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Telescoping Recursive Representations and
Estimation of Gauss-Markov Random Fields
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Abstract—We presenttelescoping recursive representations for
both continuous and discrete indexed noncausal Gauss-Maok
random fields. Our recursions start at the boundary (a hyper-
surface in R?, d > 1) and telescope inwards. For example, for
images, the telescoping representation reduce recursiorfsom
d=2to d=1, i.e., to recursions on a single dimension. Under
appropriate conditions, the recursions for the random field are
linear stochastic differential/difference equations driven by white
noise, for which we derive recursive estimation algorithmsthat
extend standard algorithms, like the Kalman-Bucy filter and
the Rauch-Tung-Striebel smoother, to noncausal Markov radom  Fig. 1. Causal and Noncausal models for random fields
fields.

e ey s 1 Shown i Fig ). I s assume that th site indicated
Striebel Smoother, Recursive Estimation, Telescoping Regsen- by ‘o’ depends on the ne'ghb_ors indicated by x'. Such fields
tation do not capture fully the spatial dependence, as for example,
when the field at a spatial location depends on its neighbors.
More appropriate representations are noncausal models, an
example of which is the nearest neighbor model shown in

We consider the problem of deriving recursive represefig. [I(b). In [12], the authors derive recursive estimation
tations for spatially distributed signals, such as temipeea equations fomearest neighbor modelsver Z2 by stacking
in materials, concentration of components in process obntrtwo rows (or columns) at a time of the lattice into one vector
intensity of images, density of a gas in a room, stress leeland thus converting the two-dimensional (2-D) estimation
different locations in a structure, or pollutant concetidrain  problem into a one-dimensional (1-D) estimation problerthwi
a lake [1]-[3]. These signals are often modeled usamglom state of dimensior2n, for an n x n lattice. However, the
fields which are random signals indexed ot or Z4, for algorithm in [12] is restricted to nearest neighbor models
d > 2. For randomprocesseswhich are indexed oveR, with boundary conditions being local, i.e., they involvelyon
recursive algorithms are recovered by assuming caushlity.neighboring points along the boundary. [n][13], the authors
particular, for Markov random processes, the future stdées derive a recursive representation for general noncausas<sca
pend only on the present state given both the past and pres@atkov random fields (GMRFs) ové#? by stacking the field
states. When modeling spatial distributions by random ieldn each row (or column) and factoring the field covariance to
it is more appropriate to assume noncausality as opposgst 1-D state-space models. However, the model5_ih [13] are
to causality. This leads to noncalsalarkov random fields only valid when the boundary conditions are assumed to be
(MRFs): the field inside a domain is independent of the fielebro. Further, since we can not stack columns or rows over a
outside the domain given the field on (or near) the domagontinuous index space, it is not clear how the methods df [12
boundary. The need for recursive algorithms for noncausald [13] can be extended to derive recursive represengation
MRFs arises to reduce the increased computational contyplexor noncausal GMRFs ovék? for d > 2.
due to the noncausality and the multidimensionality of the For noncausabotropic GMRFs oveiR2, the authors in [14]
index set. The assumption of noncausality presents prablegrived recursive representations, and subsequentlysieeu
in developing recursive algorithms such as the Kalman-Buggtimators, by transforming the 2-D problem into a courtabl
filter for noncausal MRFs. infinite number of 1-D problems. This transformation was

Instead, to derive recursive algorithms, many authors makgssible because of the isotropy assumption since isatropi
causal approximations to random fields oWt or Z?, see fields overR?, when expanded in a Fourier series in terms of
[4]-11]. An example of a random field with causal structurghe polar coordinate angle, the Fourier coefficient prozess

. . . different orders are uncorrelated [14]. In this way, thehaut
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1-D estimation problems [14]. For random fields with diseret
indices, nonrecursiveapproximate estimation algorithms can
be found in the literature on estimation of graphical models
e.g., [15].

In this paper, we present a telescoping recursive repre-
sentation for general noncausal Gauss-Markov random fields (a) (b) ()
defined on a closed continuous index setRif, d > 2, or Fig. 2.
on a closed discrete index set #f, d > 2. The telescoping disc.
recursions initiate at the boundary of the field and recurse
inwards. For example, in Fidl 2(a), for a GMRF defined on _ . . . .
a unit disc, we deri\ee telesc;ﬂpin; )representations thatrsec '€CUrsions, the telescoping recursion for discrete indéRGs
radially inwards to the center of the field. For the same fiellf Unaue.

we derive an equivalent representation where the telesgopi The Oiﬁamtﬁat'on 0]]: tg&FLogpersls t%‘ﬁllloyv;s. dSecrlhII
surfaces are not necessarily symmetric about the center' pf'eWs the theory o S. Sect introduces the

the disc, see Figld]2(b). Further, the telescoping surfact ,escoping representation for GMRFs indexed on a unit

under appropriate conditions, can be arbitrary as shown q,.?c.b_Sectlodrm/ _geneSrahz_es t\r}edte!escoplng r_epresgmmtl_
Fig. (c). In general, for a field indexed ¢, d > 2, the to arbitrary domains. Sectidn]V derives recursive estiomati

corresponding telescoping surfaces will be hypersurfzimes"’?Igor'thmS using the telgscoplng representgtlon. Semma
R, We parametrize the field using two parameters: [0, 1] rives telescoping recursions for GMRFs with discrete iadic

andf € © c R, The parameten indicates the position SectiorlVIl summarizes the paper.
of the telescoping surface and the $gtparameterizes the
boundary of the index set. For example, for the unit disc
with recursions as in Fig2(a), the telescoping surfaces - Continuous Indices
circles, and we can use polar coordinates to parameterize thFor a random processt), ¢ € R, the notion of Markovian-
field: radius\ and angled € © = [, w]. The telescoping ity corresponds to the assumption that the gast) : s < t},
surfaces are represented usingamotopyfrom the boundary and the future{z(s) : s > t} are conditionally independent
of the field to a point within the index set (which is not on thegiven the present(s). Higher order Markov processes can be
boundary). The net effort faf = 2 is to represent the field by considered when the past is independent of the future ghesn t
a recursion in\, i.e., a single parameter (or dimension) rathgiresent and information near the present. The extensidnof t
than multiple dimensions. definition to random fieldd,e., a random process indexed over
The key idea in deriving the telescoping representation &' for d > 2, was introduced in[22]. Specifically, a random
to establish a notion of “time” for Markov random fields. Wefield z(t), t € T c R?, is Markov if for any smooth surface
show that the parametes which corresponds to the telescopdG separating’” into complementary domains, the field inside
ing surface, acts as time. In our telescoping representatiis independent of the field outside conditioned on the field on
we define the state to be the field values at the telescopifagmd near))G. To capture this definition in a mathematically
surfaces. The telescoping recursive representation wigedeprecise way, we use the notation introduced[inl [23]. On the
is a linear stochastic differential equation in the par@mnetprobability space(2, F,P), lefl z(t) € R be a zero mean
A and is driven by Brownian motion. For a certain classeandom field fort € T ¢ R¢, whered > 2 and letdT ¢ T
of homogeneous isotropiEMRFs overR?, for which the be the smooth boundary &. For any setA C T, denote
covariance is a function of the Euclidean distance betwee(A) as
points, we show that the driving noise is 2-D white Gaussian z(A) ={z(t) : t € A}. (1)
noise. For the Whittle field [16] defined over a unit disc, we
show that the driving noise is zero and the field is unique :
determined using the boundary conditions. t G be the complement of'_ U 0G |n_T. Together,G:_
Using the telescoping recursive representation, we pr‘gmp?nd G4 are calledcomplementary seiFig. B(a)_ ShOWSQan
recover recursive algorithms, such as the Kalman-Bucy fiItSXamIOIe of thg sets/—, G, anq 6G on a domairll’ C R”.
[17] and the Rauch-Tung-Striebel (RTS) smoother [18]. F('):rm,E > 0, define the set of points from the boundd#§ at
the Kalman-Bucy filter, we sweep the observations over tﬁed|stance less than
telescoping surfaces starting at the boundary and regursin OG. = {teT:d(t,0G) < €}, ()
inwards. For the smoother, we sweep the observationsrajarti ) ) )
from the inside and recursing outwards. Although, we uddered(t, 0G) is the distance of a poirtte 7' to the set of
the RTS smoother in this paper, other known smoothiRfiNtSOG. On G anddG, define the sets

Different kinds of telescoping recursions for a GMBé&fined on a
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t G_ C T be an open set with smooth boundarg and

algorithms can be used as well, seel[19]+21]. S.(Gh) = o(z(Gy)) 3)
We derive the telescoping representation in an abstract _

setting over index sets iR?, d > 2. We can easily specialize £.(0G) = [ o(x(dG.)) (4)

this to index sets oveZ<?, d > 2. We show an example of €>0

this for GMRFS defined over a l_attice- We se_e that, un.”ke thezFor ease in notation, we assumé¢t) € R, however our results remain
continuous index case that admits many equivalent tel@sgopvalid for z(t) € R, whenn > 2.



oG Under Assumptions A1-A4, we now review results on GMRFs

G G, we use in the paper.
o . ’% * Weak normal derivatives: Let 0G be a boundary separating
G

or

complementary sets_ andG... Whenever we refer to normal
derivatives, they are to be interpreted in the following kea
sense: For every smootf(t),

0

@) (b)

0
Fig. 3. (a) An example of complementary sets on a random fiefoheld on y(s) = %x(s)
T with boundarydT. (b) Corresponding notion of complementary sets for a P
random process. = f(8)y(s)dl = lim — (s)x(s+hs)dl, (9)

whered! is the surface measure @d- ands is the unit vector
whereo(A) stands for ther-algebra generated by the sét normal todG at the points.
If z(t) is a Markov random fieldthe conditional expectation GMRFs with order m: Throughout the paper, unless men-
of z(s), s ¢ G_, givenX,(G_) is the conditional expectationtioned otherwise, we assume that the GMRF has order
of z(s) givenX,(9G), i.e., [23], [24] which can have multiple different equivalent interpredati(i)
= the GMRFz(t) hasm — 1 normal derivatives, defined in the
Ele(s)|% (G-)) = Ele(s)[2:(0G)], s ¢ G- (9) weak sense,(f())r each point 0G for all possible surfaces3G,
Equation [[5) also holds for Markov random processes f(i) the o-algebras, (9G) in (@), called the germv-algebra,
complementary sets defined as in Kiiy. 3(b). In the context @ntains information about, — 1 normal derivatives of the
Markov processes, the sét_ in Fig.[3(b) is called the “past”, field on the boundaryG [24], or (iii) there exists a symmetric
G is called the “future”, andG is called the “present”. The and positive strongly elliptic differential operatSy with order
equivalent notions of past, present, and future for randelidi 2m such that[[25]
is clear from the definition o&&_, G, anddG in Fig.[3(a).
In this paper, we assum€t) is zero mean Gaussian, giving
us a Gauss-Markov random field (GMRF), so the conditionathere the differential operator has the form,
expectation in[(5) becomes a linear projection. Followidj [ ol o
the key assumptions we make throughout the paper are as Leu(?) :I %< (=1)"D% a0 s()D°(u(t)]. (1)
follows. s lBl=m

Al. We assume the index sét c R? is a connectétiopen Prediction: The following theorem, proved in [24], gives us a
set with smooth boundar§T. closed form expression for the conditional expectatiorgh (

A2. The zero mean GMRE(t) € L2(Q, F, P), which means ~ Theorem 1 ([24]):Let z(t), t € T C R’ be a zero
that z(t) has finite energy. mean GMRF of ordem and covarianceR(t,s). Consider

A3. The covariance of(t) is R(t,s), wheret,s € T c R¢. complementary set¢;_ and G with common boundary
The function space ofR(t,s) is associated with the 0G. Fors ¢ G_, the conditional expectation af(s) given

LiR(t,s) =0(t—s), (10)

uniformly strongly elliptic inner product Y.(G-)is
— (D= g m—1 j
<u,v>= <D Uy Ao, gD U>T (6) Elz(s)|2.(G_)] = Z / bj(s,r)%x(r)dl, (12)
= Z / Du(s)aq. 5(s)DPv(s)ds, i=0 796
la|<m,|g|<m T where 3’/ /0n’ is the normal derivative, defined il (%) is

(7) a surface measure on the boundaw, and the functions
wherea, s are bounded, continuous, and infinitely dif;(s,7), s ¢ G— andr € dG, are smooth.

ferentiable,a = [, --- , oy is a multi-index of order Proof: A detailed proof of Theorerl1 can be found in
la| = a1 + --- + aq and the operatoD® is the partial [24], where the result is proved for the case when G ... To
derivative operator include the case whes € 0G, we use the fact thaR(¢, s)
N N is jointly continuous (consequence of A3) and the uniform
D® =Dy Dy, (8) integrability of the Gaussian measure (se€ [26]). [ ]
where D% = 9% /9t% for t = [t1,...,ta). Theoren]l says that for each point outs@e, the condi-

A4. Since the inner product inJ(7) is uniformly stronglytional expectation given all the points i depends only the
elliptic, it follows as a consequence of A3 th&(t, s) field defined on or near the boundary. This is not surprising
is jointly continuous, and thus:(t) can be modified Since, as stated befor&[z(s)|%. (G )] = Elz(s)[%(9G)],
to have continuous sample paths. We assume that tald we mentioned before that,(0G) has information about

modification is done, so the GMRE(t) has continuous the m — 1 normal derivatives ofz(¢) on the surfacedG.
sample paths. Appendix[A shows how the smooth functiohgs, ) can be

computed and outlines an example of the computations in the
3A set is connected if it can not be divided into disjoint noméynclosed context of a GQUSS'MarkOV process. In general, Thedrem 1
set. extends the notion of a Gauss-Markprocessof orderm (or



an autoregressive process of ordey to random fields. L
A simple consequence of Theordm 1 is that we get the 54345
following characterization for the covariance of a GMRF of * 42124
orderm. 31013
Theorem 2:If t € G_ ands ¢ G_, the covarianceR(t, s) c421 24
can be written as, *54345-
e 6 o6 o o o o
m—1 8j
Z / onJ R(T t)dr, (13) Fig. 4. Neighborhood structure from order 1 to 5.
7=0
where the normal derivative if_(IL3) is with respect to the (o)
variabler. 2(0T™) /
Proof: Sincex(s) — Ex(s)|X,(G-)] L x(t) fort € G_,
using [12), we can easily establigh(13). [ | (0T™) ,(0)
Theoren®2 says that the covarianBés, t) of a GMRF can
be written in terms of the covariance of the field defined on
a boundary dividings and¢. Both Theorem§]1 arid 2 will be
used in deriving the telescoping recursive representation
B. Discrete Indices Fig. 5. A random field defined on a unit disc. The boundary offtal,

i.e., the field values defined on the circle with radius denoted byz(9T').
Discrete index Markov random fields, also known as und]’he field values at a distance df— A from the center of the field are given

rected graphical models, are characterized by interactiban Y mf\alzige%?Sctgﬁé’é”:c;stﬁgifﬁg Igeagugn%(t)éir tf‘?;‘:l'gfgew@) where
index point with its neighbors. In this paper, we only comsid

GMRFs defined on a latticéy, = [0, N + 1] x [0, M + 1].
An index (i,j) € Ty will be called anode If two nodes
are neighbors of each other, we represent this relatioriship
connecting them with an edge. path is the set of distinct FElv(i,j)z(k,1)] =6(i — k)o(j — 1)

wherew; ; is locally correlated noise such that

nodes visited when hopping from nodé;,j:) to a node 0 (k—i,l—j) ¢ Ny
(i2, j2) where the hops are only along edges. A subset of S|tesE[ (i,5)0(i, )] = oy k=i,j=1

C separates two site@1,j1) ¢ C and (iz, j2) ¢ C if every —BET (ki1 — ) € Ny
path from (i, j1) to (i2, j2) contains at least one node in C. * ’

Two disjoint setsA, B ¢ T\C' are separated by if every SinceE[v(i, j)v(k,1)] = E[v(k,1)v(i, j)], we have
pair of sites, one i and the other inB, are separated by. ﬁ}_’c_—i,l—j _ pgi—kk—l (16)
We denote the discrete index random field &y, j) € R. K M '
Let N denote the neighborhood structure for the randofhe boundary conditions ifi_(IL5) are assumed to be Dirichlet
field, then x(i,j) is a GMREF if z(i,j) is independent of such thatxz(0T,) is Gaussian with zero mean and known
x (To\{N U (i,5)}) given z(N) for (i,j) € To\dTy, where covariance.
0T denotes the boundary nodes’fif. An equivalent way to
define GMRFs is using the global Markov property:
Theorem 3 (Global Markov property [27])For a GMRF [1l. TELESCOPINGREPRESENTATION GMRFS oN AUNIT
x(i, §) for (i,7) € Ty = [0, N +1] x [0, M + 1], for all disjoint Disc
setsA, B, andC in Ty, whereA and B are non-empty and’
separatest and B, x(A) is independent of(B) givenz(C').
For ease in notation and simplicity, we only consider seco
order neighborhoods denoted by the Agtsuch that for node

In this Section, we present the telescoping recursive rep-
resentation for GMRFs indexed over a domdin ¢ R?,
Q\ﬂ'nch is assumed to be a unit disc centered at the origin. The
generalization to arbitrary domains is presented in Sefit

(0,0): To parametrize the GMRF, say(t) for t € T, we use polar
Ny = {(~1,0),(1,0), (0, —1), (0, 1), coordinates such that, (9) is defined to be the point

(1,£1), (£1,1),(1,1), (=1, =1)}. (14) 2x(0) = z((1 — ) cos B, (1 — \)sin ), (17)

Examples of higher order neighborhood structures are ShOWﬁere(/\ 0) € [0,1] x [—m,7]. Thus,{z¢(0) : 6 € [—m, 7|}
in Fig.[4. A nonrecursive representation, derivedlin [28}, f corresponds to the field defined on the boundary of the unit

z(i, j) is given as follows: disc, denoted a®7'. Let 97> denote the set of points i

X - . 5

ai (i, j) Z ﬁ w(i—k,j—1) (15) at a distancd — \ from the center of the field. We callT’

atelescoping surfacsince the telescoping representations we
o derive recurse these surfaces. The notations introducéal so
+v(i, ), (i,4) € To\0To, are shown in FigJ5.

(k,1)EN>



A. Main Theorem A 2/k2 Cu(61,62) du. (24)
Before deriving our main theorem regarding the telescoping o Bu(61)Bu(62)
representation, we first define some notation.i(¢} € R be a Proof: See Appendix A. [ |
zero mean GMRF defined on a unit difaC R? parametrized  TheorenT# says thaty.qx(6), whered) is small, can be
as z,(0), defined in [AV). Let® = [—m, x| and denote the computed using the random field defined on the telescoping
covariance betweeny, (61) and zy,(f2) by Ry, ,(01,02) surfacedT* and some random noise. The dependence on
such that the telescoping surface follows from Theoréi 1. The main
contribution in Theorerhl4 is to explicitly compute propesti
R e (601, 02) = Ela, (01)aa, (62)] - (18)  of the driving noisew, (#). We now discuss the telescoping
Define C\(#1,6,) and By(6) as representation and highlight its various properties.
9 P 1) Driving noise wy(6): The properties of the driving noise
Cx(61,62) = lim a—RHA(el,eg) — lim+ @RM(QhH?) wy(9) in (22) lead to the following theorem.

HoAT O nA 9 Theorem 5 (Driving noisevy (6)): For the collection of
(19) random variables
_ V C)\(ov 9) C)\(ov 0) # 0
B\(0) = { 1% Cr0.0) =0 (20) {wx(0) : (A, 0) € ]0,1] x O}

where K is any non-zero constant. We will see N (118) thaefined in [(22), for each fixed € ©, wx(f) is a standard
C\(0,0) is the variance of a random variable and hence it Brownian motion when the seftu € [0,1] : Cu(6,6) = 0}

non-negative. Defind}, as the integral transform has measure zero for eaghe ©. . .
Proof: For fixed # € ©, to showw,(6) is Brownian

s .0 o9 motion, we need to establish the following: (i, (9) is
Folax(®)] = 3 /@,}irih gyl 0), (s a)) grzmalaldas, o nvinious ind, (i) wo(8) — 0 for all 8 € ©, (i) EUA)(@)
=0 (21 has independent incremeni®,., for 0 < Ay < A < Ay < AL,
where b;((11,6), (A, @)) is defined in [IR) and the indexwx; (€)—wx, (0) andwy, () —wy, (¢) are independent random
(1,60) in polar coordinates corresponds to the pojfit — Variables, and (iv) fon, > Aa, wy, (6) —wa, () ~ N(0, A —
1) cosf, (1 — p)sinf) in Cartesian coordinates. We see thatz)- The first three points follow from Theoreim 4. To show
Fy[xx(0)] operates on the surfaéd™ such that it is a linear the last point, let), = 6, in (24) and use the computations
combination of all normal derivatives afy(#) up to order done in [I26){(129). _ _ m
m — 1. The normal derivative in[{21) is interpreted in the heoremlb says that for each fixetl wx(0) in @22) is
weak sense as defined [d (9). We now state the main theorBFWnNian motion. This is extremely useful since we can use
of the paper. standard Ito calculus to interprét{22).
Theorem 4 Telescoping Recursive Representation): For 2) Whitenoise: A useful interpretation ofv () is in terms
the GMRF parametrized as, (6), defined in [1I7), we have of white noise. Define a random field () such that

the following stochastic differential equation A

Telescoping Representation: wa(0) :/0 vy(O)dy - (25)
dx(0) = Fplzx(0)]dX + Br(0)dw(0), (22) Using Theorenll4, we can easily establish tha{d) is a

whered» (8) = zxsax(0) — 22 (8) for d\ small, F, is defined generalized process such that for an appropriate fun&tioh

' is defined i ' ! Cx(61,0
Er%)r’nfé@ is defined in[(2D), anav, () has the following /0 () Bl (010 (0] — W(A)mv (26)

i) The driving noisew, (0) is zero mean Gaussian, almos{yhich is equivalent to the expression
surely continuous im\, and independent of(97') (the

field on the boundary). Elvy, (61)v, (02)] = 6(A — )@M. (27)
ii) For all 6 € ©, wy(6) = 0. B (61) B, (62)
iif) For 0 < A; < A < A < Ay andby, 02 € ©, wy, (01) — Using the white noise representation, an alternative fofm o
wy, (01) andwy, (f2) —wa, (02) are independent randomthe telescoping representation is given by
variables. dx(0)
iv) For 6 € ©, we have o= Fyolzx(0)] + BA(8)vr(0) . (28)
A Cu(61,6,) 3) Boundary Conditions: From the form of the integral
Elwy(61)wx(62)] = /o Bu(Gl)Bu(92)d ) transformF, in 1), it is clear that boundary conditions for

v) Assuming the sefu € [0,1] : C,,(6,6) = 0} has measure the telescoping representation will be given in terms of the
zero for eachd € © fo; A > )\2’ and @, 0, € O, the field defined at the boundary and its normal derivatives. A

random variablevy, (6) — ws, () is Gaussian with mean general form for the boundary conditions can be given as
zero and covariance m—1

i
B [(03,(01) — wr,(6))] X [ enal0.0) g (elie = i),

J=0



heO®,k=1,...,m, (29) For 6, =02, D, x(01,602) = | — A|, SO we have

where for eaclk, 8, () is a Gaussian process énwith mean QR 0, 0.) — —T'(I\ — A—p 35
zero and known covariance. ou noa (01, 62) (1A=l (A —p|’ (35)
4) Integral Form: The representation il (R2) is a symboliqJsing [19),C5 (61, 02) = —27’(0) whend; — 0 -

representation for the equation _ . .
Using LemmdL, we have the following theorem regarding

A1 L= . . .
2, (0) = 75, () +/ Fyl,(0))dp the_dnvmg noisew, () of the telescoping representation of
2 an isotropic and homogeneous GMRF.

n /Al By (0)dw,(6), M\ >)\s. (30)  Theorem 6 (Homogeneous isotropic GMRFEpr homo-
Aa ! e geneous isotropic GMRFs, with covariance given[by (32)hsuc
that T(-) is differentiable at all points iR and T/(0) < 0,

Since from Theoreml 5y, (#) is Brownian motion for fixed, - B
the telescoping representation is

the last integral in[(30) is an Ito integral. Thus, to recusb;

synthesize the field, we start with boundary vglues, given dwx (0) = Fyzx(0) + /=X (0)dw (). (36)
by (29), and generate the field values recursively on the ) ) . o
telescoping surface87 for A € (0, 1. For each fixed), w, () is Brownian motion in\ and

5) Comparison to [14]: The telescoping recursive repre- Elws, (01)ws, (0)] =0, M #Ao,01 £ 62  (37)

sentation differs significantly from the recursive repreaton
derived in [14]. Firstly, the representation ih [14] is only
valid for isotropic GMRFs and does not hold for nonisotropic

GMRFs. The telescoping representation we derive holds f . .
arbitrary GMRFs. Secondly, the recursive representation &(9’9) = /= 1'(0), which gives us[(36). To show (B7)

[14] was derived on the Fourier series coefficients, Where%@d m).’ we simplél subs:]itut.ec;[he va:jlue@j(@l,b‘g), given
we derive a representation directly on the field values. y @33). m_@)lan use the independent increments property
of wyx(#) given in TheoreniX4. ]

E[w,\(el)w,\(é‘g)] = 0, 6‘1 75 92. (38)

Proof: Since we assumé&’(0) < 0, thus By(0) =

B. Homogeneous and Isotropic GMRFs Example: We now consider an example of a homogeneous

In this Section, we study homogeneous isotropic randod isotropic GMRF wher&”(0) = 0 and thus the field is
fields overR? whose covariance only depends on the Ewniquely determined by the boundary conditions. D¥t),
clidean distance between two points. In general, suppdsg [0;oc), be such that
R, x(01,62) is the covariance of a homogeneous isotropic oo b
random field over a unit disc such that the pofpt 6,) in T(t) _/O 1+ 622

polar coordinates corresponds to the pdifit— ) cosd, (1 — ) ) ) )
1) sinf) in Cartesian coordinates. The Euclidean distandd€réJ, () is the Bessel function of the first kind of order

Jo(bt)db, (39)

between two pointsy, 6;) and (), 6,) is given by [29]. The derivative ofY'(t) is given by
oo 2
Dyx(01,62) = [(1— p)? + (1 — A)? T (t) = —/ (14?7172)2J1 (bt)db (40)
—2(1 — p)(1 = A cos(fy — 6,)]* . (31) 0 _
_ _ where we use the fact thafj(-) = —Ji(-) [29]. Since
!f R#V%(Gl,%) is the covariance of a homogeneous ang, (0) = 0, Y’(0) = 0 and thusB,(#) = 0 in the telescoping
isotropic GMRF, we have representation. This means there is no driving noise in the
_ telescoping representation. The rest of the parameterseof t
R, 2 (01,02) =Y (D, 2(61,602)) , 32 . ) )
po (01, 02) (Dyux(6162)) (32) telescoping representation can be computed using the3gekt [
here Y(-) : R R is assumed to be differentiable at
" () : R = R Is assu T (A —1)2R(t,s) = 6(t —5), (41)

all points in R. The next Lemma computes) (6;,6-) for

isotropic and homogeneous GMRFs. where R(t, s) corresponds to the covariance associated with
Lemma 1:For an isotropic and homogeneous GMRF withy(.) written in Cartesian coordinates aris the Laplacian

covariance given by (32))'x (61, 62), defined in[(1D), is given operator. Since the operator associated \ith, s) in @) has

by order four, it is clear that the GMRF has order two. The field
Cx(01,0) = { O/ 01 # 02 ) (33) with covariance satisfying (41) is also commonly referreds
—27°(0) 61 = 62 the Whittle field [16]. The telescoping recursive repreagah
Proof: For 6; # 65, we have will be of the form
0 Y 0
D (61,02 dns® = [ [ ha(00). (vadon(@) @2
1—p)—(1—A)cos(f; — 62) 0 0
="' (D, (6,0 ( 34 - el
(DA (01, 62)) Dy (01, 02) , (34) +501((1,0), (A,a))anm@] dadh, 0<A<1,

whereY’(+) is the derivative of the functioff'(-). Using [19), with appropriate boundary conditions defined on the unit
Cy(61,02) = 0 when6; # 05. circle.



IV. TELESCOPINGREPRESENTATION GMRFs oON
ARBITRARY DOMAINS

In the last Section, we presented telescoping recursive
representations for random fields defined on a unit disc. In
this Section, we generalize the telescoping represengatio
to arbitrary domains. Sectioh VA shows how to define
telescoping surfaces using the concept of homotopy. Sectio
[V-Blshows how to parametrize arbitrary domains using the
homotopy. Sectiol TV-IC presents the telescoping reprasent @) (b)
tion for GMRFs defined on arbitrary domains.

A. Telescoping Surfaces Using Homotopy

Informally, a homotopy is defined as a continuous deforma- H( <> i
tion from one space to another. Formally, given two contirsio N\’
functions f and g such thatf,g : X — Y, a homotopy is a DN
continuous functior : X x [0,1] — Y such that ifz € X,
h(z,0) = f(x) andh(z,1) = g(z) [31]. An example of the
use of homotopy in neural networks is shown|in/[32]. (©) (d)

In deriving our telescoping representation for GMRFs on
a unit disc in Sectiofi I, we saw that the recursions startédh. 6. Telescoping Surfaces defined using different hopieto
at the boundary, which was the unit circle, and telescoped
inwards on concentric circles and ultimately convergedchi® t
center of the unit disc. To parametrize these recursions,
can define a homotopy from the unit circle to the center
the unit disc. In general, for a domaifi ¢ R? with smooth
boundarydT, the telescoping surfaces can be defined using a

é\):)e The telescoping surfaces in Hi§) 6(b) can be generated by
the homotopy
h((cos @,sin 8), \)

homotopy,h : 0T x [0,1] — ¢, from the boundar¥T to a = ((1 = X)(cos® —c1) + c1, (1 — N)(sinf — c2) + ca),
point ¢ € T such that (46)
P1. {h(t,0):t € 0T} = 9T and{h(¢,1) : ¢ € T} =c. =((1=Ncosf+ci — (1= Ney, (47)
P2. For0 < A<, {h(t,\) : t € 9T} C T is the boundary (1= A)cos+ca— (1= Nea),
of the region{h (¢, u) : (¢, 1) € OT x (A, 1)}.
P3. For\; < Ag, {h(t,\1),t € T} C {h(t,pn),t € OT,0 < where(ci, c2) is inside the unit disd,e., ¢} + ¢3 < 1. For
u< Aol the homotopy in[(45), each telescoping surface is centered
P4. Uy {h(t,\),t € 0T} =T. about the origin, whereas the telescoping surfacek ih (47)

Property 1 says that, fox = 0, we get the boundargT and are centered about the poifat —(1—A)c1, c2—(1-X)ca).
for A = 1, we get the point € T, which we choose arbitrarily. ©) In Fig[€(2)-(b), the telescoping surfaces are circlesy-ho
Property 2 says that for each, we want the telescoping ©€Ver We can also have other shap_es for_ the telescoplng_sur—
surfaces to be i and it should be a boundary of another face. Figl6(c) shows an example in which the telescoping
region. Property 3 restricts the surfaces to be containgdwi  Surface is an ellipse, which we generate using the homotopy
each other, and Property 4 says that the homotopy must sweep h((cos 6, sin0), \) = (ay cos b, by sin ) (48)
the whole index sef".

Using the homotopy, for each we can define a te]escoping Wherea,\ andbk are continuous functions chosen in such a

surfacedT> such that way that P1-P4 are satisfied far In Fig[g(c), we choose
N a,\:/\andbk:/\Q.
or* ={h(0,)): 0 € 0T}, (43) d) Another example of a set of telescoping surfaces is shown

where T is the boundary of the field. As an example, we N Fig [d(d). From here, we notice that two telescoping
consider defining different telescoping surfaces for thiglfie Surfaces may have common points.
defined on a unit disc. The boundary of the unit disc can beApart from the telescoping surfaces for a unit disc shown in
parametrized by the set of points Fig [@(a)-(d), we can define many more telescoping surfaces.
o o The basic idea in obtaining these surfaces, which is corypact
OT = {(cos0,sin6),6 € [, ]} (44) captured by defining a homotopy, is to continuously deforen th
We consider four different kinds of telescoping surfaces: boundary of the index set until we converge to a point within
a) The telescoping surfaces in Hily 6(a) are generated usii§ index set. In the next Section, we provide a charactesiza
the homotopy of continuous index sets i&? for which we can easily find
telescoping surfaces by simply scaling and translating the
h((cos@,sinf),A) = ((1 — A)cos®, (1 —A)sind). (45) points on the boundary.



where telescoping surfaces are generated uBidg (49).lkas ¢
that these surfaces do not satisfy the desired properties of
telescoping surfaces. Fig 7(d) shows an example of an index
set for which similar telescoping surfaces do not existesinc
there exists no point for which (1 — A)t + Ac € T for all

A€ 0,1] andt € T UIT.

@ ®) C. Telescoping Representations

We now generalize the telescoping representation to GMRFs

defined on arbitrary domains. Lett) be a zero mean GMRF,
wheret € T c R? such that the smooth boundary &f is
( OT. Define a set of telescoping surfac@g” constructed by
\ defining a homotopy: (0, \), wheref € 9T and A € [0, 1].
We parametrize the GMRE(¢) asx,(#) such that

2a(0) = 2(h(0, V). (50)

Denote® = 9T and define”, (61, 62), BA(6), andFy by (19),
Fig. 7. Telescoping Surfaces defined using different hopieto (20), and [[211), respectively. Although the initial defiaitifor
these values was fo® = [—x, 7] and z,(0) parametrized
in polar coordinates, assume the definitionsin (19) (26, a
B. Generating Similar Telescoping Surfaces (27) are in terms of the parameters defined in this Sectioa. Th

) o ) ] normal derivatives in the definition df, for a pointz (6) will
From Sectiof [V-A, itis clear that, for a given domain, many,e computed in the direction normal to the telescoping serfa

different telescoping surfaces can be obtained by definipg-» 5t the pointh(6, \). The telescoping representation is
different homotopies. In this Section, we identify domadms given by

which we can easily generate a set of telescoping surfaces,
which we callsimilar telescoping surfaces dzx(0) = Fplza(0)]dA + Bx(6)dwa (0) (51)

Definition 1 (Similar Telescoping Surfaceslwo telescop- where thew, (8) = w(h(6,\)) is the driving noise with the

ing su_rfaces arsimilar if there exists an affine_ map betweergame properties as outlined in Theofgm 4. It is clear fiam, (51
Fhem,l.e., we can map one to another b,y scaling and t,ra'?SI"i‘ﬁ'at the recursions for the GMRF initiate at the boundary and
Ing of the (_:oordlnates. A set of telesc_opmg surfaces grt.ieenm recurse inwards along the telescoping surfaces defined usin
if each pair of telescoping surfaces in the set are ;lml!ar. the homotopyh(6, ). Thus, the recursions are effectively
As an_egamplle, the set of telescppmg surfaces |ri_]:|g 6(?:)§ptured by the parametar
(b) are similar since all the telescoping surfaces areasreDn
the other hand, the telescoping surfaces in[FFig 6(c)-(dpate
similar since each telescoping surfaces has a differemqgesha
The following theorem shows that, for certain index sets, we Using the telescoping representation, we now derive re-
can always find a set of similar telescoping surfaces. cursive equations for estimating GMRFs. Lett) be the
Theorem 7:For a domainT € R¢ with boundarydT if zero mean GMRF defined on an index $tc R¢ with
there exists a point € T such that, for allt € T U 9T smooth boundarnyT. Assume the parametrizatiam (¢) =
and\ € [0,1], (1 — M)t + Ac € T, we can generate similarz(h(6,))), where h(6,)) is an appropriate homotopy and
telescoping surfaces using the homotopy 0 € © = JT. The corresponding telescoping representation
is given in [51).
h(0,2) = (1 =X +Ac, 0€0T. (49) Consider the observations, written in parametric form, as
Proof: Given the homotopy in{49), the telescoping sur- _
faces are given byT* = {h(0,\) : € OT}. Using [49), it dyr(6) = Gr(6)2r(0)dA + DA(0)dna(6), 0< A<, (52)
is clear thatdT® = 9T anddT"' = ¢. Given the assumption, whereG (6) andD ) (¢) are known functions wittD, (6) # 0,
we have thaT> c T for 0 < A < 1. Since the distance of yo(¢) = 0 for all § € ©, n,(0) is standard Brownian motion
each point oroT* to the pointc is (1 — \)||6 — |, it is clear for each fixedd such that
that, for \; < Ay, 9T C {OT* : 0 < 1 < \2}. This shows B
that the homotopy i|1:(_49){defines a valid tel}éscoping surface Dl (00)maa(02)] =0, A1 # X, 01 £ 05, (53)
The set of telescoping surfaces is similar since we are ordpdn, () is independent GMRE: (9).
scaling and translating the bounday'. ] We consider the filtering and smoothing problem for GM-
Examples of similar telescoping surfaces generated usiR§s. For random fields, because of the multidimensionakinde
the homotopy in[(49) are shown in Fig 7(a) and Eig 7(cket, it is not clear how to define the filtered estimate. For
Choosing an appropriate is important to generate similar Markov processes, the filtered estimate sweeps the data in
telescoping surfaces. For example, Hig 7(b) shows an examalcausal manner, because the process itself admits a causal

(© (d)

V. RECURSIVEESTIMATION OF GMRFs



representation. To define the filtered estimate for GMRFs, we Zy7(0) £ 2 (0) — Ty (0) (64)
sweep the observations over the telescoping surfaces define — rlE =~
in the telescoping recursive representatior(id (51). Detfire _ Sur(e6) E[xMT(a)fCM.T(ﬁ)] ' (63)
filtered estimatezy|»(6), error @y (9), and error covariance A recursive smoother for GMRFs, similar to the Rauch-Tung-
Sy (e, B) such that Striebel (RTS) smoother, is given as follows.
R N Theorem 9 Recursive Smoothing for GMRFs): For the
Zxa(0) = Efza(0)|o{yu(0),0 < p < A0 €0} (54) GMRF z,(6), assumingS,(6,6) > 0, the smoothed estimate

T (0) £ 2y5(0) — Ty (0) (55) is the solution to the following stochastic differentialedjon:
A ~ ~
Sx(a, B) = E[Zxa ()T (6)]- (56) A5 0(6) = Folenr(6)]dA + Cx(0,0) G (8) — an(0)]
The set{y,(0),0 < u < X\, 0 € O} consists of the region 5x(0,9)
between the boundary of the fiel]", and the surfac87. A 1>X>0, (66)
stochastic differential equation for the filtered estintagg, (6) wherey  (6) is calculated using Theoreh 8 and the smoother
is given in the following theorem. error covariance is a solution to the partial differentiqlia-

Theorem 8 Recursive Filtering of GMRFs): For the tjon,
GMRF z (#) with observationg, (6), a stochastic differential 99 p
equation for the filtered estimatg, , (), defined in [(54), is %

ohven o fallows: = FpSyr(e,0) + FoSyr(a, ) + Ca(a, 0)

_ C)\(OL,OL)S)\(OZ,O) - C)\(O,Q)S)\(OL,G)

d@nn(0) = Fol@an (0)]dA + Koldea(8)],  (57) S, a) so.0 0 ©)
wheree, (0) is the innovation field such that where _

Fs=Fg+C S . 68

Dx(0)dex(0) = dyx(0) — GA(O)Zxa(0)dX,  (58) 5 =Fp + Cx(B,8)/5x(8, ) (68)

Proof: See Appendix D [ |

F, is the integral transform defined ih_(21) ardy is an
integral transform such that

Ga(@)
o Dia(a)
where Sy (o, 0) satisfies the equation

The equations in Theorelnh 9 are similar to the Rauch-Tung-
Striebel smoothing equations for Gauss-Markov processes
[18]. Other smoothing equations for Gauss-Markov processe
can be extended to apply to GMRFs.

Kopldex(0)] = Sx(a, 0)dey(a)da,  (59)

VI. TELESCOPINGREPRESENTATIONS OFGMRFS:

0
a—SA(OL,@) = Fo[Sa(a, 0)] + Fy[Sx(a, 0)] + Cr (6, @) _ DISCRETEIN?ICES _
A ) We now describe the telescoping representation for GMRFs
— Gé(ﬁ) Sx(a, B)SA(6, B)dS3.. (60) Wwhen the_index set is disc_rete. For simplicity, we restiiet t
o DX(B) presentation to GMRFs with order two. Lék(i,5) € R :
Proof: See AppendiXT. m (4,5) € Th =[1,N] x [1, M]} be the GMRF. Stack each row

We show in Lemmal2 (Appendix B) that (6) is Brownian of the field and form aV M x 1 vectorx. In the representation
motion. Thus,[{57) can be interpreted using Ito calculuscsi (15), stack the noise field(i, j) row wise into anNM x 1
we do not observe the field on the boundary, we assume tM8€tor v. The boundary values are indexed in a clockwise
the boundary conditions ifi (57) are zero such that: manner starting at the upper leftmost node in®(& + 1) +

o 2(M +1) x 1 vectorx, . A matrix equivalent of[(I5) is given

%xMA(O):O,j:l...,m—l,96@. (61) as
The boundary equations for the partial differential equrati

associated with the filtered error covariance is computatjus
the covariance of the field at the boundary such that

Ax = Apxp + v, (69)

whereA is an N M x N M block tridiagonal matrix with block
size N x N, Ay isanNM x 2(N + 1) + 2(M + 1) sparse
‘ . matrix corresponding to the interaction of the nodes iwith
ﬁSo(a,G) _ 5_'7_R00(a’9)’ 0,0€e0. (62) the boundary nodeg. The mgtrit:gsandAb can be evaluated
onJ ond~ from the nonrecursive equation given[in{15). Further, weeha
The filtering equation in{87) is similar to the Kalman-Bucyhe following relationships,
fiI_tering equati_ons derived for Gauss—Mark_ov processe® Tr_1 ExvT] = I and E[vw"] = A. (70)
differences arise because of the telescoping surfacesgUsi
(57), let © be a single point instead ¢, 7). In this case, Equation [6P) is an extension of the matrix representation
the integrals in[(21) and (59) disappear and we easily recogiven in [13] for the case whex, = 0, i.e., boundary
the Kalman-Bucy filter for Gauss-Markov processes. conditions are zero. For more properties about the streictur
Using the filtered estimates, we now derive equations fof the matrix.A, we refer to [13].
smoothing GMRFs. Define the smoothed estimager(¢), Let T, = [k, N +1—k] x [k, M + 1 — k] and letdT}, be
error (), and error covariancér(a, ) as follows: the boundary nodes of the index dgtordered in a clockwise

Zyr(0) £ Elzyr|o{y(T)}] (63)  “The ordering does not matter as long as the ordering is known.
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i~ oo 0 such that

z = Px, (77)

where P is a permutation matrix, which we know is or-
thogonal. We can now writd (69) in terms afby writing
® TS ¢ x = PTPx = PTg:

oo APTz = Apzg +v. (78)
Multiplying both sides of[(718) byP, we have
Fig. 8. Telescoping recursions T
PAP*z = PApzy + Pv. (79)

Since E[vvT] = A, we haveE [(Pv)(Pv)T| = PAPT,
This suggests thaf (¥9) is a matrix based representation for

direction. For exampley(9Tp) = x,. Definez, such that the Gauss-Markov process. Further, because of the fors

2k = 2(0Ty) = 2(Ti\Tr11) , (71) and.A,, PAPT and PA, will have the form:
wherek =0,1,..., [min(M, N)/2]. Definer such that PAPT
7 = [min(M, N)/2] . (72) MY M7 0 0 0--- 0

_ _ _ _ -M;  M§ M3 0 0
Eachz, will be of variable size, and led/? be the size of . . . . . .
2k, 1.€., 25 IS @ vector of dimensiod/7 x 1. : : : : : :
: , 0 0 My, Mg, —-MfE

As an example, consider the random vectors defined on the 0 0 M= MO
5 x 5 lattice in Fig.[8. The random vectay consists of the * ’C('so)
bo_undary points of the _or|g|nal><5 Iatt_|ce,zl is the bounda_ry PAy = M 0:- 50], (81)
points left after removing:y, and z, is the boundary point
left after removing both, and z;. The telescoping nature of where M, is an M7 x Mf7_, matrix, M) is an M7 x M}
20, 21, and zo is clear since we start by defining, on the matrix, ansz is anMj x Mg, , matrix. From [(70),PAPT

boundary and telescope inwards to define subsequent rand@mositive and symmetric, and thid;” = (M;H)T- To find

vectors. The clockwise ordering of. is shown by the arrows the telescoping representation usind (79), we find the Gkyle
in Fig. [8. The telescoping recursive representationsois  factors forPAPT such that

given in the following theorem.

T _ pT
Theorem 10 (Telescoping Representation for GMRFs): PAPT =L°L (82)
For a GMRF z(i,j), the processz; defined in [71) is Ly 0 0 : : 0
a Gauss-Markov process and thus admits a recursive P2 Ly O 0 ‘ 0
representation r— : - : 83)
2k = Frze—r +wp, k=127, 20 =% (73) 0 -0 =P,y L1 O
whereF}, is an M x M, matrix andwy, is white Gaussian o - - 0 =P L;
noise independent of,, such that where the blockg;, are M7 x M} lower triangular matrices,
Fie = Bl ] (E [qusz,l])fl (74) gnd the blgclk@;C z_’:lre]\:,/{k X Mﬁf1 matrices. Substitutindg (82)
i . r in (Z9) and invertingC?, we have
Qr = Elwywy ] = Elznzy, ] — FuElzr-12; ] (75) . P
Lz =L " PApyzo+ L Pv. (84)

Proof: The fact thatz, is a Markov process follows
from the global Markov property outlined in Theorém 3. Th
recursive representation follows from standard theorytates E["PwWTPTL Y = £ TPAPTL™ = 1.
space models [19]. | _ _ _

Both {73) and the continuous index telescoping representhe 16t P1 = M, we can rewrite[(84) in recursive manner
tion are similar since the recursion initiates at the boupdad S 1
telescopes inwards. For the continuous indices, the retiss 2k = Ly Przgy +wy, k=1,2,...,7, (85)
were not unique, whereas for the discrete index case, the {grere F, — L;'Py and Q. = L£;'L;T. A recursive
cursions are unique. We outline a fast algorithm for commuti 51gorithm for calculatingf, and @y, which follows from the
£, and @y, that does not require knowledge of the covariancgjculation of the Cholesky factors, is given as follows][13
of x, just knowledge of the matriced and A, in (69). Initialization: Q, = (M%)~L, F, = Q, M:

Define thelV M x 1 vectorz such that (in Matla® notation) Fork=7—-1,7—2,...,1

— DV . Q;l = Mg - MZFF]C*_I
z = [z1522;...; 27 - (76) Fr — QoM

é\lotice that the noise is now white Gaussian since

The random vector is a permutation of the elements i end
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Remark:The telescoping representations we derived show®re derived assuming(t) is scalar, we can easily generalize
the causal structure of Gauss-Markov random fields index#it results for:(¢t) € R™, n > 1. Our recursions are on hyper-
over both continuous and discrete domains. Our main ressltrfaces inR?, which we call telescoping surfaces. For fields
shows the existence of a recursive representation for GMRRgexed ovelR?, we saw that the set of telescoping surfaces
on telescoping surfaces that initiate at the boundary of tienot unique and can be represented using a homotopy from
field and recurse inwards towards the center of the field. Jtisé boundary of the field to a point within the field (not on
like we derived estimation equations for GMRFs with corthe boundary). Using the telescoping representations, &re w
tinuous indices, we can use the telescoping representatiorable to recover recursive algorithms for recursive filtgramd
derive recursive estimation equations for GMRFs with diser smoothing. An extension of these results to random fieldls wit
indices. The numerical complexity of estimation will dedentwo boundaries is derived in [36]. Besides the RTS smoother
on the size of the state with maximum size, which for ththat we derived, other recursive smoothers can be derived
GMREF is the perimeter of the field captured in the stated=or using the results in [19]=[21]. We presented results foivitey
example, the telescoping representation of a GMRF definegtursive representations for GMRFs on lattices. An exampl
on av/N x v/N lattice with non-zero boundary conditionsof applying this to image enhancement of noisy images is
will have a state of maximum size of ordéX(v/N). Notice shown in [37]. Extensions of the telescoping represematio
that for both continuous and discrete indexed GMRFs, the arbitrary graphical models are presented [in! [35]. Using
telescoping representation is not lociag., each point in the the results in[[35], we can derive computationally tractabl
GMRF does not depend on its neighborhood, but dependsestimation algorithms.
the field values defined on a neighboring telescoping surfaceie note although the results derived in this paper assumed
(or F} is not necessarily sparse). Direct or straightforwar@aussianity, recursive representations on telescopirfgcas
implementation of the Kalman filter requir€¥(v/N)3/?) due can be derived for general non-Gaussian Markov random
to a matrix inversion step. However, using fast algorithma a fields. In this case, the representation will no longer be
appropriate approximations, fast implementation of Kalmagiven by linear stochastic differential equation, but éast be
filters, see[[33] for an example, can lead@g(+/N)?), i.e., transition probabilities.

O(N).
Now suppose the observations of the GMRF are given by

y = Hx + v, wherex € R" is the GMRF, H is a diagonal APPENDIXA

matrix, andv is white Gaussian noise vector such tkat- COMPUTING b;(s,7) IN THEOREM[I]

N (0, R), where R is a diagonal matrix. The mmsg is a

solution to the linear system, We show how the coefficientss; (s, ) are computed for a

GMRF z(t), t € T C R%. LetG_ andG, be complementary
E '+ H 'R 'Hz=HTR y. (86) sets inT C R¢ as shown in Figl]3. Following [24], define a

. : . : , function h(t) such that
Sincex is a GMREF, it follows from [27] that.—! is sparse,

where the non-zero entries B! correspond to the edges in R(s,t) teG-UOG

the graph associated withx. In [35], we use the telescoping () = hs(t) : Lehs(t) =0, (87)
representation to derive an iterative algorithms for swiVB8) ° hs(0G) = R(s,0G) teGy ’

using the telescoping representdﬁoﬁxperimental results in hs(t) € Hy'(T)

[35] ;ugggst that the numerical complexity of the iterativghere £, is defined in [TL) andd}*(T) is the completion
algorithm isO(IV), although the exact complexity may varyy ceo (7, the set of infinitely differentiable function with
depending on the graphical model. The use of the teleSCOPE&npact support if’, under the norm Sobolov norm order

representation in deriving the iterative algorithm inl[38 F.onm [10), it is clear thab,(r) # R(s,r) whenr € G, Let
to identify computationally tractable local structuresngsthe u(r) € C5°(T) and consider the following steps for computing
non-local telescoping representation. bi(s,7):

I\ .

VIl. SUMMARY

- . ) Z / D“u(t)aalg (t)D'Bhs(t)dt
We derived a recursive representation for noncausal Gaua’% Bl<m T

Markov random fields (GMRFs) indexed over region®ihor
74, d > 2. We called the recursive representattefescoping _ DOu(t)aa.5(t)DP R(s, t)dr

since it initiated at the boundary of the field and telescoped ol 1T<m ) G-
inwards. Although the equations for the continuous indeseca T
+ 0y Du(t)an s(t) D hy(t)dr  (88)
5We note that the graphical models considered in this pajea atixture of lal,|B|<m Gy
undirected and directed graphs, where the boundary vahmsect to nodes 1 e

in a directed manner. These graphs are examples of chaihgyreee [34], and o7
the underlying undirected graph can be recovered by manglithis graph, = Z / bj (s,r)ﬁu(r)dl +/ U(T)LtR(S, t)dt
i.e., converting directed edges into undirected edges amecting edges j=0 790G Us .
between all boundary nodes.

6The work in [35] applies to arbitrary graphical models anel tilescoping + / u(t)Lths(t)dt (89)
representations are referred to as block-tree graphs. G,



m—1

= Z /aG bj(s,r)%u(r)dl.

- (90)
=0

To get [88), we split the integral integral on the left han
side overG_ and G.. In going from [88) to[(8B), we use

integration by parts and the fact thafr) € C§°(T). We
get [90) using[(10) and (87). Thus, to computgs,r), we
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that, [40],
Elz(s)|z(r)] = R(s,7)R™ (r,r)x(r). (99)

sing the expression foR(s,r), we can easily verify that
) and [[9B) are equivalent.

APPENDIXB

first need to findh,(r) using [8T) and then use the steps iNpProor OFTHEOREMHE: TELESCOPINGREPRESENTATION
(B8)—(@0). We now present an example where we compute

b;(s,r) for a Gauss-Markov process.

Example: Let z(¢t) € R be the Brownian bridge off’ =
[0, 1] such that

x(t) = w(t) — tw(l), (91)

wherew(t) is a standard Brownian motion. Since covariance

of w(t) is min(t, s), the covariance ok(t) is given by

Rit,s) { s(1—1)

t>s

t<s (92)

t(l—s)

Using the theory of reciprocal processes, seé [38], [3%ait
be shown that the operatdy; is

0%R(t, s)
Thus, the inner product associated witlit, s) is given by
< u,v >= (Du, Dv)y = /1 2u(s)gv(s)ds (94)
T Ty Os ds '

Following (81), forr < 1 ands € [r, 1], hy(t) = R(s,t) for
t € 10,r] and

32
—ophs®) =0, t>r (95)
hs(r)=r(1—s), hs(1)=0. (96)
We can ftrivially show that(t) is given by
ha(t) = ”(11_5)(1_t), t>r. 97)
—-T

We now follow the steps in_(88)=(90):

Lo 9 "o 9

Ly o
+/T Eu(t)&hs(t)dt
a r 1

0
= u(t)=R(s, u(t) == hs
(g RGs:0)| -+ ult) geh)]
) 0
= <ER(S’T) - Ehs(r)) u(T) .
1—s
= 1_TU(T)-

Using Theoren]l, we can compukgz(s)|o{x(¢) :
r}] as

Bla(ellofo(t) 0 < ¢ < 1}] = Blo(9)la(r)] = (1= ) alr).

We note that since(t) is a Gauss-Markov process, it is known

Let Zy;qxn(0) denote the conditional expectation of
zx+ax(0) given theo-algebra generated by the fiefd, («) :
(u, @) € [0,\] x ©}. From Theoreni]1, we have

m—1 dj
Taraa(0) = Z/bj((HdA,e),(A,a))Wm(a)da.
j=0 7@

(100)
It is clear thatz () = Zxx(0). Taking the limit in [100) as
d\ — 0, we have

m—1 dj
o(0) =3 [ 50 g eyda. (o)

Define the error ag1qx(#) such that
Extar(0) = zxyax(0) — Tarar(0) . (102)

Adding and subtracting:,(#) in (I02) and using[(101), we
have

orean(@) = s0) = 3 [ 10+ D10), ()

b0 0), O )] s (a)da + Expar(6).

AssumingdA\ is small, we can writé; (A + d\, 0), (A, «)) —
bj((A,0), (A, ) as

(103)

by (3 -+ A 6), (1)) — by (A, 6), (1.0)
B+ 00, (00) ~ by((00). ()
dA
= (1, 50500, v .

where in going from[(104) to(105), we use the assumption
thatd\ is close to zero. Writinglz (0) = xayax(0) — z1(0)
and substituting[{Z05) i1 _(103), we get

dzx(0) = Fy[za(0)]dA + Exran(0) (106)

where Fy is given in [21). To get the final form of the
telescoping representation, we need to charactésize, (6).
To do this, we writey 14 (6) as

Extdr(0) = Ba(0)dw () = Br(0)[watax(0) — wa(0)] .
(107)

dX

(104)

(105)

We now prove the properties af (6):
) Since & (0) = 2a(0) — Zax(0) andzy 5 (0) = 2 (6) by
definition, we have

i, Entar(0) =&x(0) =0, a.s..



Thus, using[(107), sincd,(0) # 0, we have

lHm wyyar(0) —wr(0) =0, a.s. (108)
dA—0
hm w,\+d>\(6‘) = wy (), a.s. (109)
Equation [[10P) shows thai, (6) is almost surely contin-

uous in\.

i) Since the driving noise at the boundary of the field can
be captured in the boundary conditions, without loss in

generality, we can assume thag(0) = 0 for all 6 € ©.
i) For 0 < A1 <A < X2 <X, andéy,6, € O, letd\, =
Al — A1 anddXz = X\, — A2. Consider the covariance

E&x, +ax (01)Exo+dx, (62]

= E[(zx+ax (01) — Txy 1, (01)) Exo4dr. (02)] (110)

= Elxx, 1an, (01)60, +dx, (02)] (111)
— E[Zx, +ax, (01)Ex,1ax, (02)]

—0, (112)

where to go from[(110) td (111), we use the orthogonality

of the error. Using the definition @fy; 4x(6) in (I07), we
have thatwy, (61) —wx, (61) andwy, (02) — wy,(02) are
independent random variables.

iv) We now computeZ[€x ax(01)x+ax(02)]:
E[&x+ax(01)6x+ax(02)]
= Elntan(01)(@atax(02) — Txraxa(62))]
= Ef(zx+ax(01) — Tarania(01))za+ax(62)]

= Rataxrtax(01,02)
Y
_ Z/ ((\+dX,01), (A @) 5 Ranean(, 62)da

= Rytarataxr(01,62) — Ry avax(01,02)
+ R atax(61,62) (113)

_ Z/ (N +dN,01), (N, oz))a8 R xyax(a, 02)do.

Using [101), we have
R xtax(61,02)

= E[z\(01)r+ax(02)] (114)
= Z/ )\ 91 /\ Oz))aa R)\ )\er)\(a 92)d
(115)
Substituting [(115) in[(113), we have
E[€x+dx(01)€x+ax(02)]
= Ratara+ar(01,02) — R xax(01,02) (116)
m—1
- ;O /@[bj(()\—&- dX, 01), (A, ) (117)

&7
= bi((X, 61), (A, @)l 5 R atax(a, 02)dar

_ |:RA+dA,A+dA(917 02) — R, x+dx(01,02)

0 dX
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- [i/o (bj(()\+d)\791)7()\,o(zi)))\—

Jj=0

bj(()V 91)7 ()‘7 a)))

a]
WRA ,\+d,\(oz 92)da] dX

o}
(i

— lim — NC
uinAlJr ou Z / ne
. 8 17}
= lim _RM,A(91792) lim —RH,A(91,92) dX
p— A" 8/J

pn— At 8

= C\ (61, 02)d). (118)

—RA A(a 92)d(1> dX

Thus, ford)\ small, we have

E [(wxtar(01) — wa(01))(watar(02) — wr(02))]

Cx(01,02)
= —————d\. 119
B (01)Bx(02) (119)
Since wy(d) = 0, we can use[(119) to compute

Efwx(61)wx(62)] as follows:

Ef(wx(61) — wo(01))(wx(02) — wo(62))]
N+1

= ngnooE ;(WWk (91) = W4 (92))
N+1

Z (ka (92) — Wy, (92))‘| y Y0 = )‘7’7N+1 =0 (120)
k=0

N+1
= ngnoo E Z (Wr (01) = wy,_, (61))
k=0
(w'Yk (6‘2) T Wy (6‘2))‘| (121)

N+1
— lim : C’Yk—l(91502)

N—oo0 k=0 B'Yk—l(el)B’vk,l (02)

[N Cu(61,62)
—/0 7Bu(91)Bu(92)du' (123)

We get [1211) using the orthogonal increments property in
(ii). We use [119) to gef(122). We use the definition of
the Riemann integrals to go fro_(122) fo (123).

(Ve — Yh—1) (122)

v) For Ay > )y, the covariance ofwy,(0) — wx,(0) is

computed as follows:
Ef(wx, (0) —wx,(9))?]

= Efu}, (0)] + E[w}, ()] — 2E[ws, (O)ws, (9)] (124)
A2 0y (01,02)

=AM+ -2 ; mdu, (125)
where
B2(0) (126)
_ / cu(e, 0) du
{ue[0,N]:Cu (6, B2(0)
Cu(0,6)

+ / du  (127)
{ue[0N]:Cu(0,0)£0} DB2(0)



14

du (128) Eldey, (a1)den, (02)]

AuE[O,X]:Cu(G,G)iO}

Gy (a1) -
Y (120) =& [( 2 ((911)) Fas o, (Br) A + dn, <91>) dex, <92>]
To go from [127) to[(128), we usE(20) sin€k (6, 0) # (134)
0. To go from [12B) to[(129), we use the given assumption — E[dn,, (6, )de, (62)] (135)
that the sef{u € [0,1] : C,(0,60) = 0} has measure zero. 1
= ———F[dny,(01) (dyx, (0
D) [dn, (61) (dyx, (62)
APPENDIXC =G, (02)T 5, (02)dA2) ] (136)
PROOF OFTHEOREMI[8l: RECURSIVE FILTER 1
. . .. . . = E[dn)\l (el)dy>q (92)] (137)
The steps involved in deriving the recursive filter are the D3, (62)
same as deriving the Kalman-Bucy filtering equations, see _ 1 Eld 0) (G (0 0,)db
[41]. The only difference is that we need to take into account  Da,(62) [drn (61) (G (B2)2, (B2)dBz
the dependence of each point in the random field on its +D), (62)dn, (02))] (138)
neighboring telescoping surface (which is captured in the _ Eldny, (61)dny, (62)] = 0. (139)

integral transformfFy), instead of a neighboring point as we

do for Gauss-Markov processes. The steps in deriving tfe go from [134) to[(135), we use thaj, |5, (01) is indepen-

recursive filter are summarized as follows. In Step 1, we defilent of de, (62), sincedey,(02) is a linear combination on

the innovation process and show that it is Brownian motidhe observation$y(07°), s € [0, 2] }. We get[(136) using the

and equivalent to the observation space. Using this, we findlgfinition ofdey, (62) in (I31). To go from[(136) td (137), we

relationship between the filtered estimate and the innowati use thatdn,,, (61) is independent ofy, |y, (62) for A1 > Ao.

see Lemmal2. In Step 2, we find a representation for the fidlée get [I3B) using the equation for the observation$ i (52).

z,(0), see Lemm@ls. Using Lemrfih 2 and Lenitha 5, we find @ go from [138) to[(139), we use the assumption that(0:)

closed form expression fat, |, (9) in Step 3. We differentiate is independent of the GMRE (¢). In a similar manner, we

this to derive the equation for the filtered estimate in Step @an get the result fok; < X.

Finally, Step 5 computes the equation for the error covagan For Ay # Xy and 6 # 62, Eley, (01)ex,(02)] = 0 follows

from similar computations as done in_(120123). [ |
Lemmal2 says that the innovation has the properties as the

noise observation, (#). We now use the innovation to find a

\ closed form expression for the filtered estimatg, (¢).

. ~ Lemma 3:The filtered estimaté, ,(6#) can be written in

a(6) =m0 - / CulO)Tu1uO)dpe- terms of the innovation as 4(6)

Step 1. [Innovations] Define ¢, (#) such that

Define the innovation fiel@, (¢) such that
1

A
fAl)\(e):/o /(99,\7M(9,a)delt(a)da (140)
0

dex(9) = dvy(0) (130)
DA(0) ru(00) = o= Elza(0)ey(a)] (141)
_ G\ "
~ Da(6) A (0)dA + dnx(0). (131) Proof: Using the methods in [41] of [19], we can establish

where we have use (52) to get the final expressiof_in| (1%5 equalfe tr;:?e bet\(velen the mnovaﬂon_:i atr;]d tfhlf Objem;?tlo
and assume tha (8) + 0. cause of this equivalence, we can write the filtered estima

Lemma 2:The field e)(6) is Brownian motion for each as in [140). We now compuig, ,,(, o). We know that

fixed 0 andE[eM(Hl)e,\z(Gg)] :OWhen)\l 75 /\2,91 7592 (,T)\(e) —E,\M(H)) J_eu(a), w< /\,CY € 0.

Proof: Note thatE[zyx(0)[o{e.(f) : 0 < u < A} =0
sincezyx(0) L yu(a) for a € ©, 0 < pu < A Thus, using
Corollary 8.4.5 in[[41], we establish tha}(6) is Brownian E[zx(0)e,(a)]
motion for each fixedd. Assume); > A\, and consider <

Thus, we have

X2. Then, using the orthogonality of erroF, (61) L y-(«) - E[fm(e)e“(a)] (142)

for v < u, and the fact that,(6) L e,(a) for v < A, we :/ / rs(0, B)Eldes (B)en()]dB (143)
have 0o Jo

A

E(ex, (1) — exq (62))ex ()] _ / / / " (0, B)Eldes(B)der(a)]dB (144)
M GU0) e SR

= /A (Du(9)>E[‘”*t*t(91>€7(“)]d“ _ / / / Irs(0,8)3(s — 1)3(8 — a)dsdrd3  (145)
+ El(n, (1) = na,(01))ey (a)] - (132) A

=0. (133) = /0 g (0, a)dr . (146)

Now we computeE|[dey, (61)dex, (62)] for Ay > Aa: To go from [144) to[(1455), we use Lemrh 2. Differentiating
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(148) with respect tq:, we get the expression far, ,(6,«) it must be a solution. ]

in (141). B Step 3. [Equation for Z,(#)] Using [131) and[(151), we

Step 2. [Formula for x, ()] Before deriving a closed form can writeg, (6, «) in (I41) as

expression for (), we first need the following Lemma. g, (6, )
Lemma 4:For any functiond' - (61, 82) with m—1 normal

derivatives, we have — (%E{:m(@) { 0“ g%z% Ty (@)dy +n#(a)]} (156)
A A w
/0 Fy, [ (61,02)]dy = Fy, /0 WA,W(91792)dV] : - a%[ gWEgE[m((a)@v(aﬂdﬂ (157)
0 il
. o (147) o ( [*G(a) N
Proof: Using the definition ofFy, , we have = o { Dy (a) /@‘IDAV,Y(G,[?)E[Q:V(B):EWV(a)]dﬂd'y}
Jo Fo,[@r(01,0)]dy v (158)
s = 2080 [ 00,0.5)Bleu (9505 (159)
/ Z /@ulgﬁ o’ #,9), (1, ) Dy(a) Jo ™ SR
o = Suleg / (0, B)Sy(8,2)dB . (160)
lim =Wy 5 (0 ha,Bp)dady  (148) Du(a) Jo
m— -0 To get [160), we use the fact thay,, (o) L z,,(8), so that
-2 /@Lm a7 (0 0): (A, @) Bl (8 (0)] = Bl (9)Tugu ()] = Su(8,00).
59 A Substituting [(160) in the expression fary\(f) in (141)
lim — / Uy haq (o + hd,og)d’}/‘| da (149) (Step 2), we get
h—0 OhJ 7 = (0
N x>\|)\( )
= Fy, / quyv(ol,eQ)dy] : (150) [ [ Gu(@) { ®
0 = D An(0,8)Su (B, )dB | dey(a)da .
. /0 / u(a) / (161)
Lemma 5:Using the telescoping representation fior(¢), Step 4. [Differential Equation for z5(¢)] Differentiating
a solution forz, (0) is given as follows: (L67) with respect to\, we get
zA(0) = | Dx,(0,a)z,(a)do
o " 8 A GXEZ% S, (0, )dex(a)da (162)
Py~ (0,a)d d 151
+/O/ﬂ e, (50 Culo) | Bl (0 a)dB| e, (a)da
a D ) 0 >\N B)] (ﬁa ) ﬁ M( )
— &, ,(0,a) = Fy [Py (0, Py =0d(0—
o Pl @) = Fp [22,4(0, )}, Br s = 30 — ). ( ) Sx(, 0)dex(a)da + Fpl@aa (0))dA  (163)
Proof: We show that[(151) satisfies the differential equa o Di(a)
tion in (51). Taking derivative of (I51) with respect }o we = Fo[@xa(0)]dA + Kyldex(0)], (164)
have

where K is the integral transform defined as In59).
dx(0) Step 5. [Differential Equation for Sy(a,6)] The error

9 covarianceS («, #) can be written as
*/ d/\flb\#(@ a)z,(a )dad)\—i—/ Dy (0, a)dwy ()
e

Sx(a,0) = E[Zy)a(a)Zx1(0)] (165)
+ / / %@Aﬁ(@,a)dw,y(a)da (152) = Elzx(a)a(0)] — EZaa()ZAa(0)].  (166)
. Using expressions for,(a) in (I51), we can show that for
= /@Fg [Dx,.(0, )] () dad) + dwx () Py(a, B) = Elzx(a)xA(0)],
0 0
+ / />\ Fy [¢A77(97 )] dw.y(oz)doz (153) % F, [P)\(a 6‘)] + Fp Py (a, 6‘) + Cx(«, 6‘) . (167)
o N Using the expression faty),(«) in (140), it can be shown
= Fy /@A)H(G,a)xu(a)da—i—// @A,V(G,a)dbv(a)da] that
© el OE[Z 2 (a)Zr2(0)] — PEE N
+dwy(0) (154) N = Fo[E[2xa ()@ (0)]]
= Fp[A(0)] + dwx(0) . (155) + Fo[E[Z A2 ()T A2 (0)]] (168)
To get [154), we use Theordm 4 to take the integral transform + G3(8) Sx(a, B)SA(6, B)dS .

Fy outside the integral. Since the,(6) in (I51) satisfies{51), o D3(B)
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Differentiating [166) and usind (167) and {168), we get thBubstituting[(17]7) in[(145), we have the following relasbip:

desired equation: ~
S)\)H(H,Oé)Z‘/G)(I)H))\(Q,B)S)\(B,G)dﬁ. (180)

0
ES)\(OL 0) = Fo[Sx(a, 0)] + Fo[Sx(c,0)] + CA(0, @) o - . o
) Substituting [(Z80) in[(143) and_(1I74), differentiating 87
_ gé\égi Sx(a, B)SA(6, B)dB . (169) and using[(179) and (60), we get the following equation:
e Y ~ ~
dz7(0) = FolZxr(0)]dX
APPENDIXD £t
PrROOF OFTHEOREM[9: RECURSIVE SMOOTHER /A /@Du(a) /@q)“’k(a’B)Ck(ﬁ’e)dﬁde“(a)da
181
We now derive smoothing equations. Using similar steps as (181)
in Lemmal3, we can show that AssumingS, (6,0) > 0, we get smoother equations using the
following calculations:
T (@ / / g0 c)den(oddor,(AT0) g5 ()50 - ) = Fﬁ[xmﬁ)w(e ~ B)dA (182)
u(8.0) = 5 Elns(0)c, (). (171) / / BB B (3. 0)de ()
. . S , N
Define the error covariancgy (6, «) as Oi((g 0)) A7z (B)8(0 — B)
S>\7M(97 a) = E[:?M,\(@):vm#(a)] . (172) S)j(ﬂ )
, : —Fs [:mT(ﬁ)]&(@ — B)dA
We have the following result for the smoother: ,0)
Lemma 6:The smoothed estimatary 1 () is given by / G @ ) )
B)SA(B,0)de, (o)da (183)
/x\)\‘T( = .”L'M)\ / / g,\u 9 (0% deu )da, (173) S (9 9)
where forp > A, ) a0,
a ~
G // (/ 2o, B)S ,9d>de a)da
g)\)u(eja) _ Du(a) S)\)H(H,Oé). (174) (a) . MA( ﬁ) A(B )dB M( )
u(@) (184)

Proof: Equation [17B) immediately follows froni_(1i70) dZ\i7(0) = Fo[@x7(6)]dA
and Lemmal[B. Equatiorl (1I74) follows by using _(1131) to 8) 1 [ Gula)
computeg, (0, «) in @I73). ] + //D“ Sixu(0,a)de, (a)do (185)
A JO
CA(9 0)

We now want to characterize the error covariance
Sx,u(0, ). Subtracting the telescoping representatior{id (51)dxx|:r(9) = Fy[@xr(0))dX +
and the filtering equation i (57), we get the following edomt Sx(6,6)
for the filtering error covariance:

[Zxj7(0) — 2\ A (0)] -
(186)
- e Equation [(I8M) is equivalent t§ (1182). We multiply_(182) by
dZH\H(OZ) = Fy [IMIM(OZ)]d,U + B,u(Oé)d’LUu (o) — Ka[dnu(((i‘)?]é) Sx(8,0)/Cx(8B,0) to get [I8B). We integrate {IB3) for adito
get [184). To go from[{184) td (185), we use (IL80). Equation

(I83) follows from [17B).
Pl (@] = Faffuu(e)] - K {Gu(a% ( )} (176) To derive a differential equation fafy (v, 6), we first note
s = s a .

Whereﬁa is the integral transform

D, (o) I that
Just like we did in LemmEl5, we can write a solution[fo (175) S (e, 8) = El@zjr(a)Zxr(6)] (187)
o ) = Elaa(a)o(0)] — ElExr(0)anr(0)] . (188)
Zujp(@) :/ Dy a(a, 0)Zx A (0)d0 Using (1738) to computél[Zy 1 (a)Zx 1 (#)], we can find an

expression foiSyr(a, ) as

/ / (@, 0)[ By (0)dw () — Kgldn(0)]]d6 (177) Syr(a, ) SA(Q 9)

0 &, \(,0) = Fadyur(,0) and, (a,0) = 6(cr — 0). / / Spalar, @)Syx(ax, O)dpday . (189)
(178)  Taking derivative of[IEQ), we geff (57).
Differentiating [I77) with respect ta, we can show that

o
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