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Abstract

The main practical limitation of the McEliece public-keyaeyption scheme is probably the size of its key.
A famous trend to overcome this issue is to focus on subdae$alternant/Goppa codes with a non trivial
automorphism group. Such codes display tegmmetriesllowing compact parity-check or generator matrices. For
instance, a key-reduction is obtained by takigasi-cyclic(QC) or quasi-dyadiq QD) alternant/Goppa codes. We
show that the use of sudymmetricalternant/Goppa codes in cryptography introduces a fueddahweakness. It
is indeed possible to reduce the key-recovery on the oligytametric public-code to the key-recovery on a (much)
smaller code that has not anymore symmetries. This reswolbtgined thanks to a new operation on codes called
folding that exploits the knowledge of the automorphism group. Blpisration consists in adding the coordinates of
codewords which belong to the same orbit under the actiohefiutomorphism group. The advantage is twofold:
the reduction factor can be as large as the size of the ogbith,it preserves a fundamental property: folding the
dual of an alternantr¢sp Goppa) code provides the dual of an alterna@$§ Goppa) code. A key point is to show
that all the existing constructions of alternant/Goppaesodith symmetries follow a common principal of taking
codes whose support is globally invariant under the actioaffine transformations (by building upon prior works
of T. Berger and A. Dir). This enables not only to present #iethview but also to generalize the construction
of QC, QD and evemuasi-monoidid QM) Goppa codes. All in all, our results can be harnessed tothgnsny
key-recovery attack on McEliece systems based on symnatémant or Goppa codes, and in particular algebraic
attacks.

. INTRODUCTION

Some significant research efforts have been put recentlpde-based cryptography to reduce by a large factor
the public key sizes. This has resulted in keys which are noly a few times larger than RSA keys (séé [1], [2]
for instance). This is obtained by focusing on codes hagiyigmetriesthat is to say, codes having a non-trivial
automorphism group. Such codes have the advantage of adjratcompact parity-check or generator matrix [3],
[4], [5], [1], [6]. Quasi-cyclic (QC) codes represent a good example of the use of symmetrieyptography to
build public-key encryption schemes with short keyis [8], [ was then followed by a series of papers proposing
alternant and Goppa codes with different automorphism ggdike quasi-dyadic@dD) Goppa or Srivastava codes
[5], [6] and quasi-monodicM) codesl[[1]. The rationale behind this is the fact that thdtamdl structure does not
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deteriorate the security of the cryptographic scheme. fibfge was eroded by the apparition of specific attalcks [7],
[8] and algebraic attacks[[9], [10], [11] again3tC/QD alternant/Goppa codes. Despite these preliminary warning
signals, the design of compact McEliece schemes remairther r@opular topic of research e.g. [12], [1]] [6], [13],
[14]. Besides these cryptographic motivations, the sefimcttoppa codes, and more generally alternant codes, with
non-trivial automorphisms is in itself an important issmecbding theory. Several papers focused on the problem
of constructing quasi-cyclic Goppa codes|[15],1[16], orntiying alternant and Goppa codes invariant under a
given permutation[[17],[18],[19].

Main Results

All the constructions okymmetricalternant/Goppa codes presented in previous works migikt & first glance
unrelated, likead hoc constructions designed for a very specific goal.[Ih [5] sytnime)D Goppa codes are
constructed by using the narrower class of separable Gopgesonvhich have all their roots of multiplicity one in
the field over which the coefficients of the Goppa polynomialtaken and by choosing these roots in an appropriate
manner; the same approach is followed to obtain more gefgvhlGoppa codes ir [1], whereas inl [4] the authors
rely on the larger class of alternant codes to obtain a langeigh family of QC codes in a McEliece like scheme.
Building upon the work of[[20],[[19],[[18], we show in this papthat all theQC, QD and QM alternant/Goppa
codes which are constructed inl [4],] [5],! [1] rely actually ancommon principle (Propositidn 3). They are all
equipped with non-trivial automorphism groups that ineokome affine transformations leaving globally invariant
their support. This property imposes on the non-zero ssalafining the alternant codes the constraint of being
built from a root of unity. In the case of Goppa codes, thisstr@int is translated into functional equatiorof the
form al'(az +b) = T'(z) that the Goppa polynomidl(z) has to satisfy, where is a root of unity and:, b belong

to the underlying finite field on which the support is definede Wily characterize polynomials satisfying such
equation in Propositionl 4. This enables not only to presemified view but also to generalize the construction
of QC, QD and QM Goppa codes (Propositidd 5). In particular, there is no reedse separable polynomials
like in [5] for getting QD Goppa codes. Notice that this will also show that it is in pipte not compulsory to
take the larger family of alternant codes instead of Goppiesas in[[4] to obtain a large enough family Q€
codes in a McEliece scheme: in fact there is nothing spedtal iespect taQD Goppa codes instead QfC Goppa
codes because there are roughly as m@iy Goppa codes as there a@@C Goppa codes (for a same size of
automorphism group) with our way of constructing them.

The major contribution of our paper is to prove that altetreamd Goppa codes with symmetries can be seen as
an inflated version of a smaller alternant codéthout symmetries. We call this latter falded code because we
show that it can be obtained easily by adding the coordinatdsh belong to the same orbit under the action
of a permutation of the automorphism group. More importantte can also express precisely the relationship
between the supports and the non-zero scalars defining tiraait/Goppa with symmetries and their associated
folded codes. These links are so explicit for the non-zeadass that knowing those of the folded code is sufficient
for knowing those of the original symmetric alternant/Gapgodes. These results have an important impact in
cryptography. First the length and the dimension of theddldode is generally divided by the cardinality of the
automorphism group. It means in particular that the use ofparct alternant/Goppa codes introduces a fundamental
weakness: decreasing the size of the public-key as in[[}i][Ibnecessarily implies a deterioration of the security.
Furthermore, since the non-zero scalars of the folded cede d¢rucial information, it then allows in the context of
algebraic attacks as proposed inl ([9],1[10],1[21]), to remlackey-recovery attack on the original public-code to the
one on a smaller code, that is to say with less variables imptiynomial system. For instance, we can reduce the
key-recovery of a quasi-dyadic Goppa code of lengith2 and dimensiont096 to the key-recovery on a Goppa
code of length64 and dimensiors2.

Interestingly enough, the folded code, if used in a McElloe encryption scheme, would have the same key size
as the original scheme but without symmetries. In other wjotide very reason which allowed to reduce the key

size in [4], [5], [1], [13] can be used to deriveraducedMcEliece scheme whose key-recovery hardness and key
size is equivalent to the original system.



Comparison with “Structural Cryptanalysis of McEliece &atmes with Compact Keysl" [21]

This paper is a companion paper bf [21] which has been suldngtparately. I [21], we mainly focused on the
cryptanalysis ofyM Goppa codes. That is, we [21] developed new algebraic toolsdiving the algebraic systems
arising in the cryptanalysiM Goppa codes, reported various experimental results and pnoaddition partial
results on foldedyM Goppa codes. In this submission, we present a much deepen@medsystematic treatment of
the the folding process. Ih [21], the folding was performéatly overQM Goppa codes and it was proved there
that it results in a subcode of a Goppa code of reduced lehigting a slightly different approach (by considering
the dual of the codes), we obtain here a much stronger resuttwholds in a more general setting. Namely, we
prove that if we perform folding on the dual 6fC, QD or QM affine induced Goppa/alternant codes (this applies
for instance to all the codes constructed(in [4], [5],/[13]])[we obtain a reduced dual Goppa or alternant code
where the reduction factor can be as large as the size of ttie oy monodic blocks of a symmetric parity-check
matrix attached to these codes. Folding preserves herdrtietuse of the dual code: if we start with the dual of
an alternant code we end up with the dual of an alternant coddfave start with the dual of a Goppa code we
end up with the dual of a Goppa code.

II. ALTERNANT AND GOPPACODES

In this section we introduce notation which is used in the hmper and recall a few well known facts about
alternant and Goppa codes. Throughout the paper, the fipltk df ¢ elements withy being a power of a prime
numberp is denoted by,. Vectors are denoted by bold letters likeand the notatior: = (z;)o<i<n Or T = (xi)?:‘ol

will be used in some cases. The ring of polynomials with coieffits in a finite fieldF is denoted byF|[z],
while the subspace df|z] of polynomials of degree less than(resp.less than or equal to) is denoted by
Flz]<; (resp.F[z]<:). Whenx = (z;)o<i<n iS @ vector inF™ and Q(z) is a polynomial inF[z], Q(x) stands for
(Q(x0),...,Q(zn-1)). In particular for any vectot = (uy, ..., u,—1) and for alla,b € F thenawu + b stands for
the vector(aug + b, ..., au,—1 + b).

Definition 1 (Generalized Reed-Solomon codelet ¢ be a prime power and, n be integers such that < k& <
n < ¢. Letx andy be twon-tuples such that the entries efare pairwise distinct elements &f, and those ofy
are nonzero elements if,. The generalized Reed-Solomon c@RS;,(x,y) of dimensiork is the k-dimensional

vector space:
def

GRSy (z,y) = {(yop($0)7---7yn—1P(9€n—1)) | P e Fq[z]<k}-
A useful property of these codes is given [inl[22, Chap.52,

Proposition 1 Keeping the notation of Definitionl 1, there exists a vectoe Fy such thatGRS;,(z,y)* =
GRSn—k($>z)'

This leads to the definition of alternant codes.

Definition 2 (Alternant code, degree, support, multiplier) Let z,y € .. be two vectors such that the entries
of x are pairwise distinct and those @f are all nonzero, and let andm be positive integers. The alternant code
o, (x,y) defined ovelF, is the subfield subcodeverF, of GRS, (z,y)* C Fim:

Ay (x,y) d:e}(GRS,q(ac,y)l NFy.
The integerr is the degreeof the alternant coder is a supportand y is a multiplier of the alternant code.

The dual of a subfield subcode is known to be a trace dode [28in Fhis it follows that

Lemma 1 The dualA,(x,y)* of the alternant codeA,(z,y) of degreer and extensiomn overF, is given by:

An(z,y)t = Tr (GRs,(m,y)) - {(Tr(co), o Tr(en 1)) | (Cose s enit) € GRSr(m,y)}

qul

whereTr is the trace map fronf,~ to F, defined byIr(z) =z + 29+ --- 4 2



Let us remark that an alternant code has many equivalentipisos as shown by the following proposition whose
proof can be found in_[22, Chap. 10, p. 305].

Proposition 2 For all a € Fy» \ {0}, b € Fym, andc € Fyw \ {0}, it holds that:
Ay (x,y) = A (ax + b, cy).

We introduce now Goppa codes which form an important subljaafialternant codes.

Definition 3 (Classical Goppa codes) et x = (zo,...,z,—1) be ann-tuple of distinct elements df,~ and
choosel'(z) € Fy=[z] of degreer such thatI'(z;) # 0 for all ¢ € {0,...,n — 1}. The Goppa cod¢/(x,T") of
degreer over[F, associated td’(z) is the alternant code, (x,y) with

1
D(z;)
I'(z) is called theGoppa polynomiabnd x is the supportof the Goppa code.

Yi =

I1l. CONSTRUCTION OFSYMMETRIC ALTERNANT AND GOPPA CODES

The purpose of this section is to recall how quasi-cyclic JQQuasi-dyadic (QD) and quasi-monoidic (QM)
alternant/Goppa codes! [5], [13],/[1] and more generally apynmetricalternant/Goppa code can be constructed
from a common principle which stems from Dur's work [n_[20)aut the automorphism group of (generalized)
Reed-Solomon codes. This has been applied and develop@8]in[18] to construct large families of symmetric
alternant or Goppa codes. It should be emphasized that #ysofvconstructing symmetric Goppa codes is more
general than the constructions proposed @ or QM Goppa in a cryptographic context byl [5],_[13[,! [1]. In
particular, it is required in_[5],[[13]/]1] to choose Goppades with a separable Goppa polynomial. We will prove
in the following that this constraint is unnecessary.

In order to recall these results we need a few definitionsadomorphisnof a code of lengtm defined ovelF,

is an isometry of the Hamming spa&¥¢ i.e. a linear transform of;; which both preserves the Hamming weight
and leaves the code globally invariant. A well-known facbatbsuch isometries is that they consist of permutations
and/or non-zero multiplications of the coordinates.

In this paper, we will be interested only in isometries tha&t permutations. This action is denoted, given a permu-
. . def

tationo of the symmetric group o0, ...,n—1} and a vectote = (zo, ..., 7n—1), By 27 = (T5(0), - - - » To(n1))-

For a codes” and a permutatioar, we define:

" L |cet).

A permutation automorphismof ¢ is then any permutatiosm such thatc? is in ¥ wheneverc belongs to%.
Symmetric codeare then codes with aon-trivial automorphism group.

We have seen in Propositidd 2 that alternant codes may hawerasddentical descriptions thanks to affine

transformations. Actually, symmetric Goppa codes andrradigt codes can easily be constructed by looking at
the action of the projective semi-linear goup on the suppbthese codes as shown in_[19], [18]. By projective

semi-linear group, we mean here transformations of the :form

Fgm U{oo} — Fgm U{oo}

az? +b

cz? +d

Basically when the support of the alternant code is invarianthe action of such a transformation and under a
certain condition on the multiplier, it turns out that suckransformation induces a permutation automorphism of
the alternant code. However, this action on the support maysform a coordinate of the support into and a

slightly more general definition of generalized Reed-Salnoronodes and of alternant codes is required to cope with
this issue. This is why A. Dir introduced Cauchy coded.in] jgBich are in essence a further generalization of

z



generalized Reed-Solomon codes. This construction altowsveco in its support. To avoid such a technicality

(and also to simplify some of the statements and propositastained here) we will only consider the subgroup
of affine transformations of the projective semi-linearupolt should be noted however that this simplification
permits to cover all the constructions of symmetric altatnar Goppa codes used in a cryptographic context [4],
[5], [23], [1], [6] and in some cases even to generalize thRiammely, we will deal with the following cases:

Definition 4 Let% be an alternant or Goppa code defined over a fiBldf lengthn, with an automorphism group
G. Given a nonnegative integer < n, we say thats’ is:

» Quasi-Cyclic QC) if G is of the form(Z/)\Z),
« Quasi-Dyadic QD) if char(F) = 2 and G is of the form(Z/2Z)*,
« Quasi-Monoidic QM) if G is of the form(Z/pZ)* with p = char(F) > 2.

Let us now reformulate some corollaries of the results oletiin [19], [18] in this particular case. The symmetric
alternant or Goppa codes that will be obtained here corresmpermutation automorphisms of alternant or Goppa
codes based on the action of affine maps> ax + b on the supportxg,x1,...,x,—1) of the Goppa code or the
alternant code. If this support is globally invariant bystliffine map (and is not equal ta)), then this induces a
permutationo of the code positiong0,1,...,n — 1} by definingo(i) as the unique integer if0,1,...,n — 1}
such thatr,(;) = ax; +b. In such a case, we say thatis the permutation induced by the affine map- ax +b.
Restricting Theorem 1 of [18] to affine transformations g&lmmediately

Proposition 3 Leta # 0 and b be elements of ;~. Letx € Fy.. be a support which is globally invariant by the
affine mapr — ax + b. Leto be the permutation aof,, induced by this affine map. Létbe the order otr. Assume
thaty € (F,~)" is ann-tuple of nonzero elements such that € F,~ an ¢-th root of unity such thay, ;) = ay;,
forall i € {0,1,...,n—1}. Theno is a permutation automorphism of the alternant codlgx, y) for any degree
t>0.

If we want to obtain Goppa codes, we can apply this result aadust have to check that the conditions on the
supportr,;y = ax; + b and multipliery,;y = ay; are compatible with the definition of the Goppa code, namely
yi = ﬁ whereI'(x) is the Goppa polynomial. These considerations yield imatetli the following corollary

of PropositiorB.

Corollary 1 Leta # 0 and b be elements of ;» with b # 0 whena = 1. Letx € Fj.. be a support which is
globally invariant by the affine map — ax + b. Let o be the permutation of,, induced by this affine map and
let ¢ be its order. Assume that there exists a polynoriial) and an¢-th root of unity« in F~ which is such that

I'(az +b) = al'(z). (1)
In such a casey is a permutation automorphism of the Goppa cédléx, I').

This proposition allows to obtain easily Goppa codes orrdtet codes with a non trivial automorphism group that
is cyclic.

Remark 1 One might wonder whether it is possible to characterize patyials which satisfy Equatiol). In
[19, Theorem 4] a slightly more general polynomial equatisrconsidered, namelif(az?" + b) = al'(2)?. It is

the particular case ot = m of Theorem 4 of{[19] which is of interest to us here. Howevieges it deals with the
classification of cyclic alternant codes (there is therefarrestriction on the order compared to the length which
trivializes the solutions of this problem in many cases Whace of interest to us) and since for further purposes
it will be convenient for us to remove the assumption[yn) to have no roots infxy,...,z,—1} which is done
implicitly in Theorem 4 (and also in Lemma 2 6f [19] that is d9e prove Theorem 4) we can not use it in our
case directly.

The characterization of the solution setftd (1) we will uséhis following.



Proposition 4 Let F be a field of finite characteristip and leta, b, « be elements df, such that (i)a # 0 and
(i) b# 0 whena = 1. All the polynomiald’(z) € F|z] satisfyingl'(az + b) = aI'(z) have the following form

e If a =1 then necessarilyy = 1, £ = p andI'(z) is any polynomial inF|z] of degree a multiple of which is
of the formI'(z) = P(zP — bP~12).

o If a # 1 then there exists a unique integéin the range|0, . .., ¢ — 1] such thata = ¢ and if we denote by
2o the unique fixed point of the affine map- az + b, we have thal'(z) is any polynomial inF[z] of degree
equal tod modulo? which is of the form(z — z9)P ((z — 20)").

The proof of this proposition can be found in Appenflik A. BXitey polynomialsP in this proposition which
are such that the resulting(z) has no zeros in the suppdtty, ..., x,—1) we obtain Goppa codes with a cyclic
permutation automorphism group. To obtain automorphisougg which are isomorphic '[(Z/pZ)A, for some
A > 1, we need a slightly more general statement which is theviatio:

Proposition 5 Letp d:efchar(IE‘qm). Letay,...,ax_1 € Fy~ be a set ofs elements which ar&,-independent over
F,. LetG be the group of ordep* generated by the;’s. Consider a support %t (zo,...,xn—1) Which is globally

invariant by all the affine transformations — z + a; and assume that the multipliey def (Y0, Y1s- -+ Yn—1) IS

constant on the cosets 6f meaning thaty; = y; iff x; — 2; € G. Then/,.(x,y) is an alternant code with a

permutation automorphism group isomorphic(l%/pz;)A for any degreer. Let P(z) gt Myeq(z — g), then any

polynomiall’(z) of the formI'(z) = Q(P(z)) whereQ is a polynomial inF,~[z] gives a Goppa cod¥ (x,I'(z))
of degreep® deg Q with an automorphism group isomorphic (@ /pZ)*.

Proof: All the shifts z — z + «; give rise to a permutation automorphism of the alternanedwod Proposition
and they generate a group of orgérfrom the independence assumption on dhs. The statement about Goppa
codes follows by observing that the polynomidlz) = Q (Il;ec(z — g)) is invariant by all the shifts — z + «;
and by using Corollarj/1. [ |

Remark 2 1) A support(xo,...,z,—1) satisfying the conditions of Propositidh 5 is easily ob&lrby taking
unions of cosets off and getting aQD or a QM Goppa code is obtained by arranging the support as

follows. We definec = (z;)o<i<n Dy choosing elementsy, ..., x(,,—1),» in different cosets oF /G
(wheren = ngp*). The remainingz;’s are chosen as follows:
A1
i = T|i/p>|p> T Zz’jaj. (2)
§=0

It is readily checked that all th€D or QM constructions of Goppa codes o6f [5], [13],/[1] are just spaici
cases of this construction. It should be observed that thestcoction presented here is more general. In
particular, I'(z) does not need to split ovéi,~ as in [5], [13], [L]. It may even be irreducible as shown by
the example» = ¢ = 2, G = Fy, m odd andvy(z) =1+ z.

2) By using our proof technique of Propositibh 4 it can actudlly shown that all polynomialB(z) invariant
by the shifts: — z + «; are actually polynomials of the for® (II,(z — g)).

From now on, we will say that the permutation automorphiswugrof an alternant code or a Goppa code that is
obtained by such affine maps (be it a single affine map or aatmteof them) is thepermutation group induceby
such affine maps. As observed n|[18], an alternant code orgp&oode can be invariant by a permutation which
is not induced by an affine map or more generally by an elem&theo projective semilinear group. However,
there is no general way of constructing this kind of permatatind it should also be noted that in the case of
GRS or Cauchy codes, the whole permutation group is actuadlyced by the projective linear group, i.e. the set

of transformations of the kind — ij:g (this is actually a consequence of Theorem 4Lof [20]).

IV. AFFINE-INVARIANT POLYNOMIALS

The key ingredient which allows to reduce to smaller altetredes or Goppa codes when these are either quasi-
monoidic or quasi-cyclic is a fundamental result on the foaken by polynomials which are invariant by an affine



map. These polynomials will arise as sums of the form:

/-1
Q(z) & 2_; o' P(o'(2)) @3)

where P is a polynomial,c an affine map of ordef and « an ¢-th root of unity. Such polynomial sums clearly
satisfy polynomial Equatiori{1), since:

et 1 &= 4
Qo(2) = ZO/P(O'ZH(Z)) = EZO/HP(UZH(Z))
i=0 1=0

/-1
= Y W) = Q)
=0

Propositior # characterizes all solutions of the polyndfaguation [1). Conversely, and this will be crucial in our
context, it turns out that all these solutions are of the f@@n To formalize this point, we introduce the following
notation

Notation 1 Let Igta[z] C F«[z] be the set of polynomials of degree ¢ which satisfy(d), i.e. which satisfy
P(o(z)) = aP(z). Whena = 1 we will simply write/Z,[z]. Finally, whent < 0 we adopt the convention that
Iqlz] = IZ7[2) = {0}

We will first consider the case when=1 ando(z) = x + b.

Lemma 2 Let F be a field of characteristip. Let b be a non zero element & and denote by the shift
o :x — x + b. Denote byS the mapping defined by:

S:F[z] — F[z]
p—1
P(z) — Y P(o'(2))
=0
We have for every nonnegative integer

SEl) = 17y

— {P(zp —bP712) | deg P < {%J } (4)

The proof of this lemma can be found in Appendix B. A similasuk holds for affine maps of the fore(z) = ax+b
wherea # 1.

Lemma 3 LetF be a finite field. Let: be an element of ordef £ 1 in F, b be an arbitrary element of, o be
the affine mape — ax + b, d be an integer in the rang@,...,¢ — 1] and let« %44, We defines by

S:Fl[z] — F[z]
-1 '
P(z) = > a'P(o'(2))
=0
If we denote by the unique fixed point af, we have:
S(Fal]) = IZ[A (5)

- {(z ) P((= — 2)") | deg P < LWJ}, ©)

The proof of this lemma can be found in Subseciidn C of the agige



V. REDUCING TO A SMALLER ALTERNANT OR GorPPA CODE
A. Folded codes

Alternant codes and Goppa codes in particular with a cemaimtrivial automorphism group (as considered in
Propositiori B) meet a very peculiar property. Namely it isgible to derive a new alternant (or a Goppa code) with
smaller parameters by simply summing up the coordinatesiefime this new code more precisely, we introduce
the following operator.

Definition 5 (Folded code)Let ¥ be a code ands be a subgroup of permutations of the set of code positions

of €. For each orbitG(:) &ef {o(i) : o € G} we choose one representative (for instance the smallegt bee
i0,41,...,1s—1 be the set of these representatives. Tdlded codeof ¢ with respect toG, denoted bys®, is a

code of lengths which is given by the set of word$ def ( Y oocG cc,(ij))0<j<s_1, wherec ranges overs’. WhenG

is generated by a single elementthat isG =< o >, we will simply write% instead of¢’<°> and ¢’ instead
of e~7~.

This folded code is related to constructions which were ictmed in the framework of decoding codes with non-
trivial automorphism group [24]] [25]. The approach them@swo consider for a cod¢€ with non-trivial permutation
automorphismo of order/ (which was supposed to be of ordes 2 in [24], [25], but their approach generalizes
easily to other orders) the-subcodes™® obtained as follows:

€7 dZEf{c—l—c"—l—---—l—c"H |c€%}.
If we denote byc’ e e+ ¢+ -+ ¢ then it turns out thaE” takes on a constant value on the orbit
i,0(i),02(i),... of any code position that is precisely the ternzf;é co+(7y Which appears in the definition of the
folded code. Stated differently, the words %f are nothing but the words &2 where each code coordinatg
of the latter code is repeated as many times as the size ofrlliteod : undero. These two codes have therefore

the same dimension, but their lengths are different : thé dinge has the same length @whereas the latter has
length s (the number of orbits under).

The point of considering such a code for decodifidies in the fact that” is a subcode 0% which is typically
of much smaller dimension tha#. Under mild assumptions, it can be shown that the dimenseais ggduced by
the order ofs. More precisely:

Proposition 6 Let% be a code of length that has a permutation automorphism groGyof size/ and a generator
matrix G such that ifg; is a row of G theng? is also a row ofG for any o € G. Denote by{g,,...,g;_1} the
set of rows ofG'. Consider the group action @& on the set{g,,...,g;_,} of rows of G wheres acts ong, as

g, — g9 for o € G. Assume that the size of each orbit is equal.tdhen, the dimensio#® is equal todimT@.
This is also the dimension &€ and the length of this code is equal fo

Proof: This follows at once from the fact that® is generated by the set gt O'ZEfZUE(G gJ where theg,’s
are representatives of each orbit@facting on{gy,...,g,_;}. These vectors are clearly independent and there
aredlmTf%) such representatives. This implies that the dimensionofis equal tofhmTf(‘”. This is also clearly the

dimension of¢ and the length of the latter code is equalto |

Remark 3 A generator matrix of this form is precisely what is achiewsdall the constructions of monoidic
alternant/Goppa/Srivastava codes proposed.in [4], [5]],[IL3], [6].

This can be used to decode a waydoy decoding instea@? in %°. The point is that this decoding can be less
complex to perform than decodingdirectly and that the result of the decoding can be usefubteesthe original
decoding problem, seé [25].



B. Folding alternant codes with respect to a cyclic group

If we consider the monoidic alternant or Goppa codes coagduin [4], [5], [1], [13] they have typically length
of the formn = ny¢, degree of the form = ry¢ and dimension of the formt = n — rm = ¢(ng — rom) where

m is the extension degree of the alternant/Goppa codefdadhe size of the automorphism group of the code.
The automorphism group of these codes satisfies the assumamif Proposition]6 and therefore the folded code
has lengthng and dimensiomy — rgm. This could suggest that these codes are alternant or Gaes ©f length
ng and degreey. In all our experiments we have noticed that this was indeedcase. We have proved in [21] a
slightly weaker result, namely that in the case of a Goppa aatained from the constructions of [5]/ [1], [13],
the folded code is included in a Goppa code of lengghand degree,. We will prove a significantly stronger
result here, by considering instead the dual of these cdtesll turn out that the folded dual of those alternant
or Goppa codes will be duals of alternant or Goppa codes dadten if the degree is not of the forrgl. More
precisely, we have:

Theorem 1 Consider an alternant codel;(x,y) overF, of lengthn with supportz = (zg,z1,...,2p-1) € Fym
and multipliery € Fy.. with a non trivial permutation automorphism group inducedthe affine map — ax +b
wherea, b € F,» are such that # 0 and b # 0 whena = 1. Denote bys the permutation of5,, induced by this
affine map. Let be the order ofr. By definition of an affine induced automorphism, there exist F,~ an ¢-th
root of unity such that,;) = ay; for all i € {0,1,...,n — 1}. We denote byl the integer in{0,1,...,¢ — 1}
verifyinga = a?. Let us denote by, the unique fixed point iff ;. U {oc} of this affine map. Moreover, we assume

thatug & {xo,z1,...,2,—1}. In such a case, the action efon {0,1,...,n—1} has? orbits, each of them being
of size/. Choose a representativig, i1, . . . ,i,,,_; in each of these orbits. There exigiSc IFZLE and a integerr

_ 1
such that(A, (z, y)1)” = (Ar(a:’, y’)) with:

« Whena =1 thenr = || + 1 and for all j € {0,...,n/¢ — 1}:

z = wé — bé_l

/
J i Li; and Y; = Yi;

+ and whena # 1 thenr = | =541 | + 1 and for all j € {0,...,n/¢ — 1}:

I _ l—d

o) = (v, —up)®  and Y,

J yi, (i, — uo)

Proof:

The casea = 1: remark first that the ordef of the permutatioro, which is the shiftx — z + b in this case,
is necessarily the characterisficof F,~. Since the order of the multiplicative group Bf», which is¢™ — 1, is

coprime with the characteristic @, it follows that « is necessarily equal tb whena = 1. This implies thaty

is constant over each orbjt, o(i),...,c "1 (i)}. From Lemmdll, the du&’ of A;(z,y) is:

¢ = {(ﬁ (WiP() giep | P € Fynl2),deg P <t — 1} .

The folded code of6 can now be described as:

/-1 n/l—1
€ = T‘r(yijZP(as(ajij))> | PeFynlz],deg P <t—1
s=0 j=0
wherez;,, z;,, ..., v,/ are representatives of each of thg/ orbits {u, o (u),... ,o*71(u)} (they have all the
same siz€).
By using Lemmal2, we obtain:
N n/@—l t — P
o — . P _ 1. m < | —
€ {Tr (y,jR (% b xzj))>j:0 | R € Fgm[z],deg R < { p J } (7

By using Lemmadll again, we see théat = A,.(z',y')* with r = V_TPJ +1 and for anyj € {0,1,...,n/¢ —1},
. =2t — bp_lxij andy} = yi,.

J ij
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The casea # 1. the difference with the previous situation lies in the fdtattnow they;’s are not neces-
sarily constant over an orbit. As previously, we consideresentativesr;,, ;,, . . ., 7,1 Of the n/¢ orbits
{u,o(u),...,0"" (u)} (they have here again all the same sizgecause the suppart does not contain the fixed
point of ¢). We obtain that the folded code @f can now be described as follows.

n/l—1
{ (Zyzj a%))) PEIqu[z],dengtl},

j=0
By introducing the fixed point,y of o, we obtain:

/-1 n/l—1
€ = {Tr <yi]. ZasP (uo + a®(a;, — uo))> | P € Fynlz],deg P <t — 1}

s=0 j=0

-1 n/l—1
= {Tr (y,-j ZQSQ (a®(z;, — uo))> | Q € Fyn[z],degQ <t — 1} .
s=0

J=0

We necessarily have’ = 1. Sincea is a primitive /-root of unity, there exists an integérin {0,...,¢ — 1} such
that o = a?. This yields:

n/l—1
{ <yZJZadSQ (zi, — ))) QEFqnz[z],degQgtl}.

=0
By using Lemma3, we deduce that:

n/l—1 t—1—
€ = {Tr (yZ (@i, — u) 4R ((az% - uo)z>> | R € Fym[z],deg R < {#J } .

Finally, by Lemma[ll again we see thi#” = A.(z/,y)= wherer = [=1554 + 1, o) = (23, — up)* and
Y = yi, (i, — ug)~? for any j € {0,1,...,n/l — 1}. u

Remark 4 In essence, we have proved here that folding a GRS code withnatrivial automorphism group
obtained from affine transformations yields again a GRS ctu#eed, the dual of an alternant code is the trace
of a GRS code. When we choose the extension degree to be edqualet really prove here that folding such a
symmetric GRS code yields again a GRS code. Taking the traserpes this property : the folding of a trace of a
symmetric GRS code is again the trace of a GRS code. The tpaiid which explains why such a property holds
is the fact that the ring of polynomial ii[x] invariant by an affine transformatios is a ring of the formF[Q(x)]

for some polynomiad) which is invariant byo. This is what allows to write a sum of the fo@f;é P(oi(x)) as

a polynomial of the formR(Q(x)).

One might wonder whether folding a subfield subcode of a GRS ¢e@. an alternant code) also yields a subfield
subcode of a GRS code. While the proof technique used hereusly allows to prove that a folded subfield
subcode of a symmetric GRS code lies in a subfield subcodeatancsubcode, proving equality of both codes
seems to be more delicate here. This point can be explainddllasis. Consider an alternant code,.(x, y)
defined oveif, and of extension degree wherex is globally invariant by some andy is constant on the orbits
on o (we make this assumption to simplify the discussion). Teepeguality that the folded alternant code is still
an alternant code we should be able to express a polynofia) in F,~[z] which is invariant byo and which is
such thaty;Q(x;) belongs toF, for anyi as a sumQ(z) = Zf éP(aﬂ( )) where all they; P(o7(x;)) belong to
IF, for anys and j and WhereP is some polynomial which depends @n
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C. Folding alternant codes with respect to non-cyclic greup

We have treated the case of folding an alternant code withemtd4o a group generated by a single element. The
group of automorphism might not be cyclic. This happens iri@dar in the case of the Goppa codeslin [5], [1],
[13]: in such a case the automorphism group is isomorphitZtZ)*. Treating the general case of a subgroup
of the affine subgroup is beyond the scope of this article, wikjust consider the case of a subgroup which is
isomorphic to(Z/pZ)*. This follows at once from Theorel 1 by noticing that we mald fiteratively the code
with respect to\ generators of the subgroup and end up with an alternant &deuse here the straightforward
fact

Lemma 4 Consider a codes’ and a group of permutation& acting on the positions o and assume that this
permutation group has a subgrodp, and an element# of G which does not belong t&( such that:

1) the cosetsr'Gy form a partition ofG for i € {0,...,¢ — 1} where/ is the order ofo;

2) o commutes with any element Gf.

Theno induces a permutation on the set of positionss8® that we callé which is defined as follows. We view
a code positiony of ¥'Go as an orbit{7(u), € Gy} for some code position of ¥ and (i) is given by the orbit
{r(c(u)), T € Go}. If the order ofé is equal to the orde¢ of o and for an appropriate order on the choices of
the representatives for the orbits unders >, Gy and G, we have

(%Go)& = ¢C.

Proof: First we have to check that the definition éfu) makes sense, i.e. that it does not depend on the
choice ofu in the orbit {r(u), 7 € Go}. This follows from the fact that commutes with any element d¥,.
Indeed assume that we have:

{1(u), 7 € Go} = {7(v), T € Gp}

then we clearly have = 7y(v) for a certainry in Gy. From that we deduce:
{r(c(w),7 € Go} = {7(o(70(v))), 7 € Go}
= {7(n0(o(v))), T € Go}
= {7(c(v)), € Go}

This shows tha# is well-defined. We lety, i1, . . . ,is_1 be a set of representatives of each orbit of the code position
of ¥ underGy (we assume that there aseorbits) and we assume that the set of code positipas. .., s — 1 of
¢Co corresponds tag,i1,...,is_1 in this order. Consider now an elemanin ¥ and letc’ be the folding ofc
with respect toGy, that is:
C;' = Z Cr (i) (8)
T€Go
If we fold ¢’ with respect to5 we obtain an element” defined by:
-1
=D ©)
1=0
whereif, i, ...,i,_, are the representatives of the orbits of the code positiéri€% unders. Notice that we

have used here the fact that the ordersois equal to the order of. By observing that the code positiofgn of
%o corresponds to some orbjtr(u), 7 € Go} and putting [(8) and (9) together with the characterizatibtthe

action ofgs, we obtain:
-1
"o _
G = Z Z Cr(ot(u) = ZCT(u)'
=0 7€Gy T€G

This implies thatc] is equal to some coordinate of.
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It remains to show that there is a one-to-one and onto magfping the set of coordinates @f’ and those of:C.
In order to do so we are going to prove that there is a one-&raapping between the orbits undeand the orbits
underG. This is a straightforward consequence of the followingestation. Consider an orb# = {7(s),7 € G}
underG. It decomposes as a union of orbts, underGy: & = Up<p<e—10, Where 0}, def {r(c"(s))}. These
orbits &;, form a single orbit undeé and we are done. ]

A straightforward consequence of this is the following

Corollary 2 Consider a cod&” which is the dual of an alternant code with an affine-inducedhutation group
G isomorphic to(Z/pZ)" wherep is the characteristic of the field over which the alternantleds defined. Then

¢C is the dual of an alternant code.

Proof: In such a case, there exisgis, .. ., g, of orderp that generaté:. We proceed by induction and assume
that this property holds foh = h. Whenh = 1, this is just Theoremll. Consider now a groGpisomorphic to
(Z/pZ)h+1. We observe that el J1,---,9n > ando = g, satisfy the assumptions of Lemrh 4, so we can
apply it to this case and obtain that:

(%)& _geE.

Since by induction hypothesig’o is the dual of an alternant code and singds clearly an affine induced
permutation automorphism &©o we can apply Theorefm 1 to it and obtain that the result of thdirfg of €0
by 6 gives an alternant code again. [ |

All the duals of the codes used in the following variants & McEliece cryptosystem, namely the dyadic Goppa
codes of[[5], [13], the monoidic Goppa codes|af [1] or the dgativastava codes of [6] are instances of alternant
codes which have an affine induced permutation group isonimitp (Z/pZ))‘ and this corollary can be applied
to reduce attacks on the key to a much smaller key recoveiyigmo(namely on the dual of the code obtained by
folding). One might also wonder when we fold certain subfasiof duals of alternant codes with respect to an
affine-induced permutation automorphism group, such atsdfaGoppa codes, we stay in the subfamily, de.

we still obtain the dual of a Goppa cod&@his turns out to be the case as shown by the next subsection.

D. Folding Goppa codes

Folding the dual of a Goppa code with an affine-induced autphism group yields the dual of an alternant code
by using CorollanyP. It turns out that a stronger statemesid$r we actually obtain the dual of a Goppa code,
both in the cyclic case as shown by the following theorem ahdmthe group is isomorphic ((Z/pZ)A as shown
later on.

Theorem 2 Consider a Goppa cod® = ¢ (x,I'(z)) of lengthn associated to the suppost = (z;)ogi<n € Fyn

which has a cyclic affine induced automorphism group geeerat/ o () - + b wherea, b € F,». We assume
thata # 0, b # 0 if a = 1, and that the fixed pointy of o does not belong txy, ..., z,_1}. Let¢ be the order
of 0. In such a case:

1) ¢ dividesn and lets d:efn/é. There are exactly orbits for the action oy on the code positions. We denote

by g, i1, ... ,i,/0—1 @ Set of representatives for each orbit;
2) (¢1)7 is the dual of the Goppa codé(z’,v(z)) with:
, xf_ — bé_lacij whena =1,
Y= { (mjz-j — ug)¢ otherwise,
r(z) = { (2t — b=12) whena = 1, .
(z — uo)®y ((z — up)’) otherwise

whered, in the last case, is the unique integer {0, ..., ¢ — 1} such thata = o and « is the element oF
which satisfies the polynomial identify(az + b) = al'(z).
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Proof: We will distinguish betweern = 1 anda # 1. In both cases, notice that we can apply Theorém 1 to
¢ which is an alternant code/,(x,y) wheret is the degree of® andy; = ( g This is a consequence of the
definition of a Goppa code with an affine induced automorphigm) = az + b : this is a Goppa code obtained
from the construction of Propositidd 3 and this is precisehat is needed (together with the fact that the support
does not contain the fixed point of for applying Theoreml1 to it. In all cases, folding the du&l® gives the
dual of an alternant code of the form, (x',y’) for some integet’ and somex’,y’ in F... Moreover in both
cases, there exists ahth root of 1 that we denote byy which is such that the Goppa polynomial satisfies the
identity I'(az 4+ b) = oI'(2).

Case a =1 : ( is equal to the characteristjc of the field F,~, o is necessarily equal tb, I'(z) is of degree a
multiple of p and is of the forml’(z) = (2 — b*~12). Notice thaty satisfies:

YoO = Tlam;+b)  T(z) O
and using Theorerinl 1 gives thgt = y;, and therefore:

,_‘_1_ 1 _1
YT Y T D) T @l — e A(@)

This implies thate, (', y’) is nothing but the Goppa codé(x’, v(z)).

Case a # 1 : there exists a unique integérin the rang€l, ..., ¢ — 1] such thatx = a? andT(z) is of the form
['(z) = (2 — uo)%y ((z — up)*). Notice that in such a case:

1
Yo (i)

= T(azi+b) = (azi +b—uo)" y ((awi - UO)Z)
= (ax; +b—aug — b)d 0% ((axi +b—aug — b)z)
= (alwi — )"y (o (2 — o))

— ad(mi — uo)d 0% ((xz — UO)Z>

d al
= aT'(z;) =a m
We use Theorernl 1 and obtain:
l/; = i, (2, — uo)d = (xlj — UO)d = (xlj — UO)d = .
T [(z;) (24, — uo)¥y ((zi;, —uo)’)  (z))
This implies again that# (’,y’) is nothing but the Goppa codé(x’, v(z)). [

When the group is isomorphic & /pZ)* we have the following statement

Theorem 3 Consider a Goppa cod® = ¢(x,I") with an affine induced automorphism groGpisomorphic to

(Z/pZ)* wherep is the characteristic of the field over which the Goppa coddefined, then the folding%l)(c’
is the dual of a Goppa cod€(x’,~(z)) where the degredeg(y) of ~ is equal todeg( )

Proof: We proceed similarly to the proof of Corollary 2. First we inetthat there exists, . .., g\ of orderp
that generatés. We proceed by induction and assume that this property Holds = h. Whenh = 1, this is just
Theoren 2 (since; is necessarily induced by an affine transformation of thenfor— z + § which has no fixed
point in the extension field in which the coordinates of theltiplier live). Consider now a groufls isomorphic
to (Z/pZ)h+1. We observe that ®c g1,---,9n > ando = g1 satisfy the assumptions of Lemrna 4, so we
can apply it to this case and obtain that:

@@f:%@
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Since by induction hypothesig®o is the dual of a Goppa code of degré%@ and sinces is clearly an affine

induced permutation automorphism @Fo we can apply Theorefl 2 to it and obtain that the result of thgirfg
of ¢Go by & gives the dual of a Goppa code of deg%pé@.

VI. CONCLUSION— CRYPTOGRAPHICIMPLICATIONS

The results presented on this paper have some significaseqaances on a recent research trend which consists
in devising McEliece schemes with reduced public key sizesTs achieved by relying o@D/QM Goppa codes

or QC alternant codes [4]/ [5]/[13]/[1]. Some of them were atetly the algebraic attack introduced in [9],
[11] where it was proved that th@D or the QC structure allowed to set up an algebraic system which coeld b
solved by Grobner bases techniques thanks to the reductiomknowns obtained in this case compared to an
unstructured McEliece scheme. Our result actually explaihere this reduction in the number of unknowns comes
from: there is in fact a smalldriddenGoppa (or alternant) code behind the public generator atypelneck matrix

of the scheme. Moreover it is shown [n_[21] that a key recowtstck on the reduced cryptosystem can be used to
recover the secret key of the original cryptosystem. Thiglies that a key-recovery 0§D and QM schemes is
not harder than a key-recovery on a reduced McEliece schemeeevall parameters have been scaled down by a
factor of p, which is the compression factor allowed by i€, QD or QM structure. For instance, we can reduce
the key-recovery of &D Goppa code of lengtl8192 and dimensiont096 (parameters suggested In [5]) to the
key-recovery on &D Goppa code of length4 and dimensior82. In other words, the very reason which allowed
to design compact variants of McEliece can be used to attack schemes much more efficiently.

Our result does not rule out the possibility of devising ralént or Goppa codes with a non trivial automorphism
group for which folding does not produce an alternant or afgaognde: it only applies to such codes with an affine
induced automorphism group. Symmetric codes of this kindlccbe obtained from the action of the semi-linear
projective group on the support instead of the affine groee @ectio_Ill). It is an open question to understand
if folding such symmetric codes yields again Goppa or adietrcodes, but obviously even treating the case of
the linear projective group (obtained from the transfoioret of the kindz — ij;g) needs much more general
tools than those that have been considered here and is béy@isdope of this paper. It should also be added that
this result does not mean that all compact key McEliece ogystems based on alternant or Goppa codes with an
affine induced automorphism group are weak. It just meartstiieakey security is not better than the key security
of a reduced scheme obtained from the folding process. Yiegeaecovery attacks are generally more expensive
that message recovery attacks it might be possible to chemsgre parameters for which we still obtain a good
reduction of the key size where key recovery attacks on thdefbkey are of the same complexity as message
recovery attacks on the original scheme. However this thodaresearch requires great care since there has been
some recent progress on key recovery attacks,[see [21]f¢R@hstance.
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APPENDIX
A. Proof of Proposition 4

We will first characterize the solutions to Equatioh (1) ie tase where: = 1. In some sense, this characterization
generalizes a classical result about even polynomialspolnomials P(z) which satisfy P(z) = P(—=z). It'is
namely well known that a polynomial is even if and only if thexxists a polynomiaf) such thatP(z) = Q(22).
Lemmal$, which uses the notatidfi,[-] that is defined in Sectidn 1V, will generalize this result tyygolynomial
invariant under a finite order affine map.

Lemma 5 Leto(z) = az + b be an affine map of finite order(with ¢ > 1) defined over a field. We have

o if a =1 thenF is of characteristicl and IZ,[z] = {Q(z" — b'~'2) | deg @ < t/¢}.
o ifa#1thenlZ,[z] = {Q((z — 20)") | deg @ < t/¢} with zy being the unique fixed point of

In other words, the ring of polynomials invariant by an affmap is generated by a single element and the lemma
provides this generator explicitly. This result followsiin classical results in invariant theory and we derive itrfro
scratch here to keep the paper self-contained. Also, we tlheacase where the ordérof the group generated by

o is divisible by the characteristic @. This is precisely what happens wher= 1, and that is commonly avoided

in invariant theory (see for instance [27, AppengiéxProp.1]).

Proof of Lemmal5:Let us first prove that the right hand side terms which appetiné expressions fafZ, [z

are indeed included idZ,[z]. If « = 1, consider a polynomiaP of degree< ¢ of the form P(z) = Q' — b 12)
for some polynomiat). We have:

Plz+b) = (%mv—#*@+m)

a(
= Q(zz—kbg—bg_lz—bZ)
e

We just used the fact thdtis the characteristic of and thereforgz + b)* = 2* + b’.

In the casea # 1, if we consider a polynomiaP of degree< t of the form P(z) = Q((z — 20)*) for some
polynomial @ of degreedeg P/¢ we obtain:

Plaz+b) = Q ((az +b— zo)z)
= Q ((az +b—az — b)é)
= Q (aé(z — zo)é>
= Q((z - 20)")
= P(z2).

We used the fact thatis also the order of..

Let us prove now the reverse inclusion. LBtbe a polynomial which is invariant by. Consider now a non
constant polynomiaR of smallest degree which is invariant by Such a polynomial necessarily exists since the
set of polynomials which are non constant and which are iamaby o is non empty (since’ — b~z in the case
a=1and(z — z)"’ in the casex # 1, belong to it). Perform the division aP by R. We can write

P(z) = R(2)P1(z) + Pa(2) (10)
with deg P, < deg R. Observe now that
P(az +b) = R(az 4+ b)Pi(az + b) + Pa(az +b). (12)



17

Since P(az 4+ b) = P(z) and R(az + b) = R(z) we deduce by subtracting the second equation to the first one,
that we have
R(2) (Pi(az +b) — Pi(2)) = Ps(z) — Py(az +b)

Since the degree df(z) gef Py(z) — P2(az+b) is less than the degree &, this can only happen iP; is invariant
undero and therefore als@,. SinceR is a non constant polynomial of smallest degree which isrian& under
o and sincedeg P» < deg R, this implies thatP; is constant. By carrying on this process (i.e. dividiRg by R)
we eventually obtain thaP is a polynomial inR. We finish the proof by proving thak can be chosen to be
R(z) = 2 —b*"'zin the caser = 1 and R(z) = (z — 20)" otherwise.

Let us first prove this foru = 1. We can add any constant 8, it will still be invariant undero. We may
therefore assume tha(0) = 0. We can also assume th&t is monic. Let us observe now that= R(0) =
R(b) = R(2b) = ... = R((¢ — 1)b) by the invariance of? underz — z + b. This implies thatR is a multiple of
2(z —b)---(z — b(¢ — 1)). R is therefore of degree greater than or equal.tdhe polynomialz’ — v*~'z is of
degree, is invariant undew and is a multiple of:(z —b) ... (z — b(¢ — 1)). ThereforeR(z) = 2* — b*~!2.

Consider now the case# 1. Without loss of generality (by adding a suitable constantnathe case: = 0) we
may assume thaR(c) = 0, wherec is some element of such that the orbit of undero is of size/. By the

invariance of R undero this implies thatd = R(c) = R(a(c)) = --- = R(c"!(c)). This implies thatR(z) is
divisible by (z — ¢)(z — o(c)) - - - (= — a*7(c)). ThereforeR is of degree/ at least. Sincéz — z,)¢ is of degree/
and is invariant byr we can choose®(z) = (z — 20)". [ |

This proves Proposition] 4 whem= 1. Let us prove now this proposition in general.

Proof of Propositiori #: Denote byo the affine map: — az + b. First of all, let us notice that if there exists
some polynomialP(z) satisfying the equatio®(o(z) = aP(z) for somea, then necessarily such ansatisfies
af = 1. This follows at once from the fact that we haiz) = P (o‘(z)) = a?P(z). This also implies that the
order of« divides/. There are now two cases to consider.

Casea = 1: then the order of o is necessarily equal to the characteristicFoand there is no element, apart
from 1, whose order divides. In this case, Lemmial 5 implies Propositidn 4.

Casea # 1: in such a case the order afis equal tof anda is a primitive £-th root of unity. Sincex is an/-th
root of unity, there exists in this case an integein the rangel0,...,¢ — 1] such thata = a?. Consider now a

polynomial which is such that
P(o(z)) = aP(z). (12)

If o =1, then we can use directly Lemrnh 5 and we are done. Othervbseree that from the fact thatzg) = zo
we deduce that
P(zp) = P (0(20)) = aP(20).
This implies thatP(zy) = 0. Define now a polynomiaP; by P(z) = (z — zp) P1(z). Observe now that on the one
hand
Plaz+b) = (az +b—29)Pi(az +b) = a(z — 29) Pi(az + b)

and that on the other hand
Plaz +b) = aP(z) = a¥(z — 2) P, (2).

Putting both equations together, we obtain
Pi(az +b) = a® 1P (2)

If d # 1 we can carry on this process df, deduce from the previous equation tHtz;) = 0 and deduce by
induction ond that P(z) has a zero of order at leastt z; and that the polynomiaP,(z) defined byP,(z) = (Z}i(;o))d
satisfies the equation

Pd(az + b) = Pd(z).
We apply Lemmal5 ta?; and derive from it that” should be of the form

P(z) = (z — 20)%Q ((z — zo)e> ,
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where( is any polynomial of degregegfj. Conversely, any polynomidP of this form is readily seen to verify

12).

[
B. Proof of Lemmal2
For this result, we will need the following lemma.
Lemma 6 1¥ +2F + ... 4+ (p — 1)* = 0 (mod p) for every integerk which is not a multiple of — 1 whereas

I N () 1) = —1 (mod p) otherwise.

Proof: Recall that the multiplicative group, is generated by a single elememtwhich is of orderp — 1.
The mapping

(JSk:F; — F;

r — 2F

maps therefor&; to a subgroup of ;" different from the trivial subgroup consisting only bff and only if k is not
a multiple ofp — 1. In other words, ift is a multiple ofp — 1, we haves® = 1 (mod p) for anys € {1,...,p—1}.
This implies thatl* +-2F +... 4 (p —1)* =p—1 = —1 (mod p). Assume now thak is not a multiple ofp — 1.
Thus¢(FF,’) is a subgroup oF* of size a divisor > 1 of p—1. SinceF, is generated by, ¢, (F,’) is generated

by 8 £ o* and we have

b4 (p-1DF = p;1<1+5+ BH) (mod p)
_ =1 -1
= o (mod p)
= 0 (mod p)

Let us prove now Lemmf 2.
Proof: Let us first compute5(z!), wheret is some nonnegative integer.

p—1 p—1

S = > (z+sb) =2+ Xt: @ 27 (sb) = pi i @ Z71(sb)!

s=0 s=1 i=0

() (£4) - 5 0() (£0) "

i=p—1 s

where the last equation follows by using Lemida 6 which allavgsto write > 2_ is’ 0 wheni is in the
range[l..p — 2] and when the sum is performed over a field of characterjsti€his implies immediately that
S(F<t) C Fei—pr1]z]. SinceS(Q(z)) is obviously invariant by for any polynomialQ(z) € F|z|, we know from
Lemmal® that it is of the fornd(Q(z)) = R(z? — bP~12) for some polynomialR in F[z]. Its degree is therefore
a multiple ofp. This implies that we actually obtain the refined inclusion

S(F«t) € [ V P“me' (14)

Equality is proven by dimension considerations. It follofirem Lemméed that’,[z] is a vector space which is of
dimension|t¢/p| + 1. The calculation[(13) performed above also shows f{at*+17~1) is a polynomial of degree
kp (since the coefficient of*? which is equal tab?~* ( (R Dp=1) S~P— 1 gp—1 by (I3) can be shown to be different
from 0 by using the fact proven in Lemni& 6 which says th”&tl 27’ Lyooor (p—1)P~1 = —1 (mod p)). This
can be used to obtain that

. t—p+1
dim$(Fe) > | LI 1 —dim T,

p
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This together with[(14) implies that

which concludes the proof. [ |

C. Proof of Lemma&]3

Proof: Let us calculate

~
—_

Sz = adl (ai(z — uo))t,

-1
— (2 —up) Za(d-l-t)i.
i=0

This sum is equal t® as long asi+t # 0 (mod ¢) and is equal td/ mod p) (z —up)! whend+t =0 (mod /).
The polynomiaIS(P(z)) is therefore a polynomial of degrée- d + {MJ ¢ of the form

Il
=)

deg P—£+dJ
¢

S(P(2)) = (z—u)™" Y ai(z—uo)” (15)

1=0

deg P—¢+d
whendeg P > {—d and is equal to zero otherwise. We conclude the proof by gatiat the terrrEiL:O ) a;(z—
up)™ is a polynomial which is invariant by by Lemmalb. [ |
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