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Abstract

Latent tree graphical models are widely used in computational biology,
signal and image processing, and network tomography. Here we design a
new efficient, estimation procedure for latent tree models,including Gaus-
sian and discrete, reversible models, that significantly improves on previous
sample requirement bounds. Our techniques are based on a newhidden state
estimator which is robust to inaccuracies in estimated parameters. More pre-
cisely, we prove that latent tree models can be estimated with high probabil-
ity in the so-called Kesten-Stigum regime withO(log2 n) samples.
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1 Introduction

Background Latent tree graphical models and other related models have been
widely studied in mathematical statistics, machine learning, signal and image pro-
cessing, network tomography, computational biology, and statistical physics. See
e.g. [And58, KF09, Wil02, CCL+04, SS03, EKPS00] and references therein. For
instance, in phylogenetics [Fel04], one seeks to reconstruct the evolutionary his-
tory of living organisms from molecular data extracted frommodern species. The
assumption is that molecular data consists of aligned sequences and that each po-
sition in the sequences evolves independently according toa Markov random field
on a tree, where the key parameters are (see Section 1.1 for formal definitions):

• Tree.An evolutionary treeT , where the leaves are the modern species and
each branching represents a past speciation event.

• Rate matrix.A q × q mutation rate matrixQ, whereq is the alphabet size.
A typical alphabet arising in biology would be{A,C,G,T}. Without loss
of generality, here we denote the alphabet by[q] = {1, . . . , q}. The(i, j)’th
entry ofQ encodes the rate at which statei mutates into statej. We normal-
ize the matrixQ so that its spectral gap is1.

• Edge weights.For each edgee, we have a scalar branch lengthτe which
measures the total amount of evolution along edgee. (We use edge or
branch interchangeably.) Roughly speaking,τe is the time elapsed between
the end points ofe. (In fact the time is multiplied by an edge-dependent
overall mutation rate because of our normalization ofQ.) We also think of
τe as the “evolutionary distance” between the end points ofe.

Other applications, including those involving Gaussian models (see Section 1.1),
are similarly defined. Two statistical problems naturally arise in this context:

• Tree Model Estimation (TME).Givenk samples of the above process at the
observed nodes, that is, at the leaves of the tree, estimate the topology of
the tree as well as the edge weights.

• Hidden State Inference (HSI).Given a fully specified tree model and a single
sample at the observed nodes, infer the state at the (unobserved) root of the
tree.

In recent years, a convergence of techniques from statistical physics and theoret-
ical computer science has provided fruitful new insights onthe deep connections
between these two problems, starting with [Mos04].
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Steel’s Conjecture A crucial parameter in the second problem above isτ+(T ) =
maxe τe, the maximal edge weight in the tree. For instance, for the two-state sym-
metricQ also known as the Ising model, it is known that there exists a critical
parameterg⋆KS = ln

√
2 such that, ifτ+(T ) < g⋆KS, then it is possible to perform

HSI (better than random; see the Section 2.5 for additional details). In contrast, if
τ+(T ) ≥ g⋆KS, there exist trees for which HSI is impossible, that is, the correla-
tion between the best root estimate and its true value decaysexponentially in the
depth of the tree. The regimeτ+(T ) < g⋆KS is known as the Kesten-Stigum (KS)
regime [KS66].

A striking and insightful conjecture of Steel postulates a deep connection be-
tween TME and HSI [Ste01]. More specifically the conjecture states that for
the Ising model, in the KS regime, high-probability TME may be achieved with a
number of samplesk = O(logn). Since the number of trees onn labelled leaves is
2Θ(n logn), this is an optimal sample requirement up to constant factors. The proof
of Steel’s conjecture was established in [Mos04] for the Ising model on balanced
trees and in [DMR11a] for rate matrices on trees with discrete edge lengths. Fur-
thermore, results of Mossel [Mos03, Mos04] show that forτ+(T ) ≥ g⋆KS a poly-
nomial sample requirement is needed for correct TME, a requirement achieved by
several estimation algorithms [ESSW99a, Mos04, Mos07, GMS08, DMR11b].
The previous results have been extended to general reversible Q on alphabets of
sizeq ≥ 2 [Roc10, MRS11]. (Note that in that case a more general threshold
g⋆Q may be defined, although little rigorous work has been dedicated to its study.
See [Mos01, Sly09, MRS11]. In this paper we consider only theKS regime.)

Our contributions Prior results for general trees and general rate matrixQ,
when τ+(T ) < g⋆KS, have assumed that edge weights are discretized. This as-
sumption is required to avoid dealing with the sensitivity of root-state inference
to inexact (that is, estimated) parameters. Here we design anew HSI procedure
in the KS regime which is provably robust to inaccuracies in the parameters (and,
in particular, does not rely on the discretization assumption). More precisely, we
prove thatO(log2 n) samples suffice to solve the TME and HSI problems in the
KS regime without discretization. We consider two models indetail: discrete,
reversible Markov random fields (also known as GTR models in evolutionary bi-
ology), and Gaussian models. As far as we know, Gaussian models have not
previously been studied in the context of the HSI phase transition. (We derive the
critical threshold for Gaussian models in Section 2.5.) Formal statements of our
results can be found in Section 1.2. Section 1.3 provides a sketch of the proof.
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Further related work For further related work on sample requirements in tree
graphical model estimation, see [ESSW99b, MR06, TAW10, TATW11, CTAW11,
TAW11, BRR10].

1.1 Definitions

Trees and metrics. Let T = (V,E) be a tree with leaf set[n], where[n] =
{1, . . . , n}. For two leavesa, b ∈ [n], we denote byP(a, b) the set of edges on the
unique path betweena andb. For a nodev ∈ V , letN(v) be the neighbors ofv.

Definition 1 (Tree Metric) A tree metricon [n] is a positive functionD : [n] ×
[n] → (0,+∞) such that there exists a treeT = (V,E) with leaf set[n] and an
edge weight functionw : E → (0,+∞) satisfying the following: for all leaves
a, b ∈ [n]

D(a, b) =
∑

e∈P(a,b)
we.

In this work, we consider dyadic trees. Our techniques can beextended to com-
plete trees of higher degree. We discuss general trees in theconcluding remarks.

Definition 2 (Balanced tree) A balanced treeis a rooted, edge-weighted, leaf-
labeledh-level dyadic treeT = (V,E, [n], r; τ) where:h ≥ 0 is an integer;V is
the set of vertices;E is the set of edges;L = [n] = {1, . . . , n} is the set of leaves
with n = 2h; r is the root;τ : E → (0,+∞) is a positive edge weight function.
We denote by(τ(a, b))a,b∈[n] the tree metric corresponding to the balanced tree
T = (V,E, [n], r; τ). We extendτ(u, v) to all verticesu, v ∈ V . We letBYn be
the set of all such balanced trees onn leaves and we letBY = {BY2h}h≥0.

Markov random fields on trees. We consider Markov models on trees where
only the leaf variables are observed. The following discrete-state model is stan-
dard in evolutionary biology. See e.g. [SS03]. Letq ≥ 2. Let [q] be a state set and
π be a distribution on[q] satisfyingπx > 0 for all x ∈ [q]. Theq× q matrixQ is a
rate matrixif Qxy > 0 for all x 6= y and

∑
y∈[q]Qxy = 0, for all x ∈ [q]. The rate

matrixQ is reversible with respect toπ if πxQxy = πyQyx, for all x, y ∈ [q]. By
reversibility,Q hasq real eigenvalues0 = λ1 > λ2 ≥ · · · ≥ λq. We normalizeQ
by fixing λ2 = −1. We denote byQq the set of all such rate matrices.

Definition 3 (General Time-Reversible (GTR) Model) For n ≥ 1, let

T = (V,E, [n], r; τ)
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be a balanced tree. LetQ be aq × q rate matrix reversible with respect toπ.
Define the transition matricesMe = eτeQ, for all e ∈ E. The GTR model onT
with rate matrixQ associates a stateZv in [q] to each vertexv in V as follows:
pick a state for the rootr according toπ; moving away from the root, choose a
state for each vertexv independently according to the distribution(Me

Zu,j
)j∈[q],

with e = (u, v) whereu is the parent ofv. We letGTRn,q be the set of allq-state
GTR models onn leaves. We denoteGTRq =

{
GTR2h,q

}
h≥0

. We denote byZW

the vector of states on the verticesW ⊆ V . In particular,Z[n] are the states at the
leaves. We denote byDT ,Q the distribution ofZ[n].

GTR models encompass several special cases such as the Cavender-Farris-Neyman
(CFN) model and the Jukes-Cantor (JC) model.

Example 1 (q-state Symmetric Model) Theq-state Symmetric model(also call-
edq-state Potts model) is the GTR model withq ≥ 2 states,π = (1/q, . . . , 1/q),
andQ = Qq−POTTS where

Qq−POTTS
ij =

{
− q−1

q
if i = j

1
q

o.w.

Note thatλ2(Q) = −1. The special casesq = 2 andq = 4 are called respectively
the CFN and JC models in the biology literature. We denote their rate matrices
byQCFN, QJC.

A natural generalization of the CFN model which is also included in the GTR
framework is the Binary Asymmetric Channel.

Example 2 (Binary Asymmetric Channel) Letting q = 2 and π = (π1, π2),
with π1, π2 > 0, we can take

Q =

(
−π2 π2

π1 −π1

)
.

The following transformation will be useful [MP03]. Letν be a right eigenvector
of the GTR matrixQ corresponding to the eigenvalue−1. Map the state space to
the real line by definingXx = νZx

for all x ∈ [n].
We also consider Gaussian Markov Random Fields on Trees (GMRFT). Gaus-

sian graphical models, including Gaussian tree models, arecommon in statistics,
machine learning as well as signal and image processing. Seee.g. [And58, Wil02].
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Definition 4 (Gaussian Markov Random Field on a Tree (GMRFT)) For n ≥
1, let T = (V,E, [n], r; τ) be a balanced tree. A GMRFT onT is a multivariate
Gaussian vectorXV = (Xv)v∈V whose covariance matrixΣ = (Σuv)u,v∈V with
inverseΛ = Σ−1 satisfies

(u, v) /∈ E, u 6= v =⇒ Λuv = 0.

We assume that only the states at the leavesX[n] are observed. To ensure identi-
fiability (that is, to ensure that two different sets of parameters generate different
distributions at the leaves), we assume that all internal nodes have zero mean and
unit variance and that all non-leaf edges correspond to a nonnegative correlation.
Indeed shifting and scaling the states at the internal nodesdoes not affect the leaf
distribution. For convenience, we extend this assumption to leaves and leaf edges.
With the choice

Σuv =
∏

e∈P(u,v)
ρe, u, v ∈ V,

whereρe = e−τe , for all e ∈ E, a direct calculation shows that

Λuv =





1 +
∑

w∈N(v)

ρ2
(v,w)

1−ρ2
(v,w)

, if u = v,

− ρ(u,v)
1−ρ2

(u,v)

, if (u, v) ∈ E,

0, o.w.

(Note that, in computing(ΣΛ)uv with u 6= v, the product
∏

e∈P(u,w) ρe factors out,
wherew ∈ N(v) with (w, v) ∈ P(u, v).) In particular, {− log |Σuv|}uv∈[n] is a
tree metric. We denote byDT ,Σ the distribution ofX[n]. We letGMRFTn be the
set of all GMRFT models onn leaves. We denoteGMRFT = {GMRFT2h}h≥0.

Remark 1 Our techniques extend to cases where leaves and leaf edges have gen-
eral means and covariances. We leave the details to the reader.

Equivalently, in a formulation closer to that of the GTR model above, one can
think of a GMRFT model as picking a root value according to a standard Gaussian
distribution and running independent Ornstein-Uhlenbeckprocesses on the edges.

Both the GTR and GMRFT models areglobally Markov: for all disjoint sub-
setsA,B,C of V such thatB separatesA andC, that is, all paths betweenA
andC go through a node inB, we have that the states atA are conditionally
independent of the states atC given the states atB.

5



1.2 Results

Our main results are the following. We are givenk i.i.d. samples from a GMRFT
or GTR model and we seek to estimate the tree structure with failure probability
going to 0 as the number of leavesn goes to infinity. We also estimate edge
weights within constant tolerance.

Theorem 1 (Main Result: GMRFT Models) Let0 < f < g < +∞ and denote
byGMRFTf,g the set of all GMRFT models on balanced treesT = (V,E, [n], r; τ)
satisfyingf < τe < g, ∀e ∈ E. Then, for all0 < f < g < g⋆KS = ln

√
2, the

tree structure estimation problem onGMRFTf,g can be solved withk = κ log2 n
samples, whereκ = κ(f, g) > 0 is large enough. Moreover all edge weights are
estimated within constant tolerance.

This result is sharp as we prove the following negative results establishing the
equivalence of the TME and HSI thresholds.

Theorem 2 If 0 < f ≤ g with g > g⋆KS = ln
√
2, then the tree structure estima-

tion problem onGMRFTf,g cannot, in general, be solved without at leastk = nγ

samples, whereγ = γ(f, g) > 0.

The proof of the theorem is in Section 2.

Theorem 3 (Main Result: GTR Models) Let 0 < f < g < +∞ and denote by
GTRf,g

q the set of allq-state GTR models on balanced treesT = (V,E, [n], r; τ)

satisfyingf < τe < g, ∀e ∈ E. Then, for allq ≥ 2, 0 < f < g < g⋆KS = ln
√
2,

the tree structure estimation problem onGTRf,g
q can be solved withk = κ log2 n

samples, whereκ = κ(q, f, g) > 0 is large enough. Moreover all edge weights
are estimated within constant tolerance.

The proof of this theorem is similar to that of Theorem 1. However dealing with
unknown rate matrices requires some care and the full proof of the modified algo-
rithm in that case can be found in Section 3.

Remark 2 Our techniques extend tod-ary trees for general (constant)d ≥ 2. In
that case, the critical threshold satisfiesde−2τ = 1. We leave the details to the
reader.
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1.3 Proof Overview

We give a sketch of the proof of our main result. We discuss thecase of GTR
models with knownQ matrix. The unknownQ matrix and Gaussian cases are
similar. See Sections 2 and 3 for details. Let(Z i

[n])
k
i=1 be i.i.d. samples from a

GTR model on a balanced tree withn leaves. Let(ZV ) be a generic sample from
the GTR model.

Boosted algorithm As a starting point, our algorithm uses the reconstruction
framework of [Mos04]. This basic “boosting” approach is twofold:

• Initial Step. Build the first level of the tree from the samples at the leaves.
This can be done easily by standard quartet-based techniques. (See Sec-
tion 2.2.)

• Main Loop.Repeat the following two steps until the tree is built:

1. HSI. Infer hidden states at the roots of the reconstructed subtrees.

2. One-level TME.Use the hidden state estimates from the previous step
to build the next level of the tree using quartet-based techniques.

The heart of the procedure is Step 1. Note that, assuming eachlevel is correctly
reconstructed, the HSI problem in Step 1 is performed on a known, correct topol-
ogy. However the edge weights are unknown and need to be estimated from the
samples at the leaves.

This leads to the key technical issue addressed in this paper. Although HSI
with known topology and edge weights is well understood (at least in the so-called
Kesten-Stigum (KS) regime [MP03]), little work has considered the effect of inex-
act parameters on hidden state estimation, with the notableexception of [Mos04]
where a parameter-free estimator is developed for the Isingmodel. The issue
was averted in prior work on GTR models by assuming that edge weights are
discretized, allowing exact estimation [DMR11a, Roc10].

Quartet-based tree structure and edge weight estimation relies on the following
distance estimator. It is natural to use a distance estimator involving the eigenvec-
tors ofQ. Letν be a second right eigenvector of the GTR matrixQ corresponding
to the eigenvalue−1. For a ∈ V andi = 1, . . . , k, map the samples to the real
line by definingX i

a = νZi
a
. Then define

τ̂ (a, b) = − ln

(
1

k

k∑

i=1

X i
aX

i
b

)
. (1)
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It can be shown that: For alla, b ∈ V , we have− lnE[e−τ̂ (a,b)] = τ(a, b).
Note that, in our case, this estimate is only available for pairs of leaves. More-
over, it is known that the quality of this estimate degrades quickly asτ(a, b) in-
creases [ESSW99a, Att99]. To obtain accuracyε on a τ distance with inverse
polynomial failure probability requires

k ≥ C1ε
−2eC2τ log n (2)

samples, whereC1, C2 are constants. We use HSI to replace theX ’s in (1) with
approximations of hidden states in order to improve the accuracy of the distance
estimator betweeninternalnodes.

Weighted majority For the symmetric CFN model with state space{+1,−1},
hidden states can be inferred using a linear combination of the states at the leaves—
a type of weighted majority vote. A natural generalization of this linear estimator
in the context of more general mutation matrices was studiedby [MP03]. The
estimator at the rootr considered in [MP03] is of the form

Sr =
∑

x∈[n]

(
Ψ(x)

e−τ(r,x)

)
Xx, (3)

whereΨ is a unit flow betweenr and[n]. For any suchΨ, Sr is a conditionally
unbiased estimator ofXr, that is,E[Sr |Xr] = Xr. Moreover, in the KS regime,
that is, whenτ+ < g⋆KS, one can choose a flow such that the variance ofSr is
uniformly bounded [MP03] and, in fact, we have the followingstronger moment
condition

E[exp(ζSr)|Xr] ≤ exp(ζXr + cζ2)

for all ζ ∈ R [PR11]. In [Roc10] this estimator was used in Step 1 of the boosted
algorithm. On a balanced tree withlogn levels, obtaining sufficiently accurate
estimates of the coefficients in (3) requires accuracy1/Ω(log(n)) on the edge
weights. By (2), such accuracy requires aO(log3 n) sequence length. Using mis-
specified edge weights in (3) may lead to a highly biased estimate and generally
may fail to give a good reconstruction at the root. Here we achieve accurate hidden
state estimation using onlyO(log2 n) samples.

Recursive estimator We propose to construct an estimator of the form (3)re-
cursively. Forx ∈ V with childreny1, y2 we let

Sv = ωy1Sy1 + ωy2Sy2, (4)

8



and choose the coefficientsωy1 , ωy2 to guarantee the following conditions:

• We have
E[Sx |Zx] = B(x)Xx,

with a bias termB(x) close to 1.

• The estimator satisfies the exponential moment condition

E[exp(ζSx)|Zx] ≤ exp(ζXx + cζ2).

We show that these conditions can be guaranteed provided themodel is in the
KS regime. To do so, the procedure measures the bias termsB(y1) andB(y2)
using methods similar to distance estimation. By testing the bias and, if neces-
sary, compensating for any previously introduced error, wecan adaptively choose
coefficientsω1, ω2 so thatSx satisfies these two conditions.

Unknown rate matrix Further complications arise when the matrixQ is not
given and has to be estimated from the data. We give a procedure for recovering
Q and an estimate of its second right eigenvector. Problematically, any estimatêν
of ν may have a small component in the direction of the first right eigenvector of
Q. Since the latter has eigenvalue0, its component builds up over many recursions
and it eventually overwhelms the signal. However, we make use of the fact that the
first right eigenvector is identically 1: by subtracting from Sx its empirical mean,
we show that we can cancel the effect of the first eigenvector.With a careful
analysis, this improved procedure leads to an accurate estimator.

2 Gaussian Model

In this section, we prove our main theorem in the Gaussian case. The proof is
based on a new hidden state estimator which is described in Section 2.1. For
n = 2h withh ≥ 0, let T = (V,E, [n], r; τ) be a balanced tree. We assume
that 0 ≤ τe < g, ∀e ∈ E, with 0 < g < g⋆KS = ln

√
2. The significance of

the thresholdg⋆KS is explained in Section 2.5 where we also prove Theorem 2.
We generatek i.i.d. samples(X i

[n])
k
i=1 from the GMRFT modelDT ,Σ wherek =

κ log2 n.
Our construction is recursive, building the tree and estimating hidden states

one level at a time. To avoid unwanted correlations, we use a fresh block of
samples for each level. LetK = κ logn be the size of each block.
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2.1 Recursive Linear Estimator

The main tool in our reconstruction algorithm is a new hiddenstate estimator.
This estimator is recursive, that is, for a nodex ∈ V it is constructed from es-
timators for its childreny, z. In this subsection, we letXV be a generic sample
from the GMRFT independent of everything else. We let(X i

[n])
K
i=1 be a block of

independent samples at the leaves. For a nodeu ∈ V , we let⌊u⌋ be the leaves
belowu andX⌊u⌋, the corresponding state.

Linear estimator We build alinearestimator for each of the vertices recursively
from the leaves. Letx ∈ V − [n] with children (direct descendants)y1, y2. As-
sume that the topology of the tree rooted atx has been correctly reconstructed, as
detailed in Section 2.2. Assume further that we have constructed linear estimators

Su ≡ Lu(X⌊u⌋)

of Xu, for all u ∈ V belowx. We use the convention thatLu(X⌊u⌋) = Xu if u is
a leaf. We letLx be a linear combination of the form

Sx ≡ Lx(X⌊x⌋) = ωy1Ly1(X⌊y1⌋) + ωy2Ly2(X⌊y2⌋), (5)

where—ideally—theω’s are chosen so as to satisfy the following conditions:

1. Unbiasedness.The estimatorSx = Lx(X⌊x⌋) is conditionally unbiased,
that is,

E[Sx |Xx] = Xx.

2. Minimum Variance. The estimator has minimum variance amongst all
estimators of the form (5).

An estimator with these properties can be constructed givenexact knowledge of
the edge parameters, see Section 2.5. However, since the edge parameters can
only be estimated with constant accuracy given the samples,we need a procedure
that satisfies these conditions only approximately. We achieve this by 1) recur-
sively minimizing the variance at each level and 2) at the same time measuring
the bias and adjusting for any deviation that may have accumulated from previ-
ously estimated branch lengths.

10



Setup We describe the basic recursive step of our construction. Asabove, let
x ∈ V − [n] with childreny1, y2 and corresponding edgese1 = (x, y1), e2 =
(x, y2). Let 0 < δ < 1 (small) andc > 1 (big) be constants to be defined later.
Assume that we have the following:

• Estimated edge weightŝτe for all edgese belowx such that there isε > 0
with

|τ̂e − τe| < ε. (6)

The choice ofε and the procedure to obtain these estimates are described in
Section 2.3. We let̂ρe = e−τ̂e .

• Linear estimatorsLu for all u ∈ V belowx such that with

E[Su |Xu] = B(u)Xu, (7)

whereSu ≡ Lu(X⌊u⌋), for someB(u) > 0 with |B(u)− 1| < δ and

V(u) ≡ Var[Su] ≤ c. (8)

Note that these conditions are satisfied at the leaves. Indeed, foru ∈ [n] one
hasSu = Xu and thereforeE[Su |Xu] = Xu andV(u) = Var[Xu] = 1. We
denoteβ(u) = − lnB(u).

We now seek to constructSx so that it in turn satisfies the same conditions.

Remark 3 In this subsection, we are treating the estimated edge weights and
linear estimator coefficients as deterministic. In fact, they are random variables
depending on sample blocks used on prior recurrence levels—and in particular
they are independent ofXV and of the block of samples used on the current level.

Procedure Given the previous setup, we choose the weightsωyα, α = 1, 2, as
follows. Foru, v ∈ V belowx andℓ = 1, . . . , K let

Sℓ
u ≡ Lu(X

ℓ
⌊u⌋),

and define

τ̈ (u, v) = − ln

(
1

K

K∑

ℓ=1

Sℓ
uS

ℓ
v

)
,

the estimated path length betweenu andv including bias. We letβ(u) = − lnB(u).
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1. Estimating the Biases. If y1, y2 are leaves, we let̂β(yα) = 0, α = 1, 2.
Otherwise, letz21, z22 be the children ofy2. We then compute

β̂(y1) =
1

2
(τ̈(y1, z21) + τ̈(y1, z22)− τ̈(z21, z22)− 2τ̂e1 − 2τ̂ e2),

and similarly fory2. Let B̂(yα) = e−β̂(yα), α = 1, 2.

2. Minimizing the Variance. Forα = 1, 2 we setωy1 , ωy2 as

ωyα =
B̂(yα)ρ̂eα

B̂(y1)2ρ̂2e1 + B̂(y2)2ρ̂2e2
, (9)

which corresponds to the solution of the following optimization problem:

min{ω2
y1
+ ω2

y2
: ωy1B̂(y1)ρ̂e1 + ωy2B̂(y2)ρ̂e2 = 1, ωy1, ωy2 > 0}. (10)

The constraint in the optimization above is meant to ensure that the bias
condition (7) is satisfied. We set

Lx(X⌊x⌋) = ωy1Ly1(X⌊y1⌋) + ωy2Ly2(X⌊y2⌋).

Bias and Variance We now prove (7) and (8) recursively assuming (6) is satis-
fied. This follows from the following propositions.

Proposition 1 (Concentration of Internal Distance Estimates) For all ε > 0,
γ > 0, 0 < δ < 1 and c > 0, there isκ = κ(ε, γ, δ, c) > 0 such that, with
probability at least1− O(n−γ), we have

|τ̈(u, v)− (τ(u, v) + β(u) + β(v))| < ε,

for all u, v ∈ {y1, y2, z11, z12, z21, z22} wherezα1, zα2 are the children ofyα.

Proof: First note that

E

[
1

K

K∑

ℓ=1

Sℓ
uS

ℓ
v

]
= E [SuSv]

= E [E [SuSv|Xu, Xv]]

= E [E [Su|Xu]E [Sv|Xv]]

= E [B(u)B(v)XuXv]

= B(u)B(v)Σuv,

12



where we used the Markov property on the third line, so that

− ln

(
E

[
1

K

K∑

ℓ=1

Sℓ
uS

ℓ
v

])
= τ(u, v) + β(u) + β(v).

Moreover, by assumption,Su is Gaussian with

E[Su] = 0, Var[Su] = V(u) ≤ c,

and similarly foru. It is well-known that in the Gaussian case empirical covari-
ance estimates as above haveχ2-type distributions [And58]. Explicitly, note that
from

SuSv =
1

2
[(Su + Sv)

2 − S2
u − S2

v ],

it suffices to consider the concentration ofS2
u, S2

v , and(Su + Sv)
2. Note that

Var[Su + Sv] = V(u) + V(v) + 2B(u)B(v)Σuv ≤ 2c+ 2(1 + δ)2 < +∞,

independently ofn. We argue aboutS2
u, the other terms being similar. By defini-

tion,S2
u/V(u) has aχ2

1 distribution so that

E

[
eζS

2
u

]
=

1√
1− 2ζV(u)

< +∞, (11)

for |ζ | small enough, independently ofn. The proposition then follows from stan-
dard large-deviation bounds [Dur96].�

Proposition 2 (Recursive Linear Estimator: Bias) For all δ > 0, there isε > 0
small enough so that, assuming that Proposition 1 holds,

E[Sx |Xx] = B(x)Xx,

for someB(x) > 0 with |B(x)− 1| < δ.

Proof: We first show that the conditional biases aty1, y2 are accurately estimated.
From Proposition 1, we have

|τ̈ (z21, z22)− (τ(z21, z22) + β(z21) + β(z22))| < ε,

13



and similarly forτ̈(y1, z21) andτ̈(y1, z22). Then from (6), we get

2β̂(y1) = τ̈ (y1, z21) + τ̈(y1, z22)− τ̈(z21, z22)− 2τ̂e1 − 2τ̂e2
≤ (τ(y1, z21) + β(y1) + β(z21)) + (τ(y1, z22) + β(y1) + β(z22))

−(τ(z21, z22) + β(z21) + β(z22))− 2τe1 − 2τe2 + 7ε

= 2β(y1) + (τ(y1, z21) + τ(y1, z22)− τ(z21, z22))− 2(τe1 + τe2) + 7ε

= 2β(y1) + ([τ(y1, y2) + τ(y2, z21)] + [τ(y1, y2) + τ(y2, z22)]

−[τ(z21, y2) + τ(y2, z22)])− 2τ(y1, y2) + 7ε

= 2β(y1) + 7ε,

where we used the additivity ofτ on line 4. And similarly for the other direction
so that

|β̂(y1)− β(y1)| ≤
7

2
ε.

The same inequality holds fory2.
Givenωy1, ωy2, the bias atx is

E[Sx |Xx] = E[ωy1Sy1 + ωy2Sy2 |Xx]

=
∑

α=1,2

ωyαE[E[Syα |Xyα, Xx]|Xx]

=
∑

α=1,2

ωyαE[E[Syα |Xyα]|Xx]

=
∑

α=1,2

ωyαE[B(yα)Xyα|Xx]

= (ωy1B(y1)ρe1 + ωy2B(y2)ρe2)Xx

≡ B(x)Xx,

where we used the Markov property on line 2 and the fact thatXV is Gaussian on
line 5. The last line is a definition. Note that by the inequality above we have

B(x) = ωy1B(y1)ρe1 + ωy2B(y2)ρe2
= ωy1e

−β(y1)ρe1 + ωy2e
−β(y2)ρe2

≤ ωy1e
−β̂(y1)+7/2ε(ρ̂e1 + ε) + ωy2e

−β̂(y2)+7/2ε(ρ̂e2 + ε)

= (ωy1B̂(y1)ρ̂e1 + ωy2B̂(y2)ρ̂e2) + max{ωy1, ωy2}O(ε)

= 1 + max{ωy1, ωy2}O(ε),

14



where the last line follows from the definition ofωyα. Takingε, δ small enough,
from our previous bounds and equation (9), we can derive thatωyα = O(1), α =
1, 2. In particular,B(x) = 1 + O(ε) and, choosingε small enough, it satisfies
|B(x)− 1| < δ. �

Proposition 3 (Recursive Linear Estimator: Variance) There existsc > 0 large
enough andε, δ > 0 small enough such that, assuming that Proposition 1 holds,
we have

V(x) ≡ Var[Sx] ≤ c.

Proof: From (9),

ω2
y1
+ ω2

y2
=

(
ρ2e1

(ρ2e1 + ρ2e2)
2
+

ρ2e2
(ρ2e1 + ρ2e2)

2

)
(1 +O(ε+ δ))

=

(
1

ρ2e1 + ρ2e2

)
(1 +O(ε+ δ))

≤ 1

2(ρ∗)2
(1 +O(ε+ δ)) < 1,

for ε, δ > 0 small enough, whereρ∗ = e−g so that2(ρ∗)2 > 1. Moreover,

Var[Sx] = Var[ωy1Sy1 + ωy2Sy2 ]

= ω2
y1
Var[Sy1 ] + ω2

y2
Var[Sy2 ] + ωy1ωy2E[Sy1Sy2 ]

≤ (ω2
y1
+ ω2

y2
)c+ ωy1ωy2B(y1)B(y2)Σuv

≤ (ω2
y1 + ω2

y2)c+ ωy1ωy2(1 + δ)2

< c,

takingc large enough.�

2.2 Topology reconstruction

Propositions 2 and 3 rely on the knowing the topology belowx. In this section,
we show how this is performed inductively. That is, we assumethe topology is
known up to level0 ≤ h′ < h and that hidden state estimators have been derived
up to that level. We then construct the next level of the tree.
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Quartet Reconstruction Let Lh′ be the set of vertices inV at levelh′ from
the leaves and letQ = {a, b, c, d} ⊆ Lh′ be a4-tuple on levelh′. The topology
of T restricted toQ is completely characterized by a bipartition orquartet split
q of the form: ab|cd, ac|bd or ad|bc. The most basic operation in quartet-based
reconstruction algorithms is the inference of such quartetsplits. This is done by
performing afour-point test: letting

F(ab|cd) = 1

2
[τ(a, c) + τ(b, d)− τ(a, b)− τ(c, d)],

we have

q =





ab|cd if F(a, b|c, d) > 0
ac|bd if F(a, b|c, d) < 0
ad|bc o.w.

Note however that we cannot estimate directly the valuesτ(a, c), τ(b, d), τ(a, b),
andτ(c, d) for internal nodes, that is, whenh′ > 0. Instead we use the internal
estimates described in Proposition 1.

Deep Four-Point Test LetD > 0. We let

F̂(ab|cd) = 1

2
[τ̈(a, c) + τ̈ (b, d)− τ̈ (a, b)− τ̈(c, d)],

and
ŜD(S) = 1{τ̈ (x, y) ≤ D, ∀x, y ∈ S}.

We define thedeep four-point test

F̂P(a, b|c, d) = ŜD({a, b, c, d})1{F̂(ab|cd) > f/2}.

Algorithm. Fix γ > 2, 0 < ε < f/4, 0 < δ < 1 andD = 4g + 2 ln(1 + δ) +
ε. Choosec, κ so as to satisfy Proposition 1. LetZ0 be the set of leaves. The
algorithm is detailed in Figure 1.

2.3 Estimating the Edge Weights

Propositions 2 and 3 also rely on edge-length estimates. In this section, we show
how this estimation is performed, assuming the tree topology is known belowx′ ∈
Lh′+1 and edges estimates are known below levelh′. In Figure 1, this procedure
is used as a subroutine in the tree-building algorithm.
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Algorithm
Input: Samples(Xi

[n])
k
i=1;

Output: Tree;

• Forh′ = 0, . . . , h− 1,

1. Deep Four-Point Test.Let

Rh′ = {q = ab|cd : ∀a, b, c, d ∈ Zh′ distinct such that̂FP(q) = 1}.

2. Cherries. Identify the cherries inRh′ , that is, those pairs of vertices that
only appear on the same side of the quartet splits inRh′ . Let

Zh′+1 = {x(h
′+1)

1 , . . . , x
(h′+1)

2h−(h′+1)
},

be the parents of the cherries inZh′

3. Edge Weights.For allx′ ∈ Zh′+1,

(a) Lety′1, y
′
2 be the children ofx′. Let z′1, z

′
2 be the children ofy′1. Let

w′ be any other vertex inZh′ with ŜD({z′1, z′2, y′2, w′}) = 1.

(b) Lete′1 be the edge betweeny′1 andx′. Set

τ̂e′1 = Ô(z′1, z
′
2; y

′
2, w

′).

(c) Repeat interchanging the role ofy′1 andy′2.

Figure 1: Tree-building algorithm. In the deep four-point test, internal distance
estimates are used as described in Section 2.1.

Let y′1, y
′
2 be the children ofx′ and lete′1, e

′
2 be the corresponding edges. Let

w′ in Lh′ be a vertex not descended fromx′. (One should think ofw′ as being on
the same level as on a neighboring subtree.) Our goal is to estimate the weight of
e′1. Denote byz′1, z

′
2 the children ofy′1. (Simply setz′1 = z′2 = y′1 if y′1 is a leaf.)

Note that the internal edge of the quartet formed byz′1, z
′
2, y

′
2, w

′ is e′1. Hence, we
use the standard four-point formula to compute the length ofe′1:

τ̂e′1 ≡ Ô(z′1, z
′
2; y

′
2, w

′) =
1

2
(τ̈(z′1, y

′
2) + τ̈(z′2, w

′)− τ̈(z′1, z
′
2)− τ̈ (y′2, w

′)),

andρ̂e′1 = e
−τ̂e′

1 . Note that, with this approach, the biases atz′1, z
′
2, y

′
2, w

′ cancel
each other. This technique was used in [DMR11a].
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Proposition 4 (Edge-Weight Estimation) Consider the setup above. Assume that
for all a, b ∈ {z′1, z′2, y′2, w′} we have

|τ̈(a, b)− (τ(a, b) + β(a) + β(b))| < ε/2,

for someε > 0. Then,|τ̂e′1 − τe′1 | < ε.

This result follows from a calculation similar to the proof of Proposition 2.

2.4 Proof of Theorem 1

We are now ready to prove Theorem 1.
Proof:(Theorem 1) All steps of the algorithm are completed in polynomial time
in n andk.

We argue about the correctness by induction on the levels. Fix γ > 2. Take
δ > 0, 0 < ε < f/4 small enough andc, κ large enough so that Propositions 1, 2,
3, 4 hold. We divide theκ log2 n samples intolog n blocks.

Assume that, using the firsth′ sample blocks, the topology of the model has
been correctly reconstructed and that we have edge estimates satisfying (6) up to
level h′. Assume further that we have hidden state estimators satisfying (7) and
(8) up to levelh′ − 1 (if h′ ≥ 1).

We now use the next block of samples which is independent of everything
used until this level. Whenh′ = 0, we can use the samples directly in the Deep
Four-Point Test. Otherwise, we construct a linear hidden-state estimator for all
vertices on levelh′. Propositions 2 and 3 ensure that conditions (7) and (8) hold
for the new estimators. By Proposition 1 applied to the new estimators and our
choice ofD = 4g + 2 ln(1 + δ) + ε, all cherries on levelh′ appear in at least one
quartet and the appropriate quartet splits are reconstructed. Note that the second
and third terms inD account for the bias and sampling error respectively. Once the
cherries on levelh′ are reconstructed, Proposition 4 ensures that the edge weight
are estimated so as to satisfy (6).

That concludes the induction.�

2.5 Kesten-Stigum regime: Gaussian case

In this section, we derive the critical threshold for HSI in Gaussian tree models.
The section culminates with a proof of Theorem 2 stating thatTME cannot in
general be achieved outside the KS regime without at least polynomially many
samples.
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2.5.1 Definitions

Recall that themutual informationbetween two random vectorsY1 andY2 is
defined as

I(Y1;Y2) = H(Y1) +H(Y2)−H(Y1,Y2),

whereH is theentropy, that is,

H(Y1) = −
∫

f1(y1) log f1(y1)dy1,

assumingY1 has densityf1. See e.g. [CT91]. In the Gaussian case, ifY1 has
covariance matrixΣ1, then

H(Y1) =
1

2
log(2πe)n1|Σ1|,

where|Σ1| is the determinant of then1 × n1 matrixΣ1.

Definition 5 (Solvability) LetX(h)
V be a GMRFT on balanced tree

T (h) = (V (h), E(h), [n(h)], r(h); τ (h)),

wheren(h) = 2h andτ (h)e = τ > 0 for all e ∈ E(h). For convenience we denote
the root by0. We say that the GMRFT root state reconstruction problem with τ is
solvableif

lim inf
h→∞

I
(
X

(h)
0 ;X

(h)

[n(h)]

)
> 0,

that is, if the mutual information between the root state andleaf states remains
bounded away from0 as the tree size goes to+∞.

2.5.2 Threshold

Our main result in this section is the following.

Theorem 4 (Gaussian Solvability)The GMRFT reconstruction problem is solv-
able if and only if

2e−2τ > 1.

When2e−2τ < 1 then

I
(
X

(h)
0 ;X

(h)

[n(h)]

)
=
[
2e−2τ

]h · 1− 2e−2τ + o(1)

2− 2e−2τ
, (12)

ash → ∞.
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Proof: Fix h ≥ 0 and letn = n(h),

Ih = I
(
X

(h)
0 ;X

(h)
[n]

)
,

[[n]] = {0, . . . , n}, andρ = e−τ . Assume2ρ2 6= 1. (The case2ρ2 = 1 follows
by a similar argument which we omit.) Denote byΣ(h)

[n] andΣ(h)
[[n]] the covariance

matrices ofX(h)
[n] and(X(h)

0 , X
(h)
[n] ) respectively. Then

Ih =
1

2
log

(
|Σ(h)

[n] |
|Σ(h)

[[n]]|

)
.

Let en be the all-one vector withn elements. To compute the determinants above,
we note that each eigenvectorv ⊥ en of Σ(h)

[n] gives an eigenvector(0,v) of Σ(h)
[[n]]

with the same eigenvalue. There are2h − 1 such eigenvectors. Furtheren is
an eigenvector ofΣ(h)

[n] with positive eigenvalue corresponding to the sum of all
pairwise correlation between a leaf and all other leaves (including itself), that is,

Rh = 1 +

h∑

l=1

ρ2l2l−1 = 1 + ρ2
(
(2ρ2)h − 1

2ρ2 − 1

)
.

(The other eigenvectors are obtained inductively by noticing that each eigenvector
v for size2h−1 gives eigenvectors(v,v) and(v,−v) for size2h.) Similarly the
remaining two eigenvectors ofΣ(h)

[[n]] are of the form(1, βen) with

Σ
(h)
[[n]](1, βen)

′ = (1 + β2hρh, (ρh + βRh)en)
′ = λ(1, βen)

′,

whose solution is

β±
h =

(Rh − 1)±
√

(Rh − 1)2 + 4ρ2h2h

2ρh2h
,

and
λ±
h = 1 + β±

h 2
hρh.

Moreover note that

λ+
h λ

−
h = 1 + (β+

h + β−
h )2

hρh + β+
h β

−
h 2

2hρ2h

= 1 + (Rh − 1)− ρ2h2h]

= Rh − (2ρ2)h.
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Hence

Ih =
1

2
log

(
|Σ(h)

[n] |
|Σ(h)

[[n]]|

)

=
1

2
log

(
Rh

λ+
h λ

−
h

)

= −1

2
log

(
1− (2ρ2)h

Rh

)
.

Finally,

Ih →
{
0, if 2ρ2 < 1,

−1
2
log
(

1
ρ2

− 1
)
, if 2ρ2 > 1,

ash → +∞ with equation (12) established by a Taylor series expansionin the
limit. �

2.5.3 Hidden state reconstruction

We make precise the connection between solvability and hidden state estima-
tion. We are interested in deriving good estimates ofX

(h)
0 givenX

(h)
[n] . Recall

that the conditional expectationE[X(h)
0 |X(h)

[n] ] minimizes the mean squared error

(MSE) [And58]. LetΛ(h)
[n] = (Σ

(h)
[n] )

−1. Under the Gaussian distribution, condi-

tional onX(h)
[n] , the distribution ofX(h)

0 is Gaussian with mean

ρhenΛ
(h)
[n]X

(h)
[n] =

ρh

Rh
enX

(h)
[n] , (13)

and covariance

1− ρ2henΛ
(h)
[n] e

′
n = 1− (2ρ2)h

Rh
= e−2Ih . (14)

The MSE is then given by

E[(X
(h)
0 − E[X

(h)
0 |X(h)

[n] ])
2] = E[Var[X

(h)
0 |X(h)

[n] ]] = e−2Ih .

Theorem 5 (Linear root-state estimation) The linear root-state estimator

ρh

Rh
enX

(h)
[n]
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has asymptotic MSE< 1 as h → +∞ if and only if 2e−2τ > 1. (Note that
achieving an MSE of1 is trivial with the estimator identically zero.)

The following observation explains why the proof of our maintheorem centers
on the derivation of an unbiased estimator with finite variance. LetX̂(h)

0 be a ran-
dom variable measurable with respect to theσ-field generated byX(h)

[n] . Assume

thatE[X̂(h)
0 |X(h)

0 ] = X
(h)
0 , that is,X̂(h)

0 is a conditionally unbiased estimator of
X

(h)
0 . In particularE[X̂(h)

0 ] = 0. Then

E[(X
(h)
0 − αX̂

(h)
0 )2] = E[E[(X

(h)
0 − αX̂

(h)
0 )2|X(h)

0 ]]

= 1− 2αE[E[X
(h)
0 X̂

(h)
0 |X(h)

0 ]] + α2Var[X̂
(h)
0 ]

= 1− 2α + α2Var[X̂
(h)
0 ],

which is minimized forα = 1/Var[X̂
(h)
0 ]. The minimum MSE is then1 −

1/Var[X̂
(h)
0 ]. Therefore:

Theorem 6 (Unbiased root-state estimator)There exists a root-state estimator
with MSE< 1 if and only if there exists a conditionally unbiased root-state esti-
mator with finite variance.

2.5.4 Proof of Theorem 2

Finally in this section we establish that when2e−2τ < 1 the number of samples
needed for TME grows likenγ proving Theorem 2.
Proof:(Theorem 2) The proof follows the broad approach laid out in [Mos03,
Mos04] for establishing sample size lower bounds for phylogenetic reconstruc-
tion. Let T and T̃ be h-level balanced trees with common edge weightτ and
the same vertex set differing only in the quartet split between the four vertices at
graph distance 2 from the rootU = {u1, . . . , u4} (that is, the grand-children of
the root). Let{X i

V }ki=1 and{X̃ i
V }ki=1 bek i.i.d. samples from the corresponding

GMRFT.
Suppose that we are given the topology of the trees below level two from the

root so that all that needs to be reconstructed is the top quartet split, that is, how
U splits. By the Markov property and the properties of the multivariate Gaussian
distribution,{Y i

u}u∈U,i∈{1,...,k} with Y i
u = E[X i

u | X i
⌊u⌋] is a sufficient statistic for

the topology of the top quartet, that is, it contains all the information given by
the leaf states. Indeed, the conditional distribution of the states atU depends on
the leaf states only through the condition expectations. Toprove the impossibility
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of TME with high probability, we will bound the total variation distance between
Y = {Yu}u∈U andỸ = {Ỹu}u∈U . We have thatY is a mean 0 Gaussian vector
and using equations (13) and (14) its covariance matrixΣ∗

U is given by

(Σ∗
U)uu = Var[Yu] = e−2Ih−2 = 1− O((2ρ2)h),

and

(Σ∗
U)uu′ = Cov[Yu, Xu]Cov[Xu, Xu′]Cov[Xu′ , Yu′]

=
(2ρ2)2(h−2)

R2
h−2

(ΣU)uu′

= O((2ρ2)2h).

whereΣU is the covariance matrix ofXU . The covariance matrix of̃Y is defined
similarly. LetΛ∗

U (resp. Λ̃∗
U ) denote the inverse covariance matrix(Σ∗

U )
−1 (resp.

(Σ̃∗
U)

−1). We note thatΣ∗
U andΣ̃∗

U are close to the identity matrix and, hence, so
are their inverses [HJ85]. Indeed, withIU the4 × 4-identity matrix, the elements
of Σ∗

U − IU are allO((2ρ2)h) and, similarly forΣ̃∗
U , which implies that

sup
u,u′

|Λ∗
uu′ − Λ̃∗

uu′| = O((2ρ2)h). (15)

We letdTV(·, ·) denote the total variation distance of two random vectors. Note
that by symmetry| detΛ∗

U | = | det Λ̃∗
U | and so, withfY (y) the density function of

Y , the total variation distance satisfies

dTV(Y , Ỹ ) =
1

2

∫

R4

∣∣∣∣
fỸ (y)

fY (y)
− 1

∣∣∣∣ fY (y)dy

=
1

2

∫

R4

∣∣∣∣exp
[
−1

2
yT Λ̃∗

Uy +
1

2
yTΛ∗

Uy

]
− 1

∣∣∣∣ fY (y)dy

≤ 1

2

∫

R4

(
exp

[
O((2ρ2)h

4∑

j=1

y2j )

]
− 1

)
fY (y)dy

≤ 1

2

∫

R4

(
exp

[
O((2ρ2)hy21)

]
− 1
)
fY (y)dy

=
1

2

(
E exp

[
O((2ρ2)hY 2

u1
)
]
− 1
)

= O((2ρ2)h),
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where the first inequality follows from equation (15) while the second follows
from an application of the AM-GM inequality and fact that theYui

are identically
distributed. The final equality follows from an expansion ofequation (11).

It follows that whenk = o((2ρ2)−h) we can couple{Y i
u}u∈U,i∈{1,...,k} and

{Ỹ i
u}u∈U,i∈{1,...,k} with probability(1 − O((2ρ2)h))k which tends to 1. Since they

form a sufficient statistic for the top quartet, this top structure of the graph cannot
be recovered with probability approaching 1. Recalling that n = 2h, ρ = e−τ

and that ifγ < (2τ)/ log 2 − 1 thenGMRFTf,g is not solvable withk = nγ =
o((2ρ2)−h) samples.�

3 GTR Model with Unknown Rate Matrix

In this section, we prove our reconstruction in the GTR case.We only describe
the hidden-state estimator as the other steps are the same. We use notation similar
to Section 2. We denote the tree byT = (V,E) with rootr. The number of leaves
is denoted byn. Let q ≥ 2, 0 < f < g < +∞, andT = (V,E, [n], r; τ) ∈ BYf,g.
Fix Q ∈ Qq. We assume that0 < g < g⋆KS = ln

√
2. We generatek i.i.d. samples

(Z i
V )

k
i=1 from the GTR model(T , Q) with state space[q]. Let ν2 be a second

right eigenvector ofQ, that is, an eigenvector with eigenvalue−1. We will use
the notationX i

u = ν2
Zi
u
, for all u ∈ V andi = 1, . . . , k. We shall denote the leaves

of T by [n].

3.1 Estimating Rate and Frequency Parameters

We discuss in this section the issues involved in estimatingQ and its eigenvectors
using data at the leaves. For the purposes of our algorithm weneed only estimate
the first left eigenvector and the second right eigenvector.Let π be the stationary
distribution ofQ (first left eigenvector) and denoteΠ = diag(π). Let

ν1, ν2, . . . , νq,

be the right eigenvectors ofQ corresponding respectively to eigenvalues

0 = λ1 > λ2 ≥ . . . ≥ λq.

Because of the reversibility assumption, we can choose the eigenvectors to be
orthonormal with respect to the inner product,

〈ν, ν ′〉π =
∑

i∈[q]
πiνiν

′
i
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In the case of multiplicity of eigenvalues this descriptionmay not be unique.

Proposition 5 There existsκ(ǫ, ̺, Q) such that givenκ log n samples there exist
estimatorŝπ and ν̂2 such that

‖ π − π̂ ‖≤ ǫ, (16)

and

ν̂2 =

q∑

l=1

αlν
l, (17)

where|α2 − 1| ≤ ε and | αl

α2
| < ̺ for l ≥ 3, (for some choice ofνl if the second

eigenvalue has multiplicity greater than 1).

Estimates Let F̂ denote the empirical joint distribution at leavesa andb as a
q×q matrix. (We use an extra sample block for this estimation.) To estimateπ and
ν2, our first task is to find two leaves that are sufficiently closeto allow accurate
estimation. Leta∗, b∗ ∈ [n] be two leaves with minimum log-det distance

(a∗, b∗) ∈ argmin
{
− log det F̂ ab : (a, b) ∈ [n]× [n]

}
.

Let
F = F a∗b∗ ,

and consider the symmetrized correlation matrix

F̂ † =
1

2
(F̂ a∗b∗ + (F̂ a∗b∗)⊤).

Then we estimateπ from
π̂υ =

∑

υ′∈[q]
F̂ †
υυ′ ,

for all υ ∈ [q]. DenoteΠ̂ = diag(π̂). By construction,̂π is a probability distribu-
tion. Letϕ = τ(a∗, b∗) and defineG to be the symmetric matrix

G = Π−1/2FΠ−1/2 = Π−1/2(ΠeϕQ)Π−1/2 = Π1/2eϕQΠ−1/2.

Then denote the right eigenvectors ofG as

µ1 = Π1/2ν1, µ2 = Π1/2ν2, . . . , µq = Π1/2νq,
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with corresponding eigenvalues

1 = θ
(1)
(a∗,b∗) = eϕλ1 > θ

(2)
(a∗,b∗) = eϕλ2 ≥ · · · ≥ θ

(q)
(a∗,b∗) = eϕλq ,

orthonormal with respect to the Euclidean inner product. Note thatθ(2)(a∗ ,b∗) < e−f

and thatν1 is the all-one vector. Assuminĝπ > 0, define

Ĝ = Π̂−1/2F̂ †Π̂−1/2.

which we use to estimate the eigenvectors and eigenvalues ofQ. SinceĜ is real
symmetric, it hasq real eigenvalueŝθ(1) > θ̂(2) ≥ . . . ≥ θ̂(q). with a corresponding
orthonormal basiŝµ1, µ̂2, . . . , µ̂q. It can be checked that, provided̂G > 0, we have
1 = θ̂(1) > θ̂(2). We use

ν̂2 = Π̂−1/2µ̂2.

as our estimate of the “second eigenvector” andθ̂(2) as our estimate of the second
eigenvalue of the channel.

Discussion The sensitivity of eigenvectors is somewhat delicate [HJ85]. With
sufficiently many samples (k = κ logn for large enoughκ) the estimator̂G will
approximateG within any constant tolerance. When the second eigenvalue is dis-
tinct from the third one our estimate will satisfy (17) providedκ is large enough.

If there are multiple second eigenvectors the vectorν̂2 may not exactly be
an estimate ofν2 since indeed the second eigenvalue is not uniquely defined:
using classical results (see e.g. [GVL96]) it can be shown that ν̂2 is close to a
combination of eigenvectors with eigenvalues equal toθ(2). Possibly after passing
to a different basis of eigenvectorsν1, ν2, . . . , νq, we still have that equation (17)
holds. By standard large deviations estimate this procedure satisfies Proposition 5
whenκ is large enough.

Remark 4 This procedure provides arbitrary accuracy asκ grows, however, for
fixedκ it will not in general go to 0 asn goes to infinity as the choice ofa∗, b∗

may bias the result. An error of sizeO(1/
√
k) may be obtained by taking all pairs

with log-det distance below some small threshold (say4g), randomly picking such
a pair a′, b′ and estimating the matrix̂G usinga′, b′.

We could also have estimated̂π by taking the empirical distribution of the
states at one of the vertices or indeed the empirical distribution over all vertices.
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3.2 Recursive Linear Estimator

As in the Gaussian case, we build a recursive linear estimator. We use notation
similar to Section 2. LetK = κ log n be the size of each block. We letZV

be a generic sample from the GRT model independent of everything else, and we
defineXu = ν̂2

Zu
for all u ∈ V . We let(Z i

[n])
K
i=1 be a block of independent samples

at the leaves, and we setXℓ
u = ν̂2

Zℓ
u
, for all u ∈ V andℓ = 1, . . . , K. For a node

u ∈ V , we let⌊u⌋ be the leaves belowu andX⌊u⌋, the corresponding state. Let
0 < δ < 1 (small) andc > 1 (big) be constants to be defined later.

Linear estimator We build a linear estimator for each of the vertices recursively
from the leaves. Letx ∈ V −[n] with children (direct descendants)y1, y2. Assume
that the topology of the tree rooted atx has been correctly reconstructed. Assume
further that we have constructed linear estimators

Su ≡ Lu(X⌊u⌋)

of Xu, for all u ∈ V belowx. We use the convention that

Lu(X⌊u⌋) = Xu

if u is a leaf. We letLx be a linear combination of the form

Sx ≡ Lx(X⌊x⌋) = ωy1Ly1(X⌊y1⌋) + ωy2Ly2(X⌊y2⌋), (18)

where theω’s are chosen below.

Recursive conditions Assume that we have linear estimatorsLu for all u below
x satisfying

E[Su |Zu] =

q∑

l=1

Bl(u)νl
Zu
, (19)

for someBl(u) such that|B2(u)− 1| < δ and|Bl(u)/B2(u)| < ̺ for l = 3, . . . , q.
Note that no condition is placed onB1(u). Further for alli ∈ [q]

Γi
u(ζ) ≤ ζE[Su |Zu = i] + cζ2, (20)

where as before
Γi
u(ζ) ≡ lnE[exp(ζSu) |Zu = i].
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Observe that these conditions are satisfied at the leaves. Indeed, foru ∈ [n] one
hasSu = ν̂2

Zu
=
∑q

l=1 αlν
l
Zu

and thereforeE[Su |Zu] =
∑q

l αlν
l
Zu

andΓi
u(ζ) =

ζE[Su |Zu = i]. We now seek to constructSx so that it in turn satisfies the same
conditions.

Moreover we assume we have a priori estimated edge weightsτ̂e for all e
belowx such that forε > 0 we have that

|τ̂e − τe| < ε. (21)

Let θ̂e = e−τ̂e .

First eigenvalue adjustment As discussed above, because we cannot estimate
exactly the second eigenvector, our estimateν̂2 may contain components of other
eigenvectors. While eigenvectorsν3 throughνq have smaller eigenvalues and will
thus decay in importance as we recursively construct our estimator, the presence
of a component in the direction of the first eigenvalue poses greater difficulties.
However, we note thatν1 is identically 1. So to remove the effect of the first
eigenvalue from equation (19) we subtract the empirical mean of Su,

S̄u =
1

K

K∑

ℓ=1

Sℓ
u.

As 〈π, νl〉 = 0 for l = 2, . . . , q andν1 ≡ 1 we have thatESu = B1(u) from
(19) and hence the following proposition follows from standard large deviations
estimates.

Proposition 6 (Concentration of Empirical Mean) For u ∈ V , ε′ > 0 andγ >
0, suppose that conditions(19)and(20)hold for someδ, ε andc. Then there exists
κ = κ(ε′, c, γ, δ, ε) > 0 such that, when we haveK ≥ κ logn then

|S̄u − B1(u)| < ε′,

with probability at least1− O(n−γ).

Proof: Let επ > 0. By Chernoff’s bound, of theK samples,K̂i are such that
Zℓ

u = i where ∣∣∣∣∣
K̂i

K
− πi

∣∣∣∣∣ ≤ επ,
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except with inverse polynomial probability, given thatκ is large enough. By (19)
and (20), we have

E[eζ(Su−B1(u))|Zu = i] ≤ ζE[(Su − B1(u))|Zu = i] + cζ2,

where

∣∣E[(Su − B1(u))|Zu = i]
∣∣ =

∣∣∣∣∣

q∑

l=2

Bl(u)νl
i

∣∣∣∣∣ ≤ (1 + δ)(1 + q̺)max
j

1/
√
πj ≡ Υ.

Let εΓ > 0. Choosingζ = εΓ
2c

in Markov’s inequality foreζ(Su−B1(u)) gives that the
average ofSℓ

u −B1(u) over the samples withZℓ
u = i is within εΓ of

∑q
l=2 Bl(u)νl

i

except with probability at moste−ε2ΓK(πi−επ)/4c = 1/poly(n) for κ large enough
andεπ small enough. Therefore, in that case,

∣∣∣∣∣
1

K

K∑

ℓ=1

(Sℓ
u − B1(u))

∣∣∣∣∣ ≤ qεΓ + επ[Υ + εΓ] < ε′,

for επ, εΓ small enough, where we used〈π, νl〉 = 0 for l = 2, . . . , q. �

For α = 1, 2, using the Markov property we have the following important
conditional moment identity which we will use to relate the bias atyα to the bias
atx,

E
(
Sℓ
yα − B1(yα) | Zx = i

)
=

q∑

l=2

q∑

j=1

Bl(yα)M
eα
ij ν

l
j

=

q∑

l=2

Bl(yα)θ
(l)
eαν

l
i, (22)

where we used the fact that theνl’s are eigenvectors ofMeα
ij with eigenvectors

θ
(l)
e = exp(−λlτe).

Procedure We first define a procedure for estimating the path length (that is, the
sum of edge weights) between a pair of verticesu1 andu2 including the bias. For
u1, u2 ∈ V with common ancestorv we define

τ̈(u1, u2) = − ln

(
1

K

K∑

ℓ=1

(
Sℓ
u1

− S̄u1

) (
Sℓ
u2

− S̄u2

)
)
.

29



This estimator differs from Section 2.1 in that we subtract the empirical means to
remove the effect of the first eigenvalue. Using the fact that

∑k
ℓ=1 S

ℓ
u1

− S̄u1 = 0
and Proposition 6 we have that with probability at least1− O(n−γ)

1

K

K∑

ℓ=1

(
Sℓ
u1

− S̄u1

) (
Sℓ
u2

− S̄u2

)

=
1

K

K∑

ℓ=1

[ (
Sℓ
u1

− B1(u1)
) (

Sℓ
u2

− B1(u2)
)

+
(
S̄ℓ
u1

− B1(u1)
) (

S̄ℓ
u2

− B1(u2)
) ]

≤ 1

K

K∑

ℓ=1

(
Sℓ
u1

− B1(u1)
) (

Sℓ
u2

− B1(u2)
)
+ (ε′)2,

and similarly the other direction so,
∣∣∣∣
1

K

K∑

ℓ=1

(
Sℓ
u1

− S̄u1

) (
Sℓ
u2

− S̄u2

)

− 1

K

K∑

ℓ=1

(
Sℓ
u1

− B1(u1)
) (

Sℓ
u2

− B1(u2)
) ∣∣∣∣ ≤ (ε′)2. (23)

It follows that τ̈(u1, u2) is an estimate of the length betweenu1 andu2 including
bias since

E
[(
Sℓ
u1

− B1(u1)
) (

Sℓ
u2

− B1(u2)
)]

=
∑

i∈[q]
πiE

(
Sℓ
u1

− B1(u1) | Zv = i
)
E
(
Sℓ
u2

− B1(u2) | Zv = i
)

=
∑

i∈[q]
πi

(
q∑

l=2

Bl(u1)θ
(l)
(v,u1)

νl
j

)(
q∑

l=2

Bl(u2)θ
(l)
(v,u2)

νl
j

)

= B2(u1)θ
(2)
(v,u1)

B2(u2)θ
(2)
(v,u2)

+O(̺)

= B2(u1)B2(u2)e
−τ(u1,u2) +O(̺), (24)

where line 2 follows from equation (22). Above we also used the recursive as-
sumptions and the fact that

∑
i∈[q] πi(ν

2
i )

2 = 1. We will use the estimator̈τ (u, v)
to estimateβ(u) = − lnB2(u). Given the previous setup, we choose the weights
ωyα, α = 1, 2, as follows:
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1. Estimating the Biases. If y1, y2 are leaves, we let̂β(yα) = 0, α = 1, 2.
Otherwise, letzα1, zα2 be the children ofyα. We then compute

β̂(y1) =
1

2
(τ̈(y1, z21) + τ̈ (y1, z22)− τ̈(z21, z22)− 2τ̂e1 − 2τ̂e2),

And similarly fory2. Let B̂2(yα) = e−β̂(yα), α = 1, 2.

2. Minimizing the Variance. Setωyα, α = 1, 2 as

ωyα =
B̂2(yα)θ

(2)
eα

(B̂2(y1))2(θ
(2)
e1 )2 + (B̂2(y2))2(θ

(2)
e2 )2

, (25)

the solution of the following optimization problem:

min{ω2
y1 +ω2

y2 : ωy1B̂2(y1)θ
(2)
e1 +ωy2B̂2(y2)θ

(2)
e2 = 1, ωy1, ωy2 > 0}. (26)

The constraint above guarantees that the bias condition (19) is satisfied
when we set

Lx(X⌊x⌋) = ωy1Ly1(X⌊y1⌋) + ωy2Ly2(X⌊y2⌋).

Bias and Exponential Moment We now prove (19) and (20) recursively as-
suming (21) is satisfied. Assume the setup of the previous paragraph. We already
argued that (19) and (20) are satisfied at the leaves. Assume further that they are
satisfied for all descendants ofx. We first show that thëτ -quantities are concen-
trated.

Proposition 7 (Concentration of Internal Distance Estimates) For all ε > 0,
γ > 0, 0 < δ < 1 andc > 0, there areκ = κ(ε, γ, δ, c) > 0, ̺ = ̺(ε, γ, δ, c) > 0
such that, with probability at least1− O(n−γ), we have

|τ̈(u, v)− (τ(u, v) + β(u) + β(v))| < ε,

for all u, v ∈ {y1, y2, z11, z12, z21, z22} wherezα1, zα2 are the children ofyα.

Proof: This proposition is proved similarly to Proposition 1 by establishing con-
centration of 1

K

∑K
ℓ=1 S̃

ℓ
uS̃

ℓ
v, where S̃ℓ

u = Sℓ
u − B1(u), around its mean which

is approximatelye−τ(u,v)−β(u)−β(v) by equation (24). The only difference with
Proposition 1 is that, in this non-Gaussian case, we must estimate the exponential
moment directly using (20). We use an argument of [PR11, Roc10].
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Let ζ > 0. Let N be a standard normal. Using thatE[eαN ] = eα
2/2 and

applying (19) and (20),

E[eζS̃uS̃v |Z{u,v}] ≤ E[e(ζS̃u)E[S̃v|Zv]+c(ζS̃u)2 |Z{u,v}]

= E[eζS̃uE[S̃v|Zv]+
√
2cζS̃uN |Z{u,v}]

≤ E[e(ζE[S̃v |Zv]+
√
2cζN)E[S̃u|Zu]+c(ζE[S̃v|Zv]+

√
2cζN)2 |Z{u,v}].

We factor out the constant term and apply Cauchy-Schwarz on the linear and
quadratic terms inN

E[eζS̃uS̃v |Z{u,v}]

≤ eζE[S̃u|Zu]E[S̃v|Zv]ecζ
2Υ2

E[e4c
2ζ2N2

]1/2

×E

[
e2(

√
2cζE[S̃u|Zu]+2c

√
2cζ2E[S̃v|Zv])N |Z{u,v}

]1/2

≤ eζE[S̃u|Zu]E[S̃v|Zv]ecζ
2Υ2 1

(1− 8c2ζ2)1/4
e2cΥ

2ζ2(1+2cζ)2

= 1 + ζE[S̃uS̃v|Z{u,v}] + Υ′ζ2 +O(ζ3),

asζ → 0, whereΥ was defined in the proof of Proposition 6 andΥ′ > 0 is a
constant depending onΥ andc. Taking expectations and expanding

e−ζ(E[S̃uS̃v]+ε)E[eζS̃uS̃v ] = 1− εζ +Υ′ζ2 +O(ζ3) < 1,

for ζ small enough, independently ofn. Applying Markov’s inequality gives the
result.�

Proposition 8 (Recursive Linear Estimator: Bias) Assuming (19), (20), and (21)
hold for someε > 0 that is small enough, we have

E[Sx |Zx] =

q∑

l=1

Bl(x)νl
Zx
,

for someBl(x) such that|B2(x)−1| < δ and|Bl(x)/B2(x)| < ̺ for l = 3, . . . , q.

Proof: We first show that the biases aty1, y2 are accurately estimated. Applying
a similar proof to that of Proposition 2 (using Proposition 7in place of Proposi-
tion 1) we have that

|β̂(y1)− β(y1)| ≤ O(ε+ ̺).
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The same inequality holds fory2. Takingε, δ small enough, our previous bounds
onB, θ and their estimates, we derive from equation (25) thatωyα = Θ(1), α =
1, 2 with high probability. We now calculate the bias atx to be,

E[Sx |Zx = i] = E[ωy1Sy1 + ωy2Sy2 |Zx = i]

=
∑

α=1,2

ωyα

q∑

l=1

Bl(yα)θ
(l)
eαν

l
j

=

q∑

l=1

(
ωy1Bl(y1)θ

(l)
e1

+ ωy2Bl(y2)θ
(l)
e2

)
νl
j

≡
q∑

l=1

Bl(x)νl
j

where we used equation (22) on line 2. Observe that sinceωy1, ωy2 are positive
and0 < θ

(l)
eα ≤ θ

(2)
eα for l ≥ 3,
∣∣∣∣
Bl(x)

B2(x)

∣∣∣∣ =

∣∣∣∣∣
ωy1Bl(y1)θ

(l)
e1 + ωy2Bl(y2)θ

(l)
e2

ωy1B2(y1)θ
(2)
e1 + ωy2B2(y2)θ

(2)
e2

∣∣∣∣∣

≤
∣∣∣∣∣
ωy1̺B2(y1)θ

(2)
e1 + ωy2̺B2(y2)θ

(2)
e2

ωy1B2(y1)θ
(2)
e1 + ωy2B2(y2)θ

(2)
e2

∣∣∣∣∣
= ̺.

Applying the bounds onωyα andβ̂(yα) for α = 1, 2 we have that

B2(x) = ωy1B2(y1)θ
(2)
e1

+ ωy2B2(y2)θ
(2)
e2

= ωy1e
−β(y1)θ(2)e1

+ ωy2e
−β(y2)θ(2)e2

≤ ωy1e
−β̂(y1)+O(ε+̺)(θ̂(2)e1 +O(ε+ ̺))

+ωy2e
−β̂(y2)+O(ε+̺)(θ̂(2)e2 +O(ε+ ̺))

= (ωy1B̂2(y1)θ̂
(2)
e1 + ωy2B̂2(y2)θ̂

(2)
e2 ) +O(ε+ ̺)

= 1 +O(ε+ ̺).

Choosingε andρ small enough, it satisfies|B2(x)− 1| < δ. �

Proposition 9 (Recursive Linear Estimator: Exponential Bound) There isc >
0 such that, assuming (19), (20), and (21) hold, we have for alli ∈ [q]

Γi
x(ζ) ≤ ζE[Sx |Zx = i] + cζ2.
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Proof: We use the following lemma suitably generalized from [PR11,Roc10].

Lemma 1 (Recursion Step)LetM = eτQ as above with eigenvectors

ν1, ν2, . . . , νq,

with corresponding eigenvalues1 = eλ1 ≥ . . . ≥ eλq . Let b2, . . . , bq we arbitrary
constants with|bi| < 2. Then there isc′ > 0 depending onQ such that for all
i ∈ [q]

F (x) ≡
∑

j∈[q]
Mij exp

(
x

q∑

l=2

blν
l
j

)
≤ exp

(
x

q∑

l=2

λlblν
l
i + c′x2

)
≡ G(x),

for all x ∈ R.
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We have by the Markov property and Lemma 1 above,

Γi
x(ζ) = lnE

[
exp

(
ζ
∑

α=1,2

Syαωyα

)
|Zx = i

]

=
∑

α=1,2

lnE [exp (ζSyαωyα) |Zx = i]

=
∑

α=1,2

ln


∑

j∈[q]
Meα

ij E [exp (ζSyαωyα) |Zyα = j]




=
∑

α=1,2

ln


∑

j∈[q]
Meα

ij exp
(
Γj
yα (ζωyα)

)



≤
∑

α=1,2

ln


∑

j∈[q]
Meα

ij exp
(
ζωyαE[Syα |Zyα = j] + cζ2ω2

yα

)



= cζ2
∑

α=1,2

ω2
yα +

∑

α=1,2

ln


∑

j∈[q]
Meα

ij exp

(
ζωyα

q∑

l=1

Bl(yα)ν
l
j

)


= cζ2
∑

α=1,2

ω2
yα + ζ

∑

α=1,2

B1(yα)ωyα

+
∑

α=1,2

ln


∑

j∈[q]
Meα

ij exp

(
ζωyα

q∑

l=2

Bl(yα)ν
l
j

)


≤ cζ2
∑

α=1,2

ω2
yα + ζ

∑

α=1,2

ωyα

q∑

l=1

θ(l)eαBl(yα)ν
l
i +

∑

α=1,2

c′ζ2ω2
yα

= ζE [Sx |Zx = i] + ζ2 (c+ c′)
∑

α=1,2

ω2
yα
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Takec large enough so thatc + c′ < c(1 + ε′) for some smallε′ > 0. Moreover,
from (25)

ω2
y1 + ω2

y2 =

(
θ2e1

(θ2e1 + θ2e2)
2
+

θ2e2
(θ2e1 + θ2e2)

2

)
(1 +O(ε+ δ + ̺))

=

(
1

θ2e1 + θ2e2

)
(1 +O(ε+ δ + ̺))

≤ 1

2(θ∗)2
(1 +O(ε+ δ + ̺)) < 1,

whereθ∗ = e−g so that2(θ∗)2 > 1. Hence,

Γi
x(ζ) ≤ ζE[Sx |Zx = i] + cζ2.

�

4 Concluding remarks

We have shown how to reconstruct latent tree Gaussian and GTRmodels using
O(log2 n) samples in the KS regime. In contrast, a straightforward application of
previous techniquesO(log3 n) samples. Several questions arise from our work:

• Can this reconstruction be done using onlyO(logn) samples? Indeed this
is the case for the CFN model [Mos04] and it is natural to conjecture that it
may be true more generally. However our current techniques are limited by
our need to use fresh samples on each level of the tree to avoidunwanted
correlations between coefficients and samples in the recursive conditions.

• Do our techniques extend to general trees? The boosted algorithm used
here has been generalized to non-homogeneous trees using a combinatorial
algorithm of [DMR11a] (where edge weights are discretized to avoid the
robustness issues considered in this paper). However general trees have,
in the worst case, linear diameters. To apply our results, one would need
to control the depth of the subtrees used for root-state estimation in the
combinatorial algorithm. We leave this extension for future work.
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[MRS11] Elchanan Mossel, Sébastien Roch, and Allan Sly. Onthe infer-
ence of large phylogenies with long branches: How long is too
long? Bulletin of Mathematical Biology, 73:1627–1644, 2011.
10.1007/s11538-010-9584-6.
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