arxiv:1202.1644v1 [cs.IT] 8 Feb 2012

A characterization of the number of subsequences
obtained via the deletion channel

Y. Liron M. Langberg
The Open University of Israel The Open University of Israel
yuvalal@gmail.com mikel@openu.ac.il

Abstract— Motivated by the study of deletion channels, this

work presents improved bounds on the number of subsequences 7';)9

obtained from a binary sting X of length n under ¢ deletions. It is

known that the number of subsequences in this setting strorg 60F

depends on the number ofruns in the string X; where a run wof e RN

is a maximal sequence of the same character. Our improved /’ S

bounds are obtained by a structural analysis of the family of-run wf o, AN

strings X, an analysis in which we identify theextremal strings / N

with respect to the number of subsequences. Specifically, rfo o — [L]lower N

every r, we presentr-run strings with the minimum (respectively o ! - %;Ljﬁ’g;‘er ~.
maximum) number of subsequences under any deletions; and ,' - == [HR] upper ~
perform an exact analysis of the number of subsequences ofeke N | on-t ~.
extremal strings. . ., ; ‘ ‘ N

tn
0.0 0.2 0.4 0.6 0.8 1.0

|. INTRODUCTION

n . - Figurel. Previous bounds ofD;(X)|. [L] marks the bounds proven by
Let X € {0,1}" be a binary string of lengt, and let | Jcnetein [4], and [HR] marks the bounds by Hirschberg E{2Ra Also

t < n be a parameter. In this work, we study the size of thsotted is the naive boun2!'~* which is the possible number of binary strings
set D;(X) of subsequences of that can be obtained from of length nok hThiS gfé;lph shows an eXﬁmP'e foq the case= 120, and
X via t deletions. The seD;(X) and its size play a major "~ 2* 4!l 9raphs are shown on a logarithmic scale.

role in the design and analysis of communication schemes

over deletion channelsi.e., channels in which characters Okelatively recently, Hirschberg and Regnier [2] revisie th

th?r;ransmiltte_d cofclzl)ew}(;rd_mai/] b”e delleted, [?E]_[?]' [9]6 fanalysis of [1] and obtain an explicit upper bound together
e analysis ofD(X) is challenging as the number Olith an improved lower bound of the form

subsequences of a string obtained by deletions does not
depend only on its length and the numbet of deletions, but /(X)) —t ton—t
also strongly depends on its structure. For examplé0”) is Z ((3) < [DH(X)| < Z (;)
of size 1 and equals the single strify !, while there exist =0 =0
stringsX for which D;(X) is of sizeexp(Q(n —t)). Clearly, Mercier et al. [8] study the setting of small values forand
|D¢(X)] is at most2"~! (as aftert deletions we remain with present explicit formulas foD;(X) for + < 5. However for
a binary string of lengthn — ¢). general values of the problem remains open. Several of the
In his work from 1966, Levenshtein [4] shows (as describe@sults above generalize also to arbitrary alphabets.
in [5]) that the number of subsequencHs;(X)| strongly The bounds of [1], [2], [4] are depicted in Figure 1 for the
depends on the number oinsin the string. Here, a run is acasen = 120 andr = r(X) = 24 as a function oft. The
maximal sequence of the same character, and the numbetoefer bounds of both [2] and [4] depend on the number of
runs in a given string is denoted-). For exampler(0") =1 runsr(X); and it holds that the lower bound of [2] is superior
while #(0101...01) = n. Specifically, Levenshtein [4] proves(i.e., larger) to that of [4]. The upper bound of [4] depends
that on r(X), while that of [1], [2] does not. Thus each bound is
rX)—t+1 rX)+t—1 stronger (i.e., smaller) for certain settings of paranseteand
< ¢) < [De(X)] < < t > t. Roughly speaking, the upper bounds of [1], [2] are stronger

_ _ _ than those of [4] for large values ofandt; while the opposite
Bounding |D;(X)| is addressed by Calabi and Hartnett [1is trye for smallr and+.

which show that the maximal number of subsequences is
obtained from certain stringX, denoted cyclic string€,, A. Our results and proof techniques

'?)Wg'(:h rt(X)bt: |XtL [1& de\gse a recursive expression for |,y work, we continue the study d@;(X) and present
|Dt(Cn)|, to obtain the boun improved upper and lower bounds to those described above.
r(X)—t+1 Our analysis is two fold. We start by studying the family of
(t > < [De(X)] < [De(Can)]. stringsX for whichr = r(X), and identify theextremalstrings

http://arxiv.org/abs/1202.1644v1

1001

60f -
N N\ [L] lower -~ e
8o - - 50 / N ="
\ [HR] lower S--°
LN \ Our lower pras / LT N
sof [, (A \ / b
’ A
’l \I \ 30
40+
, \ \ ot 1 /| === [L] uppel
| \

— — [HR] uppel
QOur uppe

20

t/n

L L
0.0 0.2 0.4 0.6 0.8 1.0 t/n

L L L L
0.2 0.4 0.6 0.8 10

Figure 2. Comparision of lower bounds. Our lower bound based oRigure3. Comparison of upper bounds. Our upper bounds based orckdlan
unbalanced strings [Theordm WI.2], compared to the previcown bounds. strings [Corollary[TV1], compared to the previous bestknobounds. [L]
[L] marks the lower bound proven by Levenstein [4]. [HR] msutke lower marks the upper bound proven by Levenstein [4]. [HR] marksupper bound
bound proven by Hirschberg et. al [2]. This graph shows amgia for the proven by Hirschberg et. al [2]. This graph shows an examptettfe case
casen = 300, andr = 200. The logarithmic presentation emphasizes that we = 120 andr = 24 as a function oft (in logarithmic scale).

obtain anexponentialmultiplicative improvement.

bound improves on those previously known by an exponential
in this family with respect to the number of subsequencesultiplicative factor of roughly2!—"/3.

Specifically, for every, we identify twor-run strings, referred To address our improved upper bounds, we first present
to as thebalancedr-run strmgBr and theunbalancedr-run a recursive formula for the computation oD (B,)|. We
string U, such that for everyX it holds that then extract a closed form solution to our recursive deiniti
which yields an exact expression fip,(B,)|. For example,
|De(Ujp(x))| = IDHX)] < [D(Byy(xy)- @) a numerical comparison dfD;(B,)| with the upper bounds
. . Cpaq reviously known is depicted in Figufd 3 for the value of
Loosely sp_eakln_g, the Strmg’.: 0101 .. .01”_ s ther- ;F; =120 ;/ndr =24 as apfunction 01’;.g We note that the ex-
lrunt string r'p xvhlchf each ru? |slexa<(:jtl_y (::1 side ?xcezt tthe pression we obtain fofD;(B,)| involves several summations
‘a?lbgljgn\(,:vecli? ('Ins t?]eslzﬁ gn Jtrhs’) a?’helsbalzicrg dersrter}B} Sasof certain combinatorial expressions. An asymptotic asialy
Lil/, 0 rn/r n'/, ny, n/,.g ' L 9= of our expression is left open in this work and is subject to
or/ryriror/rn/r 1T T s ther-run string in which each f
: uture research.
and every run is of equal length/r.
To obtain Equation[{1), we show that amyrun string B. Structure

X can be transformed into the string, (alternativelyB;) The remainder of the paper is organized as follows. In
via a series of operations that are monotonic with respe@ction[]] we present the set of structural operations and
to the number of subsequences. The modifications we stugyis we use for comparing and bounding the number of
include abalancingoperation, in which giverX we shorten syhsequences obtained via deletion. This section inclades
the length of one of its runs while increasing the length @fajancing, flipping, and insertion modifications. In Secfi]
another; dlipping operation, in which a prefix or suffix is e study our first family obalancedstrings, and show that
replaced by it complement; and arsertionoperation in which (for any given number of runsand deletions) they have the
characters are added 10 (see Figuref 4(R), 4(b) ahd 4(c)). Ajargest number of subsequences under deletion. In Séalon |
delicate combination of these (and other) operations enabl e analyze the number of subsequences of balanced strings
to establish Equatiofi}1). The modifications we study anit th nd in such obtain our upper bound. In Secfidn V, we present
analysis shed light on the properties of binary strings undgyr second family ofinbalancedstrings, and prove that they
the deletion operation and may be of independent interest. Wave the least number of subsequences under any number
note that for the extreme caserof= n, our unbalanced string of deletionst. We prove our lower bound by analyzing the
U, is exactly the cyclic string’,; thus we are consistent with nymper of subsequences of unbalanced strings in Sdction VI.
the result of [1]. Finally, in Section[Vll, we study the connection between
We then turn to obtain analytic expressions for(U;)| subsequences and the closely related notiatetsftion patters
and |D¢(By)| of Equation [(1). Our expressions are at least a$sing this connection, we show exponential multiplicative

good as previous bounds in [1], [2], [4] as they are based gaps between our improved upper bound and those previously
specificr-run strings U, and B,), and for a large range of presented.

parameters our bounds are strictly tighter. For our impdove

lower bound, we devise a recursive expression|for(U,)| Il. TOOLS FOR ANALYZING THE NUMBER OF

and present a closed form formula for its evaluation. We then SUBSEQUENCES

perform an asymptotic evaluation @, (U,)| (assuming large The number of subsequences of a string obtained by dele-
r). A comparison of our improved lower bound with thations highly depends on the string’s structure. In order to
previously known is depicted in Figufd 2. Specifically, weletermine the number of subsequences for a given number
show that for values of which are greater thary3 our lower of deletions, it is not enough to know the length of the

string, and not even the number of the string’s runs. Inspire '

by previous works, we looked for tools that will enable us [1]1] 0i0| 1]0[1]0]
to analyze the number of subsequences. In this section we [TloTo[ATo 0] ! &
present these tools. In subsectfon]I-A we present a method !

of counting the number of subsequences by partitioning the iy [elafof1]o[1]of1]

set of subsequences into subsets characterized by théi, pre | 1 | 1 | 0 | o| 0 | 1 | 0| 1 | 0| :
thus forming a recursive relation. In subsectibn11-B we

present basic operations on strings that always increase (o
decrease) the number of subsequences under deletion. Such
basic operations allow comparison between the number of | 1 | 1 1| 1 | 0 |1 |0| 1 | 1 |0|
subsequences of strings, and are very useful for findingdmun
on the number of subsequences.

S(x1,...,x,;) denotes a binary string withruns, in which [1]2]2]o]1]o]2]1]1]0]
the i" run is of lengthx; and the first symbol i®, E.g.
5(1,2,3) = 011000. We will use the notationn x a to
indicaten sequential runs of length, E.g. 5(2'3 X 1,2) ~ Figure4. Basic operations on strings. In all diagrams the lowengttias
5(2,1,1,1,2) = 0010100. Dy(x1,...,x,) will be used as more subsequences under any number of deletions.
short form for D¢(S(x1,...,%;)). C, denotes the binary
cyclic stringS(n x 1). We assume the following conventions:

(a) Insertion (b) Flip

(c) Balance

Zi-‘:j a; = 0 whenj > k. () = 0 wheni < 0 ori > n. Proof: (i) We denote n = Y'_,x;. Using

|Di(X) = 1| for t = |X| andt = 0, and |D;(X) = 0| for Lemma [IL2 once, we get [Di(xy,..., %) =

t > |X]. |De(x1 — 1,x2,...,%)| + |Di—x,(x2 — 1,x3,...,%)].
o For x; > 1 we can use Lemma Il2 again and get

A. Partitioning the set of subsequences IDe(x1, .., %) | = [De(x1 —2,%2,. ., %p)| + | Dy, 41 (%2 —

We found the following lemma (from [2]) very useful. Wel, x3,...,x;)| + [Di—x,(x2 — 1,x3,...,%;)|. Likewise,
restate it here and derive a corollary for binary strings. ~ for j < min(xq,n — t), applying Lemma[ILR; times

.] yields |D¢(x1,...,x)| = |De(x1 — j,x2,..., %) +
Lemmal ll.1. [2] For any%.-string X : x1 Dy i(x2— 1,x3,...,%)|. Whent < n—xy, it

- . i:X1*j+1
() Di(X) = Loex D} (X), where for a set; of strings follows that min(xy,n — t) = x;, and so we can expand
) G<(‘;)) denotes all members 6f starting witha. using Lemma I[P exactly; times to getl Di(xy, ..., %)| =
(i) D;(X) = aDyq_s)(X[f(a) + 1 : n]), wheref(a) |Di(xp,...,x,)] + Y1 [Dimi(xa — 1,x3...,x)]
denotes the index of the first appearance afi X, and When t > n — x; after expandingn — t times, we
X[i : j] denotes the substring . . . x; of X. get the expressionD¢(xy,...,x,)| = |Di(xy — (n —
X1 . _
We derive the following lemma for binary strings. Bxz)| + Ll gy | Pr-i(x2 1,_x_3,,...,xr)|.
As |S(x; — (n—t),x2,...,x,)| = t, and noticing that for
Lemmall.2. o t > |X|, ID¢(X)| = 0, we get the lemma’s claim.
() For any binary stringX, s.t. X = c'e/Y for some (i) The proof for the symmetric case is identical. m
i,j > 0andY € {o,e}*, |Di(X)| = |Di(ctelY)| +
|D_;(e/=1Y)| for anyt < |X|. B. Basic operations on strings
ii i ot = Jori=1 :
(if) %/mr?igj’f?;l‘y' [Di(Yeld)] De(Yelo'™)| + In the following sections we will present families of stri)g
t—i :

for which the number of subsequences can be explicitly
Proof: (i) Following the notation of Lemmd _1Il1, calculated. In order to use these families of strings to skevi

f(oc) =1andf(e) =i+1. Using LemmaEIIll(ii),Dt(") — bounds on the nu_mber of su_bsequer_mes for general strings, we
oDis1-1(X[2 : n]) and Dfe) _ €Dt+1—(i+1)(x[i +2:). use bas_lc o_peratlons on strmgs, which a_llows us to trgnsfor
Applying LemmalI-1(i) we get the result. one strlng into another, Wh|le_ monotonically increasing (o_

(i) The proof for the symmetric case is identical. m decr.easmg) the pumber Qf their subsequences. In thissecti

Applying Lemma[IL2 repeatedly, we get the following"Ve !iSt such basic operations. ,
lemma. 1) Insertion operation [Figur¢d(a): Hirschberg et al. [2]

_ . showed that inserting a symbol anywhere in the middle of a

L%mmaII.B. For any binary stringS(xy,...,xr), S.t.n = string always increases the number of subsequences.

i=1%i

; _ X1 (. _ Lemmall.4.[Insertion increases the number of subsequences]
5 |1D;§X1 : :;J‘C;;Tll‘tllj_t)(ci? oo Bl By [Pz [2] For anyX-stringsU, V and anyc € X%, |Dy(UV)| <

(i) Symmetrically,| D¢(x1,...,x¢)| = |Di(xq, ..., x:—1)| + [De(Uo V).
Y IDri(x1, e X2, X1 = D) 4 1 tmn—sx, 2) Deletion chain rule:

Lemmall.5. For anyX-string U, and anyV € DiU),
Dy(V) € Dy (U).

Proof: V was obtained frontl by deletingt symbols.
Any string in Dy/(V) is obtained by deleting symbols from
V. The same string can be created by removing tthet’
symbols directly fronil, and thus it belongs also 0, ,(U)

[|

4) Balancing operation:[Figure[4(c)] Informally, we refer
to a string ashalanced if there is a low variability between
the length of the string’s runs. A balancing operation is one
that decreases that variability, E.g. shortening a longanmich
increasing the length of a short run. The following lemma
states terms in which balancing a string increases the numbe
3) Flipping operation: [Figure[4(b)] g; isttsr_rs];t;;(;?ﬁ:;]ces, and it is used later to prove maximality
L i ilies.
Lemm.a ”'6'[FI.’p ping Increases numbgr of subsequences] FE(remma II.7.[Balancing increases the number of subse-
any binary stringdl, V and for any bitr, |Di(UocV)| <
— _ T . 4 quences] FoX = S(x1,...,x;), and for anyt > 0,1 <
|D¢(UcooV)|, wherea denotes the string in which 0's are . .
i <j<rstxi—x > 1, and{x1,...,xj_1} is sym-

flipped to 1's, and vice versa. metric (i.e.x, = x, 1, X3 = Xy_2,...), |Di(x1,...,%)| <
Proof: By induction on[U|. When |U| = 0 the claim IDi(x1, ., Ximt, X = 1, X1, X1, X+ L X, X))

is |Di(coV)| < |Di(ooV)|. LetV = o'e/X for maximali,j. n other words, decreasing the i-th run by 1, and increasiag t

Whenj = 0 the claim is trivial ¢vV is a constant string, with j.th run by 1 can only increase the number of subsequences.

1 possible subsequence), so we assyime0. Using Lemma In order to prove LemmBaTll7 we will need the following

M2l = (i1 ! _ ‘

Xvoemgg.tr;[iﬂgﬁgg (U€V|§)t<(ﬂjl))| EE'VI))f_jTge (ég} lemma that characterizes balancing operations near thesedg
At = t —1 . .

IDi(cV)| = |Di(eV)| because of symmetry, and sincg’! the string.

¢~1X 'C D;1(V) we can use Lemmd_Il5 and getLemmall.8. Assume{xy, ..., x,_1} is symmetric. It follows

ID;_»_i(eI~1X)| < |D;_1(V)], and thus we prove the base!at"
of the induction. (i) ForX = S(xy,...,x;) S.t.xy > xp, [Di(x1,... x0)| <

)) o |Dt(x1—1,x2,...,xr_1,xr+1)\.
Now for the induction step, assume the claim is true[tof < (i) For X = S(xq,...,x,z) St x > x andz >
n and we look aiu| = n. We regard the different cases of ~ o |D,(xy,... x,2)| < |[Di(x1 = 1,%2,..., %1, % +

the structure ofl.
Case 1: U ole/X for some i,j > 0. We (ji
use LemmaldlR and get|Di(c'e/XooV)|

1,z)].
ForX = S(y,xq,...,%) S.t.x; —x, > 1 andy > 0,
ID¢(y, x1,... x7)| < |Di(y,x1 —1,x0,..., %1, % +

|D¢(c' e/ Xoo V)| + |Ds_i(e/ "' XooV)|. We com- 1)|.
pare that toD;(c'e/ XoeV)| = |Di(c' e/ XoeV)|+ (iv) ForX =S(y,x1,...,xr,2) S.t.x; —x, > 1 andy,z > 0,
|D;_;(e/='XceV)|. On each of the arguments we can ID¢(y, x1,... X, 2)| < |Di(y,x1 —1,%0,..., %1, % +
use our induction claim fofU| —1 and [U| —i — 1. 1,2)|.

Case 2:U = €'0/X for somei,j > 0 we use the same Proof:

method.

Case 3:U = €' for somei > 0. |Di(e'ooV)]
|Dt(e'~1oa V)| + |D;_i(cV)|. For the flipped string
we get|D;(eloeV)| = |Di(el1oeV)| + |Dy_i(eV)].

In this case, the second argument in both summations
is equal due to symmetry, and we can compare the first
arguments using the induction hypothesis [fai — 1.

Case 4:U ol for somei > 0. Let V = ¢/X

for maximal j. In case|X| = 0 we get the trivial

(i) When r = 2 the claim is reduced tdD:(x1,x;) <
Di(xy — 1,x0 + 1) for x; > xp. This is easily
proved becaus®;(x1,x;) = min(xy,xo,t) + 1. For
r > 2 we use Lemmd M2 to getD(xy,... x/)| =
|Dt(x1 — 1,XZ,...,X,/)‘ + |Dt_x1(x2 — 1,x3,...,xr)|.
Using LemmdIL2 and the symmetry éf,,..., x, 1}
we get |Dt(x1 — 1,XZ,. e Xp—1, Xr + 1)| = |Dt(xr +
1,x3,...,% 1,51 — 1) = |De(x,x0,...,%,1,%1 —
1)| + ‘Dt_x,_](x2 —1,x3,...,%_1,X1 — 1)| We com-

case of a uniform string again. F4X| > 0 let
X = €Y, and then|D;(UccV)| = |D(c2V)| =
|Di(c" V)| + |Dy_i_j_»(Y)|. Again we compare that
to |Dy(c"*'eV)| = [Dy(c"€V)| + | D;—i—1(V)|, using

pare the two expressions. Because of the symmetry

|Dt(x1 — 1,XZ,... xr)\ = \Dt(x,,xz,...,x,,l,xl —
1)|, and becauser; > «x, it is true that S(x; —
1,x3,...,%) € Dy —x,—1(x2 —1,x3,...,x; — 1) and

the induction claim for the first argument, and Lemma

. thus using Lemma 15 D; . (xo2 — 1,x3,...
[[L5l together with symmetry for the second. g D1, (x2 3

|Dt_xr_1(x2 —1, X3,...,X1 — 1)|
(i) Applying LemmallL3(ii) we get|D¢(x1,... xr, z)|

/x'f)‘ S

Corollary Il.1. [Alternative proof for the maximality ot,] ID(x1,... xp)| + Tioq [De—i(xq ... xpmp, %0 — 1) +
Given any stringX of lengthn, it can be transformed into isn—z, and |Di(x; — 1, x2,..., %1, % + 1,2)] =
the stringC,, by a series of flipping operation (as defined in |D¢(x1 — 1,x2,... x,—1, % + 1)| + Y74 |Ds—i(x1 —
Lemmalll.6). Each such flip can only increase the number 1,x;,...x;)|+ 1|>n—z. The two expressions are com-

parable argument by argument using (i) above, noticing
that if x; > x, then definitelyx; > x, — 1.

of subsequences, and thus we get a proof for the fact that
Di(X) < Di(Cy).

TABLE |
EXAMPLE OF A BALANCING PROCESS AS DEFINED IN THE PROOF OF

(i) Applying Lemma [IL3 we get|D:(y, x1,... x;)|
|Di(x1, ... xr)| + Ziy:l\Dt—i(xl — Lxy,...x)|

=+l

THEOREMIILT]

isn—y, and [D¢(y,x1 — 1,x2,..., %1, % + 1)]

Dy = Loxa a2 + 1] 4 iy [Diiln — f) 000111)1(31100100 372 122x1267 DG(Xil)s

2%y, Xp—1,% + 1)| + 1|r=n—y. The two expressions 1 000111111000100 36312 59 56

are comparable argument by argument using (i) above 2 000111110000100 35412 55 63

and noticing that ifv; — x, > 1 then definitelyx; > x, 3 000111110001100 3,53,22 51 85

andx; —1 > x, 4 000111100001100 34422 49 92
. : 5 000111100011100 34332 47 102
(v) We use Lemmal[Il3 to getD:(y,x1,... xr,2)] 6 000111000111000 33333 45 105

|Dt(x1,... xr,2)| + 2?1:1 IDi_i(x1 —1,x2,... X, 2)]
1t>n—y and |Di(y, x1 — 1,x0, ..., %1, X + 1,2)]
|Di(x1 —1,x0,..., %1, % + 1,2)| + Zly:1 |Dy—i(xq —

=+ 1

run is of length different fronk (w.l.0.g, bigger thark), and

2,29, Xp-1,% +1,2)| +1]>n—y. The o expres- Ikl}us there is at least one other run with length smaller than

sions are comparable argument by argument using (i) (i)
above, as the condition; — x, > 1 guarantees that ©- Assume w.l.0.g that,,” > x5, and then we can conclude

x1—1> x;. that x}(f) > xifil = x}(ﬁz =...= x;izl > x,gi), otherwise we

m get a contradiction to the minimality dfy,). We will define

Now we can prove Lemm& .7 [Balancing increases th&i+1 to be the string achieved fro; by decreasing the'"
number of subsequences]: run by 1, and increasing thﬁh run by 1. Each pair of strings

Proof: We will prove by induction on the number of Xi, X; +1 admits to the conditions of Lemnia 1.7 and thus
runs in X outside of the sequencx;, ..., x;), explicitly on [D+(Xi)| < [Di(Xi11)|. This process is finite, because the
(i—1)+(r—j) = r+i—j—1. We will denote these runs value ofy_I_, x? is a non negative integer that must decreases
outer runs When we have only one outer run, the lemma iat every step. An example of the balancing process we use is
reduced to Lemm@ 118(ii) of 118(iii). Now we assume thaglisplayed in Table I. u
there are at least two outer runs. If the outer runs are one oYVe derive the following corollary for the case whereis
each sidei(= 2 andj = r — 1) this is the case of Lemmanot divisible byr.
[C8(iv). Otherwise, at least on one of the sides there a® tCorollary ll.1. Let X = S(x1,...,x,),n = Y, x;, and
or more runsi > 2 or j < r —1). We assume w.l.o.g thatg = 5 /7, D¢(X) < |D¢(B, Uﬂ)"
i > 2, and then we can use Lemrhia]l.3 and the induction ’

hypothesis on strings with the number of outer runs decdeaﬁﬁ Proof: = For integral k this is the case of Theorem

Otherwise, we denotee = r[k] —n, and letY =

by 1.
Y IDi(x1, .., %1, % + a)|. Using LemmalTl#|Dy(X)| <
|D:(Y)|, and sincelY| = r[k] andr(Y) = r, using Theorem
[1l. BALANCED STRINGS LI [De(Y) < [Dt(B, g))I- [
In this section we define the family of strings named IV. OUR UPPER BOUND

Balanced st_ringsWe c_:aII a string balanced, if all the runs | this section we present an upper bound for the number
of symbols in the string are of equal length. Formally, wgt s hsequences of a string obtained by deletions. We develo
denote byB, the binary string of lengtivk, with 7 runs, 5 recyrsive expression for the exact number of subsequences
each of lengthk. E.g. B34 = S(4,4,4) = 000011110000. o 4 palanced string. We then find an explicit form for this

We will prove that of all strings with lengthk and 7 runs, eyhression, and use it to obtain a tight upper bound on the
the balanced string has the maximal number of subsequen¢ggnper of subsequences of a general string.

under any number of deletions.

Theorem Ill.1. LetX = S(x1,..., %), n = Y| x;, andk =
n/r. If kis an integer, thekD¢(X)| < |D¢(B, k).

A. Recursive expression

Definition IV.1. Forallr, k , LetB;’k be the string obtained from

B, x by removing the first symbol. E.g83 5 = S(4,5,5) =
Proof: The main idea of the proof is that any suclwo001111100000.

string X can be transformed int8, , by repeatably app_lying Definition V2. Let b

the Balancing LemmBTIl7. Each such step can only incre B

the number of subsequences, so if such a series of balzj']cé(f/k)"

(r,k,t) = |Di(B,x)| andb'(r,k,t) =

operations can be found, the theorem is proved. We wilemmalV.1. For all r,k,t, |D¢(B.x)| = [D¢(B,)| +
construct a series of stringXy, ..., X, such thatXy = X, [D;_(B]_)|

Xm = By and for any0 < i < m, [Di(X;)| < [Dy(Xir1)l. Proof: ,This is derived from LemmaTll2 [
Given a stringX; # B, s, we denoteX; = 5(x§l)wwx£l))- Whenk is known from the context, we will use the short

We choose a pai(p,q) s.t \xl(,l) — xgi)\ > 1, p < q and notationsB, and B, for B,; and B, , repectively. Likewise
g — p is minimal. Such a pair exists, because at least ohér,t) andb’(r,t) denoteb(r, k, t) andb’(r, k, t) respectively.

Lemma IV.2.[Recursive expression fof] each of size no larger than— 1. The following development
0 ift<0ort>kr foIIovys the techniqu(_e used is [8] in the contex_t of counti.ng
1y o = deletion patternssimilar results are calculated in [10]. This
I+ V(r=1t—i) ifk(r—1) <t <kr partitioning problem can be restated as counting the differ
solutions {y;} to the equationg_;_,y; = t, Vi : y; < k.

V(rt)= B (r—2,t—k)+ The number of solutions ignoring the constraims < k
L ’) is equivalent to the number of r-partitions of which is
Y (-1t i) otherwise (1) = ("*1). The number of solutions that violate the
= ’ constrainty; < k is ((,”,). Subtracting this for each;, we

get (1) —r(,”)- Now we subtracted too much, because
solutions that violate two constraints are subtractedewite
number of solutions that violate the two constraipts< k and

Proof: Using LemmdTLB we gel’(r,t) = b(r —1,t) +
YE Y (r— 1, — i) + 1];o4(—1). We check the following

cases: - v r : :
_ o y2 < kis ((,/y). and there ar¢}) such pairs. Adding these
M) f < k(r—1): Using LemmaLILP, b(r — ,Lt) = cases back to the countwe ggf) — 7 (,”,) + () (, ")
b/<r “Loabe _k_zit " k), and we get'(r,) = Now again we have to account for the solutions that violate 3
V'(r—2,t—k)+ 5 b'(r—1,t —i). constraints, that were added too many times, and so onnButti

(i) t =k(r—1): In this caset = |B, 1| and b(r
1,t) = 1. We geth/(r,t) = 1+ L5 0/ (r —1,t —i

)— L)
(i) t > k(r —1): Heret > |B,_1| andb(r — 1,t) = 0.

it all together we ge#Py(r,t) = ¥, 5, (=1)'(5) (,/4)-

[|
We getd/ (r,t) = Y21 b/ (r —1,t — i) + 1. Lemma IV.4.
Rearranging the cases we get the claim of the lemma.m 13 Ar—j
. . #P(Ar, At) = .| #Py(Ar — 2, At — jk
B. Solving the recursion (ar,a0) =), < > o(Ar =2j 1)

j=0
When calculating’ (r,t) we expand the recursive expres-
sion iteratively, until allb’ expressions reach their boundar

condition, and get zero value. The only positive contrititi ways to select the remaining tuples. We than ha%_])

in this sum is from the 1 in the second case{ Zf;ll v (r— _ R
1,t—1)). By counting how many times this value is added"ays to insert the(2,k) tuples inside the rest, and thus

Ar—j . . .
we can get the explicit value df (r,t). The 1 values are #Dj(Ar, A) = (r] "#Po(Ar — 2j, At — jk). Summing on
K . . At
added exactly every time the S(::'(Zond case is used, i.e. Wr%mnpossiblej-s, #P(Ar, At) = ZLJ‘OJ #P,(Ar, At) and the

expanding the value df (7, f) for 7, f that fulfill the condition | , : 1=
N - ~ My emma’s claim follows. [|
k(7 —1) <t < k7. When expanding’(r, t) these are exactly
the integral solutions for = L%J +1,0 < f < t, which are
. . i . . t H
simply thet + 1 pairs (r;,t;) = (¢ +1],i) for 0 <i < t. / _ LA
We will count the number of times that (7, f) appears in b t) ;)#P(r LkJ Lt=i)
the complete expansion df (r,t). Based on the recursion
form in Lemmal[IV:2, the expressiai (7,) can only appear
in the single expansion of one of the following expression
V(F+2Ft+k), orb/(F+1,f+i) when0 < i < k—1.
Counting the number of those paths is equivalent to calioigiat

. . (ri, ;) = (L,i; +1],i) for 0 <i < t, and each one of them is
]E?jn?l:;nebzggéozi'?;eg)et&slo;?rdered trles, t;) } selected reachedtP(r — r;, t —t;) times. Summing all together we get

¢ andY s f o F Ao (Lk=1)} st X = V(rt) = Tt o#P(r— [£+ 1], —i) which is equal to the
r—Fandpt=t—t lemma’s claim. []
DefinitionIV.3. ~ We denote as Sy the Set cqgjiary V1. The combined results of LemmBgdl V5]

1(2,k),(1,0),(L1),...,(Lk — 1)}, and as #P(Ar, M) vz andV3 give an explicit expression fdiD; (B, ;)|. We
the number of possible sets of ordered tugles, t;) } selected | oqtate the results here- ’

from the seby s.t.}_r; = Ar andy_t; = At. #P;(Ar, At) will b(r,t) = b (r,t) + b/ (r —1,t —k)
denote the number of such sets using the tpJ&) exactlyj — y/(; 1) — ¢'0 #P(r— | i =)
times. ' - i

Proof: First we calculatefP;(Ar, At). If we first select
% times the tuple(2, k),we are left with#Py(Ar — 2j, At — jk)

LemmalV.5.

Proof: As mentioned in the discussion above, when
expandingt’ (r, t), Exactly t + 1 pairs (7 k) are reached that
fulfill the conditionsk(F —1) < F < k7, 0 < f < t and
thus contribute to the sum. These are exactlytthel pairs

Lemma IV.3 #P(Ar, At) = ZJ]-szoJ (Ar]- N#Py(Ar — 2j, At — jk)

[MJ .
) #Po(8r, A1) = 505 (1) (524)
i [Ar Ar)) /

#Po(Ar, At) = Z (=D . . Using balanced strings we have achieved upper bounds for

= i At — ik .

i=0 the number of subsequences of general strings. Our bound of

Proof: In the case of#P,, the problem is reduced to Corollary[IV.1 (in comparison to previous bounds) is degitt
finding the number of ordered partitions efinto » parts, in Figure[3.

TABLE Il

V. UNBALANCED STRINGS
EXAMPLE OF A BALANCING PROCESS AS DEFINED IN THE PROOF OF

In the section we define a second family of strings, named THEOREMN]
unbalanced stringsWe call a string unbalanced, if all of ; < uns Ds(X)
the runs of symbols in the string are of length 1, except 0 0011100111100 2.,3.2,4.2 -
for one run. Letu,sl} be a binary string of lengtm with » % 83111811;11% ggigi gg
runs, in WhICh all runs are of length 1, _except for tHe 3 0011011111110 22171 20
run which is of lengthn —r + 1. We notice that due to 4 0010111111110 2,1,1,8,1 14

1) (r) : 5 0101111111110 1,1,1,9,1 10
symmetry | Dy (U} = |D , and defineu(n,r,t) =
y Y[DU,y)| = |De(Unr)] (n,7,1) 1111111110101 9,1,1,1,1 8

IDy(U))| = [Dy(UL))]. We will show that these extreme
cases have the least number of subsequences among the
unbalanced strings, and conclude that they have the least .
amount of subsequences among all strings. addends, we get th@t(ur(l]))\ > lu(n—1,r—1,t) +u(n—

2,r—2,t) and using LemmATIl2 again, the last sum is equal
TheoremV.1. [Unbalanced strings have the least subsgsy(n,r,t) and thus the induction step is proved. An example
quences] ForX = S(xi,...,x), n = Y ,x;, and any of the unbalancing process is displayed in Table Il. =
1<t<n, |D(X)|>u(n,rt).

Proof: First we will prove that there exist§ s.t. Vl. OUR LOWER BOUND

IDi(X)| > |D(U))], for all t. We notice that the balancing I this section we develop a recursive expression for the
operation of LemmaTl]7 can be used in the other directioAumber of subsequences of an unbalanced string by deletions
as an unbalancing operation. We will transform the stringie will find an explicit form for this expression, and use it
X into a string U,sz by repeatably applying the unbalancingo obtain a lower bound on the number of subsequences of a
operation. each such step can only decrease the numbege@feral string. In addition, we will show the improvemeratth
subsequences, so by constructing a series of such opesationr lower bound provides.

we will prove thatD;(X) > \Dt(u,5{2)|. Letj be the index of

a maximal run inX. We will construct a series of strings,A. Recursive expression

Xo, ..., Xm, such thatXy = X, Xy = U,SJZ and for any | emmavi.1. Forall0 < r <n,0<t<n,
0 <i < m, [Di(X;)] > |Dt(Xi11)|. For anyi < m, we -

denoteX; = S(x;”,...,x;"). We choose an indey # j s.t. r ifr=1,2

x,(,l) > 1 and all runs between th#" run and thep!” run are ifr>1andt=n—1
all of length 1. Such an index exists, otherwisgis already an d(n,t) ifn=r

unbalanced string. We defin€;; to be the string obtained u(n,r,t) =

from X; by increasing thej”’ run by 1, and decreasing the

p'" run by 1. Sincex; was the maximal run irX and each u(n—1,r,t)+ otherwise

operation only made it bigger while all other runs could only dir—2,t+r—n—1)

shorten, we have thaf) > ng). The runs between thé" run
and thep' run are all of length 1, and so trivially symmetric, Whered(r,t) = |D¢(C,)| = ¥i_, ("), as proved in [2].
and so the conditions of the reverse Lemimal I1.7 holds, ak¥e assume(n,0) =1, and fort < 0,d(n,t) = 0.
IDH(Xi)| = |De(Xig1)l.

To complete the proof we will prove that for anjy
ID(UD] = u(n,r,t). Forj =1, u(n,r,t) = |Dy(Uy))]| by
definition. Forj > 2 we will prove by induction ory. Forj =

Proof:

« Whenr =1, U,, is a constant string, and has only one
possible subsequence (the constant string of lemgtht).
e Whenr = 2, Uy, is of the formoe™ !, and has two

2,|Dy(UY)| = |Dy(1,n—r+1, (n—2) x 1)|. using Lemma
we get [Dy(UP)| = [Di(n—r+1,(n—2) x 1)| +
|D;_1(n—r,(n—2)x1)|. We compare this tai(n,r,t) =
IDi((n—1) x L,n—r+1)| = |De((n—2) x1L,n—r+

possible subsequences, namety '~ ande" .

Whent =n —1 andr > 1 any subsequence is a single
symbol. Sincer > 1, it can be either symbol of the binary
alphabet.

1)| +|D¢((n —3) x 1,n —r+1)|. Using the flipping Lemma « Whenn = r, U,, = C,, the binary cyclic string of
on the second addend and symmetry on both, we get lengthn. |D;(C,)|=d(n,t) by definition.

u(n,r,t) < |Di(n—r+1,(n—2) x1)| + |Di(n —r,(n — o In the other cases2(< r < n, t < n—1), we
2)x1)| = |Dt(U,§r))\. For the induction step, we assume that regard u,?) (“tail first”). We Apply Lemmal[ll2 and
thg claim is true fo2,...,j — 1 a?‘():i prove it for](.'j%r] > 2, get [Dy(UY)| = IDt(U,Sl,)l,,H + |Disron_1(Cr_z)| =
using Lemme I[P we getD;(U,;)| = |D«(U,’)|+ u(n—1,r,t)+d(r—2,t+r—n—1).
\Dt,l(ufljjzzlgfz)\. Using the induction assumption on both [

n—1,r—1

B. Solving the recursion reached, because > r/3 implies thatt > (r —1t)/2.
—t T , . .
Theorem VI.1. [Closed form formula for(n, r,t)] Forallt < Thusd(r,t) < (t+ 1), ,,)). Stirling’s approximation

n,2<r<mn, implies that(La?ZJ) = @(\%), and thus we getl(r,t) =
(i) whenr > t: O(%zr‘t).
e
(. 8) = dr,)+ f*ZZ A —2.0) On the other hand as—2 > [52], u(r,t) > d(r —
un,r = T r— 1). 2 2 2
sy 7) 7) L,(r,:g” . 23(r 3) . 25"
. i=t+r—n—1 2, LrTJ) > (@(,73”) - ®(%(7’73) - ®(W)' thus
. . 2,
(i) whenr < ¢t 3 u(r, t) = Q(%)_
r— Fr
u(nr,t) =24+ Y d(r—2,i). urr) — (B, thus el — o(VIzEre=9) m
i=t+r—n—1 For large enough strings: (> £ + 1), the improvement that

the bound in Theorem V112 gives over the result in [2] depends
Proof: We sequentially expand(n,r,t) using Lemma on the ratio between andt. We depict our improved results
VLI until reaching one of the boundary conditions. Aftein Figure[2.

one such expansion we get(n,r,t) = u(n—1,rt) + VIl D

d(r —2,t +r —n — 1), after j expansions (assuming the - DELETION PATTERNS

boundary conditions weren't reached) we gdtn,r,t) = Consider a stringX. Deletion of t letters from X can
u(n —j,r,t) + Zi::ljjd(r —2,i). We notice thati = be characterized by partitioninginto the number of letters

t+r—n+j—2 can be negative, and in these cages—2, i) deIetgd from each run, leading to the following definition of

is defined to be zero. When > ¢, after n — r steps we deletion patterns.

get u(n,r,t) = u(r,r,t) + =7 ., 1d(r—2,i), and as Definition VII.1. Let X be a string s.tX — S(x1,...,%r).

u(r,r,t) = d(r,t) we get (i) above. When < t, aftern —t — A deletion pattern of size, is a set of integer§yi, ... y,}

1 steps we geti(n,r,t) = u(t+ 1,7, t) + T-0 1 d(r— fulfiling Y!_, y; = t and forall0 < i < r, y; € [0,x,]. Each

2,i) =2+ Zf;f’J,r_n_l d(r —2,i) and we get (i) above.®m y; represents the number of letters deleted fromitierun of
We notice that when the number of deletions is no great&r E.g. the deletion patter{2, 1,2} for the stringd00110000

thann — r 41 the expression of (n, 7, t) does not depend on results in the subsequen@&00. let P;(X) denote the set of

n, as stated in the following corollary: deletion patterns of sizefor the stringX.
Corollary VI.1. For2 <r <nandt <n-—r+1: It is important to notice that applying different deletion
(i) whenr > t: patterns on a string can result in the same subsequences,
oo E.g. For the stringl 1011, the deletion pattern$1,1,0} and
u(n,r,t) =d(r,t)+ Zd(r —2,i). {0,1,1} both result in the subsequent#l. The following
i=0 lemma ties deletion patters with the study of subsequences
(i) whenr < t: (and appears partially in [8]).
r—3 LemmaVIl.l. For anyX = S(xi,...,x,), let X' denote
u(n,r,t) =2+ Y d(r—2,i)=1+2""2 the stringS(x; —1,...,x, — 1). Informally X' is the string

i=0 obtained by deleting one letter from each runXinlit follows
C. Improving known lower bounds on number of subsequendbat|P;(X")| < |D¢(X)| < [P (X)].

The results of Theore V.1 together with Theorem VI.1 proof: Deleting letters from a given string according

lead to the following: to a deletion pattern is a deterministic process, and so each
Theorem VI.2.[lower bound on the number of subsequencedgletion pattern yields exactly one subsequence, thus the
Forallt < n,2 < r < n and any-run stringX right inequality follows. As mentioned before, severaladiein

patterns can yield the same subsequence, but this redundanc

min(t—2,r—3) , . . .
doesn'’t exist with deletion patterns that preserve the rarmb
ID{(X)| >d(r,t)+ Y. dr—2,i) Cth . o1ete ph 'S that pres ioh Al
it a1 of the runs in a string, i.e. there isn’t a run in which all the

et al. [Dy(X)| > d(r,t) = Ti,("7h [2]. We limit the

1

-)] and there is a one-one correspondence between the deletion
comparison ta < r as fort > r the previous bound gives 0.

patterns and the subsequences. The group of deletionrgatter
LemmaVl.2. Leta = t/r. fora € [% + %,1) and fort < of X that preserve the number of runs is exactly the group of
n—r4+1, u(nrt) _ oy (ﬁzr(a—%))' deletion patterns in which at least one symbol is not deleted
d(nt) - from each run, and is equal ®;(X’). This group has a one-
Proof: d(r,t) < (t+1) maxi_ (’;t). The series(’jt) one correspondence to the subsetIdf X) of strings with
reaches its maximum at = |(r —t)/2]. This value is exactlyr runs, and thus the left equality holds. [

0

LemmaVIl.2. ForanyX, [P(X)| = [P)x|—+(X)|.

Proof: Let X = S(x1,...,x,) and let{yy,...,y,} be
a t-deletion pattern. It follows thaf;_,y; = t. We define
yi=uxi—yforalll <i <r Asy; € [0,x;] it follows
thaty! € [0,x] and Xy, = Y7y (x; — i) = |X| ¢, and
so {y;} is a (|X| — t)-deletion pattern ofX. Eacht-deletion
pattern can be mapped tq gX| — t)-deletion pattern, and this
mapping is reversible, thuP; (X)| = |Px_(X)].

A. The number of deletion patterns for balanced strings
We use the result obtained in LemimalV.3 and restate it for

deletion patterns to get the following result:
(=D'() ((t—i(;ﬂ—l))) -

Fzsdl ; —i(k+1)—1
LT (CIGCTTEDTY

We now study the multiplicative gap betweef; (B, ;)|
and the previous bounds of [1], [2], [4] for values of
closeto n/2 and sufficiently large, k. This is an intriguing
setting fort in the context of deletion channels [3]. It follows

from basic observations (and also directly from the proof 0[1]
LemmalVI[.3) that

Py(B, ;)| < min (((:)) (k+ 1)*) :

The first bound above is exactly that of [4], while the second’
bound follows from the fact that eagh in a deletion pattern
is an integer betweefl and k (notice that the former bound [4]
does not depend on the parameéterhile the latter does not [5]
depend ont). In what follows, we show that the bound of
(k-+1)" improves on the bounds in [4] and [1], [2] for values
of » andk which are sufficiently large. [
Fort = n/2 = kr/2, the bound off_, ("") from [2] is
exactly2"/2. The bound of"*!~") from [4] is at least

1 (r(l + k/Z)) _1

k r ~ 12k\/r

Here we use the fact that
(I+a)" (1+1/a)"

(r(l + IX)) - 1 (r(1 4 a))r+e) B

T T 1247 1" (our)2 N 124/7
derived from Stirling’s formula; and the fact that for posit
x, (1+1/x)**1 > e. Forc = % the above implies
that our bound of(k + 1)" on |P:(B,)| is superior to that
given in [4] (and that in [2]) by a multiplicative factor of at

least

ot
LemmaVIL.3. |P(B,)| = Ziiglj

(2]

((1+62/k))r(1+k/2)’

1
12k\/r

Notice that for largek, ¢ > (1 +) for a constanty > 0.
We conclude that a multiplicative gap of at least that spetifi
above also holds betweg;(B, ;)| and the bounds in [1],
[2], [4].

For sufficiently smalle > 0 andt = n(} —¢), a similar

analysis will give a gap of= ¢’ for c = +1e)((11ik1//2(;/€§)7€k))-

Here also, for smak and largek; ¢ > (1+¢) for a constant

c’.

[20]

6 > 0. All'in all, we get for valueg which arecloseto n/2
and for sufficiently large: andk; that |P;(B,)|, and thus our
bound of |D;(B, x)|, improves on the bounds of [1], [2], [4]
by an exponential multiplicative factor @(").

VIIl. CONCLUDING REMARKS

In this work we present several operations on binary
strings which are monotone with respect to the number of
subsequences under deletion. We show, using the operations
studied, that the balanceerun stringB, ; and the unbalanced
one U,, obtain the maximum and respectively minimum
number of subsequences under deletion. By devising reeursi
expressions, we present a precise analysis of the number of
subsequences of both, , and U, undert deletions. For
our lower bound, we quantify our expressions asymptoticall
For our upper bound, we analyze deletion patterns to express
our asymptotic improvement over previous bounds. A direct
asymptotic analysis of our expression fdD;(B,)| is left
open in this work and is subject to future research.

REFERENCES

L. Calabi and W.E. Hartnett. Some general results of mgdheory with

applications to the study of codes for the correction of Byoaization

errors. Information and Contrgl 15(3):235 — 249, 1969.

D. S. Hirschberg and M. Regnier. Tight bounds on the nunafbestring

subsequenceslournal of Discrete Algorithmsl1(1):123-132, 2000.

I. A. Kash, M. Mitzenmacher, J. Thaler, and J. Ullman. e zero-
error capacity threshold for deletion channelSoRR abs/1102.0040,
2011.

V. I. Levenshtein. Binary codes capable of correctindetiens, inser-
tions, and reversalsSoviet Physics Doklagdyl0(8):707-710, 1966.

V. |. Levenshtein. Efficient reconstruction of sequemdeom their

subsequences or supersequencel®urnal of Combinatorial Theory,
Series A 93(2):310-332, 2001.

6] H. Mercier. Communication over Channels with Symbol Synchronization

Errors. PhD thesis, The University of British Columbia, 2008.

H. Mercier, V.K. Bhargava, and V. Tarokh. A survey of eraorrecting
codes for channels with symbol synchronization erréBEE£E Commu-
nications Surveys and Tutoriald2(1):87-96, 2010.

H. Mercier, M. Khabbazian, and V. K. Bhargava. On the nembf

subsequences when deleting symbols from a stiiB&E Transactions
on Information Theory54(7):3279-3285, 2008.

M. Mitzenmacher. A survey of results for deletion chalsnend related
synchronization channel$2robability Surveys6:1-33, 2009.

J. Ratsaby. Estimate of the number of restricted intggetitions. Appl.

Anal. Discrete Math.2:222-233, 2008.

	I Introduction
	I-A Our results and proof techniques
	I-B Structure

	II Tools for analyzing the number of subsequences
	II-A Partitioning the set of subsequences
	II-B Basic operations on strings
	II-B.1 Insertion operation [Figure 4(a)]
	II-B.2 Deletion chain rule
	II-B.3 Flipping operation
	II-B.4 Balancing operation

	III Balanced strings
	IV Our Upper bound
	IV-A Recursive expression
	IV-B Solving the recursion

	V Unbalanced strings
	VI Our lower bound
	VI-A Recursive expression
	VI-B Solving the recursion
	VI-C Improving known lower bounds on number of subsequences

	VII Deletion patterns
	VII-A The number of deletion patterns for balanced strings

	VIII Concluding remarks
	References

