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Abstract

The main practical limitation of the McEliece public-key encryption scheme is probably the size of its key.
A famous trend to overcome this issue is to focus on subclasses of alternant/Goppa codes with a non trivial
automorphism group. Such codes display thensymmetriesallowing compact parity-check or generator matrices. For
instance, a key-reduction is obtained by takingquasi-cyclic(QC) or quasi-dyadic(QD) alternant/Goppa codes. We
show that the use of suchsymmetricalternant/Goppa codes in cryptography introduces a fundamental weakness. It
is indeed possible to reduce the key-recovery on the original symmetric public-code to the key-recovery on a (much)
smaller code that has not anymore symmetries. This result isobtained thanks to a new operation on codes called
folding that exploits the knowledge of the automorphism group. Thisoperation consists in adding the coordinates of
codewords which belong to the same orbit under the action of the automorphism group. The advantage is twofold:
the reduction factor can be as large as the size of the orbits,and it preserves a fundamental property: folding the
dual of an alternant (resp. Goppa) code provides the dual of an alternant (resp. Goppa) code. A key point is to show
that all the existing constructions of alternant/Goppa codes with symmetries follow a common principal of taking
codes whose support is globally invariant under the action of affine transformations (by building upon prior works
of T. Berger and A. Dür). This enables not only to present a unified view but also to generalize the construction
of QC, QD and evenquasi-monoidic(QM) Goppa codes. All in all, our results can be harnessed to boost up any
key-recovery attack on McEliece systems based on symmetricalternant or Goppa codes, and in particular algebraic
attacks.

I. INTRODUCTION

Some significant research efforts have been put recently in code-based cryptography to reduce by a large factor
the public key sizes. This has resulted in keys which are now only a few times larger than RSA keys (see [1], [2]
for instance). This is obtained by focusing on codes havingsymmetries, that is to say, codes having a non-trivial
automorphism group. Such codes have the advantage of admitting a compact parity-check or generator matrix [3],
[4], [5], [1], [6]. Quasi-cyclic (QC) codes represent a good example of the use of symmetries in cryptography to
build public-key encryption schemes with short keys [3], [4]. It was then followed by a series of papers proposing
alternant and Goppa codes with different automorphism groups like quasi-dyadic (QD) Goppa or Srivastava codes
[5], [6] and quasi-monodic (QM) codes [1]. The rationale behind this is the fact that the additional structure does not

A preliminary version of this paper will be presented at ISIT’14 under the title ”Structural Weakness of Compact Variants of the McEliece
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deteriorate the security of the cryptographic scheme. Thishope was eroded by the apparition of specific attacks [7],
[8] and algebraic attacks [9], [10], [11] againstQC/QD alternant/Goppa codes. Despite these preliminary warning
signals, the design of compact McEliece schemes remains a rather popular topic of research e.g. [12], [1], [6], [13],
[14]. Besides these cryptographic motivations, the searchfor Goppa codes, and more generally alternant codes, with
non-trivial automorphisms is in itself an important issue in coding theory. Several papers focused on the problem
of constructing quasi-cyclic Goppa codes [15], [16], or identifying alternant and Goppa codes invariant under a
given permutation [17], [18], [19].

Main Results

All the constructions ofsymmetricalternant/Goppa codes presented in previous works might look at first glance
unrelated, likead hoc constructions designed for a very specific goal. In [5] symmetric QD Goppa codes are
constructed by using the narrower class of separable Goppa codes which have all their roots of multiplicity one in
the field over which the coefficients of the Goppa polynomial are taken and by choosing these roots in an appropriate
manner; the same approach is followed to obtain more generalQM Goppa codes in [1], whereas in [4] the authors
rely on the larger class of alternant codes to obtain a large enough family ofQC codes in a McEliece like scheme.
Building upon the work of [20], [19], [18], we show in this paper that all theQC, QD andQM alternant/Goppa
codes which are constructed in [4], [5], [1] rely actually ona common principle (Proposition 3). They are all
equipped with non-trivial automorphism groups that involve some affine transformations leaving globally invariant
their support. This property imposes on the non-zero scalars defining the alternant codes the constraint of being
built from a root of unity. In the case of Goppa codes, this constraint is translated into afunctional equationof the
form αΓ(az+ b) = Γ(z) that the Goppa polynomialΓ(z) has to satisfy, whereα is a root of unity anda, b belong
to the underlying finite field on which the support is defined. We fully characterize polynomials satisfying such
equation in Proposition 4. This enables not only to present aunified view but also to generalize the construction
of QC, QD andQM Goppa codes (Proposition 5). In particular, there is no needto use separable polynomials
like in [5] for getting QD Goppa codes. Notice that this will also show that it is in principle not compulsory to
take the larger family of alternant codes instead of Goppa codes as in [4] to obtain a large enough family ofQC
codes in a McEliece scheme: in fact there is nothing special with respect toQD Goppa codes instead ofQC Goppa
codes because there are roughly as manyQD Goppa codes as there areQC Goppa codes (for a same size of
automorphism group) with our way of constructing them.

The major contribution of our paper is to prove that alternant and Goppa codes with symmetries can be seen as
an inflated version of a smaller alternant codewithout symmetries. We call this latter afolded code because we
show that it can be obtained easily by adding the coordinateswhich belong to the same orbit under the action
of a permutation of the automorphism group. More importantly, we can also express precisely the relationship
between the supports and the non-zero scalars defining the alternant/Goppa with symmetries and their associated
folded codes. These links are so explicit for the non-zero scalars that knowing those of the folded code is sufficient
for knowing those of the original symmetric alternant/Goppa codes. These results have an important impact in
cryptography. First the length and the dimension of the folded code is generally divided by the cardinality of the
automorphism group. It means in particular that the use of compact alternant/Goppa codes introduces a fundamental
weakness: decreasing the size of the public-key as in [4], [5], [1] necessarily implies a deterioration of the security.
Furthermore, since the non-zero scalars of the folded code bear crucial information, it then allows in the context of
algebraic attacks as proposed in ([9], [10], [21]), to reduce a key-recovery attack on the original public-code to the
one on a smaller code, that is to say with less variables in thepolynomial system. For instance, we can reduce the
key-recovery of a quasi-dyadic Goppa code of length8192 and dimension4096 to the key-recovery on a Goppa
code of length64 and dimension32.

Interestingly enough, the folded code, if used in a McEliece-like encryption scheme, would have the same key size
as the original scheme but without symmetries. In other words, the very reason which allowed to reduce the key
size in [4], [5], [1], [13] can be used to derive areducedMcEliece scheme whose key-recovery hardness and key
size is equivalent to the original system.
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Comparison with “Structural Cryptanalysis of McEliece Schemes with Compact Keys” [21]

This paper is a companion paper of [21] which has been submitted separately. In [21], we mainly focused on the
cryptanalysis ofQM Goppa codes. That is, we [21] developed new algebraic tools for solving the algebraic systems
arising in the cryptanalysisQM Goppa codes, reported various experimental results and prove in addition partial
results on foldedQM Goppa codes. In this submission, we present a much deeper andmore systematic treatment of
the the folding process. In [21], the folding was performed directly overQM Goppa codes and it was proved there
that it results in a subcode of a Goppa code of reduced length.Using a slightly different approach (by considering
the dual of the codes), we obtain here a much stronger result which holds in a more general setting. Namely, we
prove that if we perform folding on the dual ofQC, QD or QM affine induced Goppa/alternant codes (this applies
for instance to all the codes constructed in [4], [5], [13], [1]) we obtain a reduced dual Goppa or alternant code
where the reduction factor can be as large as the size of the cyclic or monodic blocks of a symmetric parity-check
matrix attached to these codes. Folding preserves here the structure of the dual code: if we start with the dual of
an alternant code we end up with the dual of an alternant code and if we start with the dual of a Goppa code we
end up with the dual of a Goppa code.

II. A LTERNANT AND GOPPA CODES

In this section we introduce notation which is used in the whole paper and recall a few well known facts about
alternant and Goppa codes. Throughout the paper, the finite field of q elements withq being a power of a prime
numberp is denoted byFq. Vectors are denoted by bold letters likex and the notationx = (xi)06i<n orx = (xi)

n−1
i=0

will be used in some cases. The ring of polynomials with coefficients in a finite fieldF is denoted byF[z],
while the subspace ofF[z] of polynomials of degree less thant (resp. less than or equal tot) is denoted by
F[z]<t (resp.F[z]6t). Whenx = (xi)06i<n is a vector inFn andQ(z) is a polynomial inF[z], Q(x) stands for
(Q(x0), . . . , Q(xn−1)). In particular for any vectoru = (u0, . . . , un−1) and for alla, b ∈ F thenau+ b stands for
the vector(au0 + b, . . . , aun−1 + b).

Definition 1 (Generalized Reed-Solomon code)Let q be a prime power andk, n be integers such that1 6 k <
n 6 q. Let x andy be twon-tuples such that the entries ofx are pairwise distinct elements ofFq and those ofy
are nonzero elements inFq. The generalized Reed-Solomon codeGRSk(x,y) of dimensionk is thek-dimensional
vector space:

GRSk(x,y)
def
=
{(

y0P (x0), . . . , yn−1P (xn−1)
)
| P ∈ Fq[z]<k

}
.

A useful property of these codes is given in [22, Chap. 12,§2].

Proposition 1 Keeping the notation of Definition 1, there exists a vectorz ∈ Fn
q such thatGRSk(x,y)

⊥ =
GRSn−k(x,z).

This leads to the definition of alternant codes.

Definition 2 (Alternant code, degree, support, multiplier) Let x,y ∈ Fn
qm be two vectors such that the entries

of x are pairwise distinct and those ofy are all nonzero, and letr andm be positive integers. The alternant code
Ar(x,y) defined overFq is thesubfield subcodeoverFq of GRSr(x,y)

⊥ ⊂ Fn
qm :

Ar(x,y)
def
= GRSr(x,y)

⊥ ∩ F
n
q .

The integerr is thedegreeof the alternant code,x is a supportandy is a multiplier of the alternant code.

The dual of a subfield subcode is known to be a trace code [23]. From this it follows that

Lemma 1 The dualAr(x,y)
⊥ of the alternant codeAr(x,y) of degreer and extensionm overFq is given by:

Ar(x,y)
⊥ = Tr

(
GRSr(x,y)

)
=
{(

Tr(c0), . . . ,Tr(cn−1)
)
| (c0, . . . , cn−1) ∈ GRSr(x,y)

}

whereTr is the trace map fromFqm to Fq defined byTr(z) = z + zq + · · ·+ zq
m−1

.
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Let us remark that an alternant code has many equivalent descriptions as shown by the following proposition whose
proof can be found in [22, Chap. 10, p. 305].

Proposition 2 For all a ∈ Fqm \ {0}, b ∈ Fqm , and c ∈ Fqm \ {0}, it holds that:

Ar(x,y) = Ar(ax+ b, cy).

We introduce now Goppa codes which form an important subfamily of alternant codes.

Definition 3 (Classical Goppa codes)Let x = (x0, . . . , xn−1) be an n-tuple of distinct elements ofFqm and
chooseΓ(z) ∈ Fqm [z] of degreer such thatΓ(xi) 6= 0 for all i ∈ {0, . . . , n − 1}. The Goppa codeG (x,Γ) of
degreer overFq associated toΓ(z) is the alternant codeAr(x,y) with

yi =
1

Γ(xi)
.

Γ(z) is called theGoppa polynomialandx is thesupportof the Goppa code.

III. C ONSTRUCTION OFSYMMETRIC ALTERNANT AND GOPPA CODES

The purpose of this section is to recall how quasi-cyclic (QC), quasi-dyadic (QD) and quasi-monoidic (QM)
alternant/Goppa codes [5], [13], [1] and more generally anysymmetricalternant/Goppa code can be constructed
from a common principle which stems from Dür’s work in [20] about the automorphism group of (generalized)
Reed-Solomon codes. This has been applied and developed in [19], [18] to construct large families of symmetric
alternant or Goppa codes. It should be emphasized that this way of constructing symmetric Goppa codes is more
general than the constructions proposed forQD or QM Goppa in a cryptographic context by [5], [13], [1]. In
particular, it is required in [5], [13], [1] to choose Goppa codes with a separable Goppa polynomial. We will prove
in the following that this constraint is unnecessary.

In order to recall these results we need a few definitions. Anautomorphismof a code of lengthn defined overFq

is an isometry of the Hamming spaceFn
q i.e. a linear transform ofFn

q which both preserves the Hamming weight
and leaves the code globally invariant. A well-known fact about such isometries is that they consist of permutations
and/or non-zero multiplications of the coordinates.

In this paper, we will be interested only in isometries that are permutations. This action is denoted, given a permu-
tationσ of the symmetric group on{0, . . . , n−1} and a vectorx = (x0, . . . , xn−1), by xσ def

= (xσ(0), . . . , xσ(n−1)).
For a codeC and a permutationσ, we define:

C
σ def
= {cσ | c ∈ C } .

A permutation automorphismof C is then any permutationσ such thatcσ is in C wheneverc belongs toC .
Symmetric codesare then codes with anon-trivial automorphism group.

We have seen in Proposition 2 that alternant codes may have several identical descriptions thanks to affine
transformations. Actually, symmetric Goppa codes and alternant codes can easily be constructed by looking at
the action of the projective semi-linear goup on the supportof these codes as shown in [19], [18]. By projective
semi-linear group, we mean here transformations of the form:

Fqm ∪ {∞} → Fqm ∪ {∞}

z 7→
azq

i

+ b

czqi + d

Basically when the support of the alternant code is invariant by the action of such a transformation and under a
certain condition on the multiplier, it turns out that such atransformation induces a permutation automorphism of
the alternant code. However, this action on the support may transform a coordinate of the support into∞ and a
slightly more general definition of generalized Reed-Solomon codes and of alternant codes is required to cope with
this issue. This is why A. Dür introduced Cauchy codes in [20] which are in essence a further generalization of
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generalized Reed-Solomon codes. This construction allowsto have∞ in its support. To avoid such a technicality
(and also to simplify some of the statements and propositions obtained here) we will only consider the subgroup
of affine transformations of the projective semi-linear group. It should be noted however that this simplification
permits to cover all the constructions of symmetric alternant or Goppa codes used in a cryptographic context [4],
[5], [13], [1], [6] and in some cases even to generalize them.Namely, we will deal with the following cases:

Definition 4 Let C be an alternant or Goppa code defined over a fieldF of lengthn, with an automorphism group
G. Given a nonnegative integerλ 6 n, we say thatC is:

• Quasi-Cyclic (QC) if G is of the form(Z/λZ),
• Quasi-Dyadic (QD) if char(F) = 2 andG is of the form(Z/2Z)λ,
• Quasi-Monoidic (QM) if G is of the form(Z/pZ)λ with p = char(F) > 2.

Let us now reformulate some corollaries of the results obtained in [19], [18] in this particular case. The symmetric
alternant or Goppa codes that will be obtained here correspond to permutation automorphisms of alternant or Goppa
codes based on the action of affine mapsx → ax+ b on the support(x0, x1, . . . , xn−1) of the Goppa code or the
alternant code. If this support is globally invariant by this affine map (anda is not equal to0), then this induces a
permutationσ of the code positions{0, 1, . . . , n − 1} by definingσ(i) as the unique integer in{0, 1, . . . , n − 1}
such thatxσ(i) = axi + b. In such a case, we say thatσ is thepermutation induced by the affine mapx → ax+ b.
Restricting Theorem 1 of [18] to affine transformations yields immediately

Proposition 3 Let a 6= 0 and b be elements ofFqm . Let x ∈ Fn
qm be a support which is globally invariant by the

affine mapx → ax+ b. Letσ be the permutation ofSn induced by this affine map. Letℓ be the order ofσ. Assume
that y ∈ (Fqm)

n is ann-tuple of nonzero elements such that∃α ∈ Fqm an ℓ-th root of unity such thatyσ(i) = αyi,
for all i ∈ {0, 1, . . . , n− 1}. Thenσ is a permutation automorphism of the alternant codeAt(x,y) for any degree
t > 0.

If we want to obtain Goppa codes, we can apply this result and we just have to check that the conditions on the
supportxσ(i) = axi + b and multiplieryσ(i) = αyi are compatible with the definition of the Goppa code, namely
yi =

1
Γ(xi)

whereΓ(x) is the Goppa polynomial. These considerations yield immediately the following corollary
of Proposition 3.

Corollary 1 Let a 6= 0 and b be elements ofFqm with b 6= 0 whena = 1. Let x ∈ Fn
qm be a support which is

globally invariant by the affine mapx → ax+ b. Let σ be the permutation ofSn induced by this affine map and
let ℓ be its order. Assume that there exists a polynomialΓ(z) and anℓ-th root of unityα in Fqm which is such that

Γ(az + b) = αΓ(z). (1)

In such a case,σ is a permutation automorphism of the Goppa codeG (x,Γ).

This proposition allows to obtain easily Goppa codes or alternant codes with a non trivial automorphism group that
is cyclic.

Remark 1 One might wonder whether it is possible to characterize polynomials which satisfy Equation(1). In
[19, Theorem 4] a slightly more general polynomial equationis considered, namelyΓ(azq

s

+ b) = αΓ(z)q
s

. It is
the particular case ofs = m of Theorem 4 of [19] which is of interest to us here. However, since it deals with the
classification of cyclic alternant codes (there is therefore a restriction on the order compared to the length which
trivializes the solutions of this problem in many cases which are of interest to us) and since for further purposes
it will be convenient for us to remove the assumption onΓ(z) to have no roots in{x0, . . . , xn−1} which is done
implicitly in Theorem 4 (and also in Lemma 2 of [19] that is used to prove Theorem 4) we can not use it in our
case directly.

The characterization of the solution set to (1) we will use isthe following.
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Proposition 4 Let F be a field of finite characteristicp and leta, b, α be elements ofF, such that (i)a 6= 0 and
(ii) b 6= 0 whena = 1. All the polynomialsΓ(z) ∈ F[z] satisfyingΓ(az + b) = αΓ(z) have the following form

• If a = 1 then necessarilyα = 1, ℓ = p andΓ(z) is any polynomial inF[z] of degree a multiple ofp which is
of the formΓ(z) = P (zp − bp−1z).

• If a 6= 1 then there exists a unique integerd in the range[0, . . . , ℓ− 1] such thatα = ad and if we denote by
z0 the unique fixed point of the affine mapz → az+ b, we have thatΓ(z) is any polynomial inF[z] of degree
equal tod moduloℓ which is of the form(z − z0)

dP
(
(z − z0)

ℓ
)
.

The proof of this proposition can be found in Appendix A. By taking polynomialsP in this proposition which
are such that the resultingΓ(z) has no zeros in the support(x0, . . . , xn−1) we obtain Goppa codes with a cyclic
permutation automorphism group. To obtain automorphism groups which are isomorphic to(Z/pZ)λ, for some
λ > 1, we need a slightly more general statement which is the following:

Proposition 5 Let p
def
= char(Fqm). Let α0, . . . , αλ−1 ∈ Fqm be a set ofs elements which areFp-independent over

Fqm . LetG be the group of orderpλ generated by theαi’s. Consider a supportx
def
= (x0, . . . , xn−1) which is globally

invariant by all the affine transformationsz → z + αi and assume that the multipliery
def
= (y0, y1, . . . , yn−1) is

constant on the cosets ofG meaning thatyi = yj iff xi − xj ∈ G. ThenAr(x,y) is an alternant code with a

permutation automorphism group isomorphic to(Z/pZ)λ for any degreer. Let P (z)
def
= Πg∈G(z − g), then any

polynomialΓ(z) of the formΓ(z) = Q(P (z)) whereQ is a polynomial inFqm [z] gives a Goppa codeG (x,Γ(z))

of degreepλ degQ with an automorphism group isomorphic to(Z/pZ)λ.

Proof: All the shifts z → z+αi give rise to a permutation automorphism of the alternant code by Proposition
3 and they generate a group of orderpλ from the independence assumption on theαi’s. The statement about Goppa
codes follows by observing that the polynomialΓ(z) = Q (Πg∈G(z − g)) is invariant by all the shiftsz → z + αi

and by using Corollary 1.

Remark 2 1) A support(x0, . . . , xn−1) satisfying the conditions of Proposition 5 is easily obtained by taking
unions of cosets ofG and getting aQD or a QM Goppa code is obtained by arranging the support as
follows. We definex = (xi)06i<n by choosing elementsx0, xpλ , . . . , x(n0−1)pλ in different cosets ofFqm/G

(wheren = n0p
λ). The remainingxi’s are chosen as follows:

xi = x⌊i/pλ⌋pλ +

λ−1∑

j=0

ijαj . (2)

It is readily checked that all theQD or QM constructions of Goppa codes of [5], [13], [1] are just special
cases of this construction. It should be observed that the construction presented here is more general. In
particular, Γ(z) does not need to split overFqm as in [5], [13], [1]. It may even be irreducible as shown by
the examplep = q = 2, G = F2, m odd andγ(z) = 1 + z.

2) By using our proof technique of Proposition 4 it can actuallybe shown that all polynomialsΓ(z) invariant
by the shiftsz → z + αi are actually polynomials of the formQ (Πg(z − g)).

From now on, we will say that the permutation automorphism group of an alternant code or a Goppa code that is
obtained by such affine maps (be it a single affine map or a collection of them) is thepermutation group inducedby
such affine maps. As observed in [18], an alternant code or a Goppa code can be invariant by a permutation which
is not induced by an affine map or more generally by an element of the projective semilinear group. However,
there is no general way of constructing this kind of permutation and it should also be noted that in the case of
GRS or Cauchy codes, the whole permutation group is actuallyinduced by the projective linear group, i.e. the set
of transformations of the kindz → az+b

cz+d (this is actually a consequence of Theorem 4 of [20]).

IV. A FFINE-INVARIANT POLYNOMIALS

The key ingredient which allows to reduce to smaller alternant codes or Goppa codes when these are either quasi-
monoidic or quasi-cyclic is a fundamental result on the formtaken by polynomials which are invariant by an affine
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map. These polynomials will arise as sums of the form:

Q(z)
def
=

ℓ−1∑

i=0

αiP (σi(z)) (3)

whereP is a polynomial,σ an affine map of orderℓ andα an ℓ-th root of unity. Such polynomial sums clearly
satisfy polynomial Equation (1), since:

Q(σ(z)) =

ℓ−1∑

i=0

αiP (σi+1(z)) =
1

α

ℓ−1∑

i=0

αi+1P (σi+1(z))

=
1

α

ℓ−1∑

i=0

αiP (σi(z)) =
1

α
Q(z).

Proposition 4 characterizes all solutions of the polynomial Equation (1). Conversely, and this will be crucial in our
context, it turns out that all these solutions are of the form(3). To formalize this point, we introduce the following
notation

Notation 1 Let Iσ,α6t [z] ⊆ F6t[z] be the set of polynomials of degree6 t which satisfy(1), i.e. which satisfy
P
(
σ(z)

)
= αP (z). Whenα = 1 we will simply writeIσ6t[z]. Finally, whent < 0 we adopt the convention that

I6t[z] = Iσ,α6t [z] = {0}.

We will first consider the case whenα = 1 andσ(x) = x+ b.

Lemma 2 Let F be a field of characteristicp. Let b be a non zero element ofF and denote byσ the shift
σ : x 7→ x+ b. Denote byS the mapping defined by:

S : F[z] → F[z]

P (z) 7→

p−1∑

i=0

P (σi(z))

We have for every nonnegative integert:

S (F6t[z]) = Iσ
6

⌊

t−p+1

p

⌋

p
[z]

=

{
P (zp − bp−1z) | degP 6

⌊
t− p+ 1

p

⌋}
(4)

The proof of this lemma can be found in Appendix B. A similar result holds for affine maps of the formσ(x) = ax+b
wherea 6= 1.

Lemma 3 Let F be a finite field. Leta be an element of orderℓ 6= 1 in F, b be an arbitrary element ofF, σ be

the affine mapx 7→ ax+ b, d be an integer in the range[0, . . . , ℓ− 1] and letα
def
= ad. We defineS by

S : F[z] → F[z]

P (z) 7→

ℓ−1∑

i=0

αiP (σi(z))

If we denote byz0 the unique fixed point ofσ, we have:

S (F6t[z]) = Iσ,α6t [z] (5)

=

{
(z − z0)

dP ((z − z0)
ℓ) | degP 6 ⌊

t− ℓ+ d

ℓ
⌋

}
, (6)

The proof of this lemma can be found in Subsection C of the appendix.
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V. REDUCING TO A SMALLER ALTERNANT OR GOPPA CODE

A. Folded codes

Alternant codes and Goppa codes in particular with a certainnon-trivial automorphism group (as considered in
Proposition 3) meet a very peculiar property. Namely it is possible to derive a new alternant (or a Goppa code) with
smaller parameters by simply summing up the coordinates. Todefine this new code more precisely, we introduce
the following operator.

Definition 5 (Folded code) Let C be a code andG be a subgroup of permutations of the set of code positions

of C . For each orbitG(i)
def
= {σ(i) : σ ∈ G} we choose one representative (for instance the smallest one). Let

i0, i1, . . . , is−1 be the set of these representatives. Thefolded codeof C with respect toG, denoted byC G, is a

code of lengths which is given by the set of wordscG
def
=
(∑

σ∈G cσ(ij )
)
06j6s−1

, wherec ranges overC . WhenG

is generated by a single elementσ, that isG =< σ >, we will simply writeC σ instead ofC<σ> and cσ instead
of c<σ>.

This folded code is related to constructions which were considered in the framework of decoding codes with non-
trivial automorphism group [24], [25]. The approach there was to consider for a codeC with non-trivial permutation
automorphismσ of orderℓ (which was supposed to be of orderℓ = 2 in [24], [25], but their approach generalizes
easily to other orders) theσ-subcodeC̃ σ obtained as follows:

C̃
σ def
=
{
c+ cσ + · · · + cσ

ℓ−1

| c ∈ C

}
.

If we denote byc̃σ
def
= c + cσ + · · · + cσ

ℓ−1

then it turns out that̃cσ takes on a constant value on the orbit
i, σ(i), σ2(i), . . . of any code positioni that is precisely the term

∑ℓ−1
t=0 cσt(i) which appears in the definition of the

folded code. Stated differently, the words of̃C σ are nothing but the words ofC σ where each code coordinatēcσi
of the latter code is repeated as many times as the size of the orbit of i underσ. These two codes have therefore
the same dimension, but their lengths are different : the first one has the same length asC whereas the latter has
lengths (the number of orbits underσ).

The point of considering such a code for decodingC lies in the fact thatC̃ σ is a subcode ofC which is typically
of much smaller dimension thanC . Under mild assumptions, it can be shown that the dimension gets reduced by
the order ofσ. More precisely:

Proposition 6 LetC be a code of lengthn that has a permutation automorphism groupG of sizeℓ and a generator
matrix G such that ifgi is a row ofG thengσi is also a row ofG for any σ ∈ G. Denote by{g0, . . . ,gk−1} the
set of rows ofG. Consider the group action ofG on the set{g0, . . . ,gk−1} of rows ofG whereσ acts ongj as

gj 7→ gσ
j for σ ∈ G. Assume that the size of each orbit is equal toℓ. Then, the dimensioñC G is equal todim(C )

ℓ .

This is also the dimension ofC G and the length of this code is equal tonℓ .

Proof: This follows at once from the fact that̃C G is generated by the set of̃gi
G def
=
∑

σ∈G gσi where thegi’s
are representatives of each orbit ofG acting on{g0, . . . ,gk−1}. These vectors are clearly independent and there
are dim(C )

ℓ such representatives. This implies that the dimension ofC̃ G is equal todim(C )
ℓ . This is also clearly the

dimension ofCG and the length of the latter code is equal ton
ℓ .

Remark 3 A generator matrix of this form is precisely what is achievedby all the constructions of monoidic
alternant/Goppa/Srivastava codes proposed in [4], [5], [1], [13], [6].

This can be used to decode a wordy by decoding instead̃yσ in C̃ σ. The point is that this decoding can be less
complex to perform than decodingy directly and that the result of the decoding can be useful to solve the original
decoding problem, see [25].
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B. Folding alternant codes with respect to a cyclic group

If we consider the monoidic alternant or Goppa codes constructed in [4], [5], [1], [13] they have typically length
of the formn = n0ℓ, degree of the formr = r0ℓ and dimension of the formk = n − rm = ℓ(n0 − r0m) where
m is the extension degree of the alternant/Goppa code andℓ is the size of the automorphism group of the code.
The automorphism group of these codes satisfies the assumptions of Proposition 6 and therefore the folded code
has lengthn0 and dimensionn0− r0m. This could suggest that these codes are alternant or Goppa codes of length
n0 and degreer0. In all our experiments we have noticed that this was indeed the case. We have proved in [21] a
slightly weaker result, namely that in the case of a Goppa code obtained from the constructions of [5], [1], [13],
the folded code is included in a Goppa code of lengthn0 and degreer0. We will prove a significantly stronger
result here, by considering instead the dual of these codes.It will turn out that the folded dual of those alternant
or Goppa codes will be duals of alternant or Goppa codes and this even if the degree is not of the formr0ℓ. More
precisely, we have:

Theorem 1 Consider an alternant codeAt(x,y) overFq of lengthn with supportx = (x0, x1, . . . , xn−1) ∈ Fn
qm

and multipliery ∈ Fn
qm with a non trivial permutation automorphism group induced by the affine mapx → ax+ b

wherea, b ∈ Fqm are such thata 6= 0 and b 6= 0 whena = 1. Denote byσ the permutation ofSn induced by this
affine map. Letℓ be the order ofσ. By definition of an affine induced automorphism, there exists α ∈ Fqm an ℓ-th
root of unity such thatyσ(i) = αyi for all i ∈ {0, 1, . . . , n − 1}. We denote byd the integer in{0, 1, . . . , ℓ − 1}

verifyingα = ad. Let us denote byu0 the unique fixed point inFqm ∪{∞} of this affine map. Moreover, we assume
that u0 6∈ {x0, x1, . . . , xn−1}. In such a case, the action ofσ on {0, 1, . . . , n− 1} has n

ℓ orbits, each of them being

of sizeℓ. Choose a representativei0, i1, . . . , in/ℓ−1 in each of these orbits. There existsy′ ∈ F
n/ℓ
qm and a integerr

such that(At(x,y)⊥)
σ
=
(
Ar(x

′,y′)
)⊥

with:

• whena = 1 thenr =
⌊
t−ℓ
ℓ

⌋
+ 1 and for all j ∈ {0, . . . , n/ℓ− 1}:

x′j = xℓij − bℓ−1xij and y′j = yij

• and whena 6= 1 thenr =
⌊
t−ℓ+d−1

ℓ

⌋
+ 1 and for all j ∈ {0, . . . , n/ℓ− 1}:

x′j = (xij − u0)
ℓ and y′j = yij (xij − u0)

ℓ−d

Proof:

The casea = 1: remark first that the orderℓ of the permutationσ, which is the shiftx 7→ x + b in this case,
is necessarily the characteristicp of Fqm . Since the order of the multiplicative group ofFqm , which is qm − 1, is
coprime with the characteristic ofFqm it follows thatα is necessarily equal to1 whena = 1. This implies thaty
is constant over each orbit{i, σ(i), . . . , σℓ−1(i)}. From Lemma 1, the dualC of At(x,y) is:

C =
{
(Tr
(
yiP (xi)

)
06i<n

| P ∈ Fqm [z],deg P 6 t− 1
}
.

The folded code ofC can now be described as:

C σ =



Tr

(
yij

ℓ−1∑

s=0

P
(
σs(xij )

)
)n/ℓ−1

j=0

| P ∈ Fqm [z],deg P 6 t− 1





wherexi0 , xi1 , . . . , xn/ℓ−1 are representatives of each of then/ℓ orbits {u, σ(u), . . . , σℓ−1(u)} (they have all the
same sizeℓ).

By using Lemma 2, we obtain:

C σ =

{
Tr
(
yijR

(
xpij − bp−1xij )

))n/ℓ−1

j=0
| R ∈ Fqm [z],degR 6

⌊
t− p

p

⌋}
(7)

By using Lemma 1 again, we see thatC σ = Ar(x
′,y′)⊥ with r =

⌊
t−p
p

⌋
+1 and for anyj ∈ {0, 1, . . . , n/ℓ− 1},

x′j = xpij − bp−1xij andy′j = yij .
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The casea 6= 1: the difference with the previous situation lies in the fact that now theyj ’s are not neces-
sarily constant over an orbit. As previously, we consider representativesxi0 , xi1 , . . . , xn/ℓ−1 of the n/ℓ orbits
{u, σ(u), . . . , σℓ−1(u)} (they have here again all the same sizeℓ because the supportx does not contain the fixed
point of σ). We obtain that the folded code ofC can now be described as follows.

C σ =



Tr

(
ℓ−1∑

s=0

yijα
sP
(
σs(xij )

)
)n/ℓ−1

j=0

| P ∈ Fqm[z],deg P 6 t− 1



 .

By introducing the fixed pointu0 of σ, we obtain:

C σ =



Tr

(
yij

ℓ−1∑

s=0

αsP
(
u0 + as(xij − u0)

)
)n/ℓ−1

j=0

| P ∈ Fqm [z],deg P 6 t− 1





=



Tr

(
yij

ℓ−1∑

s=0

αsQ
(
as(xij − u0)

)
)n/ℓ−1

j=0

| Q ∈ Fqm [z],degQ 6 t− 1



 .

We necessarily haveαℓ = 1. Sincea is a primitiveℓ-root of unity, there exists an integerd in {0, . . . , ℓ− 1} such
thatα = ad. This yields:

C σ =



Tr

(
yij

ℓ−1∑

s=0

adsQ
(
as(xij − u0)

)
)n/ℓ−1

j=0

| Q ∈ Fqm [z],degQ 6 t− 1



 .

By using Lemma 3, we deduce that:

C σ =

{
Tr
(
yij(xij − u0)

ℓ−dR
(
(xij − u0)

ℓ
))n/ℓ−1

j=0
| R ∈ Fqm [z],degR 6

⌊
t− 1− ℓ+ d

ℓ

⌋}
.

Finally, by Lemma 1 again we see thatC σ = Ar(x
′,y′)⊥ where r =

⌊
t−1−ℓ+d

ℓ

⌋
+ 1, x′j = (xij − u0)

ℓ and
y′j = yij (xij − u0)

ℓ−d for any j ∈ {0, 1, . . . , n/ℓ− 1}.

Remark 4 In essence, we have proved here that folding a GRS code with a non trivial automorphism group
obtained from affine transformations yields again a GRS code. Indeed, the dual of an alternant code is the trace
of a GRS code. When we choose the extension degree to be equal to 1 we really prove here that folding such a
symmetric GRS code yields again a GRS code. Taking the trace preserves this property : the folding of a trace of a
symmetric GRS code is again the trace of a GRS code. The crucial point which explains why such a property holds
is the fact that the ring of polynomial inF[x] invariant by an affine transformationσ is a ring of the formF[Q(x)]
for some polynomialQ which is invariant byσ. This is what allows to write a sum of the form

∑ℓ−1
i=0 P (σi(x)) as

a polynomial of the formR(Q(x)).

One might wonder whether folding a subfield subcode of a GRS code (i.e. an alternant code) also yields a subfield
subcode of a GRS code. While the proof technique used here obviously allows to prove that a folded subfield
subcode of a symmetric GRS code lies in a subfield subcode of a certain subcode, proving equality of both codes
seems to be more delicate here. This point can be explained asfollows. Consider an alternant codeAr(x,y)
defined overFq and of extension degreem wherex is globally invariant by someσ andy is constant on the orbits
on σ (we make this assumption to simplify the discussion). To prove equality that the folded alternant code is still
an alternant code we should be able to express a polynomialQ(z) in Fqm [z] which is invariant byσ and which is
such thatyiQ(xi) belongs toFq for any i as a sumQ(x) =

∑ℓ−1
j=0 P (σj(x)) where all theyiP (σj(xi)) belong to

Fq for any i and j and whereP is some polynomial which depends onQ.
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C. Folding alternant codes with respect to non-cyclic groups

We have treated the case of folding an alternant code with respect to a group generated by a single element. The
group of automorphism might not be cyclic. This happens in particular in the case of the Goppa codes in [5], [1],
[13]: in such a case the automorphism group is isomorphic to(Z/pZ)λ. Treating the general case of a subgroup
of the affine subgroup is beyond the scope of this article, we will just consider the case of a subgroup which is
isomorphic to(Z/pZ)λ. This follows at once from Theorem 1 by noticing that we may fold iteratively the code
with respect toλ generators of the subgroup and end up with an alternant code.We use here the straightforward
fact

Lemma 4 Consider a codeC and a group of permutationsG acting on the positions ofC and assume that this
permutation group has a subgroupG0 and an elementσ of G which does not belong toG0 such that:

1) the cosetsσiG0 form a partition ofG for i ∈ {0, . . . , ℓ− 1} whereℓ is the order ofσ;

2) σ commutes with any element ofG0.

Thenσ induces a permutation on the set of positions ofC G0 that we callσ̂ which is defined as follows. We view
a code positioni of C G0 as an orbit{τ(u), τ ∈ G0} for some code positionu of C and σ̂(i) is given by the orbit
{τ(σ(u)), τ ∈ G0}. If the order ofσ̂ is equal to the orderℓ of σ and for an appropriate order on the choices of
the representatives for the orbits under< σ̂ >, G0 andG, we have

(
C G0

)σ̂
= C G.

Proof: First we have to check that the definition ofσ̂(u) makes sense, i.e. that it does not depend on the
choice ofu in the orbit {τ(u), τ ∈ G0}. This follows from the fact thatσ commutes with any element ofG0.
Indeed assume that we have:

{τ(u), τ ∈ G0} = {τ(v), τ ∈ G0}

then we clearly haveu = τ0(v) for a certainτ0 in G0. From that we deduce:

{τ(σ(u)), τ ∈ G0} = {τ(σ(τ0(v))), τ ∈ G0}

= {τ(τ0(σ(v))), τ ∈ G0}

= {τ(σ(v)), τ ∈ G0}

This shows that̂σ is well-defined. We leti0, i1, . . . , is−1 be a set of representatives of each orbit of the code positions
of C underG0 (we assume that there ares orbits) and we assume that the set of code positions0, 1, . . . , s− 1 of
C G0 corresponds toi0, i1, . . . , is−1 in this order. Consider now an elementc in C and letc′ be the folding ofc
with respect toG0, that is:

c′j =
∑

τ∈G0

cτ(ij) (8)

If we fold c′ with respect tôσ we obtain an elementc′′ defined by:

c′′j =

ℓ−1∑

l=0

c′σ̂l(i′j)
(9)

where i′0, i
′
1, . . . , i

′
t−1 are the representatives of the orbits of the code positions of C G0 under σ̂. Notice that we

have used here the fact that the order ofσ̂ is equal to the order ofσ. By observing that the code positioni′j of
C G0 corresponds to some orbit{τ(u), τ ∈ G0} and putting (8) and (9) together with the characterization of the
action of σ̂, we obtain:

c′′j =

ℓ−1∑

l=0

∑

τ∈G0

cτ(σl(u)) =
∑

τ∈G

cτ(u).

This implies thatc′′j is equal to some coordinate ofcG.
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It remains to show that there is a one-to-one and onto mappingfrom the set of coordinates ofc′′ and those ofcG.
In order to do so we are going to prove that there is a one-to-one mapping between the orbits underσ̂ and the orbits
underG. This is a straightforward consequence of the following observation. Consider an orbitO = {τ(s), τ ∈ G}

underG. It decomposes as a union of orbitsOh underG0: O = ∪06h6ℓ−1Oh whereOh
def
= {τ(σh(s))}. These

orbits Oh form a single orbit under̂σ and we are done.

A straightforward consequence of this is the following

Corollary 2 Consider a codeC which is the dual of an alternant code with an affine-induced permutation group
G isomorphic to(Z/pZ)λ wherep is the characteristic of the field over which the alternant code is defined. Then
C G is the dual of an alternant code.

Proof: In such a case, there existsg1, . . . , gλ of orderp that generateG. We proceed by induction and assume
that this property holds forλ = h. Whenh = 1, this is just Theorem 1. Consider now a groupG isomorphic to
(Z/pZ)h+1. We observe thatG0

def
=< g1, . . . , gh > andσ = gh+1 satisfy the assumptions of Lemma 4, so we can

apply it to this case and obtain that: (
C G0

)σ̂
= C G.

Since by induction hypothesisC G0 is the dual of an alternant code and sinceσ̂ is clearly an affine induced
permutation automorphism ofC G0 we can apply Theorem 1 to it and obtain that the result of the folding of C G0

by σ̂ gives an alternant code again.

All the duals of the codes used in the following variants of the McEliece cryptosystem, namely the dyadic Goppa
codes of [5], [13], the monoidic Goppa codes of [1] or the dyadic Srivastava codes of [6] are instances of alternant
codes which have an affine induced permutation group isomorphic to (Z/pZ)λ and this corollary can be applied
to reduce attacks on the key to a much smaller key recovery problem (namely on the dual of the code obtained by
folding). One might also wonder when we fold certain subfamilies of duals of alternant codes with respect to an
affine-induced permutation automorphism group, such as duals of Goppa codes, we stay in the subfamily, i.e.do
we still obtain the dual of a Goppa code?This turns out to be the case as shown by the next subsection.

D. Folding Goppa codes

Folding the dual of a Goppa code with an affine-induced automorphism group yields the dual of an alternant code
by using Corollary 2. It turns out that a stronger statement holds: we actually obtain the dual of a Goppa code,
both in the cyclic case as shown by the following theorem and when the group is isomorphic to(Z/pZ)λ as shown
later on.

Theorem 2 Consider a Goppa codeC = G (x,Γ(z)) of lengthn associated to the supportx = (xi)06i<n ∈ Fn
qm

which has a cyclic affine induced automorphism group generated byσ(x)
def
= ax+ b wherea, b ∈ Fqm . We assume

that a 6= 0, b 6= 0 if a = 1, and that the fixed pointu0 of σ does not belong to{x0, . . . , xn−1}. Let ℓ be the order
of σ. In such a case:

1) ℓ dividesn and lets
def
= n/ℓ. There are exactlys orbits for the action ofσ on the code positions. We denote

by i0, i1, . . . , in/ℓ−1 a set of representatives for each orbit;

2) (C⊥)
σ is the dual of the Goppa codeG (x′, γ(z)) with:

x′j =

{
xℓij − bℓ−1xij whena = 1,

(xij − u0)
ℓ otherwise,

Γ(z) =

{
γ(zℓ − bℓ−1z) whena = 1,
(z − u0)

dγ
(
(z − u0)

ℓ
)

otherwise

whered, in the last case, is the unique integer in{0, . . . , ℓ − 1} such thatα = ad and α is the element ofFqm

which satisfies the polynomial identityΓ(az + b) = αΓ(z).
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Proof: We will distinguish betweena = 1 anda 6= 1. In both cases, notice that we can apply Theorem 1 to
C which is an alternant codeAt(x,y) wheret is the degree ofΓ and yi =

1
Γ(xi)

. This is a consequence of the
definition of a Goppa code with an affine induced automorphismσ(x) = ax + b : this is a Goppa code obtained
from the construction of Proposition 3 and this is preciselywhat is needed (together with the fact that the support
does not contain the fixed point ofσ) for applying Theorem 1 to it. In all cases, folding the dual of C gives the
dual of an alternant code of the formAt′(x

′,y′) for some integert′ and somex′,y′ in Fs
qm . Moreover in both

cases, there exists anℓ-th root of 1 that we denote byα which is such that the Goppa polynomial satisfies the
identity Γ(az + b) = αΓ(z).

Case a = 1 : ℓ is equal to the characteristicp of the fieldFqm , α is necessarily equal to1, Γ(z) is of degree a
multiple of p and is of the formΓ(z) = γ(zp − bp−1z). Notice thaty satisfies:

yσ(i) =
1

Γ(axi + b)
=

1

Γ(xi)
= yi

and using Theorem 1 gives thaty′j = yij and therefore:

y′j = yij =
1

Γ(xij )
=

1

γ(xpij − bp−1xij )
=

1

γ(x′j)

This implies thatAt′(x
′,y′) is nothing but the Goppa codeG (x′, γ(z)).

Case a 6= 1 : there exists a unique integerd in the range[0, . . . , ℓ− 1] such thatα = ad andΓ(z) is of the form
Γ(z) = (z − u0)

dγ
(
(z − u0)

ℓ
)
. Notice that in such a case:

1

yσ(i)
= Γ(axi + b) = (axi + b− u0)

d γ
(
(axi − u0)

ℓ
)

= (axi + b− au0 − b)d γ
(
(axi + b− au0 − b)ℓ

)

= (a(xi − u0))
d γ
(
aℓ(xi − u0)

ℓ
)

= ad(xi − u0)
d γ
(
(xi − u0)

ℓ
)

= adΓ(xi) = ad
1

yi

We use Theorem 1 and obtain:

y′j = yij (xij − u0)
d =

(xij − u0)
d

Γ(xij )
=

(xij − u0)
d

(xij − u0)dγ
(
(xij − u0)ℓ

) =
1

γ(x′j)

This implies again thatAt′(x
′,y′) is nothing but the Goppa codeG (x′, γ(z)).

When the group is isomorphic to(Z/pZ)λ we have the following statement

Theorem 3 Consider a Goppa codeC = G (x,Γ) with an affine induced automorphism groupG isomorphic to

(Z/pZ)λ wherep is the characteristic of the field over which the Goppa code isdefined, then the folding(C⊥)
G

is the dual of a Goppa codeG (x′, γ(z)) where the degreedeg(γ) of γ is equal todeg(Γ)
pλ .

Proof: We proceed similarly to the proof of Corollary 2. First we notice that there existsg1, . . . , gλ of orderp
that generateG. We proceed by induction and assume that this property holdsfor λ = h. Whenh = 1, this is just
Theorem 2 (sinceg1 is necessarily induced by an affine transformation of the form x 7→ x+ β which has no fixed
point in the extension field in which the coordinates of the multiplier live). Consider now a groupG isomorphic
to (Z/pZ)h+1. We observe thatG0

def
=< g1, . . . , gh > andσ = gh+1 satisfy the assumptions of Lemma 4, so we

can apply it to this case and obtain that: (
C G0

)σ̂
= C G.
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Since by induction hypothesisC G0 is the dual of a Goppa code of degreedeg(Γ)
ph and sincêσ is clearly an affine

induced permutation automorphism ofC G0 we can apply Theorem 2 to it and obtain that the result of the folding
of C G0 by σ̂ gives the dual of a Goppa code of degreedeg(Γ)

ph+1 .

VI. CONCLUSION – CRYPTOGRAPHICIMPLICATIONS

The results presented on this paper have some significant consequences on a recent research trend which consists
in devising McEliece schemes with reduced public key size. This is achieved by relying onQD/QM Goppa codes
or QC alternant codes [4], [5], [13], [1]. Some of them were attacked by the algebraic attack introduced in [9],
[11] where it was proved that theQD or theQC structure allowed to set up an algebraic system which could be
solved by Gröbner bases techniques thanks to the reductionof unknowns obtained in this case compared to an
unstructured McEliece scheme. Our result actually explains where this reduction in the number of unknowns comes
from: there is in fact a smallerhiddenGoppa (or alternant) code behind the public generator or parity-check matrix
of the scheme. Moreover it is shown in [21] that a key recoveryattack on the reduced cryptosystem can be used to
recover the secret key of the original cryptosystem. This implies that a key-recovery onQD andQM schemes is
not harder than a key-recovery on a reduced McEliece scheme where all parameters have been scaled down by a
factor ofp, which is the compression factor allowed by theQC, QD or QM structure. For instance, we can reduce
the key-recovery of aQD Goppa code of length8192 and dimension4096 (parameters suggested in [5]) to the
key-recovery on aQD Goppa code of length64 and dimension32. In other words, the very reason which allowed
to design compact variants of McEliece can be used to attack such schemes much more efficiently.

Our result does not rule out the possibility of devising alternant or Goppa codes with a non trivial automorphism
group for which folding does not produce an alternant or a Goppa code: it only applies to such codes with an affine
induced automorphism group. Symmetric codes of this kind could be obtained from the action of the semi-linear
projective group on the support instead of the affine group (see Section III). It is an open question to understand
if folding such symmetric codes yields again Goppa or alternant codes, but obviously even treating the case of
the linear projective group (obtained from the transformations of the kindz → az+b

cz+d ) needs much more general
tools than those that have been considered here and is beyondthe scope of this paper. It should also be added that
this result does not mean that all compact key McEliece cryptosystems based on alternant or Goppa codes with an
affine induced automorphism group are weak. It just means that the key security is not better than the key security
of a reduced scheme obtained from the folding process. Sincekey recovery attacks are generally more expensive
that message recovery attacks it might be possible to choosesecure parameters for which we still obtain a good
reduction of the key size where key recovery attacks on the folded key are of the same complexity as message
recovery attacks on the original scheme. However this thread of research requires great care since there has been
some recent progress on key recovery attacks, see [21], [26]for instance.
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APPENDIX

A. Proof of Proposition 4

We will first characterize the solutions to Equation (1) in the case whereα = 1. In some sense, this characterization
generalizes a classical result about even polynomials, i.e. polynomialsP (z) which satisfyP (z) = P (−z). It is
namely well known that a polynomial is even if and only if there exists a polynomialQ such thatP (z) = Q(z2).
Lemma 5, which uses the notationIσ6t[z] that is defined in Section IV, will generalize this result to any polynomial
invariant under a finite order affine map.

Lemma 5 Let σ(z) = az + b be an affine map of finite orderℓ (with ℓ > 1) defined over a fieldF. We have

• if a = 1 thenF is of characteristicℓ and Iσ6t[z] =
{
Q(zℓ − bℓ−1z) | degQ 6 t/ℓ

}
.

• if a 6= 1 thenIσ6t[z] =
{
Q((z − z0)

ℓ) | degQ 6 t/ℓ
}

with z0 being the unique fixed point ofσ.

In other words, the ring of polynomials invariant by an affinemap is generated by a single element and the lemma
provides this generator explicitly. This result follows from classical results in invariant theory and we derive it from
scratch here to keep the paper self-contained. Also, we treat the case where the orderℓ of the group generated by
σ is divisible by the characteristic ofF. This is precisely what happens whena = 1, and that is commonly avoided
in invariant theory (see for instance [27, Appendix,§4,Prop.1]).

Proof of Lemma 5:Let us first prove that the right hand side terms which appear in the expressions forIσ6t[z]

are indeed included inIσ6t[z]. If a = 1, consider a polynomialP of degree6 t of the formP (z) = Q(zℓ − bℓ−1z)
for some polynomialQ. We have:

P (z + b) = Q
(
(z + b)ℓ − bℓ−1(z + b)

)

= Q
(
zℓ + bℓ − bℓ−1z − bℓ

)

= Q
(
zℓ − bℓ−1z

)

= P (z).

We just used the fact thatℓ is the characteristic ofF and therefore(z + b)ℓ = zℓ + bℓ.

In the casea 6= 1, if we consider a polynomialP of degree6 t of the form P (z) = Q
(
(z − z0)

ℓ
)

for some
polynomialQ of degreedegP/ℓ we obtain:

P (az + b) = Q
(
(az + b− z0)

ℓ
)

= Q
(
(az + b− az0 − b)ℓ

)

= Q
(
aℓ(z − z0)

ℓ
)

= Q
(
(z − z0)

ℓ
)

= P (z).

We used the fact thatℓ is also the order ofa.

Let us prove now the reverse inclusion. LetP be a polynomial which is invariant byσ. Consider now a non
constant polynomialR of smallest degree which is invariant byσ. Such a polynomial necessarily exists since the
set of polynomials which are non constant and which are invariant byσ is non empty (sincezℓ− bℓ−1z in the case
a = 1 and (z − z0)

ℓ in the casea 6= 1, belong to it). Perform the division ofP by R. We can write

P (z) = R(z)P1(z) + P2(z) (10)

with degP2 < degR. Observe now that

P (az + b) = R(az + b)P1(az + b) + P2(az + b). (11)
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SinceP (az + b) = P (z) andR(az + b) = R(z) we deduce by subtracting the second equation to the first one,
that we have

R(z) (P1(az + b)− P1(z)) = P2(z)− P2(az + b)

Since the degree ofS(z)
def
= P2(z)−P2(az+ b) is less than the degree ofR, this can only happen ifP1 is invariant

underσ and therefore alsoP2. SinceR is a non constant polynomial of smallest degree which is invariant under
σ and sincedegP2 < degR, this implies thatP2 is constant. By carrying on this process (i.e. dividingP1 by R)
we eventually obtain thatP is a polynomial inR. We finish the proof by proving thatR can be chosen to be
R(z) = zℓ − bℓ−1z in the casea = 1 andR(z) = (z − z0)

ℓ otherwise.

Let us first prove this fora = 1. We can add any constant toR, it will still be invariant underσ. We may
therefore assume thatR(0) = 0. We can also assume thatR is monic. Let us observe now that0 = R(0) =
R(b) = R(2b) = . . . = R

(
(ℓ− 1)b

)
by the invariance ofR underz 7→ z + b. This implies thatR is a multiple of

z(z − b) · · · (z − b(ℓ − 1)). R is therefore of degree greater than or equal toℓ. The polynomialzℓ − bℓ−1z is of
degreeℓ, is invariant underσ and is a multiple ofz(z − b) . . . (z − b(ℓ− 1)). ThereforeR(z) = zℓ − bℓ−1z.

Consider now the casea 6= 1. Without loss of generality (by adding a suitable constant as in the casea = 0) we
may assume thatR(c) = 0, wherec is some element ofF such that the orbit ofc underσ is of sizeℓ. By the
invariance ofR underσ this implies that0 = R(c) = R(σ(c)) = · · · = R

(
σℓ−1(c)

)
. This implies thatR(z) is

divisible by (z − c)(z − σ(c)) · · ·
(
z− σℓ−1(c)

)
. ThereforeR is of degreeℓ at least. Since(z − z0)

ℓ is of degreeℓ
and is invariant byσ we can chooseR(z) = (z − z0)

ℓ.

This proves Proposition 4 whenα = 1. Let us prove now this proposition in general.

Proof of Proposition 4: Denote byσ the affine mapz 7→ az + b. First of all, let us notice that if there exists
some polynomialP (z) satisfying the equationP (σ(z) = αP (z) for someα, then necessarily such anα satisfies
αℓ = 1. This follows at once from the fact that we haveP (z) = P

(
σℓ(z)

)
= αdP (z). This also implies that the

order ofα dividesℓ. There are now two cases to consider.

Casea = 1: then the orderℓ of σ is necessarily equal to the characteristic ofF and there is no element, apart
from 1, whose order dividesℓ. In this case, Lemma 5 implies Proposition 4.

Casea 6= 1: in such a case the order ofa is equal toℓ anda is a primitive ℓ-th root of unity. Sinceα is an ℓ-th
root of unity, there exists in this case an integerd in the range[0, . . . , ℓ − 1] such thatα = ad. Consider now a
polynomial which is such that

P (σ(z)) = αP (z). (12)

If α = 1, then we can use directly Lemma 5 and we are done. Otherwise, observe that from the fact thatσ(z0) = z0
we deduce that

P (z0) = P (σ(z0)) = αP (z0).

This implies thatP (z0) = 0. Define now a polynomialP1 by P (z) = (z− z0)P1(z). Observe now that on the one
hand

P (az + b) = (az + b− z0)P1(az + b) = a(z − z0)P1(az + b)

and that on the other hand
P (az + b) = αP (z) = ad(z − z0)P1(z).

Putting both equations together, we obtain

P1(az + b) = ad−1P1(z)

If d 6= 1 we can carry on this process onP1, deduce from the previous equation thatP1(z0) = 0 and deduce by
induction ond thatP (z) has a zero of order at leastd atz0 and that the polynomialPd(z) defined byPd(z) =

P (z)
(z−z0)d

satisfies the equation
Pd(az + b) = Pd(z).

We apply Lemma 5 toPd and derive from it thatP should be of the form

P (z) = (z − z0)
dQ
(
(z − z0)

ℓ
)
,



18

whereQ is any polynomial of degreedeg P−d
ℓ . Conversely, any polynomialP of this form is readily seen to verify

(12).

B. Proof of Lemma 2

For this result, we will need the following lemma.

Lemma 6 1k + 2k + · · · + (p − 1)k ≡ 0 (mod p) for every integerk which is not a multiple ofp − 1 whereas
1k + 2k + · · · + (p− 1)k ≡ −1 (mod p) otherwise.

Proof: Recall that the multiplicative groupF×
p is generated by a single elementα which is of orderp − 1.

The mapping

φk : F×
p → F

×
p

x 7→ xk

maps thereforeF×
p to a subgroup ofF×

p different from the trivial subgroup consisting only of1 if and only if k is not
a multiple ofp−1. In other words, ifk is a multiple ofp−1, we havesk ≡ 1 (mod p) for anys ∈ {1, . . . , p−1}.
This implies that1k + 2k + · · ·+ (p− 1)k ≡ p− 1 ≡ −1 (mod p). Assume now thatk is not a multiple ofp− 1.
Thusφk(F

×
p ) is a subgroup ofF×

p of size a divisorℓ > 1 of p−1. SinceF×
p is generated byα, φk(F

×
p ) is generated

by β
def
= αk and we have

1k + 2k + · · · + (p− 1)k ≡
p− 1

ℓ

(
1 + β + · · ·+ βℓ−1

)
(mod p)

≡
(p− 1)(βℓ − 1)

ℓ(β − 1)
(mod p)

≡ 0 (mod p)

Let us prove now Lemma 2.

Proof: Let us first computeS(zt), wheret is some nonnegative integer.

S(zt) =

p−1∑

s=0

(z + sb)t = zt +

p−1∑

s=1

t∑

i=0

(
t

i

)
zt−i(sb)i =

p−1∑

s=1

t∑

i=1

(
t

i

)
zt−i(sb)i

=

t∑

i=1

bi
(
t

i

)(p−1∑

s=1

si

)
zt−i =

t∑

i=p−1

bi
(
t

i

)(p−1∑

s=1

si

)
zt−i (13)

where the last equation follows by using Lemma 6 which allowsus to write
∑p−1

s=1 s
i = 0 when i is in the

range [1..p − 2] and when the sum is performed over a field of characteristicp. This implies immediately that
S(F6t) ⊆ F6t−p+1[z]. SinceS(Q(z)) is obviously invariant byσ for any polynomialQ(z) ∈ F[z], we know from
Lemma 5 that it is of the formS(Q(z)) = R(zp − bp−1z) for some polynomialR in F[z]. Its degree is therefore
a multiple ofp. This implies that we actually obtain the refined inclusion

S(F6t) ⊆ I
6

⌊

t−p+1

p

⌋

p
[x]. (14)

Equality is proven by dimension considerations. It followsfrom Lemma 5 thatI6t[z] is a vector space which is of
dimension⌊t/p⌋+1. The calculation (13) performed above also shows thatS(z(k+1)p−1) is a polynomial of degree
kp (since the coefficient ofzkp which is equal tobp−1

(
(k+1)p−1

p−1

)∑p−1
s=1 s

p−1 by (13) can be shown to be different
from 0 by using the fact proven in Lemma 6 which says that1p−1+2p−1+ · · ·+(p− 1)p−1 ≡ −1 (mod p)). This
can be used to obtain that

dimS(F6t) >

⌊
t− p+ 1

p

⌋
+ 1 = dim I

6

⌊

t−p+1

p

⌋

p
[z].
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This together with (14) implies that
S(F6t) = I

6

⌊

t−p+1

p

⌋

p
[x],

which concludes the proof.

C. Proof of Lemma 3

Proof: Let us calculate

S(zt) =

ℓ−1∑

i=0

adi
(
ai(z − u0)

)t
,

= (z − u0)
t
ℓ−1∑

i=0

a(d+t)i.

This sum is equal to0 as long asd+ t 6≡ 0 (mod ℓ) and is equal to(ℓ mod p) (z−u0)
t whend+ t ≡ 0 (mod ℓ).

The polynomialS
(
P (z)

)
is therefore a polynomial of degreeℓ− d+

⌊
deg P−ℓ+d

ℓ

⌋
ℓ of the form

S(P (z)) = (z − u0)
l−d

⌊ deg P−ℓ+d

ℓ
⌋∑

i=0

ai(z − u0)
iℓ (15)

whendegP > ℓ−d and is equal to zero otherwise. We conclude the proof by noting that the term
∑⌊ deg P−ℓ+d

ℓ
⌋

i=0 ai(z−
u0)

iℓ is a polynomial which is invariant byσ by Lemma 5.
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