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Abstract—Convolution neural networks (CNNs) have suc-
ceeded in compressive image sensing. However, due to the induc-
tive bias of locality and weight sharing, the convolution operations
demonstrate the intrinsic limitations in modeling the long-range
dependency. Transformer, designed initially as a sequence-to-
sequence model, excels at capturing global contexts due to the
self-attention-based architectures even though it may be equipped
with limited localization abilities. This paper proposes CSformer,
a hybrid framework that integrates the advantages of leveraging
both detailed spatial information from CNN and the global
context provided by transformer for enhanced representation
learning. The proposed approach is an end-to-end compressive
image sensing method, composed of adaptive sampling and
recovery. In the sampling module, images are measured block-
by-block by the learned sampling matrix. In the reconstruction
stage, the measurement is projected into dual stems. One is
the CNN stem for modeling the neighborhood relationships by
convolution, and the other is the transformer stem for adopting
global self-attention mechanism. The dual branches structure is
concurrent, and the local features and global representations are
fused under different resolutions to maximize the complementary
of features. Furthermore, we explore a progressive strategy and
window-based transformer block to reduce the parameter and
computational complexity. The experimental results demonstrate
the effectiveness of the dedicated transformer-based architecture
for compressive sensing, which achieves superior performance
compared to state-of-the-art methods on different datasets.

Index Terms—Compressive sensing, transformer, CNN, image
reconstruction.

I. INTRODUCTION

COMPRESSIVE sensing (CS) theory demonstrates that a
signal can be recovered from a much fewer acquired

measurement than prescribed by Nyquist theorem with a high
probability when the signal is sparse in certain transform
domains [1]. The benefits of reducing sampling rate allow
low-cost and efficient data compression, thereby relieving data
storage and transmission bandwidth burden. These inherent
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merits enable it to be very desirable in a series of applications,
including single-pixel camera [2], magnetic resonance imaging
[3], [4], video CS [5], and snapshot compressive imaging [6].

In a compressive image sensing method, for the image
x ∈ RN , the sampling stage first performs fast sampling of
x to obtain the linear random measurements y = Φx ∈ RM .
Here, Φ ∈ RM×N is the sensing matrix with M � N , and
M
N denotes the CS sampling ratio. In the recovery stage, our
goal is to infer the original image x given y. Such inverse
problem is typically under-determined because the number of
unknowns N is much larger than the number of observations
M . To address this problem, traditional CS methods [7]–[9]
explore the sparsity as an image prior and find the sparsest
signal among all measurements y by iteratively optimizing the
sparsity-regularized problem. Although these methods usually
have theoretical guarantees and simultaneously inherit inter-
pretability, they inevitably suffer from the high computational
cost dictated by the interactive calculations.

Compared to the conventional CS methods, neural networks
have been leveraged to solve the image CS reconstruction
problems by directly learning the inverse mapping from the
compressive measurements to the original images. Recently,
with the advent of deep learning (DL), diverse data-driven
deep neural network models for CS have been shown to
achieve impressive reconstruction quality and efficient recov-
ery speed [10]–[20]. In addition, the DL based CS methods
often jointly learn the sampling and the reconstruction network
to further improve the performance [12], [16], [17], [19].

In the existing CS literature, the DL based CS methods can
be divided into two categories. The first is deep unfolding
methods [11], [13], [14], [16], [17], [19], which leverage
the deep neural network to mimic the iterative restoration
algorithms. They attempt to maintain the merits of both itera-
tive recovery methods and the data-driven network methods
by mapping each iteration into a network layer. The deep
unfolding approaches can extend the representation capacity
over iterative algorithms and avoid the limited interpretability
of deep neural networks. However, since these methods are
inspired by the traditional optimization processes, it inevitably
limits the full potential of deep neural networks.

The second group is the straightforward methods [10], [12],
[15], [21]–[23] that are free from any handcrafted constraint.
These methods can reconstruct images by one pass feed-
forward of the learned convolutional neural network (CNN)
given the measurement y. However, the principle of local
processing limits CNN in trems of receptive fields and brings
challenges in capturing long-range dependencies. Moreover,
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the weight sharing of the convolution layer leads the inter-
actions between images and filters to be content-independent
[24]. Numerous efforts have been devoted to addressing these
problems, such as enlarging the kernel size of convolution,
using multi-scale reconstruction, dynamic convolution, and
the attention mechanism. Sun et al. [20] explore the non-
local prior to guide the network in view of the long-range
dependencies problem. Furthermore, Sun et al. [22] attempt to
adopt dual-path attention network for CS, where the recovery
structure is divided into structure and texture paths. Despite
amplifying the ability of context modeling to some extent,
these approaches are still unable to escape from the limitation
of the locality, stranded by the CNN architecture.

Unlike prior convolution-based deep neural networks, trans-
former [25], designed initially for sequence-to-sequence pre-
diction in NLP domain, is well-suited to modeling global
contexts due to the self-attention-based architectures. Inspired
by the significant revolution of transformer in NLP, several
researchers recently attempt to integrate the transformer into
computer vision tasks, including image classification [26],
image processing [24], [27], [28], and image generation [29].
With the simple and general-purpose neural architecture, trans-
former has been considered as an alternative to CNN and
strived for better performance. However, a naı̈ve application
of transformer to CS reconstruction may not produce suf-
ficiently competitive results that match the performance of
CNN. The reason is that transformer can capture high-level
semantics due to the global self-attention, which is helpful for
image classification but lacks the low-level details for image
restoration. In general, CNN has better generalization ability
and faster convergence speed with its strong biases towards
feature locality and spatial invariance, making it very efficient
for the image. Transformer has higher model capacity thanks
to less restriction by inductive biases, enabling self-attention
layers to learn the inherent characteristics of larger datasets
well. Moreover, the explosive computational complexity and
colossal memory explosion for high resolution reconstruction
are other challenges in applying transformer to CS.

To cope with the above issues and further refine the re-
construction quality, we propose CSformer, an effective and
efficient transformer based method for image CS. CSformer
integrates the advantages of leveraging both detailed spatial in-
formation from CNN and the global context provided by trans-
former. We design a hybrid framework that gradually increases
the feature map resolution while reducing the dimension,
enhancing the feature representation by multi-scale features
while reducing memory cost and computational complexity.
The proposed approach is an end-to-end compressive image
sensing method composed of adaptive sampling and recovery.
In the sampling module, images are measured block-by-block
by the learned sampling matrix. In the reconstruction stage,
we employ a progressive reconstruction strategy, and the CNN
features are aligned with the layer-wise representations from
the transformer. On one hand, the progressive reconstruction
can process the multi-scale feature maps, which is helpful
for representation learning and reduces the complexity of the
parameters. On the other hand, CSformer enjoys the elaborate
combination of local and global context by combining the

two types of features at each resolution. Compared with the
prevalent CNN-based methods, CSformer benefits from sev-
eral aspects: (1) self-attention mechanism ensures the content-
dependency between image and attention weight, (2) CNN
provides a locality to transformer that lacks in addressing long-
range dependencies, (3) progressive reconstruction balances
the complexity and efficiency. To the best of our knowl-
edge, CSformer is the first work to apply the transformer
to CS. Experimental results demonstrate that our method has
a promising performance and outperforms existing iterative
methods and DL based methods.

The main contributions of this work can be summarized as
follows:

1) We propose CSformer, a hybrid framework that couples
transformer with CNN for adaptive sampling and recon-
struction of image CS. The proposed CSformer inherits
both local features from CNN and global representations
from transformer.

2) To make full use of the complementary features of
transformer and CNN, we introduce progressive recon-
struction to aggregate the multi-scale features, which
are thoughtfully designed for image CS to balance the
complexity and performance with spatial variance.

3) Extensive experiments on various datasets demonstrate
the superiority of the proposed CSformer. We reveal the
great potential of transformer in combination with CNN
for CS.

II. RELATED WORK

In this section, we present the related works. We first review
the existing CS methods of natural images in section II-A.
Then we provide a brief overview of the recent development
of vision transformer in section II-B.

A. Compressive Sensing

CS methods can be classified into two categories: itera-
tive optimization based conventional methods and data-driven
based DL methods. Furthermore, we can divide the deep
network based approaches into deep unfolding methods and
deep straightforward methods.

1) Iterative Optimization based Conventional Methods:
The conventional methods mainly rely on sparsity priors to
recover the signal from the under-sampled measurements.
Some approaches obtain the reconstruction by linear pro-
gramming based on L1 minimization. Examples of such
algorithms involve basis pursuit (BP) [30], least absolute
shrinkage and selection operator (LASSO) [31], the itera-
tive shrinkage/thresholding algorithm (ISTA) [32], and the
alternating direction method of multipliers (ADMM) [33]. In
addition, some works improve the recovery performance by
exploring image priors. TVAL3 [34] utilizes the total variation
(TV) regularized to reconstruct images by enhancing the local
smoothness. In [35], D-AMP considers the denoising per-
spective of the approximate message passing (AMP) [36] for
CS iterative reconstruction. In general, all the above methods
suffer from high computational complexity due to the iterative
calculations.
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Fig. 1. Illustration of the pipeline of CSformer. CSformer mainly consists of the initialization, transformer stem and CNN stem. The transformer stem and
CNN stem are linked by the feature aggregation.

2) Deep Unfolding Methods: Deep neural networks have
been developed for image CS in the last few years. Deep
unfolding methods incorporate the traditional iterative re-
construction and the deep neural networks. Such methods
map each iteration into a network layer that preserves the
interpretability and performance. Inspired by the D-AMP,
Metzler et al. [11] implement a learned D-AMP (LDAMP),
which unfolds the iterative D-AMP algorithm and combines
it with a denoising CNN. In analogy to LDAMP, AMP-Net
[17] also applies denoising prior, whereas it has an additional
deblocking module and uses a learned sampling matrix.

Moreover, ISTA-Net+ [13] and ISTA-Net++ [19] design the
deep network to mimic the ISTA algorithm for CS reconstruc-
tion. The difference is that ISTA-Net++ uses a cross-block
learnable sampling strategy and achieves multi-ratio sampling
and reconstruction in one model. OPINE-Net [16] can also
be regarded as a variant of ISTA-Net+, except that OPINE-
Net simultaneously explores adaptive sampling and recovery.
Besides exploring upon on AMP and ISTA, Yang et al. [14]
propose the ADMM-CSNet to reconstruct images with high
accuracy and speed by learning the sparse representations,
model parameters, and ADMM algorithm from different types
of images. The main drawback of the unfolding approaches is
that the limitation of parallel training and hardware accelera-
tion owing to its sophisticated and iterative structure.

3) Deep Straightforward Methods: Instead of specific pri-
ors, the deep straightforward methods directly impose the
modeling power of DL free from any constraints. ReconNet
[10], considered as the first deep network based method
that brings CNN for CS reconstruction, aims to recover the
image from CS measurements via CNN. The reconstruction

quality and computational complexity are both superior to
the traditional iterative algorithms. Joint learning the sampling
with the reconstruction in the whole network further improves
the reconstruction performance. Instead of fixing sampling
matrix, Shi et al. [12] implement a convolution layer to
replace it and propose a deep network to recover the image
named CSNet. In [15], they further extend their model to
learn binary sampling matrix and bipolar sampling matrix.
DR2-Net [23] adopts a fully connected layer to perform
the sampling, then stacks several residual learning blocks to
improve reconstruction quality. In [20], Sun et al. design a 3-D
encoder and decoder with the channel attention motivated skip
links and introduce the non-local regularization for exploring
the long-range dependencies. Sun et al. [22] propose a dual-
path attention network dubbed DPA-Net for CS reconstruction.
Two path networks are embedded in the DPA-Net for learning
structure and texture, respectively, and then combined by the
attention module.

B. Transformer
The original transformer [25] is designed for natural lan-

guage processing (NLP), in which the multi-head self-attention
and feed-forward MLP layer excel at handling long-range
dependencies of sequence data. Inspired by the power of
transformer in NLP, the pioneering work of VIT [26] splits an
image into 16×16 flattered patches, successfully extending the
transformer to image classification task. Swin transformer [37]
designs a hierarchical transformer architecture with the shifted
window-based multi-head attentions to reduce the computation
cost. Since then, transformer has vaulted into a model on
a par with CNN, and the transformer based application of
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computer vision has mushroomed. Yang et al. [38] propose
a texture transformer network for image super-resolution.
They embed the low-resolution image and paired reference
image into transformer to obtain a high resolution image.
Chen et al. [27] develop a pre-trained model named image
processing transformer (IPT) for several low-level computer
vision tasks. They excavate the capability of transformer by
using large scale pre-training, and IPT outperforms state-of-
the-art methods on super-resolution, denoising, and deraining
tasks. Uformer [28] borrows from the structure of U-Net to
build transformer to further improve the performance for low-
level vision tasks. Liang et al. [24] use a stack of residual swin
transformer blocks to achieve state-of-the-art performance on
image restoration tasks. In addition, TransGAN proposes a
generative adversarial network (GAN) [39]–[41] architecture
using pure transformer for image generation. On the other
hand, many works aim to combine the strengths from the CNN
and transformer effectively. Xie et al. [42] utilize CNN to
extract feature representation and a transformer to model the
long-range dependency for 3D medical image segmentation.
CoAtNet [43] unifies the depthwise convolution and self-
attention via a relative attention. Peng et al. [44] propose a
dual backbone to combine CNN with visual transformer for
visual recognition. ConVit [45] introduces a gated positional
self-attention mechanism to bring the convolutional inductive
bias to transformer.

III. METHOD

Fig. 1 illustrates the network architecture of the proposed
CSformer for adaptive sampling and reconstruction. The sam-
pling module is applied to sample block by block in the
image patches, which are split from the image x via a non-
overlapping way. The sampling matrix is replaced by the
learned convolution kernels in each patch. The reconstruction
module comprises a linear initialization module, an input
projection module, an output projection module, a CNN stem,
and a transformer Stem, learning an end-to-end mapping from
CS measurements to the recovered images. One stream of the
CS measurement is the linear initialization module, including
two consecutive operations that a 1 × 1 convolution and a
pixelshuffle layer, to obtain the initial reconstruction x̂ini.
The other stream of the CS measurement is to pass through
an input projection that contains several layers of 1 × 1
convolution followed by a pixelshuffle layer to obtain the input
feature Fin, which matches the input feature sizes for CNN
H0 ×W0 × C0 and transformer (H0 ×W0)× C0. The trunk
recovery network consists of a CNN stem and a transformer
Stem. Each stem contains four blocks with upsample layers to
progressively reconstruct features until aligning the patch size.
In both branches, convolution features are used to provide local
information that complements the features of transformer. The
recovery of the trunk recovery network is projected from the
transformer output to the single-channel by output projection.
CSformer reconstructs the final patches x̂rec by summing the
initial reconstruction and the trunk recovery. Finally, we merge
all patches to obtain the final image x̂.

x
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Fig. 2. Illustration of the details of sampling at CS ratios of 25%. The
traditional block-based CS (BCS) sampling can be equivalently replaced by
the convolution.

A. Sampling

CSformer samples and reconstructs the whole image by
merging the fixed patches. Suppose that xi ∈ RHp×Wp×1

is the patch i of input whole image x ∈ RH× W×1. The
sampling operation takes place in patch xi. We process the
block-based CS (BCS) in patch xi, which decomposes a patch
into B×B non-overlapping blocks. Then the number of blocks
is Hp

B × Wp

B . Each block is vectorized and subsequently
sampled by the measurement matrix Φ. Suppose that xij is
the block j of input patch xi. The corresponding measurement
yij is obtained by yij = Φxij , where Φ ∈ Rm×B2

and
m
B2 represents the sampling ratio. Then the measurement
yi ∈ R

Hp
B ×

Wp
B ×m of the input patch xi is obtained by stacking

each block. In this paper, the sampling process is replaced by
the convolution operation with appropriately sized filters and
stride, as shown in Fig. 2. The sampling convolution can be
formulated as:

yij = WB ⊗ xij , (1)

where WB corresponds to a convolution layer without bias
consisting of m filters with B ×B size, and the stride equals
to B. After applying the convolution operation on the patch xi,
we can obtain the final total CS measurement yi. As shown
in Fig. 2, the CS measurement yi of size 4 × 4 × 64 can
be acquired from an input patch xi of size 64 × 64 with
sampling ratio 0.25 by exploiting a convolution layer using
16 filters of kernel size 16 × 16, stride = 16. In this case,
Hp = Wp = 64, B = 16 and m = 64. In fact, the adoption
of the learned convolutional kernel instead of sampling matrix
can efficiently utilize the characteristic of the image, and make
the output measurement more easily be used in the following
reconstruction module.
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B. Initialization

Given the CS measurements, traditional BCS usually obtain
the initial reconstructed block by x̂ij = Φ†yij , where x̂ij is
the reconstruction of xij , and Φ† ∈ RB2×m is the pseudo-
inverse matrix of Φ. In CSformer initialization process, we
utilze the 1×1×m convolution to replace Φ†. The difference
is that we can directly implement the convolution layer on the
yi to recover the initial patch. The initialization first adopts
B2 filters of kernel size 1× 1×m to covert the measurement
yi dimension to B2. Subsequently, the followed pixelshuffle
layer is employed to obtain the original patch x̂i. For instance,
a measurement with size 4×4×64 is transformed to the initial
reconstruction with size 64× 64× 1 at the CS ratios of 25%.
In summary, we use the convolution and pixelshuffle to obtain
each initial reconstruction, which is a more efficient way as
the output is directly a tensor instead of a vector.

C. CNN Stem

The measurement yi is taken as the input of the input
projection module that contains several 1×1 convolution layers
followed by a pixelshuffle layer to to obtain feature Fin with
size H0 ×W0 × C0 (by default we set H0 = W0 = 8). The
CNN stem is composed of multiple stages. The first stage takes
the projected output feature Fin as input. Then the feature
passes through the first convolution block to obtain feature F0

c

with size H0×W0×C0. Each convolution block is composed
of two convolution layers, followed by a leaky rectified linear
unit (ReLU) and a batch norm layer. The kernel size of each
convolutional layer is 3 × 3 with 1 as the padding size, and
the output channel is the same as the input channel. Thus, the
resolution and channel size is maintained to be consistent after
a convolution block.

To scale up to a higher-resolution feature, we add an
upsample module before the rest of convolution block. The
upsample convolution module first adopts bicubic upsample to
upscale the resolution of the previous feature, and then a 1×1
convolutional layer is used to reduce the dimension to a half.
Thus, the output features of CNN stem can be represented by
Fi

c ∈ RHi×Wi×Ci , where Hi = 2i×H0,Wi = 2i×W0, Ci =
C0

2i , i ≥ 0.

D. Transformer Stem

Transformer stem aims to provide further guidance for
global restoration with progressive features according to the
convolution features. As shown in Fig. 3(b), each transformer
block stacks L transformer network. The input of transformer
is the aggregation feature that bridges the convolution features
and transformer features.

1) Feature Aggregation: The aggregation feature fuses the
local features from CNN and the global features from trans-
former via a concatenation way. The feature dimension of
CNN stem and transformer stem is inconsistent, such that we
need to reshape the CNN features to align with the transformer
features. The 2D feature map of CNN with size Hi×Wi×Ci

needs to be flattened to a 1D sequence (Hi ×Wi) × Ci for
transformer. As can be seen from Fig. 3, the aggregation

...

... ...
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i+1

...

Fc
i+1 

Flatten

Pixel 

Shuffle ...

Ft
i

Concat

(b) Transformer Block

Layer Norm

MSA

Layer Norm
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x L
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i+1

Ft
i+1

(a) Feature Aggregation

Fig. 3. Illustration of the implementation details of the transformer stem. (a)
Feature aggregation by concatenating the transformer feature Fi

t and CNN
feature Fi+1

c . (b) The detailed transformer block.

feature is taken as the input to the transformer blocks by
concatenating these two features. It is worth mentioning that
the input aggregation feature F0

a of the first transformer
block is concatenated by Fin and F0

c . In this way, the first
transformer block makes full use of the information in the
measurements and introduces local features of CNN. This also
aligns with the observation of many studies [43], [46], [47]
that introducing locality in early layers is beneficial for feature
representation in transformer.

After the first transformer block, we obtain the transformer
feature F0

t with size (H0 × W0) × 2C0. The misalignment
between the transformer feature with next stage CNN features
is further eliminated. We first reshape the 1D sequence of
F0

t to 2D feature map with the size H0 × W0 × 2C0.
Subsequently, a pixelshuffle layer is used to upsample the
resolution by 2× ratio and reduce the channel dimension to
a quarter of the input. We complete the spatial dimension
and channel dimension alignment of transformer features and
CNN features. Then the aggregation feature is obtained by
concatenating the transformer feature and CNN feature. The
aggregation feature can be expressed by Fj

a ∈ R(Hj×Wj)×Cj ,
where Hj = 2j ×H0,Wj = 2j ×W0, Cj =

2C0

2j , j ≥ 0.

2) Window-based Transformer: The standard transformer
[25] takes a series of sequences (tokens) as input and computes
self-attention globally between all tokens. However, if we take
each pixel as one token in transformer for CS reconstruction,
the sequences grow as the resolution increases, resulting in
explosive computational complexity for larger resolution. For
instance, even a 32 × 32 image will lead to 1024 sequences
and have 10242 cost of self-attention. To address the above
issue, CSformer performs window-based transformer. Given
an input fusion feature Fj

a ∈ R(Hj×Wj)×Cj of transformer, we
partition feature into P × P non-overlapping windows. Then
the feature is split into the size of HjWj

P 2 × P 2 × Cj , where
HjWj

P 2 is the total number of windows. The multi-head self-
attention is computed in each P 2 window. In each window,
the feature Fwin

t ∈ RP 2×
Cj
h is computed by the self-attention,

where h is the number of heads in the multi-head self attention.
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First, the query, key, and value matrices are computed as:

Q = Fwin
t ×WQ,K = Fwin

t ×WK ,V = Fwin
t ×WV , (2)

where WQ, WK and WV are the projection matrices with
the size Cj/h × d. Subsequently, the self-attention can be
formulated by:

O(Fwin
t ) =

(
σ

(
QKT

2
√
d

+ E

))
V, (3)

where O(·) denotes the self-attention operation, σ(·) is the
softmax function, and E is the learnable relative position
encoding. The multi-head self-attention is performed for h
times self-attention in parallel and concatenates the results to
obtain the output. The multi-head self-attention (MSA) based
on the windows significantly reduces the computational and
GPU memory cost.

Then, the output of MSA passes through a multi-layer
perceptron (MLP) consisting of two fully-connected layers
with GELU activation for nonlinear transformation. As shown
in Fig. 3(b), the layer norm τ(·) is inserted before MSA and
MLP and the whole transformer process can be formulated as
follows,

Fj
t = MSA(τ(Fj

a)) + Fj
a,

Fj
t = MLP(τ(Fj

t )) + Fj
t .

(4)

After the transformer feature reaches the input resolution
(Hp,Wp), the output projection module is used to project the
transformer feature to the image space. Before passing through
the output projection, we first reshape the transformer feature
to a 2D feature. Output projection consists of two convolution
layers followed by a tanh action function, which maps the
transformer feature to single channel reconstruction patches.
Then we sum up the reconstruction patches with the initial
reconstruction patches to obtain the final patches x̂rec and
merge all patches to obtain the final reconstructed image x̂.

E. Loss Function

We optimize the parameters of CSformer by minimizing the
the mean square error (MSE) between the output reconstructed
image x̂ and the ground-truth image x as follows,

L = ‖x̂− x‖22 . (5)

It is worth mentioning that the proposed scheme is based on
patch reconstruction while the loss function is computed on
the whole image. As such, we attenuate the blocking artifacts
without other post-processing deblocking modules.

IV. EXPERIMENT

In this section, we first introduce the training settings and
evaluation datasets in section IV-A. Section IV-B shows the
experimental results of our method compared with state-of-
the-art on different test datasets. Section IV-C analyzes the
effectiveness of the proposed approach by comparing the
results with those of some variants of CSformer. Section IV-D
compares the retraining performance and the computational
time.

Fig. 4. Visual samples of various test datasets. From top to bottom, images
are from dataset Set11, BSD68, Urban100, Set5, and Set14, respectively.

A. Experimental Settings

1) Dataset and Metrics: Training vision transformer is
known to be data-hungry. Therefore, we use the COCO 2017
unlabeled images dataset for training, which is a large-scale
dataset that consists of over 123K images of high diversity. To
reduce the training time, it is worth mentioning that we only
use a quarter of the whole training set, i.e., around 40K images
for training. We evaluate our method on various widely used
benchmark datasets, including Set11 [10], BSD68 [48], Set5
[49], Set14 [50], Urban100 [51]. Set11 and BSD68 datasets are
composed of 11 and 68 gray images, respectively. Urban100
dataset contains 100 high-resolution challenging city images.
Set5 and Set14 datasets have 5 and 14 images with different
resolutions. Fig. 4 displays the visual samples of each dataset.
We utilize the luminance components of color images for
both training and testing. The test images are divided into
overlapping patches for testing in the real implementation. The
reconstruction results are reported under a range of sampling
ratios from 0.1 to 0.5. Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) are adopted as the
evaluation measures.

2) Training Details: The training images are cropped into
128×128 images as input, i.e., H =W = 128. The size of the
fixed patches is Hp = Wp = 64. The sampling convolutional
kernel size in the sampling process is set to be B = 16, i.e.,
16×16 convolution layer with stride = 16. The output feature
dimension of input projection C0 is set to 128. The window
size of window-based multi-head self-attention is set to be
P = 8 for all transformer blocks. Each transformer block
stacks L = 5 transformer network. We use 1 Nvidia 2080Ti
card for training our model on Pytorch [52], and the model
is optimized by Adam optimizer. The learning rate is initially
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TABLE I
PSNR/SSIM PERFORMANCE COMPARISONS WITH DIFFERENT CS RATIOS ON VARIOUS TEST DATASETS. THE BEST ONE IS SHOWN IN RED AND THE

SECOND BEST IN BLUE

Dataset CS ratio CSNet+ DPA-Net OPINE-Net AMP-Net CSformer

Set11

1% 21.03/0.5566 18.05/0.5011 20.15/0.5340 20.57/0.5639 21.95/0.6241
4% - 23.50/0.7205 25.69/0.7920 25.26/0.7722 26.93/0.8251
10% 28.37/0.8580 26.99/0.8354 29.81/0.8884 29.45/0.8787 30.66/0.9027
25% - 31.74/0.9238 34.86/0.9509 34.63/0.9481 35.46/0.9570
50% 38.52/0.9749 36.73/0.9670 40.17/0.9797 40.34/0.9807 41.04/0.9831

BSD68

1% 22.36/0.5273 18.98/0.4643 22.11/0.5140 22.28/0.5387 23.07/0.5591
4% - 23.27/0.6096 25.20/0.6825 25.26/0.6760 25.91/0.7045
10% 27.18/0.7766 25.57/0.7267 27.82/0.8045 27.86/0.7926 28.28/0.8078
25% - 29.68/0.8763 31.51/0.9061 31.74/0.9048 31.91/0.9102
50% 35.42/0.9614 32.89/0.9373 36.35/0.9660 36.82/0.9680 37.16/0.9714

Urban100

1% 20.75/0.5273 16.36/0.4162 19.82/0.5006 20.90/0.5328 21.94/0.5885
4% - 21.64/0.6498 23.36/0.7114 24.15/0.7029 26.13/0.7803
10% 26.52/0.8053 24.54/0.7851 26.93/0.8397 27.38/0.8270 29.61/0.8762
25% - 28.81/0.8951 31.86/0.9308 32.19/0.9258 34.16/0.9470
50% 35.25/0.9621 32.09/0.9454 37.23/0.9747 37.51/0.9734 39.46/0.9811

Set5

1% 24.18/0.6478 19.02/0.5133 21.89/0.6101 23.48/0.6518 25.22/0.7197
4% - 26.63/0.7767 27.95/0.8209 29.01/0.8359 30.31/0.8686
10% 32.59/0.9062 30.32/0.8713 32.51/0.9058 33.42/0.9140 34.20/0.9262
25% - 33.96/0.9360 36.78/0.9510 38.03/0.9586 38.30/0.9619
50% 41.79/0.9803 39.57/0.9716 41.62/0.9779 42.72/0.9818 43.55/0.9845

Set14

1% 22.92/0.5630 18.30/0.4616 21.36/0.5340 22.79/0.5751 23.88/0.6146
4% - 23.69/0.6534 25.50/0.6974 26.67/0.7219 27.78/0.7581
10% 29.13/0.8169 26.28/0.7693 28.77/0.8129 29.92/0.8312 30.85/0.8515
25% - 30.15/0.8813 33.12/0.9102 34.31/0.9213 35.04/0.9316
50% 37.89/0.9631 33.78/0.9440 38.09/0.9621 39.28/0.9684 40.41/0.9730

Direct Average

1% 22.25/0.5630 18.14/0.4713 21.07/0.5386 22.00/0.5725 23.21/0.6212
4% - 23.75/0.6820 25.54/0.7408 26.07/0.7418 27.41/0.7873
10% 28.76/0.8326 26.94/0.7976 29.17/0.8503 29.61/0.8487 30.72/0.8729
25% - 30.87/0.9025 33.63/0.9298 34.18/0.9317 34.97/0.9415
50% 37.77/0.9684 35.01/0.9531 38.69/0.9721 39.33/0.9745 40.32/0.9786

Weighted Average

1% 21.56/0.5310 17.56/0.4431 20.79/0.5122 21.55/0.5426 22.55/0.5855
4% - 22.57/0.6434 24.39/0.7077 24.89/0.7022 26.32/0.7574
10% 27.19/0.8017 25.80/0.7689 27.67/0.8301 27.99/0.8206 29.42/0.8537
25% - 29.50/0.8903 32.12/0.9225 32.47/0.9203 33.63/0.9342
50% 35.84/0.9631 32.93/0.9444 37.26/0.9712 37.69/0.9718 38.93/0.9774

set as 2 × 10−4 and the cosine decay strategy is adopted to
decrease the learning rate to 1×10−6. The number of iteration
is 50,000, and the training time is about 1.5 days.

B. Performance Comparisons

To facilitate comparisons, we evaluate the performance of
our CSformer on five widely used testsets, and compare our
method with four recent representatives DL based CS state-
of-the-art methods, including CSNet+ [15], DPA-Net [22],
OPINE-Net [16] and AMP-Net [17]. The results of other
methods are obtained by their public pre-trained model.

To display the comprehensive performance comparisons
over multiple datasets, we utilize two commonly-used average
measures to evaluate the average performance over the five test
databases, as suggested in [53]. The two average measures can
be defined as follows:

s =

∑D
i=1 si · βi∑D

i=1 βi
, (6)

where D denotes the total number of databaset (D = 5 in this
paper), si represents the value of the performance index (e.g.
PSNR, SSIM) on the i-th dataset, and βi is the corresponding
weight on the i-th dataset. The first average measurement is
Direct Average with βi = 1. The second average measurement
is Weighted Average, where βi is set as the number of images
in the i-th dataset (e.g. 11 for the Set11 dataset, 100 for the
Urban100 dataset).

Table I shows the average PSNR and SSIM performance
of different methods at different CS ratios across all five
datasets. It can be obviously observed that the proposed
CSformer achieves the both highest PSNR and SSIM results
for different ratios on all datasets. Our approach achieves a
large gap (1∼2 dB) across all CS ratios in Urban100 dataset
that contains more images with larger resolution. The Direct
Average and Weighted Average show our proposed CSformer
outperforms all state-of-the-art models under comparison. The
improvement of performance is mainly attributed to the pow-
erful feature representation ability by bridging the two strong
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PSNR/SSIM 24.71/0.8152 21.97/0.7718 24.88/0.822023.42/0.8056 27.34/0.8851

PSNR/SSIM 27.42/0.9415 25.98/0.9457 29.46/0.964028.98/0.9688 33.22/0.9842

Ground Truth CSNet+ DPA-Net AMP-NetOPINE-Net CSformer

Ground Truth CSNet+ DPA-Net AMP-NetOPINE-Net CSformer

Fig. 5. Visual quality comparison of various CS methods. The first row is the results at CS ratios of 10% and the second row is the results at CS ratios of
50%.

DPA-Net OPINE-Net

AMP-Net CSformer

Ground Truth

PSNR/SSIM

25.07/0.7318 26.81/0.7732

28.27/0.831726.57/0.7590

Fig. 6. Visual quality comparison of the reconstruction image and the absolute residual image at CS ratios of 4%. The absolute residual intensity map is the
result between the recovered image and the ground-truth image.

DPA-Net OPINE-Net AMP-Net CSformer

Ground Truth

PSNR/SSIM

29.22/0.9050 30.24/0.9107 30.23/0.8948 34.83/0.9511

Fig. 7. Visual quality comparison of the reconstruction image and the absolute residual image at CS ratios of 25%. The absolute residual intensity map is
the result between the recovered image and the ground-truth image.
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TABLE II
PSNR PERFORMANCE COMPARISONS WITH DIFFERENT MODEL SIZES. THE BEST RESULTS ARE LABELED IN BOLD

Method
Set11 BSD68 Urban100 Set5 Set14

Param
1% 10% 50% Avg. 1% 10% 50% Avg. 1% 10% 50% Avg. 1% 10% 50% Avg. 1% 10% 50% Avg.

CSformer64 21.99 30.26 40.89 31.05 23.06 28.14 37.16 29.45 21.93 29.06 38.88 29.96 25.24 33.90 43.53 34.22 23.90 30.56 40.21 31.56 1.76M
CSformer128 21.95 30.66 41.04 31.22 23.07 28.28 37.16 29.50 21.94 29.61 39.46 30.34 25.22 34.20 43.55 34.32 23.88 30.85 40.41 31.71 6.71M
CSformer256 21.94 30.89 41.22 31.35 23.03 28.40 37.26 29.56 21.85 30.05 39.75 30.55 25.18 34.31 43.76 34.42 23.84 31.00 40.56 31.80 24.94M

neural networks, CNN and transformer. Experimental results
demonstrate that CSformer has better generalization ability
and recovery ability for limit sampling under the premise that
all sampling rates can achieve optimal performance.

In Fig. 5, we show the reconstructed images of all the meth-
ods at CS ratios of 10% and 50%. The proposed CSformer is
able to recover more fine detail and more clear edges than
other methods. Fig. 6 shows the qualitative comparison of
the reconstruction image and the absolute residual intensity
map with different methods at CS ratios of 4%. The absolute
residual intensity map is the intensity map of the absolute
residual between the recovered image and the ground-truth
image. As shown in Fig. 6, our CSformer can recover more
fine details and structure due to the help of CNN to trans-
former. Compared to DPA-Net, which uses the dual-Path CNN
structure, our clarity is significantly improved. Compared to
the deep unfolding methods OPINE-Net and AMP-Net, our
CSformer reduces the artifact and provides more reasonable
reconstruction. The visual quality results at CS ratio of 25%
are shown in Fig. 7. The improvement can be seen more clearly
in the residual map that the reconstructed texture detail of
our approach is finer. The visual quality comparisons clearly
demonstrate the effectiveness of the proposed CSformer. Over-
all, the quantitative and qualitative comparisons with several
competing methods verify the superiority of CSformer.

C. Ablation Studies

This subsection first presents the ablation studies on the
feature dimension and feature aggregation. Subsequently, net-
work structure is analyzed to investigate the effects of the
dual structure in our CSformer. Moreover, we visualize the
feature map and the feature similarity to verify that our hybrid
framework effectively bridges CNN and transformer.

1) Feature Dimension: Table II shows the results for dif-
ferent dimensions, where the subscript represents the dimen-
sion of C0. The smaller CSformer64 is capable of achieving
good performance on the five datasets. The CSformer128
outperforms CSformer64 at most of CS ratios. The largest
improvement appears on the Urban100 dataset with average
0.4 dB. In addition, there are about 0.2 dB PSNR gains over
Set11 and Set14. The larger CSformer256 achieves around
0.1∼0.2 dB gains than the second one but has the maximum
number of parameters. To balance the performance and model
size, we adopt C0 = 128 for our CSformer by default.

2) Feature Aggregation: CSformer adopts concatenation
operator to aggregate features from different stems. To illus-
trate the effectiveness of this way, we construct a variant that
the CNN features and transformer features are added rather
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Fig. 8. Performance comparison between the adding feature fusion and
concatenating feature aggregation on Set11.
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Fig. 9. Performance comparison between the adding feature fusion and
concatenating feature aggregation on Urban100.

than concatenated. It is worth mentioning that replacing the
concatenation operation directly with the addition operation
will cause the feature dimension of the transformer block to
be halved. Thus, for a fair comparison, we modify the output
dimension of CNN block to keep the input dimension of
the transformer stem unchanged for using the adding fusion
way. The parameters of the CSformer using adding feature
fusion are 9.04 M, and the parameters of the CSformer using
concatenating feature aggregation are 6.71 M. Fig. 8 shows
the PSNR results on the Set11 dataset. The concatenating
feature aggregation shows superior PSNR performance with
different samling ratios and has fewer parameters. The adding
feature fusion operation achieves a close performance when
CS ratios are less than 50%. The gap is most obvious at
CS ratios of 50%, which shows the concatenation way can
make better use of the complementarity of the CNN features
and transformer features at higher sampling ratios. The same
pattern is observed on the Urban100 dataset, as shown in
Fig. 9. The default concatenation aggregation way has supe-
rior performance compared to the way of adding fusion on
Urban100. The improvement is up to 2.06 dB at 50% CS
ratios and around 0.1∼0.3 dB at 1% to 25%.
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SPT CSformer SPT CSformer

Early layer Deep layer

 50%

25%

10%

Ratio

Fig. 10. Comparison of feature map of the single-path transformer (SPT) and the proposed CSformer. The SPT tends to activate more global areas than the
local region, while CSformer enhances the locality of features.

TABLE III
PSNR PERFORMANCE COMPARISON OF THE PROPOSED CSFORMER WITH

THE SINGLE-PATH TRANSFORMER (SPT) ON SET11

Method 1% 4% 10% 25% 50% Param
SPT 21.71 26.95 30.76 35.50 41.05 7.40M

CSformer 21.95 26.93 30.66 35.46 41.04 6.71M

TABLE IV
PSNR PERFORMANCE COMPARISON OF THE PROPOSED CSFORMER WITH

THE SINGLE-PATH TRANSFORMER (SPT) ON URBAN100

Method 1% 4% 10% 25% 50% Param
SPT 21.81 25.91 29.50 33.61 38.62 7.40M

CSformer 21.94 26.13 29.61 34.16 39.46 6.71M

3) Dual Stem: CSformer is a dual stems model, aiming to
couple the efficiency of convolution in extracting local features
with the power of transformer in modeling global representa-
tions. To evaluate the benefits of these two branches, we build a
single-path model, named “SPT”, which only uses transformer
for reconstruction. For a fair comparison, we add one more
1×1 convolution before transformer block and set C0 = 256 to
maintain the consistency of resolution and dimension in trans-
former block while keeping all others unchanged. The testing
is implemented on the Set11 dataset and Urban100 dataset as
depicted in Table III and Table IV. CSformer shows a better
result on the Set11 dataset at CS ratios of 1% while has slight
performances drop than SPT at other ratios. This is partly due
to the increase in the number of parameters and partly reflects
the powerful modeling capability of the transformer network.
On the Urban100 dataset, CSformer shows superior PSNR
performance at different CS ratios with at most 0.84 dB gains.
The gap between these two methods ascends with the increase
of sampling ratio and achieves the largest gap at CS ratio of
50%. The improvement of CSformer is more noticeable at high
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Set11 BSD68 Urban100 Set5 Set14
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20 Set11 BSD68 Urban100 Set5 Set14

Image lossPatch loss

Fig. 11. Comparison between calculating loss on the patch (patch loss) and
on the merged image (image loss). Within each dataset, the sampling ratios
from left to right were 1%, 4%, 10%, 25%, and 50%, respectively.

ratios. The reason can be explained by the fact that the trunk
recovery network recovers the residuals according to the initial
reconstruction, while under high sampling ratios the initial
reconstruction is relatively sufficient. Therefore, the detailed
and local information provided by CNN is more helpful for the
final reconstruction. Meanwhile, CSformer plays more critical
roles on the Urban100 dataset than the Set11 dataset. The
reason can be attributed to the fact that the Urban100 dataset
has more textured data, making the local information more
helpful for the reconstruction. In this case, the convolution
operation is more efficient and practical for image local feature
extraction.

4) Image Loss: The proposed CSformer relies on the loss
between images instead of patches to reduce the blocking
artifact by merging the output patches to the image. In Fig. 11,
we compare the image loss with another version of CSformer
that calculates the loss between the input patches and output
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Fig. 12. Comparison of similarity of CNN stem and transformer Stem. The
lower layers of transformer stem are similar to the deep layers of CNN stem.
The middle layers show dissimilarity, and the deep layers shows moderate
similarity.

patches. Through experiments on five testing datasets, it is
found that image loss adopted by CSformer can significantly
improve performance without additional post-processing mod-
ules, especially in the case of higher sampling rates.

5) Feature Analysis: We investigate the difference of the in-
ternal features representations between CNN and transformer
by feature visualization and feature similarity. In the first
analysis, we visualize the feature maps in Fig. 10. It can
be seen that compared with the CSformer, the SPT tends
to activate more global areas than the local region. Besides,
with the help of the local information extracted by CNN, the
detailed textures are remained in the CSformer compared to
SPT. This figure shows the ability of CSformer in bridging
the local feature and global representation, which enhances the
locality of features through convolution starting from the early
layer. The early local intervention is a helpful complement to
transformer features.

In Fig. 12, we extract the CNN features and transformer
features from CNN stem and transformer stem, respectively.
We analyze the features from the perspective of representation
similarity using centered kernel alignment [54]. It is worth
mentioning that the transformer features already contain the
CNN features as the fusion features the input of transformer
block. We observe the lower layers of transformer block are
similar to the deep layers of CNN. It shows the transformer
has a good ability to capture the long-dependence from the
beginning, while CNN requires more dependence on the stack-
ing of layers to enhance long-distance feature dependencies.
In addition, it indicates that the CNN features play a more
critical role in the early layers than deep layers. The middle
features show weak similarity, which indicates the transformer
features show more dominant effects. The deep layers show
moderate similarity, and it illustrates our CSformer balances
the local and global representation in the deep layers.

TABLE V
PSNR PERFORMANCE RETRAINING ON THE COCO DATASET. THE BEST

RESULTS ARE LABELED IN BOLD AND THE GAP FORM THE BEST
PERFORMANCE IS INDICATED IN PARENTHESES

Dataset CS ratio OPINE-Net AMP-Net CSformer

Set11

1% 20.30 20.09 21.95
4% 25.58 24.93 26.93

10% 29.90 29.51 30.66
25% 34.66 34.47 35.46
50% 39.56 39.99 41.04

BSD68

1% 21.98 21.88 23.07
4% 25.22 24.97 25.91

10% 27.87 27.64 28.28
25% 31.53 31.40 31.91
50% 36.16 36.30 37.16

Urban100

1% 20.91 20.91 21.94
4% 24.52 24.67 26.13

10% 28.72 28.03 29.61
25% 33.26 32.93 34.16
50% 38.10 38.63 39.46

Set5

1% 23.23 23.49 25.22
4% 28.96 28.58 30.31

10% 33.48 33.21 34.20
25% 37.71 37.72 38.30
50% 42.12 42.54 43.55

Set14

1% 22.58 22.71 23.88
4% 26.83 26.86 27.78

10% 30.26 30.16 30.85
25% 34.42 34.36 35.04
50% 39.04 39.45 40.41

Direct Average

1% 21.80 (-1.41) 21.82 (-1.39) 23.21
4% 26.22 (-1.19) 26.00 (-1.41) 27.41

10% 30.05 (-0.67) 29.71 (-1.01) 30.72
25% 34.32 (-0.65) 34.18 (-0.79) 34.97
50% 39.00 (-1.32) 39.38 (-0.94) 40.32

Weighted Average

1% 21.42 (-1.13) 21.39 (-1.16) 22.55
4% 25.09 (-1.23) 25.04 (-1.28) 26.32

10% 28.72 (-0.70) 28.26 (-1.16) 29.42
25% 32.94 (-0.69) 32.71 (-0.92) 33.63
50% 37.68 (-1.25) 38.06 (-0.87) 38.93

TABLE VI
COMPARISON OF THE MODEL SIZE AND RUNNING TIME(IN SECONDS) FOR

RECONSTRUCTING A 256× 256 IMAGE

Method CSNet+ DPA-Net OPINE-Net AMP-Net CSformer
Param 5.00M 9.78M 1.10M 1.53M 6.71M
Time 0.0176 0.0339 0.0140 0.0322 5.0765

D. Analysis on the Retraining Performance and Running Time

We retrain the AMP-Net and OPINE-Net on the COCO
dataset to show their performance on the larger training dataset
in Table V. The original AMP-Net is trained on the BSD500
dataset [55], and OPINE-Net is trained on the T91 dataset
[10]. As shown in Table V, the CSformer achieves the highest
PSNR results under the same training dataset. Compared with
the model trained on the BSD500 dataset and T91 dataset, the
performances of the other two methods show varying degrees
of improvement or decline across multiple datasets.

Table VI provides the parameter number of various CS
methods at CS ratio of 50% and the time consuming analysis
for reconstructing a 256 × 256 image. Considering that we
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utilize the transformer model and CNN model, the total
parameters of our method are still 30% lower than the DPA-
Net using the dual-path CNN structure. Though the running
time increases, our proposed CSformer achieves the best
performance and generalization capabilities.

V. CONCLUSION

In this paper, we propose a novel dual-stem network named
CSformer, which bridges the CNN and transformer networks
for adaptive sampling and reconstruction of CS. The sampling
stage adaptively learns the sampling matrix and adopts sam-
pling block by block. In the reconstruction stage, we design a
dual-stem structure to combine the two types of features and
gradually increase feature resolution to reduce memory cost
and computation complexity. Experiments show that our CS-
former effectively utilizes the complementary of transformer
and CNN, outperforming the pure single-path transformer. The
proposed CSformer achieves the best performance on various
testsets at different CS ratios compared with the existing
DL based method. The proposed CSformer is the first work
to extend vision transformer to CS, and it has shown great
potential to improve the CS performance.
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