

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Sep 05, 2024

Construction of secure and fast hash functions using nonbinary error-correcting
codes

Knudsen, Lars Ramkilde; Preneel, Bart

Published in:
I E E E Transactions on Information Theory

Link to article, DOI:
10.1109/TIT.2002.801402

Publication date:
2002

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Knudsen, L. R., & Preneel, B. (2002). Construction of secure and fast hash functions using nonbinary error-
correcting codes. I E E E Transactions on Information Theory, 48(9), 2524-2539.
https://doi.org/10.1109/TIT.2002.801402

https://doi.org/10.1109/TIT.2002.801402
https://orbit.dtu.dk/en/publications/d3d7c08d-0234-4603-8973-7043297cbcc5
https://doi.org/10.1109/TIT.2002.801402

2524 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

Construction of Secure and Fast Hash Functions
Using Nonbinary Error-Correcting Codes

Lars Knudsen and Bart Preneel, Member, IEEE

Abstract—This paper considers iterated hash functions. It pro-
poses new constructions of fast and secure compression functions
with -bit outputs for integers 1 based on error-correcting
codes and secure compression functions with-bit outputs. This
leads to simple and practical hash function constructions based on
block ciphers such as Data Encryption Standard (DES), where the
key size is slightly smaller than the block size; IDEA, where the
key size is twice the block size; Advanced Encryption Standard
(AES), with a variable key size; and to MD4-like hash functions.
Under reasonable assumptions about the underlying compression
function and/or block cipher, it is proved that the new hash func-
tions are collision resistant. More precisely, a lower bound is shown
on the number of operations to find a collision as a function of
the strength of the underlying compression function. Moreover,
some new attacks are presented that essentially match the pre-
sented lower bounds. The constructions allow for a large degree
of internal parallelism. The limits of this approach are studied in
relation to bounds derived in coding theory.

Index Terms—Birthday attacks, block ciphers, hash functions,
nonbinary codes.

I. INTRODUCTION

H ASH functionsmap a string of arbitrary size to a short
string of fixed length, typically 128 or 160 bits. They

are very popular tools for cryptographic applications such as
digital signatures, conventional message authentication, and
password and pass-phrase protection schemes. The basic idea,
dating back to the work by Diffie and Hellman [11], is that
in a digital signature, one signs a short “digest” or “imprint”
of the message, rather than the message itself. Similarly,
when one has to protect the integrity of information between
mutually trusting parties, one can protect the imprint rather
than the information itself. For the protection of passwords
or pass-phrases, one stores in the computer system the image
under the hash function rather than the value itself.

While there are many preimages corresponding to any hash
value, for cryptographic applications one requires that finding

Manuscript received October 1, 1998; revised April 6, 2001. This work was
supported in part by the Fund for Scientific Research, Flanders (Belgium) and by
the Concerted Research Action (GOA) Mefisto-2000/06 of the Flemish Govern-
ment. This work was performed in part while visiting the University of Bergen,
Norway. The material in this paper was presented in part at Asiacrypt’96,
Kyungju, Korea, November 4–7, 1996 and at Crypto’97, Santa Barbara, CA,
August 17–21, 1997.

L. Knudsen is with the Department of Mathematics, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark (e-mail: lars@ramkilde.com).

B. Preneel is with the Department of Electrical Engineering-ESAT,
Katholieke Universiteit Leuven, B-3001 Leuven-Heverlee, Belgium (e-mail:
bart.preneel @esat.kuleuven.ac.be).

Communicated by D. Stinson, Associate Editor for Complexity and Cryptog-
raphy.

Publisher Item Identifier 10.1109/TIT.2002.801402.

messages with identical hash values is difficult, and that it
is hard to reconstruct the password or pass-phrase from the
hash value. This distinguishes cryptographic hash functions
from hash functions that are typically used in algorithmic
applications like sorting. This can be translated to the following
security properties:

preimage resistance: for essentially all outputs, it is “com-
putationally infeasible” to find any input hashing to that
output;

second-preimage resistance: it is “computationally infea-
sible” to find a second (distinct) input hashing to the same
output as any given input;

collision resistance: it is “computationally infeasible” to
find two colliding inputs, i.e., and with

.

In this paper, a hash function that is preimage resistant and se-
ceond-preimage resistant is calledone way; a hash function that
satisfies the three security properties is calledcollision resistant.

While the first two properties seem to be very close, one can
show with some simple examples that they are distinct, and that
none of them is strictly stronger than the other one (see, for ex-
ample, Menezeset al. [30, Ch. 9]). The second and third prop-
erty are also closely related, but collision resistance is strictly
stronger than second-preimage resistance as explained later. A
theoretical motivation for this has been provided by Simon [50].
A one-way hash function or compression function is calledideal
if the best way known to find a preimage or a second-preimage is
a brute-force search; such an attack requires on average
evaluations of the hash function. It is clear that such an attack
can be parallelized efficiently. A collision-resistant hash func-
tion or compression function is calledideal if the best algorithm
to find a collision is a brute-force collision search; such an at-
tack requires on average evaluations of the hash func-
tion, and a small amount of additional storage (Quisquater and
Delescaille, [45]). This search is based on the so-called birthday
paradox, as observed by Yuval in [52]. The basic idea is that one
expects to find two colliding inputs in a set of size . Ef-
ficient parallel implementations of collision search algorithms
are described by van Oorschot and Wiener in [51]. From their
work, one can conclude that for a collision-resistant hash func-
tion, needs to be at least 160 bits or more; in 2001, this is
sufficient to resist a well-funded opponent for 5 to 10 years. For
preimage and second-preimage resistance,needs to be a least
64 bits (marginally secure); 80 is required for long-term se-
curity (again these are numbers valid in 2001).

0018-9448/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2525

Note: The probability to find at least one collision after
hash function evaluations is equal to . For

as above, the success probability is equal to
. In order to simplify the results, we will choose in the re-

mainder of this paper , corresponding to a success proba-
bility of .

Extensive research has been performed on the design of hash
functions that take a bit string of arbitrary length and produce an
-bit output from a compression function that takes a bit string

of some fixed length () and produces an-bit output. A new
method is proposed for constructing hash functions that take a
bit string of arbitrary length and produce an output of length that
is any multiple of given a compression function with an-bit
output.

One particular interesting application of the results is for con-
structions based on block ciphers which typically have a small
output size. More precisely, -bit compression functions with

-bit inputs are considered using linear codes
over GF resulting in fast and secure -bit hash
functions, where . Using block ciphers such as Data En-
cryption Standard (DES) [15], IDEA [26], and Advanced En-
cryption Standard (AES) [7], [18] as the underlying compres-
sion function, these constructions result in hash functions that
are both faster and more secure than those known in the litera-
ture. Tables IV–IX in Section IX provide some concrete exam-
ples which allow to compare the security and efficiency of the
schemes proposed in this paper to existing schemes.

In Section II, general construction methods for hash functions
are summarized. Section III presents an overview of existing
constructions for hash functions based on block ciphers and
explains why these constructions are not satisfactory. In Sec-
tion IV, a simple model for the new construction is proposed.
The new construction is described in Section V, and is further
developed in Section VI. A generic attack on all constructions is
given in Section VII and Section VIII provides additional detail
on the error-correcting codes used in the constructions. Some
practical examples are given in Section IX, and the conclusions
are presented in Section X.

II. GENERAL CONSTRUCTIONS FORHASH FUNCTIONS

Almost all cryptographic hash functions areiterated hash
functionsbased on acompression function from two bi-
nary sequences of respective lengthsand to a binary se-
quence of length. The message is split into blocks of

bits, . If the length of is not a
multiple of , is padded using an unambiguous padding rule
(for example, always append a “” bit followed by a number of
“ ” bits such that the length of the padded message becomes a
multiple of). The hash resultHash is
obtained by computing iteratively

(1)

where is a specifiedinitial value. Sometimes an
output transformation is applied to to derive the
hash result from . The length in bits of is denoted

with . A collision/second-preimage/preimageattack on
Hash is defined as an algorithm that tries to find a colli-
sion/second-preimage/preimage. In order to define these attacks
in a formal way, one needs to formally specify a model of com-
putation, the inputs of the algorithm, the type of algorithm, the
input distributions, etc. We will skip this as formal definitions
are not essential to understand the results in this paper (see,
for example, [40]). Collision attacks, second-preimage attacks,
and preimage attacks can be applied to both the compression
function and the hash function. For the former, the attacker
has full control over all input bits. Lai calls this type
of attacksfree-startattacks [26], while Preneel uses the term
pseudocollision/preimage attacks [39].

In the remainder of this paper no distinction is made between
preimage and second-preimage attacks and the term “preimage
attacks” is used to refer to both of them; it is always clear from
the context if only one of these two is intended.

One can relate the security of Hash to that of in
several models; for collision resistance, this has been achieved
independently by Damgård [8] and Merkle [32]; for preimage
resistance, Lai and Massey have derived similar results in [26].
Naor and Yung did the same for a related concept, universal
one-way hash functions [38]; see also Bellare and Rogaway [3]
for further results on this type of hash functions. For one-way
and collision-resistant hash functions, one needs to fix the
of the hash function and append an additional block at the end
of the input string containing its length, known as MD-strength-
ening (after Merkle [32] and Damgård [8]), leading to the fol-
lowing result.

Theorem 1 [8], [32]: Let Hash be an iterated hash
function with MD-strengthening. Then preimage and collision
attacks on Hash (where an attacker can choose freely)
have roughly the same complexity as the corresponding attacks
on .

Theorem 1 provides a lower bound on the security of
Hash . It indicates that a strong compression function
is a sufficient but not a necessary condition for a strong hash
function. Most practical hash functions do not treat the two
inputs of the compression function in the same way; an example
is the popular MDx-family, comprising MD4 [46], MD5 [47],
SHA-1 [16], SHA-2 [17], and RIPEMD-160 [14]. Moreover,
collisions for the compression function of MD5 have been
presented by den Boer and Bosselaers [10] and by Dobbertin
[13]; while it seems possible to extend the collisions of [13]
to collisions for MD5 itself, this has yet not been achieved.
MDC-2 and MDC-4 (see Section III-B) are examples of hash
functions that are believed to offer a reasonable security level,
but that have weak compression functions. The few hash
functions that are designed according to Theorem 1 include
DES based hash functions of Merkle [32] (cf. Section III-D),
Snefru (another design by Merkle [33]), and the constructions
proposed in this paper.

For preimage resistance, this result has been strengthened by
Lai and Massey [26] as follows:

Theorem 2: Let Hash be an iterated hash function
with MD-strengthening. Then Hash is ideally secure

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

2526 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

against preimage attacks if and only if is ideally secure
against preimage attacks.

This theorem shows that a compression function that is (ide-
ally) resistant against preimage attacks is also a necessary condi-
tion for a hash function to be (ideally) resistant against preimage
attacks.

For the remainder of this paper we shall assume that
MD-strengthening is used. The main conclusion from Theo-
rems 1 and 2 is that for an iterated hash function, the only way
in which one knows to prove properties of the hash function is
by starting from a strong compression function.

Note: It is also very natural to start from a collision-resistant
compression function. This can be understood as follows: if one
assumes that one has a collision-resistant hash function, which
takes inputs of arbitrary size, one can always restrict the input
to a fixed and small size. This results in a compression function,
which is—by assumption—collision resistant. One can then use
this compression function to define a new (but slightly slower)
hash function which is based on a collision-resistant compres-
sion function.

Thehash rate of a hash function based on an-bit block
cipher with a -bit key is defined as the number of-bit mes-
sage blocks hashed per encryption; here one encryption is called
one “operation.” Similarly, thehash rate of a hash function
based on a -bit to -bit compression function
is defined as the number of -bit message blocks hashed per
application of ; an application of is also called one “opera-
tion.” In summary: in order to hash -bit message blocks, one
needs applications of the block cipher, respectively, of the
compression function. Thecomplexityof an attack is the total
number of operations required for an attacker to succeed with a
high probability.

III. H ASH FUNCTIONS BASED ON BLOCK CIPHERS

Hash functions based on block ciphers have been popular in
part for historical reasons, as designers tried to use the DES
[15] also for hashing. This reduces the design and evaluation
effort, and results in compact implementations, which is impor-
tant for certain environments such as smart cards. It also allows
to transfer the trust in DES (or in any other block cipher) to a
hash function. This is quite important since many custom-de-
signed hash functions have been broken. One illustration are
Dobbertin’s attacks [12], [13], [53] on MD4 [46] and MD5 [47].
One can expect that a similar argument will apply to AES [18];
however, further research on the use of AES in hash function
constructions would be advisable.

However, this approach has some complications. The use of
a block cipher in this application requiresdifferent properties
from the block cipher. Indeed, it might be that the block cipher
has certain properties that do not affect its security level for en-
cryption, but create serious problems in hashing modes and vice
versa. Examples are the (semi-)weak keys of DES [9], [36] and
the quasi-weak keys and weak hash keys identified by Knudsen
[21]. Also, in [23] it was shown that collisions for hash func-
tions based on SAFER K [28] can be found faster than by using
the birthday attack, but this does not seem to pose a threat to

SAFER K when used for encryption. Another problem is that
differential cryptanalysis can be adopted to this setting; for DES
this has been explored by Rijmen and Preneel in [44]. A second
element is that custom designed hash functions are likely to be
more efficient. Moreover, the efficiency of these constructions
is limited by the fact that every iteration typically requires a
key change—this almost excludes block ciphers with a slow key
setup such as RC5 [48]. One should also note that the use of a
block cipher may create additionalexport problems.

The block length of a block cipher is denoted with, while
the key length is denoted with. For convenience, it will be as-
sumed that is an integer multiple of ; it is possible to extend
the constructions to the more general case. A block cipher de-
fines, for each -bit key, a random permutation on-bit strings.
In the following, denotes the encryption of plaintext
using the key .

In constructions using a block cipher it will be assumed that
the block cipher has no weaknesses, i.e., that in attacks on the
hash functions based on the block cipher, no shortcut attacks on
the block cipher will help an attacker.

In the remainder of this section, constructions for hash func-
tions based on block ciphers are reviewed. First, block ciphers
are considered for which the block sizeis equal to the key size

. Section III-A discusses single block length hash functions
, while Section III-B treats double block length hash

functions . Next, constructions are discussed for block
ciphers for which the key length is twice the block length.
Finally, the proposals of Merkle are reviewed in Section III-D.
They are important because they represent the first constructions
with a security proof. This paper tries to extend his approach, but
with different design constraints and assumptions.

Note that there are alternatives that are strictly speaking not
hash functions based on block ciphers. Aiello and Venkatesan
propose in [1] a construction to double the output of a random
function. In order for it to be usable for hashing, one needs to
define the key schedule of this larger “block cipher.” The con-
struction by Aiello, Haber, and Venkatesan [2] replaces the key
schedule of DES by a function from the MDx family with the en-
cryption; several instances are combined by choosing different
(fixed) plaintexts.

A. Single Block Length Hash Functions ()

For these hash functions the size of the hash result is equal to
the block size of the block cipher. All these schemes have rate.
The first secure construction for such a hash function was the
scheme by Matyas, Meyer, and Oseas [29]

This scheme has been included in the 1994 edition of ISO/IEC
Std.10118-2 [20], with an additional mapping from the cipher-
text space to the key space (as DES has and). Its
dual is known as the Davies–Meyer scheme after its inventors

(2)

As this function will be used repeatedly in this paper, a short
notation, , for it has been introduced.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2527

A classification of all “simple” single block length hash func-
tions has been presented by Preneelet al. in [42]. The main con-
clusion is that 12 secure variants exist, which are obtained by an
affine transformation of variables applied to the Matyas, Meyer,
and Oseas scheme and to this variant proposed independently by
Preneel and Miyaguchiet al. [35]

The advantage of using the compression functionis that it is
defined for block ciphers with different block and key sizes. It
is conjectured that for the function (and for the 11 variants)
no shortcut attacks exist [42], which is rephrased as follows.

Assumption 1:Let be an -bit block cipher with a
-bit key for an integer . Then finding collisions for

requires about encryptions (of an -bit block), and finding
a preimage for requires about encryptions.

Note that there is only some empirical evidence for the secu-
rity of : after 10–15 years, no one has been able to find a better
attack. For the remainder of this paper, this assumption is made
if a block cipher is used as the underlying compression function.

Since most present-day block ciphers have a block length of
64 bits, collisions can be found in only operations.

The AES [18] has only a block size of 128 bits. Therefore, hash
functions with a larger hash result are needed. Note that Rijndael
(the algorithm selected for AES) has also an instance with a
block length of 256 bits.

B. Double Block Length Hash Functions ()

The goal ofdouble block lengthhash functions is to achieve a
higher security level against collision attacks. Ideally, a collision
attack on such a hash function should requireoperations, and
a (second-)preimage attack operations. An important class
of proposals of rate is of the following form:

where , , and are binary linear combinations of ,
, , and and where , , and are binary linear

combinations of , , , , and . The hash re-
sult is equal to the concatenation of and . Several hash
functions in this class have been published as individual pro-
posals between 1989 and 1993. First, it was shown by Hohlet al.
that the security level of thecompression functionof these hash
functions is at most that of a single block length hash function
[19]. Next, Knudsenet al.showed that for all hash functions in
this class, a preimage attack requires at mostoperations, and
a collision attack requires at most operations (for most
schemes this can be reduced to) [22].

Several schemes of rate less thanhave been proposed. From
the few that have survived, the most important ones are MDC-2
and MDC-4 with hash rate and , respectively [4]; they
are also known as the Meyer–Schilling hash functions after the
authors of the first paper describing these schemes [34]. MDC-2

TABLE I
SECURITY LEVEL FOR MDC-2 AND MDC-4 BASED ON A BLOCK CIPHER

WITH BLOCK AND KEY LENGTH EQUAL TOm BITS

has been included in the 1994 edition of ISO/IEC Std.10118-2
[20]; it can be described as follows:

Here, denotes the Davies–Meyer hash function (cf. Sec-
tion III-A), and and are mappings from the ciphertext space
to the key space such that . The variables and

are initialized with the values and , respectively,
and the hash result is equal to the concatenation ofand

. The best known preimage and collision attacks on MDC-2
require and operations, respectively (Lai, [26]).
However, it is easy to see that the compression function of
MDC-2 is rather weak: preimage and collision attacks on the
compression function require at most and operations
(one fixes and varies and/or). A collision attack
on MDC-2 based on DES , requires at most

encryptions (and drop the parity bits in every byte and
fix the second and third key bits to and , respectively).

One iteration of MDC-4 [4] is defined as a concatenation of
two MDC-2 steps, where the plaintexts in the second step are
equal to and . The rate of MDC-4 is equal to . The
best known preimage and collision attacks on MDC-4 require

and operations, respectively. This shows that MDC-4
is probably more secure than MDC-2 against preimage attacks.
However, a collision for the compression function of MDC-2
with a specified value for and also yields a collision
for the compression function of MDC-4. Moreover, the authors
have demonstrated in [25] that collisions can be found for the
compression function of MDC-4 with encryptions and
the storage of -bit quantities.

The security level of the hash functions MDC-2 and MDC-4
(with fixed ’s) and of their compression functions is listed
in Table I. These attacks are described in [25] and [26]. Note
that the compression function is not very strong and that the
protection of the hash function against collision attacks is not
very high if DES is used.

Preneelet al.describe in [41] a class of constructions that ex-
tend MDC-2 to parallel iterations, but that keep the key fixed.
Compression is achieved by chopping some bits of the output.
In between the iterations bits are permuted between the different

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

2528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

blocks. This approach results in a tradeoff between performance
and security, and requires an internal memory that is larger than
suggested by the security level. These two properties are shared
with the schemes proposed in this paper. However, as the com-
pression function is not collision resistant, it seems very hard to
prove anything about the security of these hash functions.

C. Block Ciphers With

Merkle observed in [31] that if the key length of a block cipher
is larger than the block length, it can be used as the compression
function of a single block length hash function by just fixing the
plaintext, and considering the mapping from key to ciphertext

with as a constant.
In [26], Lai and Massey propose two constructions for hash

functions based on their block cipher IDEA (with and
): Abreast-DM and Tandem-DM have hash rate and

a claimed security level against preimage and collision attacks
equal to , respectively, operations.

Note that both MD4 [46] and MD5 [47] can be viewed as
a Davies–Meyer construction with an underlying-bit block
cipher with a -bit “key.” Indeed, the compression function
has a feedforward from the “plaintext” (the chaining variable

) toward the “ciphertext” . For MD4 and MD5, the
size of the message block in bits , and the size of
the chaining variable and the hash result are .
From this perspective, both constructions have rate. However,
Dobbertin’s attacks [12], [53], [13] on MD4 and MD5 show that
the compression functions are not collision resistant. His attack
[12], [53] on “extended MD4” [46], which has a compression
function consisting of two parallel and dependent runs of MD4,
shows that it is not obvious to increase the security of these
constructions.

D. Schemes by Merkle

Merkle proposed a new class of hash functions based on
block ciphers with a collision-resistant compression function
[32]. The reason why these schemes are treated separately is
that, unlike the other proposals in Section III-B, they have a
security proof, based on the assumption that the Davies–Meyer
single block length hash functions is secure.

The simplest scheme (with rate for DES) can be de-
scribed as follows:

chop

Here is a string consisting of 112 bits, the leftmost 55 bits
of which are denoted , and the remaining 57 are denoted

; consists of seven bits only. The function chopdrops
the rightmost bits of its argument.

This hash function is similar to MDC-2, but has a collision
resistant compression function at the cost of a low speed; Merkle
shows that if DES has no weaknesses, finding a collision for
this compression function requires at least 2operations. Note
that if DES is being used, additional measures have to be taken

to preclude attacks based on weak keys (resulting in a lower
speed).

The faster versions are more complex and use six invocations
of the block cipher in two layers. The analysis becomes more
complex as well. Merkle shows that for the fastest scheme (with
rate for DES; if weak keys are taken into account),
finding collisions requires 2 operations. This lower bound
has been improved in [39] to 2.

This approach performs a remarkable improvement over pre-
vious proposals, but has the following disadvantages.

• The security level seems to be limited to , which
is not sufficient if DES is used, and only marginally suffi-
cient for a 128-bit block cipher.

• The block sizes for the data input are not convenient, i.e.,
not a multiple of 32 or 64 bits.

• The invocation of the block cipher is in part serial, which is
a disadvantage for high-speed hardware implementations.

IV. M ODEL FOR THENEW CONSTRUCTION

This paper provides new constructions that extend ideal
compression functions of bits to hash functions for which
finding a collision requires strictly more than operations,
and that allow for parallel processing of the individual com-
pression function calls. It has already been argued in Section II
that one should try to design a collision-resistant compression
function. This seems the only approach possible if one wants
to prove something about the security of the hash function. In
the following, let denote the underlying compression
function that takes two inputs, the first of size bits, the
second of size bits, and that produces an-bit output.

The most straightforward approach is to considerparallel
functions and construct a compression functionof rate

as follows:

where , , and are derived from binary linear combina-
tions of , and , , and . Note
that these functions can be evaluated in parallel, as none of the
inputs depends on the outputs of the other functions.

Schemes of this form with and have been pro-
posed in the literature, see, e.g., Knudsenet al. [22]. As illus-
trated by the attacks in [22], it is strongly suggested that it is
hard to invert individual parts of the compression function: par-
tial inversions may be extended by a meet-in-the-middle attack
to an inversion of the compression function. Sorting out this sit-
uation for has taken quite some cryptanalytic effort, and
an elapsed time of about seven years. While it is possible to write
down some schemes for or for which it is not im-
mediately clear (at least to the authors) how to break them, this
approach seems to be destined to fail. Moreover, it is not clear
how one would be able to prove anything about the security of
such a scheme. This leads us to specify the requirement that each

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2529

individual function is an ideal compression function by itself. In
order to avoid trivial attacks, which consist of making the inputs
of the different functions equal, input bits are fixed to
different values. This generalizes the approach of MDC-2 and
the schemes by Merkle. This is reflected in notation by giving
the individual functions different subscripts.

Definition 1 (Multiple Construction):Let be an ideal
collision-resistant compression function that takes two inputs,
the first of bits and the second of size bits, and produces
an -bit output. The compression function of a multiple con-
struction with rate has the following form:

where are different instantiations of (cf. supra)
and are derived from linear combinations of , and

, , and .

Note that MDC-2 (without the swapping of the right halves)
can be described as such a scheme. For MDC-2, , ,

, , and . However,
as explained earlier, MDC-2 does not have a strong compres-
sion function. One could easily generalize MDC-2 to the case
with or . This does not increase the strength of
the compression function, but again it is not obvious how to ex-
tend attacks on the compression function to attacks on the hash
function.

The main design goal is to find linear mappings that result
in a compression function for which finding a collisions and a
preimage requires at least operations, and preferably even
more. Under this constraint, one can prove the following result
for ; it provides a lower bound on, the number of parallel
chains.

Proposition 1: Let be a multiple construction with
(see Definition 1). For finding collisions requires
operations, and for finding collisions requires
operations.

Proof: The case is trivial. If , there are
two chaining variables and and at least one mes-
sage variable (note that the rate is strictly positive). One
can choose these variables in such a way that one of the out-
puts, say , is constant, by imposing two linear constraints
on these variables. One can then use the remaining degrees of
freedom to perform a brute-force collision attack on .
If , one has three chaining variables , , and

and at least one message variable. One can choose
these variables in such a way that one of the outputs, say,
is constant. One can then use the remaining degrees of freedom
to perform a brute-force collision attack on and . For

, one has four chaining variables , , , and
and at least one message variable. Once can choose

these variables in such a way that two of the outputs, say
and , are constant; this requires that one imposes four linear
constraints. The remaining degree of freedom can then be used
to perform a brute-force collision attack on and .

Notes:

1) For , one has five chaining variables and one mes-
sage variable. This offers sufficient degrees of freedom
to fix three chaining variables. However, there are then
no degrees of freedom left to find a collision for the re-
maining two chaining variables; therefore, the approaches
for above will not work in this case. This does not
imply that there exists a construction with which
offers a security level operations.

2) Proposition 1 assumes implicitly that at least one com-
plete message block is processed in every iteration. This
condition could be relaxed, resulting in schemes with

.

3) It might be that the linear mappings are defined in such
a way that one needs fewer than variables to fix
chains. In that case, larger values ofwould be required.
However, it will be assumed in the following that the ma-
trix of the linear mapping has full rank.

Proposition 1 can be generalized to the case .

Proposition 2: Let be a multiple construction with
(see Definition 1) for which finding collisions requires
operations. Then has to satisfy the following inequality:

Proof: One can fix the inputs to chains out of the , and
perform a brute-force collision search on the remaining
chains. This requires operations, with . As
pointed out earlier, one also needs to make sure that sufficient
degrees of freedom are available for the brute-force attacks. The
total number of variables is equal to , and fixing one chain
requires that one imposes constraints on the variables (re-
member that the matrix of the linear matrix has full rank). On
the other hand, a brute-force collision attack on chains
requires “free” variables. This implies that the attack
is feasible if satisfies the following condition:

This can be solved for as

The effort for the brute-force attack is minimized ifis maxi-
mized. The resulting value ofis equal to

which proves the proposition.

Notes:

1) Proposition 2 only provides alower bound on the value
of , as it considers a very simple attack. A more sophis-
ticated attack will be presented in Section VII.

2) For (as in Proposition 1), one needs for that
and for , .

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

2530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

3) For a fixed value of , the security level grows at most
linearly with , while the rate decreases with . If
and are increased, with , for a constant, the
security level (for this attack) remains constant, and the
rate approaches.

Propositions 1 and 2 show that for a secure multiple hash
function with at least five parallel chains are required,
while requires at least four parallel chains. Designing
such a scheme by trial and error seems to be very hard. This
provides additional motivation to search for a more structured
approach. Such an approach is developed in the next section.

V. SIMPLE CONSTRUCTIONWITH QUATERNARY LINEAR CODES

This section proposes a class of hash functions following the
model of Definition 1 for : the compression function
consists of parallel instances of an ideal compression func-
tion . The goal is to find

linear combinations of the variables ,
in such a way that finding a collision for the com-

pression function requires more than operations. Proposi-
tion 1 implies that ; later conditions will be derived for
, as well as for the rate of the hash function. The simple

construction is developed for compression functions with two
inputs, each of bit length . As an example, if DES
is used as the underlying block cipher in a Davies–Meyer con-
struction.

In order to prove the security of the construction, two assump-
tions are required which are presented in the next subsection.

A. Security Assumptions

The first assumption is clear and obvious from the previous
discussion: it is assumed that the underlying-bit compression
function is ideally secure.

Before the second assumption can be stated, some ad-
ditional definitions are required. Consider a collision (or
second-preimage) attack where the two sets of inputs are

and

respectively. Define theactiveinputs as the set of pairs

and

for which and .
A subfunction is calledactive (with respect to

(w.r.t.) the collision or the second-preimage attack), if either
and/or is computed from active inputs.

A set of subfunctions can
be attackedindependently, if for all it holds that:
for all values of the input blocks affecting to the
arguments to are fixed for

Assumption 2:Assume that a collision for the compression
function of a multiple scheme has been found, that is, simulta-

neously for , . Let be the number of active sub-
functions and let be the maximum number of the sub-
functions that can be attacked independently. Takeas the min-
imum value of all such ’s. Then it is assumed that obtaining
this collision must have required at least encryptions.

In an attempt to find collisions for a multiple scheme it will
always be possible to fix the input blocks to some subfunctions
and thereby fix the outputs. Let denote the number of active
subfunctions. Assumption 2 states that, if a maximum of
of these functions can be attacked independently, then there
exists no better attack than a brute-force attack on the remaining

subfunctions.
Note that in the overall complexity of the collision attack the

complexity of the attack on the functions is not consid-
ered, which makes the assumption strong and plausible. For ex-
ample, consider the compression function of MDC-2, .
As mentioned earlier, it is possible to find collisions for the com-
pression function by fixing the inputs to one of the two sub-
functions and do a brute-force attack on the other, that is, with

. In this case, , since . This implies,
from Assumption 2, that collisions for the compression func-
tion of MDC-2 must have required at least one operation while
the best known attack requires operations.

B. The New Construction

The following theorem shows how to construct strong hash
functions based on ideal -bit compression functions using
nonbinary linear error correcting codes.

Theorem 3: If there exists an code over GF of
length , dimension , and minimum distance, with ,
for , then there exists a parallel hash function based
on an ideal compression function

, for which finding a collision for the compression func-
tion requires at least operations provided that As-
sumption 2 holds. The hash function has an internal memory
of bits, and a rate .

Proof: The compression function consists ofdifferent
functions with , see Definition 1. The input to
the compression function consists of -bit blocks: the
variables through (the output of the functions of
the previous iteration) and themessage blocks through

, with . In the following, every indi-
vidual bit of these -bit blocks is treated in the same way. The
bits of two consecutive input blocks are concatenated yielding

elements of GF . These elements are encoded using the
code, resulting in elements of GF . Each of these

elements represents the 2-bit inputs to one of thefunctions. As
an example, if the compression function is built from a block ci-
pher, one bit represents the plaintext block input and the other bit
represents the key input to the block cipher. The individual input
bits are obtained by representing the elements of GFas a
vector space over GF . This construction guarantees that the
conditions for Assumption 2 are satisfied for the value .
To see this, first note that since the dimension of the code is,
one can rearrange the subfunctions such that the firstsubfunc-
tions can be attackedindependently. It is claimed that in an at-
tack at least of the last subfunctions are active. To

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2531

see this, assume that in a collision attack of the first
subfunctions are active and that only of the last
subfunctions are active. It is then possible to find two inputs to
the compression function, that differ in the inputs to only one
of the first subfunctions (by fixing the inputs to some
subfunctions) and at most of the last subfunctions. But
this is a contradiction since it follows from the minimum dis-
tance of the code that the inputs to at leastsubfunctions in
total are different.

Note:
Section V-C provides two examples of such constructions to-

gether with an interpretation of the proof of security.

Apart from the simple security proof and the relatively high
rates, the schemes have the advantage that theoperations can
be carried out in parallel. The disadvantages of the schemes are
the increased amount of internal memory and the cost of the im-
plementation of the linear code (mainly, someEXCLUSIVE-ORs).
Note that the time for a block cipher encryption corresponds
typically to a few hundredEXCLUSIVE-ORs.

Theorem 3 reduces the question of the existence of efficient
hash functions based on a small compression function to the
existence of certain quaternary error-correcting codes. The main
conditions on the code are that the minimum distance should
be as large as possible (at least) and also that the dimension

should be as large as possible (and at least). The
Singleton bound states that . Define thedeficit

. For an maximum-distance separable (MDS)
code, . The rate of the hash function can then rewritten as
follows:

For a quaternary code , only for the
Hamming code (cf. Section VIII) resulting in a scheme with
rate . However, there exist codes which are close to MDS,
namely, with : for there exist codes with

, and for there exist codes with .
Larger values of are not of practical interest. If , the rate

for , and for . This means
that even for moderate values of, rates can be achieved that are
much higher than existing schemes, and this for a higher security
level. The existence of such codes is revisited in Section VIII.
In what follows, a complete scheme is described starting from
the code, and some details are provided for the
code.

C. Two Examples Using the (Shortened) Hamming Codes

The following matrix is a generator matrix for the
Hamming code over GF

(3)

here , , , and . The order of
the chaining variables is given by the following vector:

Now is transformed into a generator matrix over
GF , by replacing each element by a matrix. This matrix
is the matrix of the linear transformation corresponding to the
multiplication by that element. Hence,

The corresponding generator matrix is then equal to

(4)

Now one computes the product , resulting in a vector
with 10 components. The first two components correspond to
the key and the plaintext input to the first compression function

. Components three and four correspond to the two inputs of
the second function , and so on. This results in the following
compression function :

where are different instances of the underlying com-
pression function .

Under Assumption 2 and according to Theorem 3, a colli-
sion of requires at least operations. Consider Assump-
tion 2 and three different cases. First, assume a collision has
been found where the inputs differ only in . Then clearly
the active subfunctions are and , moreover,
and . Second, assume a collision has been found where
the inputs differ only in and . Then clearly the active
subfunctions are and , moreover, and a
maximum of two subfunctions, e.g., and , can be attacked
independently of each other yielding . Third, assume a
collision has been found where the inputs differ in both
and , that is, and , but
where the attacker’s strategy was to choose the values such that

and . Then the active subfunc-
tions are again and and . Note that the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

2532 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

outputs of are fixed and the subfunctions and cannot
be attacked independently under this attacker’s strategy; how-
ever, it is easily checked that , since again a maximum of
two subfunctions can be attacked independently, e.g.,and .

There are generic attacks on the constructions which will
be presented in Section VII. The collision attack applied to
the above example requires about operations (a
second-preimage attack requires operations). Finally,
the number of output blocks of the compression function is
larger than the security level suggests. To avoid this, it is
recommended to use an output transformation which hashes the
five blocks to three blocks. Such constructions are discussed in
Section VI-B.

A second example is based on an shortened Ham-
ming code, which is obtained by shortening the
Hamming code (cf. Section VIII). The resulting hash function
has rate , and for , Theorem 3 shows that
finding a collision requires at least 2encryptions. It is thus
comparable to the best scheme by Merkle (cf. Section III-D),
but that scheme does not allow for a parallel evaluation. The
generator matrix of the Hamming code over GF
has the following form:

(5)

It is now straightforward to derive and the hash function in
a similar way as for the previous example.

VI. I MPROVED CONSTRUCTIONSUSING NONBINARY

LINEAR CODES

This section discusses several ways to improve the schemes
of Theorem 3.

• A first observation is that the security level of the schemes
(for a given rate) can be improved by working with data
blocks smaller than bits. This gives the designer addi-
tional degrees of freedom. It will be explained how these
constructions can be derived from codes over GF, with

.

• Secondly, the construction can be generalized to compres-
sion functions for which the input length is a positive
integer multiple of the output length (when using block
ciphers, this generalization covers cases where the key
length is an integer multiple of the block length).

• An output transformation is added to reduce the size of the
output in accordance with the security level, and to avoid
potential problems with near-collisions.

• Improved strength against attacks on the hash function can
be obtained by a linear transformation of the input vari-
ables to the compression function. The security with re-
spect to attacks on the compression is unchanged.

The extended schemes are proposed in Section VI-A, the
output transformation is discussed in Section VI-B, and the
improved security against attacks on the whole hash function
in Section VI-C.

A. The Improved Construction

The first improvement consists of dividing the-bit words
into smaller blocks and to use codes over larger fields. As an
example, consider a block cipher with-bit blocks and -bit
keys for even . In Theorem 3, codes over GF are used,
where the two bits of the codewords represent to the plaintext
inputs, respectively, the key inputs to the block ciphers. An al-
ternative method is to divide all -bit blocks into blocks of
bits and use codes over GF . The advantage of this approach,
which will be illustrated later in more detail, is that better codes
exists over GF if becomes larger. For example, in a code
over GF with length and dimension , the
minimum distance is at most, e.g., in the shortened Hamming
code , while over GF there exists a code
(cf. Section VIII).

The second improvement consists of extending the scheme
to compression functions where the input size is any integer
multiple of the block length. In the block cipher case, the
Davies–Meyer scheme can still be used, but more than one

-bit block enters the key input. This leads to the following
theorem.

Theorem 4: Let be a divisor of , i.e., , for
some positive integer . If there exists an code over
GF of length , dimension , and minimum distance
, with , and , then there exists a

parallel hash function based on an ideal compression function
, for which finding a col-

lision for the compression function requires at least
operations provided that Assumption 2 holds. The hash function
has an internal memory of bits, has a rate ,
and works on -bit blocks.

Proof: The compression function consists ofdifferent
functions with , see Definition 1. The input to the
compression function consists of -bit blocks: the
variables through (the output of the functions of
the previous iteration) andmessage blocks through ,
with . All -bit blocks are split into sub-
blocks of bits. In the following, every individual bit of these

-bit blocks is treated in the same way. The bits of
consecutive input blocks are concatenated yieldingelements
of GF . These elements are encoded using the
code, resulting in elements of GF . Each of these ele-
ments represents the -bit inputs to one of the functions,
that is, bits correspond to the first input and the remaining
bits correspond the second input to. The individual input bits
are obtained by representing the elements of GF as a
vector space over GF . This construction guarantees that the
conditions for Assumption 2 are satisfied for the value .
It follows from the minimum distance of the code that at least

subfunctions are active in a collision. The conclusion follows
exactly as in the proof of Theorem 3.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2533

As an example, a hash function based on a compression
function with a -bit input and an -bit output (or an -bit
block cipher with an -bit key) can be constructed by using the
code over GF , which is obtained by shortening
the Hamming code . The hash function has rate

and an internal memory of bits, and is thus twice
as fast as the example using the code mentioned in
Section V-C. With , this construction operates on
32-bit words. One can extend this approach to construct hash
functions with codes over GF , i.e., operating on 16-bit
words, for example, by shortening the Hamming
code. However, it will be shown in Section VIII that this does
not offer any improvement, unlessis chosen larger than .
This is interesting from a theoretical point of view but less in
practice as the internal memory increases.

B. Output Transformation

The constructions presented in Section VI-A have the fol-
lowing problems.

1) Since every output bit does not depend on all input bits
of the compression function, it is relatively easy to find
many inputs for which several output blocks of the com-
pression function are equal (such inputs are called “near
collisions”).

2) The number of output blocks is typically much larger than
the security level suggests. As an example, a construction
using the code has hash results of bits, but the
security level for collision attacks is “only” , whereas
for an ideal construction it would be .

The solution is to apply an output transformation to the outputs
of the compression function. This transformation can be slow,
since it has to be applied only once. Therefore, there are many
possible constructions.

First an approach is presented that does not affect the prov-
able security of the compression functions. Denote with
the smallest possible value of for a given value of , such
that Theorem 4 holds. If , compress the blocks
to blocks using the new construction with parallel
blocks (this hash function will have a lower rate than the orig-
inal one). This approach partly solves both problems. However,
if a further reduction to less than blocks is required, other
approaches are necessary.

The first problem can be overcome taking the following ap-
proach. Use the compression function itself as the output trans-
formation, but with the message blocks equal to the values,

. This has the important advantage that no addi-
tional function has to be implemented. In order to use allin-
puts, at least additional iterations are required. This does
not provide sufficient mixing. The number of recommended ad-
ditional iterations is at least , and preferably
. Although this approach solves the first of kind of problems, it

does not solve the second. If one truncates the output of the last
round of the compression function the proof of security fails.
However, it can be argued that since a real-life attacker has no
control over the blocks which are hashed in the output transfor-
mation the security is not threatened. But it is stressed, that there

is no proof in the general case, where the attacker is allowed to
control all inputs to the compression function.

In constructions using a block cipher the first problem can
be solved as follows. One encrypts theoutput blocks of the
compression function using the block cipher with a fixed, ran-
domly chosen key, such that all output blocks of the encryption
depend on all input blocks in a complicated way. One could use,
for example, theall-or-nothing transform introduced by Rivest
[49]. Note that a simple CBC encryption would not be sufficient.
Subsequently, the blocks concatenated with theencrypted
blocks are hashed as above. The second problem can be over-
come by the following proposal which can be used instead of
or in conjunction with the above first approach. First, one con-
structs from the -bit block cipher a large, strong block cipher
with block length bits. This block cipher can be slow, since
it is applied only once. Subsequently, the blocks from
the compression function are input to a Davies–Meyer construc-
tion where the block cipher key is randomly chosen and fixed
(and part of the hash function description). Under Assumption 1
this is a secure hash function. The output can be truncated to any

blocks, where .

C. Real-Life Attacks

In an attack on a compression function the attacker has full
control over all inputs. In an attack on an iterated hash func-
tion induced by the compression function an attacker is more
restricted. He still has full control over the message variables

, but the variables are themselves outputs of the com-
pression function in the previous step or are the fixed initial
values in the case . As an example, consider the com-
pression function described in the previous section using the
code . An attacker can fix the variables , for

, and compute the hash values for all values of .
By the birthday paradox, with a high probability he would get
a collision in four of the five subfunctions. Such problems can
be overcome by applying an affine transformation of the input
variables such that the inputs to all five subfunctions depend on
the message variables. Note that for any affine transformation of
the input variables Theorem 3 would still hold. In the example,
one can use the following input vector of the chaining variables:

Furthermore, in constructions using a block cipher it is possible
to restrict the message variable to as few key inputs as possible
to avoid a situation when the attacker can control the keys of the
underlying block cipher. The motivation for this is that block
ciphers are typically designed to resist attacks where an oppo-
nent controls the plaintext or the ciphertext, but where the key
is chosen uniformly at random.

VII. A G ENERIC ATTACK

This section presents a generic attack on the hash functions
developed in this paper. The attack makes use ofmulticollisions.
A multicollision for and an element Range is a set
of values (with), such that , .

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

2534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

The following lemma is used in the attack (see, for example,
Motwani and Raghavan [37, p. 45]).

Lemma 1: When balls are thrown into urns, with
, with probability every urn contains

balls.

An interesting observation is that in this case, the urn with the
most balls has about the same number of balls as the expected
number of balls in any urn (so the variance of the distribution is
very small).

If there are fewer balls, the distribution is less uniform, but the
following bound can be proved (see [37, Theorem 3.1, p. 45]).

Lemma 2: When balls are thrown into urns, with
probability at least no urn contains more than

balls.

For , with probability close to there will be no
urn with more than 32 balls. This illustrates that if is much
smaller than in Lemma 1, only multicollisions for small values
of are expected to occur.

Clearly, the complexity for finding a multicollision for a par-
ticular value is higher than for finding a multicollision for
one in many values. Although it seems that a multicollision of

elements for some element can be found using less than
evaluations, Lemmas 1 and 2 show that the required

number of evaluations is not much less than . Moreover,
an attacker has no control over the target value, and will need
to store counters. With evaluations one can expect
many multicollisions of elements. In this case it suffices
to keep counters for a few values.

First, a preimage attack is considered. We conjecture that the
lower bound for a preimage attack is , but it is an open
problem whether our proof techniques can be extended to obtain
this bound.

Proposition 3: Consider a multiple hash function con-
struction (cf. Definition 1), using an code over
GF , where (cf. Theorem 4). Then a
preimage of the compression function of can be found in
about operations. The attack requires
the storage of about -bit values.

Proof: First note that it is possible to find an affine trans-
formation of the inputs to the compression functions, such that

subfunctions can be attacked independently. Rearrange the
subfunctions such that thesefunctions come first. The attack
is split into two parts. In the first part, one generates a set of
multicollisions for each of the first subfunctions. Then, in
the second part, thesesets of multicollisions are combined
in all possible ways in order to perform a brute-force attack
on the remaining subfunctions. The second part requires
about messages, all of which should hash to the same
value in the first functions. With high probability there will
be a match for all functions. In the first part, by generating

values of one subfunction, a multicollision on a
specific value in the range of a subfunction can be expected
where . Repeating this for each of the first
functions would yield such sets, which combined would give

inputs all hitting the same output value for the first

subfunctions. Then with high probability a match for allfunc-
tions will exist. Note that . One problem
is whether the entropy of the input to an individual subfunc-
tion is sufficiently large to generate that many multicollisions.
One subfunction has inputs, hence it is required that

. However, this is always true since it is also re-
quired that in the constructions.

Note: One can show that the effort of the first part dominates
that of the second part if is larger than
and smaller than . This is the case for
most values of practical interest, e.g., , , and not
too large, say .

The following proposition contains the generic attack for col-
lisions.

Proposition 4: Consider a multiple hash function con-
struction (cf. Definition 1), using an code over
GF , where (cf. Theorem 4). Then
collisions for the compression function of can be found in

operations. The attack requires the storage of about
-bit values.

Proof: This attack is similar to the preimage attack of
Proposition 3. In the first part, one generates a set of multicolli-
sions for each of the first subfunctions. That is, one generates

values of one subfunction, hence a multicollision
will exist where . Repeating this for each of
the first functions would yield such sets, which combined
would give texts all hitting the same output value for the
first subfunctions. In the second part, a collision will be found
for the remaining subfunctions also with a high probability.
Note that

Again, one can show that the entropy of the inputs to individual
subfunctions is sufficiently large: one subfunction has
inputs, hence it is required that . However, this
is always true since it is also required that in the
constructions.

Note: One can show that the effort of the first part dominates
that of the second part if is larger than
and smaller than . This is the case
for most values of practical interest, e.g., when , ,
and not too large, say .

Consider a multiple hash constructions based on an
code and an -bit compression function. It follows from Sec-
tion V-B that the fastest schemes are for MDS codes. With

, Propositions 3 and 4 state that the generic at-
tacks are close to the lower bounds of security in Theorems 3
and 4. For and , the attacks require ,
respectively, operations which at least for large
values of and is close to the lower bounds of Theorem 4. For

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2535

and , the attacks require , respectively,
operations which match the lower bounds of Theorem 4.

Brudevoll has shown that if , for some construc-
tions there exist attacks (based on multicollisions) with com-
plexities lower than the ones of Propositions 3 and 4 [6]. In these
cases, it is advantageous to generate multicollisions for

subfunctions, then combine these to perform a brute-force
attack on the remaining active subfunctions. In these
cases, preimages and collisions can be found for the compres-
sion function in , respectively,

operations. Examples of
such constructions together with other constructions where the
best (known) attacks are those of Propositions 3 and 4 are given
in [6]. In any case, note that the complexities will never be lower
than the bounds of Theorems 3 and 4.

VIII. E RROR-CORRECTIONCODES

The constructions of Sections V and VI rely on the existence
of nonbinary linear error-correcting codes of length, dimen-
sion , and minimum distance. The conditions on the code are
the following.

• The minimum distance should be sufficiently large, as
the security level of the hash function is equal to
for collisions.

• The dimension should be large as well; from the Sin-
gleton bound it follows that . The con-
struction requires that , where the original
compression function takes an input of size bits
and outputs bits. Recall that thedeficit is defined as

. The rate of the hash function can then written
as follows:

This shows that if becomes large, the rate of these hash
function approaches. It is shown later that for codes with
a fixed value of and , grows slowly with . Moreover,
the best codes for this construction are MDS codes, i.e.,
codes with . However, the existence of nontrivial
MDS codes (i.e., MDS codes with) for large
values of and is an open problem.

First, the easy case of is addressed. This forms a
starting point to discuss larger values of.

A. The Case

These codes are the well-known Hamming codes, with pa-
rameters given by the following proposition (see, for example,
MacWilliams and Sloane [27, pp. 179–180]).

Proposition 5: Let be a prime power. The (perfect) Ham-
ming codes over GF have the following parameters:

They can be shortened up to dimension.
Proof: Hamming codes are single-error-correcting codes,

or . The syndrome of an -dimensional vector over
GF is equal to , where is the transpose of the

parity matrix. A code can correct a single error if the syndrome
of all individual errors is different, and different from. The
syndrome of a single error is a nonzero multiple of a column of

and thus of a row of . Therefore, it is sufficient that all
rows of are nonzero and are not a multiple of each other. As
the parity matrix has rows with components, a code
can only correct a single error if there are at leastnonzero rows
that satisfy the conditions, or

It is easy to see that equality can only be achieved ifand are
as stated in the proposition (note that). If the code
is shortened, that is, and are reduced by one, the inequality
will still be satisfied.

It follows immediately that the value of is equal to .
For small values of , one obtains the following results:

: If , one obtains the code of Sec-
tion V-C. This is an MDS code, or . For ,
one finds a code that can be shortened to the

code of Section V-C. Note that for this code, and
for its shortened versions, one has .

: yields the Hamming code, which is
MDS. The case results in the Hamming
code.

: yields the Hamming code, which
is MDS.

Proposition 6: There exist parallel hash functions based
on an ideal compression function

, with rates close to for which finding a collision
takes at least , respectively, at least operations.

Proof: From Theorem 4 it follows that such hash functions
exist if there exist Hamming codes withsufficiently small. For
Hamming codes

and thus the rate is equal to

This implies that if becomes large, the rate approaches
quickly.

To illustrate this result: using the Hamming code
with , the rate becomes

In constructions using a block cipher, this has the following
implications.

Corollary 1: Provided that Assumption 2 holds, there exist
parallel hash functions based on an-bit block cipher with
a -bit key with rates close to for which finding a colli-
sion takes at least operations, respectively, at least
operations.

At the cost of a larger internal memory, using DES one
can obtain hash functions of rate, and using IDEA one can

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

2536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

TABLE II
MINIMUM DISTANCEd FOR THEBESTCODESKNOWN OVER GF(2) WITH LENGTHn AND DIMENSION k. THE LINES SEPARATE THEAREASWITH k > n=2 AND

k > n=3. MDS CODESARE INDICATED WITH A BOLD NUMBER. THE SYMBOL “–” M EANS THAT A CODE WITH d � 3 WOULD VIOLATE THE SINGLETON BOUND

TABLE III
MINIMUM DISTANCEd FOR THEBESTCODESKNOWN OVER GF(2) WITH LENGTHn AND DIMENSION k. THE LINES SEPARATE THEAREASWITH k > n=2 AND

k > n=3. MDS CODESARE INDICATED WITH A BOLD NUMBER. THE SYMBOL “–” M EANS THAT A CODE WITH d � 3 WOULD VIOLATE THE SINGLETON BOUND.
A � SYMBOL MEANS THAT A CODE WITH MINIMUM DISTANCE d + 1 MIGHT EXIST

obtain hash functions of rate. For comparison MDC-2 and
MDC-4 have rates , respectively, , and Abreast-DM
and Tandem-DM developed for IDEA [26] have rates (cf.
Section III).

B. The Case

From the previous section one can conclude that MDS codes
only exist for values of below a certain threshold; the value of
this threshold increases with. It is also known that nontrivial
MDS codes over GF exist only when and .
Once one has an MDS code, shortening it will result in another
MDS code with the same minimum distance. This follows from
the fact that a necessary and sufficient condition for an MDS
code is that every square submatrix of size of
the matrix , defined by , is nonsingular
[27, p. 321].

For the parameters which are of interest to the new construc-
tion, the following theorem presents doubly and triply extended
Reed-Solomon codes that are MDS [27, pp. 323–326].

Theorem 5: For any , , there exists a
cyclic MDS code over GF , and there exist

and MDS codes over GF .

The fact that some of these codes are cyclic can be used to
develop a compact description (cf. Section IX). For , no
codes of are obtained using this construction. For larger
values of , one obtains the following results.

: the preceding theorem results in the following codes
with : , , , and .
Here the first three codes are cyclic.

: there exist MDS codes for all values ofup to ,
. In addition, there exist an and an
code. The and codes are

cyclic.

As values of larger than this are not of importance for practical
constructions, there is no reason to use values oflarger than

.
Tables II and III indicate the values of and for which a

linear code exist with minimum distance for and ,
respectively. These tables have been obtained from [5]. For
, there is only one MDS code with , namely, the

Hamming code. For , there exist MDS codes satisfying
the conditions for ; one also has the code
of Theorem 5. For and , one can always find a

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2537

code with . This illustrates that not much can be gained
from taking . For , MDS codes exist for ,

, and for and . This is certainly
sufficient for the hash functions considered in this paper.

IX. SOME PRACTICAL EXAMPLES

This section contains some examples of new constructions for
several parameters of the underlying compression function. The
examples in the first two subsections are especially suited for
constructions where the compression function is obtained from
a block cipher. In the following, denotes an -bit block
cipher with a -bit key. The complexities of the attacks on the
examples are against the compression function. Attacks against
the hash function can be higher according to Sections VI-B and
VI-C. However, it is recommended when designing a hash func-
tion to choose a construction with a large security against attacks
on the compression functions.

A. Using an -Block Cipher

Tables IV and V list the rates and the best known attacks for
the existing constructions and the constructions proposed in this
paper respectively.

In what follows, an implementation of the construction using
the code is shown. Define GF as the extension field
GF . There are many generator matrices for
a linear code over GF . A generator matrix was
chosen which leads to a simple and efficient compression func-
tion, as explained later. The generator matrix has the following
form:

(6)

Here and are the additive and multiplicative neutral elements
in GF and , and . The motivation for
the choice of the generator matrix is as follows. In an implemen-
tation of the compression function the elements of GF are
represented as elements of a vector space over GF. Clearly,
multiplications with and are the easiest to implement. A
closer analysis shows that multiplication withand in the
above example can be implemented with one, respectively, two
EXCLUSIVE-ORs. An exhaustive search for the matrix with the
easiest implementation was not feasible (w.r.t. our computing
resources), but by restricting a search to using the elements,

, , and a solution close to the optimal one was obtained.
Let be different instants of the function
, let and denote the leftmost, respectively, rightmost

bits of , and let denote concatenation of bit blocks.
Furthermore, let be the nine input blocks coming
from the compression function in the previous iteration and let

be the three message block inputs. This results
in the compression function depicted in Table VI.

TABLE IV
RATES AND COMPLEXITIES OF PREVIOUS PROPOSALS FOR

(m; m)-BLOCK CIPHERS

TABLE V
COMPARISON OFCONSTRUCTIONSBASED ON CODES OVER GF(2)

AND OVER GF(2) FOR (m; m)-BLOCK CIPHERS

As an output transformation one can first hash the nine
blocks to seven blocks via the compression function using the
code (for) and then hash the seven
blocks to three blocks using one of the approaches described
in Section VI-B.

B. Using an -Block Cipher

The only known hash functions based on an -block
cipher with a -bit hash result are the Abreast-DM and the
Tandem-DM from [26] (cf. Section III-C). Table VII lists the
rates and complexities of the best known attacks on the two
constructions.

However, as already indicated, there exist more efficient con-
structions with a higher security level. Table VIII lists the rates
and complexities of such constructions. As before, it is possible
divide the -bit blocks into smaller subblocks. For example,
the blocks can be divided into halves and expanded with a code
over GF , such as .

C. Using the MDx Family

Dobbertin’s attack on the extended MD4 [12], [53] shows that
for MD4 even two dependent runs of the compression function
are not collision resistant. However, it seems unlikely that his at-
tacks extend to compression functions consisting of two or more
instantiations of MD5. The methods developed in this paper
can be used to construct parallel MD5 hash functions based on
linear codes over GF . In Table IX possible constructions
are listed.

Since the assumption for these constructions, that is, that the
basic components are secure, does not hold for MD4 and MD5,
explicit bounds for the complexities of collision attacks on the
compression functions have not been specified. However, it is
conjectured that for the constructions using MD5 and codes of
minimum distance , a collision attack is infeasible. The attack
requires a simultaneous collision for at least three different in-
stances with dependent inputs.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

2538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

TABLE VI
COMPRESSIONFUNCTION USING THE CODE [9; 6; 4] IN GF(2)

TABLE VII
RATES AND COMPLEXITIES OF PREVIOUS PROPOSALS FOR

(m; 2m)-BLOCK CIPHERS[26]

TABLE VIII
RATES AND COMPLEXITIES OF THEPROPOSALS FOR(m; 2m)-BLOCK

CIPHERSUSING CODESOVER GF(2)

TABLE IX
RATES AND COMPLEXITIES OF THEPROPOSALS FOR THEMDx FAMILY

USING CODESOVER GF(2)

D. Remarks on Implementations

The description of the hash functions used in the previous
sections can be made more compact by considering a cyclic
representation of the used codes. As an example, consider the
proposal based on the cyclic Reed–Solomon code over
GF ; a cyclic representation can be used with

where . The cyclic representation leads to a compact
and simple description, which is easier to implement and test.

The representation given in the previous section, however, has
a smaller overhead in terms of the number ofEXCLUSIVE-ORs.

X. CONCLUSION

This paper has presented a new method for constructing hash
functions based on a small compression function. Using block
ciphers such as DES this yields hash functions which are faster
and more secure than existing proposals. The method extends to
block ciphers such as IDEA and AES where the block size and
key size are different. For large values of internal memory, con-
structions using IDEA exist with rates close to two, which is a
factor of four faster than existing proposals. Finally, the applica-
tion of the method to the MDx family has been discussed. Two
schemes derived from the constructions proposed in this paper
have been included in the revised edition (2000) of ISO/IEC
Std.10118-2 [20].

ACKNOWLEDGMENT

The authors are grateful to E. Brudevoll and to the anony-
mous referees for many helpful comments. Also, they wish
to acknowledge the helpful discussions with T. Helleseth and
T. Kløve about codes.

REFERENCES

[1] W. Aiello and R. Venkatesan, “Foiling birthday attacks in length-dou-
bling transformations. Benes: A nonreversible alternative to Feistel,” in
Advances in Cryptology, Proc. Eurocrypt’96 (Lecture Notes in Com-
puter Science), U. Maurer, Ed. Berlin, Germany: Springer-Verlag,
1996, vol. 1070, pp. 307–320.

[2] W. Aiello, S. Haber, and R. Venkatesan, “New constructions for secure
hash functions,” inFast Software Encryption (Lecture Notes in Com-
puter Science), S. Vaudenay, Ed. Berlin, Germany: Springer-Verlag,
1998, vol. 1372, pp. 150–167.

[3] M. Bellare and P. Rogaway, “Toward making UOWHF’s practical,” in
Advances in Cryptology, Proc. Crypto’97 (Lecture Notes in Computer
Science), B. Kaliski, Ed. Berlin, Germany: Springer-Verlag, 1997, vol.
1294, pp. 470–484.

[4] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, C. H.
Meyer, J. Oseas, S. Pilpel, and M. Schilling, “Data authentication using
modification detection codes based on a public one way encryption func-
tion,” U.S. Patent 4 908 861, Mar. 13, 1990.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

KNUDSEN AND PRENEEL: CONSTRUCTION OF SECURE AND FAST HASH FUNCTIONS 2539

[5] A. E. Brouwer. Linear code bound. [Online]. Available: http://www.win.
tue.nl/win/math/dw/voorlincod.html.

[6] E. Brudevoll, “Iterated cryptographic hash functions,” Master thesis,
Univ. Bergen, Bergen, Norway, Nov. 1999.

[7] J. Daemen and V. Rijmen. (1999, Sept.) AES proposal Rijndael. [On-
line]. Available: http://www.nist.gov/aes.

[8] I. B. Damgård, “A design principle for hash functions,” inAdvances in
Cryptology, Proc. Crypto’89 (Lecture Notes in Computer Science), G.
Brassard, Ed. Berlin, Germany: Springer-Verlag, 1990, vol. 435, pp.
416–427.

[9] D. Davies and W. Price,Security for Computer Networks, 2nd ed. New
York: Wiley, 1989.

[10] B. den Boer and A. Bosselaers, “Collisions for the compression func-
tion of MD5,” in Advances in Cryptology, Proc. Eurocrypt’93 (Lec-
ture Notes in Computer Science, T. Helleseth, Ed. Berlin, Germany:
Springer-Verlag, 1994, vol. 765, pp. 293–304.

[11] W. Diffie and M. E. Hellman, “New directions in cryptography,”IEEE
Trans. Inform. Theory, vol. IT-22, pp. 644–654, Nov. 1976.

[12] H. Dobbertin, “Cryptanalysis of MD4,”J. Cryptol., vol. 11, no. 4, pp.
253–271, 1998.

[13] , “The status of MD5 after a recent attack,”CryptoBytes, vol. 2, no.
2, pp. 1–6, Summer 1996.

[14] H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: A strength-
ened version of RIPEMD,” inFast Software Encryption (Lecture Notes
in Computer Ssciene), D. Gollmann, Ed. Berlin, Germany: Springer-
Verlag, 1996, vol. 1039, pp. 71–82.

[15] Federal Information Processing Std. (FIPS) 46, “Data Encryption Stan-
dard,” Nat. Bur. Stand., U.S. Dept. Commerce, Washington, DC, Jan.
1977.

[16] Federal Information Processing Std. (FIPS) 180-1, “Secure Hash Stan-
dard,” NIST, U.S. Dept. Commerce, Washington, DC, Apr. 1995.

[17] NIST, “SHA-256, SHA-384, SHA-512,” U.S. Dept. Commerce, Draft,
Washington, DC, 2000.

[18] Federal Information Processing Std. (FIPS) 197, “Advanced Encryption
Standard (AES),” NIST, U.S. Dept. Commerce, Washington, DC, Nov.
26, 2001.

[19] W. Hohl, X. Lai, T. Meier, and C. Waldvogel, “Security of iterated
hash functions based on block ciphers,” inAdvances in Cryptology,
Proc. Crypto’93 (Lecture Notes in Computer Science), D. Stinson,
Ed. Berlin, Germany: Springer-Verlag, 1994, vol. 773, pp. 379–390.

[20] ISO/IEC, “Information technology—Security techniques—Hash-func-
tions, Part 1: General and Part 2: Hash-functions using an n-bit block
cipher algorithm,” Std. 10118, revision of 1994 ed., 2000.

[21] L. R. Knudsen, “New potentially ‘weak’ keys for DES and LOKI,” in
Advances in Cryptology, Proc. Eurocrypt’94 (Lecture Notes in Com-
puter Science), A. De Santis, Ed. Berlin, Germany: Springer-Verlag,
1995, vol. 959, pp. 419–424.

[22] , “A detailed analysis of SAFER K,”J. Cryptol., vol. 13, no. 4, pp.
417–436, 2000.

[23] L. R. Knudsen, X. Lai, and B. Preneel, “Attacks on fast double block
length hash functions,”J. Cryptol., vol. 11, no. 1, pp. 59–72, Winter
1998.

[24] L. R. Knudsen and B. Preneel, “Hash functions based on block ciphers
and quaternary codes,” inAdvances in Cryptology, Proc. Asiacrypt’96
(Lecture Notes in Computer Science), K. Kim and T. Matsumoto,
Eds. Berlin, Germany: Springer-Verlag, 1996, vol. 1163, pp. 77–90.

[25] L. R. Knudsen and B. Preneel, “Fast and secure hashing based on codes,”
in Advances in Cryptology, Proc. Crypto’97 (Lecture Notes in Computer
Science), B. Kaliski, Ed. Berlin, Germany: Springer-Verlag, 1997, vol.
1294, pp. 485–498.

[26] X. Lai, “On the design and security of block ciphers,” inETH Series in
Information Processing, J. L. Massey, Ed. Konstanz, Germany: Har-
tung-Gorre Verlag, 1992, vol. 1.

[27] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1978.

[28] J. L. Massey, “SAFER K-64: A byte-oriented block-ciphering al-
gorithm,” in Fast Software Encryption (Lecture Notes in Computer
Science), B. Preneel, Ed. Berlin, Germany: Springer-Verlag, 1995,
vol. 1008, pp. 1–17.

[29] S. M. Matyas, C. H. Meyer, and J. Oseas, “Generating strong one-way
functions with cryptographic algorithm,”IBM Tech. Discl. Bull., vol. 27,
no. 10A, pp. 5658–5659, 1985.

[30] A. Menezes, P. C. van Oorschot, and S. Vanstone,Handbook of Applied
Cryptography. Boca Raton, FL: CRC, 1997.

[31] R. Merkle, Secrecy, Authentication, and Public Key Systems. Ann
Arbor, MI: UMI Res., 1979.

[32] , “One way hash functions and DES,” inAdvances in Cryptology,
Proc. Crypto’89 (Lecture Notes in Computer Science), G. Brassard,
Ed. Berlin, Germany: Springer-Verlag, 1990, vol. 435, pp. 428–446.

[33] , “A fast software one-way hash function,”J. Cryptol., vol. 3, no.
1, pp. 43–58, 1990.

[34] C. H. Meyer and M. Schilling, “Secure program load with manipulation
detection code,” inProc. Securicom 1988, pp. 111–130.

[35] S. Miyaguchi, M. Iwata, and K. Ohta, “New 128-bit hash function,” in
Proc. 4th Int. Joint Workshop on Computer Communications, Tokyo,
Japan, July 13–15, 1989.

[36] J. H. Moore and G. J. Simmons, “Cycle structure of the DES for keys
having palindromic (or antipalindromic) sequences of round keys,”
IEEE Trans. Software Eng., vol. SE-13, no. 2, pp. 262–273, 1987.

[37] R. Motwani and P. Raghavan,Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

[38] M. Naor and M. Yung, “Universal one-way hash functions and their
cryptographic applications,” inProc. 21st ACM Symp. Theory of Com-
puting, 1989, pp. 387–394.

[39] B. Preneel, “Analysis and design of cryptographic hash functions,”
Ph.D. dissertation, Katholieke Universiteit Leuven, Leuven, Belgium,
Jan. 1993.

[40] B. Preneel, “The state of cryptographic hash functions,” inLectures
on Data Security (Lecture Notes on Computer Science), I. Damgård,
Ed. Berlin, Germany: Springer-Verlag, 1999, vol. 1561, pp. 158–182.

[41] B. Preneel, R. Govaerts, and J. Vandewalle, “On the power of memory
in the design of collision resistant hash functions,” inAdvances in Cryp-
tology, Proc. Auscrypt’92 (Lecture Notes in Computer Science), J. Se-
berry and Y. Zheng, Eds. Berlin, Germany: Springer-Verlag, 1993, vol.
718, pp. 105–121.

[42] B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based
on block ciphers: A synthetic approach,” inAdvances in Cryptology,
Proc. Crypto’93 (Lecture Notes in Computer Science), D. Stinson,
Ed. Berlin, Germany: Springer-Verlag, 1994, vol. 773, pp. 368–378.

[43] B. Preneel and P. C. van Oorschot, “On the security of iterated MAC al-
gorithms,”IEEE Trans. Inform. Theory, vol. 45, pp. 188–199, Jan. 1999.

[44] V. Rijmen and B. Preneel, “Improved characteristics for differential
cryptanalysis of hash functions based on block ciphers,” inFast
Software Encryption (Lecture Notes in Computer Science), B. Preneel,
Ed. Berlin, Germany: Springer-Verlag, 1995, vol. 1008, pp. 242–248.

[45] J.-J. Quisquater and J.-P. Delescaille, “‘How easy is collision search?
Application to DES’,” inAdvances in Cryptology, Proc. Eurocrypt’89
(Lecture Notes in Computer Science), J.-J. Quisquater and J. Vande-
walle, Eds. Berlin, Germany: Springer-Verlag, 1990, vol. 434, pp.
429–434.

[46] R. L. Rivest, “The MD4 message digest algorithm,” inAdvances in
Cryptology, Proc. Crypto’90 (Lecture Notes in Computer Science), S.
Vanstone, Ed. Berlin, Germany: Springer-Verlag, 1991, vol. 537, pp.
303–311.

[47] , “The MD5 message-digest algorithm,” inRequest for Comments
(RFC) 1321, Apr. 1992. Internet Engineering Task Force (IETF). Avail-
able: [Online] http://www.ietf.org/.

[48] , “The RC5 encryption algorithm,” inFast Software Encryption
(Lecture Notes in Computer Science), B. Preneel, Ed. Berlin, Ger-
many: Springer-Verlag, 1995, vol. 1008, pp. 86–96.

[49] , “All-or-nothing encryption and the package transform,” inFast
Software Encryption (Lecture Notes in Computer Science), E. Biham,
Ed. Berlin, Germany: Springer-Verlag, 1997, vol. 1267, pp. 210–218.

[50] D. Simon, “Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions?,” inAdvances in Cryp-
tology, Proceedings Eurocrypt’98 (Lecture Notes in Computer Science),
K. Nyberg, Ed. Berlin, Germany: Springer-Verlag, 1998, vol. 1403,
pp. 334–345.

[51] P. C. van Oorschot and M. J. Wiener, “Parallel collision search with
cryptanalytic applications,”J. Cryptol., vol. 12, no. 1, pp. 1–28, 1999.

[52] G. Yuval, “How to swindle Rabin,”Cryptologia, vol. 3, no. 3, pp.
187–189, 1979.

[53] H. Dobbertin, “Cryptanalysis of MD4,” inFast Software Encryption
(Lecture Notes in Computer Science), D. Gollmann, Ed. Berlin, Ger-
many: Springer-Verlag, 1996, vol. 1039, pp. 53–69.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 07:59:45 EST from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

