Assumption 2, one can get a conclu-

sion that |ϖi − αi| ≤ χi is achieved after finite time Ti and

|gi| ≤ ḡi. Then, we have

giυiυi+1 ≤ 1

2
ḡυ2i +

1

2
ḡυ2i+1, (44a)

gi(ϖi+1 − αi)υi ≤
1

2

ḡ

σi
υ2i +

1

2
ḡσiχ

2
i . (44b)

where ρi is a positive scalar.

Then, by inserting (44) into (43), one gets

V̇i ≤V̇i−1 +
s2i

2p2i
(
k2di − s2i

)2 θ
∗2
i Ψ2

i +
1

2
p2i +

si
k2di − s2i

×
(
giαi + gi(ϖi − αi) + gizi+1 −ϖi − υ̇i

)
+
ḡ

2
υ2n

−
(

ci −
ḡ

2
− ḡ

2σi

)

υ2i +
ḡσiχ

2
i

2
− hiυ

b+1
i . (45)

As in Step 1, we design the virtual input α2, as follows:

αi =
1

gi

(

− 1

2p2i

si
k2di − s2i

θ̂iΨ
2
i −

( si
k2di − s2i

) b−1
2

βis
b+1
2

i + ϖ̇i

− qizi −
hi
b+ 1

( si
k2di − s2i

)b

− sjgj(k
2
di − s2i )

(k2dj − s2j )

)

(46)

where j = i− 1, and pi > 0, qi > 0 and βi > 0.

By invoking (38), (43)–(46), it can be readily obtained that

V̇i ≤ V̇i−1 +
si

k2di − s2i
gisi+1 −

si
k2di − s2i

qisi − βis
b+1
2

i

×
( si
k2di − s2i

) b+1
2 − hi

b+ 1
υb+1
i − gj

sj
k2dj − s2j

sbj

+
Ψ2
i

2p2i

s2i
(
k2di − s2i

)2

(

θ∗2i − θ̂i

)

−
(

ci − ḡ − ḡ

2σi

)

υ2i

+
1

2
p2i +

ḡ

2
υ2n +

ḡσiχ
2
i

2
. (47)

Step n: For the last step, it goal is to focus on designing an

actual control law u. The derivative of the error compensation

signal sn = zn − υn with respect to time is calculated by

ṡn =gn sat(u) + Fn − ϖ̇n − υ̇n. (48)

By utilizing the RBFNN to approximate Fn in (48), it follows

Fn ≤W̄n∥Ξn(Zn)∥+ ζ̄n ≤ θ∗nΨn (49)

where Zn = [x̂1, . . . , x̂n, yd, ẏd]
T, θ∗n ≥ max

{
W̄n, ζ̄n

}
and

Ψn = 1 + ∥Ξn∥ are the virtual parameter and computable

scalar function, respectively.

To compensate for the saturation-approximation error, an

ACS is constructed as

ζ̇ = −η1ζ − η2ζ
b −

(
1 + Ξ(ζ)

)((
sn

k2
dn

−s2n

)2
+∆u2

)

2ζ2
ζ +∆u

(50)

where Ξ(ζ) is a smooth and nonsingular function, as

Ξ(ζ) =







0, if |ζ| ≤ ιa
1, if |ζ| ≥ ιb

1− cos

(

π
2 sin

(
π
2
ζ2−ιa
ιb−ιa

))

, otherwise

(51)

where ιa > 0 and ιb > 0 are arbitrarily design constants, ζ
is an auxiliary dynamic variable, ∆u = sat(u) − κu, η1 > 1
and η2 > 0 are design constants, and the term η2ζ

b in (50)

can guarantee the fast finite-time stability of the ACS.

Consider the composite BLF for the last subsystem, as

Vn = Vn−1 +
1

2
log

k2dn
k2dn − s2n

+
1

2
υ2n +

1

2
ζ2 (52)

where kdn is a positive prespecified constant.

Case 1: For |ζ| ≤ ιa, it means that ζ̇ = −η1ζ − η2ζ
b −

(
sn

k2
dn

−s2n

)2
+∆u2

2ζ2 ζ+∆u. By differentiating (52) along (48) and

(49), one obtains

V̇n ≤ V̇n−1 +
s2n

2p2n
(
k2dn − s2n

)2 θ
∗2
n Ψ2

n +
1

2
p2n +

sn
k2dn − s2n

×
(
gnu+ Fn − ϖ̇n − υ̇n

)
− cnυ

2
n − hnυ

b+1
n − η1ζ

2

− η2ζ
b+1 − 1

2

( sn
k2dn − s2n

)2

− 1

2
∆u2 +∆uζ. (53)

From (53), we develop the following actual control law, as

u =
1

gnκ

(

− qnzn − 1

2p2n

sn
k2dn − s2n

θ̂nΨ
2
n + ϖ̇n − βns

b+1
2

n

×
( sn
k2dn − s2n

) b−1
2 − hn

b+ 1

( sn
k2dn − s2n

)b

− smgm(k2dn − s2n)

(k2dm − s2m)
+ ζ

)

(54)

where m = n− 1, and pn > 0, qn > 0 and βn > 0 stand for

design constants.

Applying the Young’s inequality leads to

∆uζ ≤ 1

2
∆u2 +

1

2
ζ2, (55a)

sn
k2dn − s2n

ζ ≤ 1

2

( s2n
k2dn − s2n

)2

+
1

2
ζ2. (55b)



Using Lemma 4 and substituting (54) and (55) into (53) yield

V̇n ≤−
n∑

i=1

si
k2di − s2i

qisi −
n∑

i=1

βi

( si
k2di − s2i

) b+1
2

s
b+1
2

i

−
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i
−

n∑

i=1

Γυ2i − (η1 − 1)ζ2

+

n∑

i=1

1

2p2i

s2i
(
k2di− s2i

)2Ψ
2
i

(
θ∗2i − θ̂i

)
− η2ζ

b+1+∆ (56)

where Γ = min
{
c1 − ḡ

2 − ḡ
2σ1

, c2 − ḡ − ḡ
2σ2

, . . . , cn−1 − ḡ −
ḡ

2σn−1
, cn − ḡ

2

}
with c1 >

ḡ
2 + ḡ

2σ1
, c2 > ḡ + ḡ

2σ2
, cn−1 >

ḡ + ḡ
2σn−1

, and cn > ḡ
2 , and ∆ = (n−1)ḡ

2 max
{
σ1χ

2
1, σ2χ

2
2,

. . . , σn−1χ
2
n−1

}
.

Case 2: For |ζ| ≥ ιb, it means that ζ̇ = −η1ζ − η2ζ
b −

(
sn

k2
dn

−s2n

)2
+∆u2

ζ2
ζ+∆u. Similar to (53), the derivative of (52)

along (54) can be given by

V̇n ≤ V̇n−1 +
s2n

2p2n
(
k2dn − s2n

)2 θ
∗2
n Ψ2

n +
1

2
p2n +

sn
k2dn − s2n

×
(
gnu+ Fn − ϖ̇n − υ̇n

)
− cnυ

2
n − hnυ

b+1
n − η1ζ

2

− η2ζ
b+1 −

( sn
k2dn − s2n

)2

−∆u2 +∆uζ. (57)

The following inequalities hold as

∆uζ ≤ ∆u2 +
1

4
ζ2, (58a)

sn
k2dn − s2n

ζ ≤
( s2n
k2dn − s2n

)2

+
1

4
ζ2. (58b)

Bearing in mind (57) and (58), it can be deduced that

V̇n ≤−
n∑

i=1

si
k2di − s2i

qisi −
n∑

i=1

βi

( si
k2di − s2i

) b+1
2

s
b+1
2

i

−
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i
−

n∑

i=1

Γυ2i −
(

η1 −
1

2

)

ζ2

+

n∑

i=1

1

2p2i

s2i
(
k2di− s2i

)2Ψ
2
i

(
θ∗2i − θ̂i

)
− η2ζ

b+1+∆ (59)

Case 3: For the remaining case, it has 1+Ξ(ζ) ∈ (1, 2). In

what follows, we can obtain

V̇n ≤ V̇n−1 +
s2n

2p2n
(
k2dn − s2n

)2 θ
∗2
n Ψ2

n +
1

2
p2n +

sn
k2dn − s2n

×
(
gnu+ Fn − ϖ̇n − υ̇n

)
− cnυ

2
n − hnυ

b+1
n − η1ζ

2

− η2ζ
b+1 −

(
1 + Ξ(ζ)

)

2

( sn
k2dn − s2n

)2

−
(
1 + Ξ(ζ)

)

2

×∆u2 +∆uζ. (60)

According to the Young’s inequality, it is true that

∆uζ ≤
(
1 + Ξ(ζ)

)

2
∆u2 +

1

2
(
1 + Ξ(ζ)

)ζ2, (61a)

sn
k2dn − s2n

ζ ≤
(
1 + Ξ(ζ)

)

2

( s2n
k2dn − s2n

)2

+
1

2
(
1 + Ξ(ζ)

)ζ2.

(61b)

Recalling Lemma 4 and combining (60) and (61), one has

V̇n ≤−
n∑

i=1

si
k2di − s2i

qisi −
n∑

i=1

βi

( si
k2di − s2i

) b+1
2

s
b+1
2

i

−
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i
−

(

η1 −
1

(
1 + Ξ(ζ)

)

)

× ζ2 −
n∑

i=1

Γυ2i +

n∑

i=1

1

2p2i

s2i
(
k2di − s2i

)2Ψ
2
i

(
θ∗2i − θ̂i

)

− η2ζ
b+1 +∆. (62)

Let a variable as θ̄ = max
{
θ∗21 , . . . , θ

∗2
n

}
and its estimation

is denoted as θ̂. The adaptive parameter θ̂ is updated by

˙̂
θ =

n∑

i=1

γ

2p2i

s2i
(
k2di − s2i

)2Ψ
2
i − 2γρθ̂ (63)

where γ and ρ are positive design constants. Accordingly, in

(35), (46) and (54), the estimated values θ̂1, θ̂i and θ̂n are

uniformity represented by θ̂ in (63). As a result, the actual

control law can be rewritten by the following form:

u =
1

gnκ

(

− qnzn − 1

2p2n

sn
k2dn − s2n

θ̂nΨ
2
n + ϖ̇n − βns

b+1
2

n

×
( sn
k2dn − s2n

) b−1
2 − hn

b+ 1

( sn
k2dn − s2n

)b

− smgm(k2dn − s2n)

(k2dm − s2m)
+ ζ

)

. (64)

For readability, the mathematical parameters and the control

algorithm are shown in Table I and Algorithm 1, respectively.

C. Stability Analysis

Theorem 1: Consider a constrained nonlinear system (1),

this study presents an observer-based adaptive finite-time

neural controller of the actual control law in (64), virtual

control laws in (35) and (46), adaptive law in (63), FTCTs

in (29) and (40), and ACS in (50) and (51) that can guarantee

i) the tracking errors converge to the bounded regions around

the origin in finite time; ii) the full-state constraints are never

violated.

Proof: i) Consider the estimation error θ̃ = θ̄− θ̂, we choose

the composite Lyapunov function, as

V = V0 + Vn +
1

2γ
θ̃2 (65)

Case 1: For |ζ| ≤ ιa, taking the derivative of (65) along

(23), (56) and (63) gives

V̇ ≤−
(
λmin(N)− 1

)

λmax(N)
λmax(N)∥x̃∥2−

n∑

i=1

si
k2di − s2i

qisi+Φθ̃2

− ϱ
(
λmax(N)∥x̃∥2

) b+1
2 + ϱ

(
λmax(N)∥x̃∥2

) b+1
2 + 2ρθ̃θ̂

−
n∑

i=1

βi

( si
k2di − s2i

) b+1
2

s
b+1
2

i −
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i

−
n∑

i=1

Γυ2i − (η1 − 1)ζ2 − η2ζ
b+1 +∆ (66)



TABLE I
MATHEMATICAL PARAMETERS

1: Desired signal and its derivative: yd, ẏd.

2: State observer and its parameters: x̂, and ki, (i = 1, . . . , n).

3: Actual control input and its parameters: u, and qn, pn, βn, hn.

4: Virtual control inputs and their parameters: α1, αi and αn, and q1, qi, p1,

pi, h1, hi, β1, βi, g1, gi, b (i = 1, . . . , n− 1).

5: Command filter signals and their parameters: ϖ2 and ϖi+1, and L1 and L2,

(i = 1, . . . , n− 1).

6: Filtering-error compensation signals and their parameters: υ1, υi and υn, and

c1, ci, cn, h1, hi and hn (i = 1, . . . , n− 1).

7: Improved Gaussian function and its parameters: φ1 and φ2.

8: ACS signal and its parameters: ζ, and b, η1, η2, ιa and ιb.

9: Adaptive law and its parameters: θ̂, and γ, pi and ρ, (i = 1, . . . , n− 1).

Algorithm 1: Design steps of the observer-based adap-

tive finite-time neural controller.

Input: desired signal yd; unknown function fi;
external disturbance di; Gaussian function

parameters φ1 and φ2; control parameters ki,
αi, qi, pi, hi, βi, gi, ci, b, L1, L2, η1, η2, γ, ρ,

η1, and η2; actuator saturation coefficients ūr
and ul; sample time T and total sample step N .

while i ≤ N do
1. Apply the improved Gaussian function h(u) and

the ACS ζ;

2. Construct a NN state observer x̂;

3. Select the composite Lyapunov function Vi;
4. Develop the FTCF ϑi,1 and ϑi,2 and the

filtering-error compensation system υi;
5. Use the adaptive RBFNN to solve nonlinearities

and disturbances;

6. Design the actual input u, virtual input αi, and

adaptive law θ̂.
end

Output: u, αi, υi, x̂i, y, si, θ̂.

where N and η1 are chosen to satisfy λmin(N) − 1 > 0 and

η1 > 1, respectively. It follows from the Yang’s inequality that

ρθ̃θ̂ = ρθ̃θ̄ − ρθ̃θ̃ ≤ −ρ(2ς − 1)

2ς
θ̃2 +

ρς

2
θ̄2 (67)

where ς > 1
2 .

This together with (72) leads to

V̇ ≤−
(
λmin(N)− 1

)

λmax(N)
λmax(N)∥x̃∥2 −

n∑

i=1

si
k2di − s2i

qisi

− ϱ
(
λmax(N)∥x̃∥2

) b+1
2 + ϱ

(
λmax(N)∥x̃∥2

) b+1
2

−
n∑

i=1

βi

( si
k2di − s2i

) b+1
2

s
b+1
2

i −
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i

−
n∑

i=1

Γυ2i − (η1 − 1)ζ2 − η2ζ
b+1 +∆−

(2µ

γ
− Φ

)

θ̃2

−
(µ

γ
θ̃2
) b+1

2

+
(µ

γ
θ̃2
) b+1

2

+ ρςθ̄2 (68)

where µ = γρ(2ς−1)
2ς . Note that if µ

γ
θ̃2 ≥ 1, one has

(
µ
γ
θ̃2
) b+1

2 − µ
γ
θ̃2 ≤

(
µ
γ

)
θ̃2 −

(
µ
γ

)
θ̃2 = 0; else if µ

γ
θ̃2 < 1,

one has
(
µ
γ
θ̃2
) b+1

2 − µ
γ
θ̃2 < 1− µ

γ
θ̃2 < 1. Therefore, whether

µ
γ
θ̃2 ≥ 1 or µ

γ
θ̃2 < 1, it follows that

(
µ
γ
θ̃2
) b+1

2 − µ
γ
θ̃2 < 1.

Based on Lemma 3, the following conclusion satisfies:

ϱ
(
λmax(N)∥x̃∥2

) b+1
2 ≤ ϱλmax(N)∥x̃∥2

+

(
1− b

2

)(
b+ 1

2

) 1+b
1−b

. (69)

In what follows, combining (68) and (69) yields

V̇ ≤−
((

λmin(N)− 1
)

λmax(N)
− ϱ

)

λmax(N)∥x̃∥2 −
n∑

i=1

( si
k2di − s2i

× qisi

)

− ϱ
(
λmax(N)∥x̃∥2

) b+1
2 −

n∑

i=1

(

βi

( si
k2di − s2i

) b+1
2

× s
b+1
2

i

)

−
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i
−

n∑

i=1

Γυ2i − η2ζ
b+1

− (η1 − 1)ζ2 +∆− µ

γ
θ̃2 −

(µ

γ
θ̃2
) b+1

2

+ (1 + ρςθ̄2)

+

(
1− b

2

)(
b+ 1

2

) 1+b
1−b

. (70)

By recalling Lemma 1 and (70), we can infer that

V̇ ≤−
((

λmin(N)− 1
)

λmax(N)
− ϱ

)

λmax(N)∥x̃∥2 −
n∑

i=1

Γυ2i

− ϱ
(
λmax(N)∥x̃∥2

) b+1
2 −

n∑

i=1

qi log
k2di

k2di − s2i
+

n∑

i=1

1

2p2i

−
n∑

i=1

βi

(

log
k2di

k2di − s2i

) b+1
2

−
n∑

i=1

hi
b+ 1

υb+1
i − η2ζ

b+1

−
(µ

γ
θ̃2
) b+1

2 − µ

γ
θ̃2 − (η1 − 1)ζ2 +∆+ (1 + ρςθ̄2)

+

(
1− b

2

)(
b+ 1

2

) 1+b
1−b

≤− Λ1V − Λ2V
b+1
2 + Λ3 (71)

where Λ1 = min
{λmin(N)−1

λmax(N) −ϱ, 2qi, 2Γ, 2µ, 2(η1−1)
}

, Λ2 =

min
{
ϱ, βi2

b+1
2 , hi

b+12
b+1
2 , (2µ)

b+1
2 , η22

b+1
2

}
, and Λ3 = ∆ +

(
1 + ρςθ̄2

)
+
(
1−b
2

)(
b+1
2

) 1+b
1−b +

n∑

i=1

1
2p2i

.

Case 2: For |ζ| ≤ ιa, differentiating both sides of (65)

becomes the following inequality:

V̇ ≤−
(
λmin(N)− 1

)

λmax(N)
λmax(N)∥x̃∥2 −

n∑

i=1

si
k2di − s2i

qisi

− ϱ
(
λmax(N)∥x̃∥2

) b+1
2 + ϱ

(
λmax(N)∥x̃∥2

) b+1
2 + 2ρθ̃θ̂

−
n∑

i=1

βi

( si
k2di − s2i

) b+1
2

s
b+1
2

i −
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i

−
n∑

i=1

Γυ2i −
(

η1 −
1

2

)

ζ2 − η2ζ
b+1 +∆. (72)



Similar calculation steps are made based on (67)-(70) to get

V̇ ≤−
((

λmin(N)− 1
)

λmax(N)
− ϱ

)

λmax(N)∥x̃∥2 −
n∑

i=1

Γυ2i

− ϱ
(
λmax(N)∥x̃∥2

) b+1
2 −

n∑

i=1

qi log
k2di

k2di − s2i
+

n∑

i=1

1

2p2i

−
n∑

i=1

βi

(

log
k2di

k2di − s2i

) b+1
2

−
n∑

i=1

hi
b+ 1

υb+1
i − η2ζ

b+1

−
(µ

γ
θ̃2
) b+1

2 − µ

γ
θ̃2 −

(

η1 −
1

2

)

ζ2 +∆+ (1 + ρςθ̄2)

+

(
1− b

2

)(
b+ 1

2

) 1+b
1−b

≤− Λ4V − Λ2V
b+1
2 + Λ3 (73)

where η1 > 1
2 and Λ4 = min

{λmin(N)−1
λmax(N) −

ϱ, 2qi, 2Γ, 2µ, 2
(
η1 − 1

2

)}
.

Case 3: For the remaining case, similar to the previous

steps, the derivative of (65) along (62) is given by

V̇ ≤−
(
λmin(N)− 1

)

λmax(N)
λmax(N)∥x̃∥2 −

n∑

i=1

si
k2di − s2i

qisi

− ϱ
(
λmax(N)∥x̃∥2

) b+1
2 + ϱ

(
λmax(N)∥x̃∥2

) b+1
2 + 2ρθ̃θ̂

−
n∑

i=1

βi

( si
k2di − s2i

) b+1
2

s
b+1
2

i −
n∑

i=1

hi
b+ 1

υb+1
i +

n∑

i=1

1

2p2i

−
n∑

i=1

Γυ2i −
(

η1 −
1

(
1 + Ξ(ζ)

)

)

ζ2 − η2ζ
b+1 +∆

≤− Λ5V − Λ2V
b+1
2 + Λ3 (74)

where η1 > 1/
(
1 + Ξ(ζ)

)
and Λ5 = min

{
λmin(N)−1
λmax(N) −

ϱ, 2qi, 2Γ, 2µ, 2
(
η1 − 1

1+Ξ(ζ)

)}

.

According to the results of (71), (73) and (74), we have

V̇ ≤ −Λ̄V − Λ2V
b+1
2 + Λ3 (75)

where Λ̄ = max{Λ1,Λ4,Λ5} > 1. In view of Lemma 2, one

knows that V (x) approaches the bounded region as

Ω =

{

lim
t→T

V ≤min

{

Λ3

(1− ιc)Λ̄
,

(
Λ3

(1− ιc)Λ2

) 2
b+1

}}

(76)

where 0 < ιc < 1.

By computation, it follows from (65) and (76) that

|υi| ≤ min

{
√

2
Λ3

(1− ι)Λ̄
,

√

2

(
Λ3

(1− ι)Λ2

) 2
b+1

}

,

|si| ≤ min

{

kdi

√

1− e
− 2Λ3

(1−ι)Λ̄ , kdi

√

1− e
−2

(
Λ3

(1−ι)Λ2

) 2
b+1

}

.

(77)

From (27) and (77), the tracking error converges to the region

|zi| = |si + υi| ≤ |si|+ |υi| =

min

{
√

2
Λ3

(1− ιc)Λ1
,

√

2

(
Λ3

(1− ιc)Λ2

) 2
b+1

}

+

min

{

kdi

√

1− e
− 2Λ3

(1−ιc)Λ1 , kdi

√

1− e
−2

(
Λ3

(1−ιc)Λ2

) 2
b+1

}

(78)

and the total convergence time satisfies following

T ≤ t0 +max

{
2

ιcΛ̄(1− b)
ln

(
ιcΛ̄V

1−b
2 (t0) + Λ2

Λ2

)

,

2

Λ̄(1− b)
ln

(
Λ̄V

1−b
2 (t0) + ιcΛ2

ιcΛ2

)}

(79)

where t0 is the initial time. From (78) and (79), it is clear that

all the states are bounded and the errors arrive at arbitrarily

small bounded regions after a finite time.

ii) Because the compensation signal υi is bounded, there is

a constant ks > 0 such that |si| ≤ ks. Based on Assumption

1 and x1 = z1 + yd = s1 + υ1 + yd, we can further know that

when kd1 is denoted as kd1 = ka1 − ks − Y1, then x1 holds

the inequality |x1| ≤ |s1|+ |υ1|+ |yd| ≤ ks+kd1+Y1 = ka1.

From Lemma 5, the differentiator’s output ϖi exists a upper

bound ϖ̄i, that is, |ϖi| ≤ ϖ̄i. Then, it satisfies |x2| ≤ |s2|+
|υ2| + |ϖ2| ≤ ks + kd2 + ϖ̄2 = ka2, if we denote kd2 as

kd2 = ka2 − ks − ϖ̄2. By repeating the previous processes, it

follows that the system states are bounded by |xj | ≤ kaj , (j =
3, . . . , n), if kdj is denoted as kdj = kaj−ks−ϖ̄j . According

to above discussions and analysis, we can make the conclusion

that the constraints of all the system states are never violated,

that is, |xi| ≤ kai. As a result, this finishes the proof ii).

Remark 4: In the traditional BC, the multiple differentiations

of virtual signals may be impossible to completely avoid,

which will cause the ”explosion of complexity” problem. As we

know, although the DSC can handle this problem by applying

the FTCF, the filtering-errors caused by the filtering process

are inevitable. By additionally introducing the filtering-error

compensation system, the aforesaid problems can be overcome

and control performance can be improved.

Remark 5: For the ACS designed in this study, the following

benefits should be highlighted: (i) Compared with the works

[35], [36], the singular issue is completely addressed when ζ is

close to the origin; (ii) Different from the works in [32], [36],

the saturation-approximation error is rapidly compensated and

the output of the ACS is smooth; (iii) Unlike the result [37],

the boundedness of ∆u is not required.

Remark 6: Compared with the well-known conclusions, the

key advantages of our work are summarized by

(1) For the DSC schemes in [3], [14], [20], where the filtering

error would reduce the control performance, the filtering

error is solved without destroying the finite-time property.

(2) Unlike [24], [25], [30], [40], this study simultaneously

considers external perturbations, uncertain functions, full-

state constraints, and actuator fault, which makes the pro-

posed framework more reliable for practical engineering.

(3) For the direct NN-based approximation ways in [10], [30],

[39], where each component of the optimal NN weight
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Fig. 2. Time response of all the signals for Example 1.

Fig. 3. Physical structure of the inverted pendulum system

needs to be updated online, they will severely consume

the limited calculation resource since a large number of

NN learning parameters are required to obtain satisfactory

approximation results. For this point, this study utilizes the

RBFNN technology to approximate ∥Fi∥, (i = 1, . . . , N)
rather than Fi, which reduces the number of learning

parameters. As a result, the proposed NN method can

significantly mitigate the computation burden.

Remark 7: To achieve better control performance, the key

guidelines for the parameter choice are summarized as

1) First, the control parameters ci, hi, qi, βi, and ηi play

important roles in dominating the system robustness and

the control accuracy. Larger values of those parameters can

realize the better control performance.

2) Besides, the adaptation gain γ critically determines the

update speed of θ̂. Larger value of γ helps to improve

the update speed, however overlarge value may cause the

overestimation problem and more energy consumption.

3) What is more, the appropriate choice of the parameter ρ
avoids the phenomenon of the parameter drifting, and the

parameter b should satisfy b ∈ (0, 1) and a smaller value

of b will contribute to a faster convergence rate.

IV. RESULT ANALYSIS

To illustrate the effectiveness of the obtained results, four

comparative examples are provided in this section.

A. Example 1 (General Second-order System)

Consider a second-order nonlinear system described by






ẋ1 = (0.6x2 + x21) + (1 + 0.02 sin(x1))x2
+(0.5 cos(t) + 0.2)

ẋ2 = (0.2x1x
2
2 + 0.1) + (1.2 + 0.01 cos(x2))τ

+(0.8 sin(t)− 0.1)

(80)

where f1 = 0.6x2 + x21, f2 = 0.2x1x
2
2 + 0.1, g1 = 1 +

0.02 sin(x1), g2 = 1.2 + 0.01 cos(x2), d1 = 0.5 cos(t) + 0.2,

d2 = 0.8 sin(t)−0.1, and the saturation coefficients are ūr = 5
and ur = −10. The desired signal is set as yd = sin(0.5t) +
cos(t), and all states are constrained within |x̂1| ≤ ka1 = 2.5
and |x̂2| ≤ ka2 = 3. The different controllers are described by

1) Proposed controller 1: This controller considers the prob-

lems of the actuator saturation, external disturbances, and

state constraints, and its design parameters are set as

q1 = 10, q2 = 10, p1 = 1, p2 = 1, kd1 = 0.6, kd2 = 0.7,

b = 19
21 , h1 = 10, h2 = 10, β1 = 30, β2 = 30, γ = 2,

ρ = 1, c1 = 1, c2 = 1, L1 = 10, L2 = 10, φ1 = 0.6,

φ2 = 1.1, s = 30, ςi = 0, νi = 2, and x̂(0) = ϑ1,1(0) =
ϑ1,2(0) = θ̂(0) = ζ(0) = υ1(0) = υ2(0) = 0.

2) Proposed controller 2: Compared with the proposed con-

troller 1, this controller ignores the actuator saturation

problem, and its design values are the same as those of the

proposed controller 1. This is to verify that the proposed

controller 1 can solve the actuator saturation effectively.

3) Adaptive command filtering backstepping controller [41]

(called as ACFBC hereafter) is used as a comparison, to



0 10 20 30 40

Time [s]

-1.8

-1.6

-1

-0.5

0

0.5

1

1.6

1.8

16.5 17 17.5 18 18.5

0.8

0.9

1

28.5 29 29.5 30 30.3

-1

-0.9

-0.8

(a) System output under different controllers

0 5 10 15 20 25 30 35 40

Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 Proposed controller 1

Proposed controller 2

ACFBC

FTC

(b) Tracking error under different controllers

0 5 10 15 20 25 30 35 40

Time [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(c) System state under different controllers

0 5 10 15 20 25 30 35 40

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(d) Compensated error signals under proposed
controller 1

0 5 10 15 20 25 30 35 40

-10

-8

-6

-4

-2

0

0 5 10 15 20 25 30 35 40

Time [s]

-0.1

0

0.1

0.2

(e) Virtual signal, FTCF output and error com-
pensation signal under proposed controller 1

0 5 10 15 20 25 30 35 40

0

2

4

6

8

0 5 10 15 20 25 30 35 40

Time [s]

-10

-5

0

5

10

15

(f) Adaptive parameter and control input under
proposed controller 1

Fig. 4. Time response of all the signals for Example 2.

illustrate the stronger robustness of proposed controller 1,

which can be mathematically written as 3.1) Virtual input:

α1 = 1
g1

(
− 1

2p21

s31
k4
d1−s

4
1
θ̂Ξ2

1− 3
4s1

(
k4d1−s41

)− 1
3 −q1z1−ẏd

)
;

3.2) Error-compensation system: υ̇1 = −c1υ1 + g1υ2 +
g1(ϖ1−α1) and υ̇2 = −c2υ2; 3.3) Actual input: u = 1

g2

(
−

q2z2 − 1
2p21

s32
k4
d2−s

4
2
θ̂Ξ2

2 − 3
4s2

(
k4d2 − s42

)− 1
3
)
; 3.4) Adaptive

law:
˙̂
θ =

∑2
i=1

γ

2p2i

s6i(
k4
di
−s4i

)2Ξ2
i − 2γρθ̂.

4) Finite-time controller [24] (called as FTC hereafter) is

used to infer the fast convergence of proposed controller

1, which is described as: 4.1) Virtual input: α1 = 1
g1

(
−

β1
(

z1
k2
d1−z

2
1

) b−1
2 z

b+1
2

1 −WT
1 Ξ1+ẏd− (ha+3)z1

2(k2
d1−z

2
1)

)
; 4.2) Actual

input: u = 1
g2

(
− β2

(
z2

k2
d2−z

2
2

) b−1
2 z

b+1
2

2 − l2x̃2 −WT
2 Ξ2 −

(k2d2−z
2
2)z1

k2
d1−z

2
1

− z2
2(k2

d2−z
2
2)

+ α̇2

)
; 4.3) Adaptive laws: Ẇ1 =

γΞ1z1
k2
d1−z

2
1
− γρW1 and Ẇ2 = γΞ2z2

k2
d2−z

2
2
− γρW2.

The comparative results of Example 1 are plotted in Fig.

2. Among them, Figs. 2 (a) and 2 (b) show that the tracking

errors of the proposed controllers are smaller than those of the

ACFBC and FTC schemes, and their system outputs satisfy

the requirement of the state constraint. From Figs. 2 (c) and

(d), it can be observed that the state x̂2 and the compounded

error signals s1 and s2 are constrained to the required ranges.

Fig. 2 (e) displays the curves of the virtual control signal α1,

FTCF’s output ϑ1,1, and filtering-error compensation signal

υ1. From Fig. 2 (e), we can know that the designed filtering-

error compensation system can effectively compensate for the

effect of the filtering error. Fig. 2 (f) shows that the adaptive

parameter θ̂ quickly converges to around zero and the control

input τ is constrained to the specified range by means of the

ACS and an improved Gaussian function. By comparison, it is

Fig. 5. Physical structure of the single-link manipulator

fully verified that the proposed controller 1 has a better control

performance and satisfies the system constraints.

B. Example 2 (Second-Order Practical System)

We first take into account the inverted pendulum system

[31], as shown in Fig. 3, and its dynamics is modeled by







ẋ1 = x2

ẋ2 =
g sin θ−

mLx22 cos θ sin x1
mc+m

L
(

4
3−

m cos2 x1
mc+m

) +
cos x1
mc+m

L
(

4
3−

m cos2 x1
mc+m

)τ + d(t)
(81)

where x1 and x2 are the position and velocity of the pendulum

angle, respectively; d(t) = 0.6 cos(t) + sin(0.5t) and τ are

the external disturbance, such as rugged slideway and wind-

gust disturbance, and the pull force of the motor, respectively;

mc = 1 [kg] is the cart’s mass, m = 0.1 [kg] is the pendulum’s

mass and g = 9.81 [m/s2]; L = 1 [m] is a half of the length

of the pendulum. The saturation coefficients are ūr = 8 and

ur = −10. The desired signal is yd = 2 sin(t) + cos(0.5t)
and all states are constrained to |x1| ≤ ka1 = 1.6 and |x2| ≤
ka2 = 2.5. The design parameters are set as q1 = 2, q2 = 2,

p1 = 10, p2 = 10, kd1 = 0.8, kd2 = 0.8, b = 13
15 , h1 = 8,

h2 = 8, β1 = 5, β2 = 5, γ = 0.1, ρ = 1, c1 = 1, c2 = 1,
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Fig. 6. Time response of all the signals for Example 3.

L1 = 10, L2 = 10, ςi = 0, νi = 2, ϑ1,1(0) = 0, ϑ1,2(0) = 0,

θ̂(0) = 0, ζ(0) = 0, υ1(0) = 0, and υ2(0) = 0.

Figs. 4 (a) and (b) exhibit the curves of the system output

x̂1 and the tracking error x̂1 − yd, respectively. From Figs.

4 (a) and 4 (b), we can see that the system output of the

proposed controller 1 fast tracks yd and is not violated.

Although the system state never exceeds the constraint under

the ACFBC and FTC, their convergence rates are solwer than

other controllers. As can be found in Fig. 4 (c), the system

state x̂2 satisfies its constraint requirement. The trajectories of

the compensated error signals s1 and s2 are presented in Fig. 4

(d). This reflects the variables s1 and s2 satisfy the constraints.

The curves of the virtual control signal α1, FTCF’s output

ϱ1,1, and the error compensation signal υ1 are given in Fig. 4

(e), which shows that the FTCF can quickly approximate the

virtual control signal with high precision. Furthermore, the

trajectories of the parameter θ̂ and actual input u are plotted

in Fig. 4 (f), which reflects that the boundedness of θ̂ can be

ensured and the control input τ holds the saturation constraint.

C. Example 3 ( Third-Order Practical System)

As shown in Fig. 5, we consider a single-link manipulator

[29], which can be written as






ẋ1 = x2

ẋ2 = 1

J
Ku

+
mL2

0
3Ku

+
M0L

2
0

Ku
+

2M0L
2
0

5Ku

(

x3 − B0

Ku
x2

)

−
mL0g
2Ku

+
M0L0g
Ku

J
Ku

+
mL2

0
3Ku

+
mL2

0
Ku

+
2mL2

0
5Ku

sin(x1)− R0x2x
2
3

M0

ẋ3 = 1
L
τ − Kb

L
x2 − R

L
x3 − R0x2 sin x3

L

(82)

where [x1, x2, x3]
T = [q, q̇, I]T and τ = Ue with q, I

and Ue being the angular motor position, the armature cur-

rent, and input voltage; and the physical parameters are set

as Back-emf coefficient Kb = 0.09 [Nm/A], load radius

R0 = 0.23 [m], conversion value Ku = 0.9 [Nm/A],
viscous friction coefficient B0 = 0.01625 [Nms/rad], rotor

inertia J = 0.1625 [Kg ·m2], load mass M0 = 0.434 [Kg],
link length L0 = 0.03 [m], link mass m = 0.506 [Kg],
gravity coefficient g = 9.81 [N/kg], armature resistance

R = 0.0005 [Ω], and armature inductance L = 0.5 [L].
The saturation coefficients are ūr = 10 and ur = −8. The

desired trajectory is yd = 0.5(sin(t) + sin(0.5t)) and the

boundaries of constrained states are set as |x1| ≤ ka1 = 1.8,

|x2| ≤ ka2 = 2.5, and |x3| ≤ ka3 = 2.5. The control

parameters are q1 = q2 = q3 = 0.1, p1 = 10, p2 = 10, p3 = 5,

kd1 = 1.2, kd2 = 1.2, kd3 = 1.2, b = 199
201 , h1 = 5, h2 = 5,

h3 = 5, β1 = 10, β2 = 8, β3 = 5, γ = 3, ρ = 1, η1 = 3,

η2 = 5, c1 = 2, c2 = 2, c3 = 2, L1 = 10, L2 = 10, ςi = 0,

νi = 0.5, and ϑ1,1(0) = ϑ1,2(0) = ϑ2,1(0) = ϑ2,2(0) =
θ̂(0) = ζ(0) = υ1(0) = υ2(0) = υ3(0) = 0.

Figs. 6 (a) and (b) reflect that the proposed controllers

1 and 2 can fast track the desired signal, their errors are

smaller than the ACFBC and FTC, and satisfy the full-state

constraints. Despite the presence of actuator saturation, the

performance of proposed controller 1 is almost the same as that

of the proposed controller 2. This is because when the system

encounters the input saturation, the ACS and the improved

Gaussian function can solve the input saturation. Figs. 6 (c)

and 6 (d) show that under the proposed controller 1, the curves

of the compensated error signals s1, s2 and s3 and the system

states x2 and x3 are not violated for all time. The curves of

the virtual control signals α1 and α2, FTCF’s outputs ϱ1,1 and

ϱ2,1, and error compensation signals υ1 and υ2 are plotted in

Fig. 6 (e). In addition, Fig. 6 (f) shows the responses of the

parameter θ̂ and the control input τ .



(a) Time response of roll angle (b) Time response of pitch angle (c) Time response of yaw angle
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(g) Time response of roll angular velocity
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(i) Time response of yaw angular velocity

Fig. 7. Time response of all the signals for Example 4 under different controllers.

D. Example 4 (Quadrotor attitude tracking system)

The attitude dynamics of the quadrotor is formulated as [33]






ϕ̈ = 1
Iφ
τϕ + θ̇ψ̇

Iθ−Iψ
Iφ

− Hφ
Iφ
ϕ̇+

dφ
Iφ

θ̈ = 1
Iθ
τθ + ψ̇ϕ̇

Iψ−Iφ
Iθ

− Hθ
Iθ
θ̇ + dθ

Iθ

ψ̈ = 1
Iψ
τψ + ϕ̇θ̇

Iφ−Iθ
Iψ

− Hψ
Iψ
ψ̇ +

dψ
Iψ

(83)

where ϕ, θ, and ψ stands for the roll, pitch, and yaw angles;

Iϕ, Iθ, and Iψ represent the inertia parameters; τϕ, τθ, and τψ
describe the control inputs subject to the actuator saturation;

dϕ, dθ, and dψ are the unknown disturbances; and Hϕ, Hθ, and

Hψ denote the aerodynamic drag parameters. Denote xϕ,1 =
ϕ, xθ,1 = θ, xψ,1 = ψ, xϕ,2 = ϕ̇, xθ,2 = θ̇, and xψ,2 = ψ̇,

(83) is transformed into the generic model, as
{
ẋi,1 = gi,1xi,2
ẋi,2 = gi,2τi + fi,2 + di,2, i = ϕ, θ, ψ

(84)

where gi,1 = 1, gi,2 = 1
Ii

, di,2 = di
Ii

, fϕ,2 = θ̇ψ̇
Iθ−Iψ
Iφ

− Hφ
Iφ
ϕ̇,

fθ,2 = ψ̇ϕ̇
Iψ−Iφ
Iθ

− Hθ
Iθ
θ̇, and fψ,2 = ϕ̇θ̇

Iφ−Iθ
Iψ

− Hψ
Iψ
ψ̇.

The physical parameters are Iϕ = Iθ = 0.023 [kg ·m2],
Iψ = 0.042 [kg ·m2], and Hϕ = Hθ = Hψ = 2.4 ×
10−7 [Ns2/rad2]. The desired attitude signals are set as

ϕd(t) = 0.8 sin(π5 t − π
4 ) [rad], θd(t) = 0.8 sin(0.3πt +
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Fig. 8. Time response of control inputs under proposed controller 1

π
6 ) [rad], and ψd(t) = 0.8 cos(0.45t) [rad], as well as

ϕ(0) = 0 [rad],θ(0) = 1 [rad], ψ(0) = 0.5 [rad], ϕ̇(0) = 1,

θ̇(0) = 0.5 and ψ̇(0) = 0 [rad]. The states are constrained

as |ϕ| ≤ 1.2, |θ| ≤ 1.2, |ψ| ≤ 1.2, |ϕ̇| ≤ 1.5, |θ̇| ≤ 1.5,

and |ψ̇| ≤ 1.5. The control parameters are chosen as qi,1 =
qi,2 = 3, pi,1 = pi,2 = 6, ki,d1 = ki,d2 = 1.5, b = 13

15 ,

hi,1 = hi,2 = 5, βi,1 = βi,2 = 7, γi,1 = 1, ρi,2 = 0.1,

ηi,1 = ηi,2 = 4, ci,1 = ci,2 = 2, Li,1 = Li,2 = 10, ςi = 0,

νi = 1, ϑi,1,1(0) = ϑi,1,2(0) = 0, ϑi,2,1(0) = ϑi,2,2(0) = 0,

θ̂i(0) = 0, ζi(0) = 0, and υi,1(0) = υi,2(0) = 0.

Figs. 7(a)-7(f) show the attitude trajectories and the corre-



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT CONTROLLERS

Mode Index

Controller

Proposed

controller 1

Proposed

controller 2
ACFBC FTC

Example 1

µSE 4.52 4.51 21.88 27.03

µAE 95.51 95.28 260.01 359.88

µTWAE 1.72×105 1.72×105 2.71×105 6.83×105

Example 2

µSE 4.30 4.25 14.24 40.74

µAE 74.51 74.01 204.93 300.68

µTWAE 1.30×105 1.29×105 3.80×105 5.18×105

Example 3

µSE 13.93 13.74 54.89 61.15

µAE 125.26 124.58 326.61 447.52

µTWAE 2.09×105 2.08×105 5.07×105 8.71×105

Example 4

µSE 64.03 62.89 167.87 273.47

µAE 684.49 672.64 1240.04 1687.16

µTWAE 1.67×106 1.64×106 3.03×106 4.07×106

sponding errors of the different controllers, and the proposed

controllers 1 and 2 have a better performance than other

controllers. Considering the results in Figs. 7 (a)-7 (c), the

response of the proposed controller 2 is faster than that of the

proposed controller 1 when there is the input saturation. From

Figs. 7 (a)-(c) and (g)-(i), it can be found that the constraints of

the attitude angles and angular velocities are not violated. Fig.

8 reveals that the proposed controller 1 can handle the input

saturation, and control inputs do not exceed their bounds.

Remark 8: Recently, various robust controllers have been

successfully used to achieve high-performance control of

unmanned aerial vehicles [44]–[46], and their effectiveness

has been verified by real experiments. These methods will

inspire us in the future to improve the flight effect in different

methods. Specifically, a disturbance observer-based sliding

mode controller was proposed in [44]. In [45], a robust control-

based backstepping technique for the position subsystem and

a geometric control for the attitude subsystem were presented

to improve system robustness. In [46], the authors developed

a feedback PID strategy to control the designed fully actuated

system. Compared with these methods in [44]–[46], although

the proposed method not only ensures that the tracking errors

converge to the regions after a finite time but also eliminates

the effect of actuator saturation, it is quite difficult to select

relatively optimal design parameters in complex experiments,

which requires a lot of time and effort.

E. Numerical comparative analysis

In addition to the above curves, specific error data are

collected to quantitatively assess the control performance.

This study uses three evaluation indices as: (1) Squared

error (SE): µSE =
∑N
i=1

(
x̂1(i) − yd(i)

)2
; (2) Absolute

error (AE): µAE =
∑N
i=1 |x̂1(i) − yd(i)|; (3) Time-weighted

absolute error (TWAE): µTAE =
∑N
i=1 i|x̂1(i) − yd(i)|. For

the Example 4, the evaluation indices are modified as µSE =
∑3
j=1

∑N
i=1

(
x̂j,1(i)−ϕd(i)

)2
, µAE =

∑3
j=1

∑N
i=1 |x̂j,1(i)−

θd(i)|, and µTAE =
∑3
j=1

∑N
i=1 i|x̂j,1(i)− ψd(i)|.

The quantified data is summarized in Table. II. We can

see that the proposed controllers 1 and 2 show a stronger

robustness than the ACFBC and FTC. By comparison, the

ACFBC has a higher control precision than the FTC, which

is because the error-compensation system is integrated into

the ACFBC to solve the filtering error. Both the proposed

controllers 1 and 2 can realize relatively precise control, but

the effect of the proposed controller 2 is better, as can be

deduced from the quantitative comparison listed in Table II.

In contrast to the proposed controller 2, the proposed controller

1 overcomes the actuator saturation effectively. As a matter of

fact, the actuator saturation will prevent from the increase of

the control inputs. This inevitably undergoes more program

execution time. Fortunately, the control precision is decreased

only a little but not significantly. Through the abovementioned

discussion, it can be verified that the proposed controller 1

achieves the strong robustness and saturation rejection.

V. CONCLUSION

This article investigates an observer-based adaptive neural

FTC scheme for constrained nonlinear systems. First, an NN

observer is constructed to observe the immeasurable states.

The combination of an improved Gaussian function and ACS

is used to solve the actuator saturation. Then, the FTCF and

filtering-error compensation system are designed to approxi-

mate the virtual signals and address the approximation errors.

By applying the NN and virtual parameter learning algorithm,

only one adjustable parameter is required. In each controller

design procedure, the BLF is incorporated to ensure full the

states are never violated and the tracking errors converge to the

equilibrium in a finite time. However, the following drawbacks

are worth considering: 1) we will focus on how to extend

the presented strategy to solve time-varying state constraints

instead of constant-state constraints; 2) although the Remark

7 gives a standard guideline for the selection of control

parameters, another valuable topic is the study of optimization

problems to determine optimal design parameters; and 3)

the research of time-varying delays and actuator faults will

be explored to improve the system safety and expand the

application value in the spacecraft motion [18], [47], intelligent

manufacturing [48]–[50], robotic systems [12], [35], etc.
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