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Sampling and reconstruction of operators

Gotz E. PfanderMember, IEEE, and David Walnut

Abstract—We study the recovery of operators with I
bandlimited Kohn-Nirenberg symbol from the action of
such operators on a weighted impulse train, a procedure
we refer to as operator sampling. Kailath, and later Kozek
and the authors have shown that operator sampling is
possible if the symbol of the operator is bandlimited to
a set with area less than one. In this paper we develop
explicit reconstruction formulas for operator sampling
that generalize reconstruction formulas for bandlimited
functions. We give necessary and sufficient conditions on
the sampling rate that depend on size and geometry of
the bandlimiting set. Moreover, we show that under mild
geometric conditions, classes of operators bandlimited to
an unknown set of area less than one-half permit sampling
and reconstruction. A similar result considering unknown
sets of area less than one was independently achieved by
Heckel and Boelcskei.

Operators with bandlimited symbols have been used
to model doubly dispersive communication channels with
slowly-time-varying impulse response. The results in this
paper are rooted in work by Bello and Kailath in the
1960s.

Index Terms—Bandlimined Kohn-Nirenberg symbols,
spreading function, operator Paley-Wiener space, channel
measurement, channel identification, operator identifica-
tion, operator sampling, Gabor analysis, symplectic ma-
trices.
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IV Conclusion forall Hy,Hy € H.
We refer to operator identification agperator sam-

References pling when the identifier is a discretely supported distri-
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{M}nez iIn R is a set of samplingfor an operator
class#, if for some never-vanishing sequen@g, )<z,
|. INTRODUCTION we have thaty | _, d,d,, identifies?. We define the
Oﬁqmpling rateof A by

David F. Walnut . . . . ... ... ..... DZS

In this paper we develop a sampling theory and rec
struction formulas for operators bandlimited to domains n=(r)
i i D(A) = lim
of small area. Analogously to the classical sampling -
theory of functions, the objective of operator sampling
is to fully characterize an object from at first sighfVhere
insufficient information, specifically by observing an
operator’s action on a single input, typically a discretely

supported distribution, viz; a weighted delta train. Thgasuming that the limit exists.

theory developed herein applies to so-called bandlimite i .
operators, defined as operators whose Kohn-Nirenber Remark 1.3:(1) D(A) can b_e m_terpre'Fed a§_the aver-
e number of deltas appearing in the identifier per unit

. L . . a
symbol is bandlimited. The symplectic Fourier transform . .
of the Kohn-Nirenberg symbol of an operator is referrén e and corresponds to thewer Beurling densityof

to as its spreading function, so that we are considerir?

n=(r)= ;}Ié&#{n A € [z, 2+ 1]}

operators whose spreading function is compactly su The assumption that the.sequer(d@) never van-
ishes ensures that the sampling rate depends only.on

!{P particular, we avoid the situation in which for some
set A’ D A, of higher density than\, > d; oy =
>, dndy, Whered, = d, whenever\, = )\, and

A. Identification and sampling of operators dy, = 0 otherwise.

The operator identification problem addresses thﬁm this paper we will conS|d§r mostly sampling sets
. . at are periodic subsets of a fixed lattice kn
guestion whether an operator from a given class can tb

recovered from its action on a single probing signal. Thgt%eﬂmtlon 1.4: We say that an operator clags can

. . . e identified byregular operator samplingf there exists
is, for a given class of operato#$, does there exist an )
. . . . T >0, L €N, and a periodt sequence = (¢,) such
input signalg so thatH g determinesd . Mathematically . .

. . that> " _, ¢,0,r identifies?.
speaking, we require that the map, : H — Hg | "EZI i i A — T
be injective on#. In order to be stable under noise n regular operator samplingD(A) = |lcfo/(T'L)
introduced, for example, by physical considerations Were

ported or is contained in the fundamental domain of
lattice. In engineering terms, the operators considered
characterized by limited time-frequency dispersion.

digital processing, it is reasonable to require in addition lello = #{n: 0 <n < L—1 and ¢, # 0}
that the mapd, have a bounded inverse [16]. T T "
Definition 1.1: Let H be a collection of linear opera-js the support size of the vectéty, ..., cz_1). In the

tors mapping a space of functions or distributioiéR)  remainder of this paper we will abuse notation and not

to a normed function spadé(R). If for someg € X(R), distinguish the vector € CE from the doubly-infinite
®,: H— Y(R), H— Hg L-periodizationec = (cy,).

Our work addresses the identifiability of classes of

bserators characterized by their Kohn-Nirenberg symbol

being bandlimited to a sef (the spreading suppojt

is bounded above and below, that is, if there are constag
0 < A < B < oo such that

AllHll3¢ < [Hglly < B[|H]l% (1)

for aI_I_H € H, then we say tha’H_ is identifiable V\_/ifih B. Operator representations, bandlimited operators, and
identifier g € X(R). If H is not linear, then condition operator Paley-Wiener spaces

(@) is replaced by o _ . _ _
Similarly to linear operators on finite dimensional

Al|Hy — Haln < |[Hig — Haglly < B||Hi — Hallu  gpace being represented by matrices, the Schwartz kernel
theorem implies that linear operators on any of the



classical function spaces dR can be represented bywhere £(L?(R), L?(R)) denotes bounded operators on

their kernel, that is, formally, we have
1) = [ w1 ) dy

for a unique kernek g [

3)

As operators are in 1-1 correspondence with their
kernels, they can also be formally represented by their

time-varying impulse responge their Kohn-Nirenberg
symbola, or their spreading function. In fact, formally,

Hi(x) = / har(,1) £z — 1) dt (4)
= // D (6, 0) D f(o —tydvde (5)
- / o1z, €) 2T ) de, 6)

where

hH(wat) = K‘H('xwx - t)
= /O-H(x7£) 627ri5t dga

= [y emeow @)

and the Fourier transform inJ(6) is normalized

FrE) = F(&) = [ f(z) e 28 .

Operator representations such as those givemlin

L?*(R). The space of Hilbert-Schmidt operators in
OPW(S) is

OPW?(S) = OPW(S) N HS(L*(R))
= {H € L(L*(R), L*(R)):
supp Fsog C S, oy € Lz(Rz)}.

The reconstruction formulas presented in this paper for
OPW?(S) hold formally for all of OPW (S). Operator
Paley-Wiener spaces defined by membership of the sym-
bol in generic mixed.? spaces is considered in [24]; see
also Sectiom II-D below for some examples.

C. Bandwidth of operators and analogies to classical
sampling of functions

The terminologyoperator samplingis intentionally
suggestive of the classical theory of sampling of ban-
dlimited functions, and is justified for the following
reasons.

(1) Classical sampling is in fact a special case of
operator sampling in the following sense. If for some
fixed 2 > 0, the operator clas$/ consists of operators
agiven by multiplication by functionsn € L? with
suppm C [-/2,8/2], then choosind) < T' < 1/
(@hdg = >, 0n7, we have that ford € H corresponding

@®), (@) are considered in the theorypdeudodifferential to multiplier m, Hg = ", m(nT)d,r from which m

operatorswhere we write
o(w. D) (@) = [ ole.&) i) de.
With the symplectic Fourier transforngiven by
FoF(t,v) = / / F(x,€) e 2@t qg. 4¢,

@) implies e~ 27" ny (t,v) = Foou(t,v). We say that
the operatorH is bandlimitedto the setS C R? if
supp g = supp Fsog € S.

and henceH can be recovered. In this case, our gen-
eral reconstruction formulé_(IL8) reproduces the classical
reconstruction formula. For details, see Seclionlll-D.
Finally note that in this case, sindie|o = L = 1, the
(operator) sampling ratéc||o/(TL) = 1/T coincides
with the sampling rate in the classical sense.
(2) In analogy with classical sampling, we can give
a necessary condition on the (operator) sampling rate
based on a natural measure of trendwidthof an op-
erator modeling a time-varying communication channel.

Considering now spaces of such operators we arriVe Kailath in [13] defined thebandwidthof a channel

at the following definition.
Definition 1.5: Given a setS C R?, define theoper-
ator Paley-Wiener spac® PW (S) by

OPW(S) = {H € L(L*(R), L*(R)):
supp Fson = suppng C S}

with spreading functiom(t, v) by
inf{B > 0: n(t,v) =0,Vt € R,v ¢ (—B/2,B/2)}.

Taking into account possible gaps in the spreading sup-
port S, we can more precisely define the bandwidth by

B(S) = sup | suppn(t, v :H/ s(-,v dyH 8
!In fact, withS(R?) denoting the space of Schwartz class functions (%) teR‘ ()l RX( ) 00 (®)

and S’(R?) its dual, we can associate to any linear and continuous . " . .
operator mappingS(R?) to S'(R%) a kemelx € S'(R*?) so that whereyg is the characteristic function ¢f. This quan-

@) holds in a weak sense. Below, we shall consider operaitting  tity can be interpreted as the maximum vertical extent of
boundedly on the space of square integrable functiBf@®) which g The following theorem gives a necessary condition on

fall in the framework outlined above. We refer {0 [24] for a o ; : :
detailed functional analytic treatment of operator anc:fiom spaces a set Otfssampllng for the operator class with spreading
supports.

involved.



Theorem 1.6:If S is closed and\ is a set of sampling Then [$) becomes the operator-valued integral
for OPW?2(S) with inf{|\ — u| : A\, u € A} > 0, then
H= //nH(t,V)Tt M, dv dt

D(A) > B(S).

T rQ
(3) A sufficient condition on the (operator) sampling rate - /0 /_Q na(t,v) Ty My dv dt,
is more elusive and is tied to both the area of the spreatl
ing supportS and its shape. However,|if| is small, then

it suffices to observéig(t) on a correspondingly small .
portion of the real Iine,i(F)or details, sez SecII-E. carries OUt.' HenceOPWz([O,_T]x[—Q/Q,Q/Q]) has
maximum time-dela§’ and maximum frequency spread
(4) It should be noted that not only is classical sampling
a special case of operator sampling, but also the well-
known result that time-invariant operators are character- ,
ized by their response to a delta centered at the orighn. Relation to other work
Here A = {0} and S is a subset of the-axis with In 1959, T. Kailath [[13], [[14], [[15] asserted that for
B(S) = 0. For details, see Sectign I-D2 time-variant communication channels to be identifiable
it is necessary and sufficient that the maximum time-
delay, a, and Doppler spreadj, satisfyab < 1 and
gave a convincing justification for his assertion on signal-
In communications engineering,] (4) and (5) are contheoretic grounds. Kailath considers the response of the
monly used as models for linear (time-varying) commitchannel to a train of impulses separated by at ledishe
nication channels. Théme-varying impulse respon®¢ units, so that in this sense the channel is being “sampled”
the channehy (z, 1) is interpreted as the response of they a succession of evenly-spaced impulse responses. The
channel at timer to a unit impulse at time: —¢, that is, conditionab < 1 allows for the recovery of sufficiently
originating ¢ time units earlier. Hence, iy (z,t) # 0 many samples ofiy(z,t) to determine it uniquely. To
only for 0 < ¢ < T, then H is causal with maximum prove necessity, Kailath assumes that the channel can
time-dispersiori. be identified by a probing signal, essentially both
If hy(x,t) = hp(t) then the characteristics of thetime- and band-limited. If the responsHy, is also so
channel are time-invariant and in this case the chanmiglited, the number of degrees of freedomiify can be
is a convolution operator. As mentioned above, su@stimated. This number is then compared to the number
channels are identifiable sindg;(t) is the response of of degrees of freedom in the impulse respohsgz, t)
the channel to the input signél(t), the unit-impulse at under the same time and band-limiting assumption as on
t=0. g in each variable. Comparing degrees of freedom leads
A mobile communication channel has the property thed the necessary inequality < 1.
hy(z,t) depends one, but changes as a function of  Kailath’s assertion was given the precise mathematical
rather slowly, since the change in the channel, for exaffamework described in Section A and proved|in|[16].
ple, by movement of receiver, transmitter, or reflecting In 1969, P. A. Bello[[2] argued that what is important
objects, is slow when compared with the speed of lightr channel identification is not the produeb of the
at which information travels. This slow variance can b@aximum time-delay and Doppler shift of the channel
expressed through a bandlimitation/gf (x, t) as a func- but the area of the support of the spreading function.
tion of z, that is, as a support constraint on 8preading It is notable that Kailath also asserted something along
functionof H, ng(t,v) = [ hu(v,t)e 2@ dz, as these lines. This means that a time-variant channel whose
a function ofv. We conclude that a causal doubly dispespreading function has essentially arbitrary support is
sive communications channel with maximum time dideentifiable as long as the area of that support is smaller
persionT’, andhy (z,t) bandlimited inz to [-/2,Q/2] than one. Using ideas fromi [16], Bello’s result was
is represented by a spreading function supported esnfirmed in [28].
the set[0,7]x[-/2,Q/2], that is, by operators in Building on findings in [16], [[28], [[29] a number
OPW?([0, T]x[-Q/2,9/2]) since|nx| = |Fsoul. of results have been established that are now part of
To substantiate this bandlimitation ety (x, ¢) further, the herein described sampling theory for operators. For
we denote translation byby 7; : f(z) — f(x —t) and example, the results in_[28] were extended from the
modulation byv by M, : f(x) s e*m® f(z). The latter setting of Hilbert-Schmidt operators to a much wider
is also referred to as frequency shift &8, f = T, f. class of pseudodifferential operators(inl[24]. Inl[12], the

Hét is, the spreading function is the coefficient vector of
the time-frequency shifts that a communication channel

D. Physical relevance of bandlimited operators



choice of non periodic (irregularijitter) sampling locaand themodulation operatorM on C* by
tions for operator sampling was discussed. Necessary and
sufficient conditions for the identifiability of bandlimde
Multiple Input Multiple Output (MIMO) channels were Given a vectorc € C* the finite Gabor system with
given in [23]. window ¢ is the coIIectlon{Tquc}Lp Define the

More recently, sampling results for stochastic opefull Gabor system matrixi(c) to be theL x L? matrix
ators, that is, for operators with stochastic spreading
functions, have been obtaindd [22], [32], [31]. Also, in Gle)=[DoWL|DiWp || Dot Wi ] (10)
applications, it is required to replace the identifier convhere D;, is the diagonal matrix with diagondl*c =
sidered in this paper by finite time or finite bandwidthic;, ., ..., c; 1, co, ..., cp_x_1), andWp is the Lx L
that is, smooth, signals. Local recovery results in thifourier matrixW,, = (e 27”"’”/13)575l 0-
setting, as well as a reconstruction formula that allows Remark 2.2:(1) For0 < ¢,p < L — 1, the (¢ +
for the application of coarse quantization methods priejst column of the submatrixD,W;, is the vector
to the approximate recovery of the operator are given M»T4c where the operatord/ and T are as in Defi-
[18]. Focusing on a parametric setup, the identificatiatition [Z.1. This means that each column of the matrix
of bandlimited operators was analyzed with respect &(c) is a unimodular constant multiple of an element
applicability in super-resolution radar! [1]. of the finite Gabor system with window, namely

In Section[dl-F, we address the problem of idenfe—2mira/L TqMPc}L
tifiability of operators with unknown bandlimitation.(2) Note that the f|n|te Gabor system defined above
Independently, Heckel and Boelcskei!([3].] [4]) haveonsists ofl.? vectors inC” which form an overcomplete
obtained a result similar to Theorém 2.25 characterizimight frame forC” [20]. For details on Gabor frames in
identifiability of a certain (nonlinear) class of operatorfinite dimensions, see [20], [19].1[9] and the overview
with spreading support of ared 1/2. Theorem 2.25 article [33].
gives a sufficient condition for a more general class of The reconstruction formulas in this paper are based on
operators, and Theordm 2126 generalizes the result in [@plicitly and uniquely solving[{9). for this purpose we
[4]. In addition, Heckel and Boelcskel ([3]./[4]) prove aequire conditions oiti(c) under which this is possible.
remarkable result in which they prove identifiability for Definition 2.3: [8] The Sparkof an M x N matrix F
unknown support sets of area less than one, rather th@nhe size of the smallest linearly dependent subset of

0 1 L—1
Mz = (w zg,w x1, ..., w" "Tr_1).

<1/2. columns, i.e.,
Il. MAIN RESULTS Spark(F) = min{|[z|jo: Fx =0, z# 0}
A. Properties of Gabor system matrices If Spark(F) = M+1, thenF is said to havdull Spark

The basic strategy for operator sampling described #park(F’) = k implies that any collection of fewer than
this paper was laid out i [28]. The idea is to translate thecolumns of " is linearly independent.
reconstruction problem into anpriori under-determined  The existence of Gabor matrices with full Spark has
linear system whose coefficients come from a finileeen addressed in [20] arid [21].
Gabor system, and then give conditions under which Theorem 2.4:[20] If L is prime, then there exists a
that system can be solved. More specifically, givedense, open subset ofe C* such that every minor of
Hc OPW?*(S),T>0,andL €N, letg=3", ¢,d,r G(c)lisnonzero. In particular, for such G(c) has full
for some periodt sequence: = (c,). Then from the Spark.

responsed g(z), we can derive thé, x L? linear system  Note that if L is not prime then the result of this
theorem does not hold. That is, if is not prime, then

Zig(t,v) = Ge)ny(t,v) ) for any ¢ € CZ there is a minor ofG(c) that vanishes.
whereZp,(t,v) is an L-vector computed directly from However, it has recently been shown by Malikiosis that
Hg, ny(t,v) is an L?~vector consisting of shifts of afor any L € N, we can get the second half of the
periodized version of the spreading functigp of H conclusion.

(see Lemm&317), an@(c) is an L x L? Gabor system Theorem 2.5:21] For everyL € N there exists a

matrix defined as follows. dense, open subset ofc CF such thatG(c) has full
Definition 2.1: Given L € N, let w = ¢>™/L and de- Spark.

fine thetranslation operatofT” on (g, ..., zz_1) € CF This next result states that, again assuming fhas

by prime, the Spark of the matrix:(c) is related to the

Tz = (xp_1,%0, 1, ..., TL—2), support size of the vectat.



Theorem 2.6:[30] If L € N is prime, andk < v
L, there existsc € CL with the property that
Spark(G(c)) = k+1, andsupp(c) € {0, 1, ..., k—1}.
Moreover, the set of suchforms an open, dense subset
of C*F x {0}. LQ
These theorems show that it is possible to choose a
period4L sequence such that the systernl(9) always has
a solution as long as there are no more tHamon-
vanishing unknowns on the right side. In fact, fif is Q
prime, we can say a bit more, namely that if there are no
more thank < L non-vanishing unknowns on the right
side, then we can guarantee solvability with a window T LT ¢
supported on no more thancontiguous indices.

Fig. 1. The spac®@PW?2(S) is identifiable forS (in blue) with area
1 as it clearly satisfie§ (11) arld {12.has a(T, 3)-rectification and
B. Necessary and sufficient conditions for identifiabilit(S) = Q. Such sets were considered[in][16].[[28].][29]. Recovery of
of OPWZ(S) operators iNDPW?(S) is possible using the reconstruction formula

In this section, we explore conditions under whicgE)'
the operator clas® PW?2(S) is identifiable. We give v
necessary and sufficient conditions Snunder which
identification is possible with any identifier, then char-
acterize when this is possible using regular operator
sampling. LO

In [16], [28] (cf. [29] and [24]), the following result
is given. Here and in the following},S| denotes the
Lebesgue measure of the set

Theorem 2.7:.0PW?(S) is identifiable by regular
operator sampling ifS is compact andS| < 1, and
not identifiable ifS is open andS| > 1.

The following result guarantees the existence of a T LT t
discretely supported identifier for support seétswith
|S| < 1 that satisfy certain periodization conditions. Th€ig. 2. The union of the colored setS, satisfies[(T11) and_(12).
result characterizes operator Paley Wiener spaces t#giice: OPW(S) is identifiable by a weighted delta train with

. o . period3 weighting sequence even thouglia 3)-rectification is not
can be identified by regular operator sampling. possible (note thal > 3 boxes are active). Recoveringfrom Hg

Theorem 2.8.Let g = Y, cadpr With ¢ € CL using [9) directly requires solving three systems of linequations,

chosen so thaG(c) has full Spark. ForS C R2 the one to recovem on the yellow support set, one to recoweron
: ; the red support set, and one to recoyeon the blue support set.
foIIpwmg are equivalent. 9 9 . H € OPW?(S) can be reconstructed using formulal(17). Note also
() The map®,: OPW*=(S) — L*(R), H +— Hg s thatB(S) = 2Q and that the sampling rate I7 = 3Q > 2Q.
injective.

(i) The function g identifiesO PW?2(S). _ o
(i) S is a subset of a fundamental domain of the lattice Remark 2.9:(1) It is clear that ifS is bounded, then

LTZ x (1/T)Z, that is, (11) is satisfied as soon &sis contained in a rectangle
of width T'L and heightl /7.
> Xstgrrym <1 ae. (1) (2) Note that[[IR) implies thdsS| < 1, and that if|S| =
k.t 1, the cover must be an exaEtcover, that is,
and S periodized by the lattic8'Z x 1/(T'L)Z is Z I ae
at most anL-cover, that is £ XS+(kT,£/(TL)) = "
> Xsigrerry <L ae. (12) (3) As discussed in detail in Remdrk 2.12 below, for any
k.t compact setS with |S| < 1, there existsI’, L so that

See Figure§1[}3 for an illustration of spreading suill) and [(IR) hold.
ports setsS that lead to identifiable operator Paley4) Note that [(Il) and[(12) are satisfied for some
Wiener spaces. unbounded sets with area less than or equal to one, for



example, Lemma 2.11:Suppose that for sont& > 0 and L €

o0 N, S satisfies[(I11). Then
S = +1-2"npn4+1-—2"0F) x -1 1
<nL=Jo[n " ]) 2] ZXS+(kT,Z/(TL)) SK<L ae

kt
permits the choice of' =1 andL = 1.

(5) On the other hand, it is not hard to construct dhand only if there exists a partitiofid;} X, of the set
unbounded sefS of arbitrarily small measure so that0, 7] x [0,1/(LT)] with the property that for eacfi at
for all T and L, () fails. Indeed, lefq, },eny be an MOStK of the setsA; + (KT.,¢/(LT)), 0 < k£ < L
enumeration of the countable set of rational numiigrs MeetS®. Moreover,S can be partitioned as

Fore, 6 > 0 set

N
o0 s=Js (14)
S = (FeduJ 2—e.d +an) x [-6,] P
n=0 where
We have|S, ;| < 8¢ since we are taking the union of
sets that are not disjoint, in fact, every set in the union S;=8nN [ U Aj+ (KT, E/(LT))}
contains countably many sets in the union. In order to kLEZ

show that there exist n@ > 0 and L € N such that
(11) holds, observe first that clearliI” > ¢, and there
existsn € N so that|g,, — LT| < e. But thenS, ;s — LT

intersects withS. s on a set of positive measure since

and where eaclt; admits a (7', L)-rectification with
Tl < K.
Remark 2.12:(1) If S C R? is compact andS| <
1, then it is always possible to choo§é > 0 small
[—e,e] N 27" [—€,e] + gn, — LT| > 0. enough and. € N large enough tha$ admits a(7', L)-
rectification. In fact we can also require that forat- 0
(6) If Spark(G(c)) = K < L, then OPW?(S) is sufficiently small,
identifiable if the upper bound in (I2) is replaced by |
K —1. ’—: Z |Rgm| <|S|(1+¢€) < 1.
(7) The conditions [(111) and_(L12) are related to the L (g,;m)eT
rectificationof the regions, that is, its efficient covering
by small rectangles. (See Hig 3).
Definition 2.10:Let S C R?, |S| < 1, T > 0,
and L € N be given. We say thas admits a(7, L)-
rectificationif

(@) S is contained in a fundamental domain of th?
lattice (T'L)Z x (1/T)Z, and

(2) Under certain mild regularity assumptions on a
domainsS, we can explicitly estimaté&' and L that work.
Specifically, L € N can be chosen so that all such
domains have &L, L)-rectification.

Theorem 2.13Fix A,B,e,U >0, Ne N, 0< o <

. Suppose that C [—A, A]x[—B, B] and there exist
N Jordan curveg’; such that

b) the set
(b) 1) S is contained in the interior sets of the Jordan
s°= |J S+ *TL¢/T) (13) curves,
(k,0)ezZ2 2) the sum of areas of the interior sets is less than
—¢, and
meets at most. rectangles of the fornR,,, = oo ,
10, 7] x [0,1/TL] + (¢T.m/TL), 0 < g,m < L. 3) g;e;um of lengths of the Jordan curves is bounded

The active boxesn the rectification are indexed o
by Then for everyL satisfying A, B (L —1)/2 and

<
A(U/VI+N/L) < ¢, the setS+ (A, B) has a(v'L, L)-
I'={(g;m),0 <q,m < L: Ry, N S° # 0}. rectification with|T'| < o L.

It is clear that[(1ll) and(12) are satisfiedSfadmits
a (T, L)-rectification, but Figurd]2 illustrates that theéC. Sampling and reconstructing operators
converse is not true. Howevel, {11) andl(12) allow for One of the contributions of this paper is to give explicit
the linear systeni{9) to change depending on the popakonstruction formulas for the impulse response of the
(t,V). In fact, such an observation further CharaCteriZ%ﬁanne| operator from the operator’'s response to the
regions S such thatOPW?*(S) can be identified by identifier. Such formulas illustrate a connection between
regular operator sampling. operator identification and classical sampling theory.



10 where
O Stamy =90 U Ry + (6/2,/T)).
k0EZ
Remark 2.16:(1) The coefficient sequenceg ,, are

\ defined in[(3) and are the rows of a left-inverse of the
( L x |T'| submatrix ofG(c) that allows[[9) to be uniquely
L solvable, extended to have peridd

(2) In light of Lemmal[2.111, it follows that for any
region S C R? for which regular operator sampling of
Q OPW?2(S) is possible, a formula like[(16) holds. By
T f realizing S as a disjoint union of setS; as in [14), each

of which admits a(7, L)-rectification, and moreover
Fig. 3. The setS in blue, its rectification in gray. We have =9 Where eaclit,v) € S; corresponds to the same reduced
and7TQ = 1/9. linear system in[]9) we can write

N
ZﬂtVXs tv) =Y ni(tv)
7j=1

1) Operators with rectangular spreading domains:
We begin by recalling a result from [24]. It is a specialq by [7)
case of Theorem 2.115 below, and is the simplest example N
on how Shannon’s sampling theorem can be extended tg Z/Ug (t,v) 2riv(a—t) g, — Zh (,1).
apply to operators. — =
Theorem 2.14For H € OPW?(S), S

C , .
[0, 7)x [~©2/2. ©2/2) compact and' < 1 = For eachg we can taketo =1y = 0 in (I6) and obtain

Z Z (q m) Hg(t — (¢ — k)T)

h(w,t) = e ™7y [(H > Gur)(t+nT) m)er;
nez kEZ e_2mm(q k)/L CI)%q m)( x—t+(¢—k)T)]
Xsm(T((x_t)_"T))}X[OT]@)' (15) where I'; indexes the active boxes in théT, L)-
m((x —t) —nT) rectification of ;,
where the sum converges ih?(R?) and for eacht, j [ omivs
uniformly in x. Plgm) (t,5) = / Xs; Sta,my (t,v) dv
2) Non-rectangular, rectifiable spreading domains: and
The following theorem gives a reconstruction formula j o
for operators iNOPW?(S) when S has a rectification (gm) = 53 1) kgz Bom + (/9. €/T))-

in the sense of Defintiopn 2.1L0. ,
Theorem 2.15:Suppose thats C R? and that for Settingby, ., =01if (¢,m) ¢ T},

some(to, vp), S — (to, o) admits a(T, L)-rectification, N

and letQ = 1/(TL). ThenOPW?(S) can be identified  h(z,t) = Zhj(x,t)

by regular operator sampling, and there exist pefiod- j=1
sequences g .,y = (big,m),x) and functionsd, ..,y (t,v) N L-1
for (¢,m) € T, such that =D > > [Blymys Hot = (a = K)T)
2m(t+t0) Vo Jj=1 k ¢m=0
h(x t) e—27rim(q—k)/L (I)gq ) (t, r—t+ (q _ ]{T)T)]
Y>> (b Holt — (g —F)T) L1
k (qm)er => Hg(t — (¢ —
. = g(t — (¢ — k)T)
e—2mm(q—k)/L q)(q,m) (tv T — (t + tO) + (q - k)T)] : k QiYL:O
(16) Skt —t+(@—k)T)  (17)

where the sum converges unconditionally i#(R?). where
Here

N
/ Blgmyk = D Vg€ I
¢(q7m) (t7 S) = /627”1/8 Xs(q,Tn) (t’ V) dl/ ]:1 (q’ )7 (q7 )



3) Smooth reconstruction functions in the “oversan(q,m)T), q, m € Z, then
pled” case: Note that Theorerm 2.14, and Theorem 2.15 ) T
both involve the use of sharp cut-off functions in théA([0,1]%)N U S+(0,v9)+LA(k, 0)" C U Pym.

definition of the reconstruction function®, ., (¢, ). k,teZ (@m)er (20)

The passage to smooth cut-off and hence reconstructign 9 . o .
functions is enabled by the assumption thas compact u&?gfmh(ﬁ])ecsgrizzdszzt:fndcggEp(ira)ltz;;';mpl)mg'
’ - n q,m

with |S| < 1. This allows for faster decay of the recon; .
struction functions, and for the validity and convergengreOrn Theoreni 215, and functions

of the reconstruction sums in more g_eneral fun_ctlon. B (gum) (t,8) = /627”'”5 Xg,, ., (tv) dv,
spaces. These matters have been studied extensively in

[24]. Specifically, we have the following generalization . T
of Theoren{ 2.15. Sigm) =50 U (Pym + LA(K, £)"),

, kbEZ
Theorem 2.17:Suppose thatS C R?, |S| < 1, is

compact. Then there exigt > 0, L € N, (¢9, 1), and _ —miat?)T —riaT () T—(q—k))?
a periodL sequence = (c,) such thaty = > ¢, opr hiz,t) = e Z Z [b(gam).k €

identifies OPW?2(S). Moreover, there exist periofi- b (gm)er —
sequences, ), (¢,m) € I such that Hg(t — (g — k)T) @ (g (t, © — (¢ — k)T) 2 070)t]

(21)

h(z,t) = e2riltttolro Here the identifiey = 3" ¢,e™7%"* 5,7 and the recon-

. e 5

Z Z [Dgmyx Ho(t — (¢ — K)T) struction sum converges unconditionally Ir_?(]R ). If

& (qmer the productTa |S_Trat2|onal, sayl'a/2 = p/q in lowest
o terms, then(c,e™ *""),, is periodic with period being

2mim(x—t)/LT _ - -
¢ (@ —(t+t0) + (@ =Rt =aT)] e jeast common multiple of and L. In particular, if

(18) LTa/2 is an integer, then the period is as well.

_ Example 2.19:(1) Figurel4 illustrates Theorem 2]18.
wherer, ¢ € S(R) satisfy In this case,S is the union of the red and yellow
R triangles and hence is a parallelogram of ateand
Y ort+kT)=1=> o(y+n/LT), (19 A=(LQ) with TQ = 1/I = 1/3. Theorem2.18
kez ne’ says thatO PIWW?2(S) can be identified by a periodically
R weighted delta train of perio@ = 6. However, since
where r(t)¢(y) is supported in a neighborhood of T 0 _ 10
[O,T]x[o(, E/I(/T)], and where the sum if_(1L8) converges (0 2) AT S=(21)5=1[0,LT] x[0,9)]

unconditionally inZ* and for eacht uniformly in z. admits a(T, L)-rectification withL, = 3, recovery of the
Equation [(1B) is a direct generalization pf(15) undaypreading function would only require solving a single

the assumption that(t) = Xp7(t) and @(y) = 3 x 3 linear system or, equivalently, finding the three

X[0,01(7)- period3 sequencedy, ,, in (2I) would require inverting

4) Rectification by parallelogramstt can be advan- @ single3 x 3 matrix.
tageous to conside$ to be a subset of a fundamenta{2) Alternatively, by considering the red and yellow
domain of a general latticelZ? where A = (1! 512). regions separately as in Remdrk 2.16(2)PW2(S)
Our next theorem relies on basic insights on the role e&n be identified by a periodically weighted delta train
symplectic geometry in time-frequency and generalizes period 3. However, recovery ofj(t, ) requires the
Theorem 2.15. For simplicity, we restrict our attentiogolution of two 3 x 3 linear systems and finding the
to lower triangular matriceg 4 2 ). In Section[I[:] coeﬁicientsb{q m N @7) requires inverting twa x 3
we discuss the general case in detail and compute thatrices. ’
quite involved resulting reconstruction formulds 1(38)- Example 2.20:Figured® an@6 illustrate a situation in
(412), (45), (46). whichOPW?2(S) can be identified by operator sampling

Theorem 2.18Let S C R?, |S] <1, and assume thatbut not by regular operator sampling. In this case,
with A= (7 9),det A=TQ=1/L, forsomery € R, A= (\% ﬁil/Z)' S = A[0,1)> and henceA™'S =
S+ (0,1p) is contained in a fundamental domain of thén, 1]2 admits a (7', L)-rectification withT = L = 1.
lattice LAZ?, and that( {, 127 )A™H(5+(0,10)) admits  Therefore, following the notation in the proof of The-
a (T, L)-rectification, that is, ifP,,,, = A([0,1]*> + orem[2ZIB,A = B, ¢, = 1 for all n, L’ = 2, and
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v v v
4 4
LQ 3 3
2 2
Q 1 1
T LT t 12 3 4t 1
(@) (b)

Fig. 4. The space)PW?(S) where S is the union of the red
and the yellow sets is identifiable with reconstruction folan({21)
with a periodically weighted delta train of periéd Alternatively, we
can identify OPW?(S) using a periodically weighted delta train of
period3, but we have to solve linear systems or equivalently invert
2 3 x 3 matrices. In this case reconstruction is given ). Sé

Fig. 5. (@ The the operator clas®PW?2(S) with S =
(2, 25 V2, V2+1/2)[0,1]* whose area equals and bandwidth
equals1/2 is identifiable by a (non-periodically) weighted delta
%ain with sampling densityl /2. It is not identifiable using regular

. operator sampling.  (b)" = 1 periodization ofS. For details, see
Example[2.1B for details. Example 2.20.
, v
d, = 1 — ™. By equation [[44),0PW?2(S) can be
identified by 4+
_ 1 . ., —
g=nu(B)g = NG S - emimemintV2I2 g, 3t
a delta train with non-periodic weights. 2t

Note thatB(S) = 1/2, and that sincd — ™" = (
whenn is even, the sampling density of the identifier 1T
g is also1/2. Therefore, by Theorem 1.6, this identifier
achieves the minimal sampling rate for this region.

Next we observe that this region cannot be identified
by regular operator sampling for any value ©f or (@) (b)

L. .Sm.ce ‘S‘ = 1, by Remard20(2), thd'Z x QZ- Fig. 6. (a) For periodic operator sampling to succeed Wittaving
periodization ofS must be an exacL-cover. In other e, 1, we require that tHg, Q periodization ofS leads to an exact
words, the inequality in.(12) must be an equality. It can cover of the time-frequency plane. (b) The central piecehef t
be shown, however, that for any value Bfand L, this setS. For the significance of this set, see Exaniple 2.20.

is not possible. Details of the argument can be found in

Section III-J.

2 3 4 t 1.85.212.

—_t

spacesO PW>=2(S) andOPW?2>(S) by

. o _ PW>2%(S) = {H € L(L*(R), L*(R)):
D. Operator Sampling as a Generalization of Classical (8) =A{ (L(R), L*(R))
Sampling. suppny C S, ||og||L=2 < oo}

By generalizing the setting to other function space¥here
we can more precisely illustrate the connection between 1/
operator sampling and the classical sampling theorem lowll L2 = H/|0H('a€)|2d€HOO
of Shannon, Whittaker, and Kotelnikov among others,
and also the connection with the well-known fact that @"d
time-invariant operator can be identified by its impulse 9007y 9 9 '
response. OPW=>(S)={H € L(L*(R),L*(R)):
Definition 2.21: We define the operator Paley-Wiener suppna € S, ||om ||z~ < oo}
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where Chooser, ¢ € S(R) such thasuppr C [-1/2,T/2],
) 1/2 r(0) = 1, suppp C [-Q//2,Q/2], and p(v) =
ol = ( / o (2, )| de) 1 on [<Q/2.9/2. If g = 3 8up, then Hg —

>, m(nT) 6,7, and it follows from Theorerh 2.17 (and

([24], Theorem 4.2)O PWP4(S) is a Banach space with by direct calculation) that

respect to the normiH |[opwr.« = ||of] Lra-
Note that convolution with a compactly supported So(t)m(z —t)
kernel whose Fourier transform is ii¥ is an operator in

OPW>2 and multiplication by a bandlimited function = () Z(Hg)(t +ET)p(x —t = kT)
in L2 is an operator irO P2, keL
1) Identification of convolution operatorsirst, take =7(t) Z Z m(nT) 6¢—pyr (t)p(x —t — kT)
H to be ordinary convolution byhg(t), that is, k€ZnEL
hg(x,t) = hg(t). In this caseH can be identified in = Zm(”T)‘p(m —nT)
principle by g = dp, the unit impulse at the origin, since neZ

Hg(x) = hy(z). Thatis,A = {0} is a sampling set for _ _ _
the class of convolution operators. Translating this infY SUPPOrt considerations on the functiei). Therefore

our operator sampling formalism results in somethinje nhave the summation formula
slightly different.

Assume thath is supported in the intervald, 7", m(z) = Zm(nT)(’D(m_nT)
h € L[? and thatT > T’, andQ > 0 are chosen
so thatQT < 1. In this casenu(t,v) = h(t)do(v) where the sum converges unconditionally id. This
and og(r,&) = h(). Thereforeoy € L°2 and recovers the classical sampling formula when sampling
H € OPW>=2([0,T"| x[-Q/2,9/2]). above the Nyquist rate.

Applying Theorem[2.17 to this situation, note that
if g = >, 0, then Hg is simply the T—periodized
impulse responsé(t), and it follows from the theo- E. Sufficient conditions on the sampling rate in operator
rem (or by direct calculation) that with, ¢ € S(R), Sampling

r(t) = 1 on [0,7"] and vanishing outside an interval As was observed earlier, a natural measure of the
of length 7" containing[0,7"], and with(0) = 1 and  sampling rate in operator sampling is the quaniity\)
supp ¢ C [—/2,Q/2], (Definition [1.2), which in the case of regular operator
r(t)Z(Hg)(t—i—kT)cp(w —t—kT) sampl?ng ichHQ/(TL). A necessary conditi_on on the
sampling rate in operator sampling was give in terms
of the bandwidth of a channel (Theorém]1.6). The goal
=D r()h(t + kT —nT) p(z — t — kT) of this subsection is to investigate sufficient conditions

nez

kEZ

ReZnel on the sampling rate in regular operator sampling that
= h(t)p(z —t — kT) = h(t). guarantee identifiability.
kez In the classical sampling theory of functions, the

Here we have used the fact thatt) = 1 on [0,7'] sampling rate must exceed the reciprocal of the area of
and vanishes outside a neighborhood®fl’] and that the bandlimiting set; and regardless of the measure of
Sppl@ —t —kT) = 1 by the Poisson Summationthe bandlimiting set, a (possibly high density) sampling
Formula and in consideration of the support constrairi€t always exists. As mentioned above (Theofem 2.7),
on @. Indeed the theorem says that the shim ¢(z — operator sampling oD PW2(S) is only possible if the
t—kT) converges td in the L°° norm and in particular measure ofS satisfies|S| < 1, and necessary sampling
uniformly on compact sets. rates in operator sampling depend on the geometty. of

2) ldentification of multiplication operators (Classical The main result in this paper relevant to finding a suf-
Sampling): To compare Theorem 2.17 with the classicdicient condition on the sampling rate for identification
sampling theorem, tak& to be multiplication by some of OPW?(S) is the following.
fixed functionm € L? with suppm C [-Q/2,Q/2] Theorem 2.22:Let S C R? be compact|S| < 1,
then ny (t,v) = do(t)m(v), h(t,x) = do(t)m(z —t), € > 0, and suppose that has a (7', N)-rectification
and oy (z,§) = m(z). Let Q' > Q andT > 0 be satisfying (|I'| + 2)/N < |S|(1 +€) < 1. Then for
such thatQ'T < 1. Thenoy € L>* and H € every sufficiently largel € N, OPW?(S) can be
OPW2([-T/2,T/2] x [-£/2,9/2]). identified via regular operator sampling by an identifier
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g=>_,¢cnonr, Wherec = (c,) is a periodL sequence operator to have, that is, the reconstruction formulas for

satisfying OPW?2(S) depend on knowing the regiao$i. However,
llello <1511 +¢) in some application$' may not be known precisely, but
L ' only some information on its size, geometry and location

Moreover, if L is prime, then: can be chosen with; = 0 is given by physical considerations. In this section we
if ||cllo <j < L, that is, such that is supported on its address the question whether such operators can be
first ||c|lo indices. sampled and reconstructed in a stable matter.

Remark 2.23:(1) Note that once an appropriate Theorem 2.25For A, B,U,e,c > 0 and N € N,
(T, N)-rectification of S is found, the parametei’ let H(A, B,U,N,¢,0) contain all operators such that
associated to that rectification is fixed. Subsequentiypp Fson = suppny C [—A, A]x[-B, B] satisfies
a periodic weighting sequence can be found for tfiee hypothesis of Theorein 2]13 with < 1/2. Then
delta trainy"  ¢,d,r whose relative support is boundedhere existd. € N and anL-periodic sequencg:,) such
essentially by the area of. Moreover, if L is prime, thatg=3_, c.d, .  identifiesH(A, B,U,N,¢,o0).
and ¢ is supported on{0, 1, ..., ||c|o — 1}, then this ~ The reconstruction of an operator €
represents dunched operator samplinthat can allow #(A,B,U,N,¢,0) is then carried out as follows.
for the efficient identification of the channel in therirst chooselL as in Theoreni 2.13 and ldty denote
following way. the rectified supportof H, that is, the union of

If the area ofS is small, and if K represents the (1/VL) x (1/v/L) boxes that covesuppny having
“memory” of the channel (that is, for eaah 7(t,r) area not greater thah/2. Under this assumption, we

is supported in the intervdd, K1), then the response ofdetermineRy. In the final step, we apply the operator
the channel to the delta tralR, ¢,,6,7 is supported on reconstruction formula developed in Theorém 2.15 to

the set OPW?*(Rg).
U ([0, T|ello + K] + §LT) To determine the rectified support gf; with H €
jez H(A,B,U,N,e, o), we will apply ideas from com-

pressed sensing. Indeed, Lemma 3.7 below, shows that
fromHY cnd,, /7, We can compute a length vector

U (ITlello + K, LT) + jLT). y(t,v) with y(t,v) = G(c¢)x(t,v) and where the un-
jez known discrete support of the lengft? vectorx(t, v)

The “dead time” represented by this set can be used Or}codes the support of the bivariate functigf(t, ).

other purposes. Note also thatT — (Tclo + K)| > n fact, re_covering ‘_[he vectax (¢, v) for a single point
LT(1—|S|(1+ ) — K/(LT)) so that the length of the (t,v) provides us with the support structuregf. Note

dead time within each period of the channel respontshe"’It the conditions given above imply that, ) has at
. ) most L /2 nonzero components.
increases withl..

(2) Another interpretation of this result is that the sparsi The fuII—Spa_rk matrixG(c) p"'?‘.ys the role of anea-
of the matrix G(c) in the linear system[]9) can besurement matriband has the ability to recover ary/2-
: sparse vectox(t,v) [19], [20]. But finding an L/2-
controlled by the area of the spreading support. In thsI arse vector requires consideration of every support
case,||c|lo/L gives the fraction of nonvanishing entries’ qu . C y SUPp
in each column ofG(c). HenceS with small support Structure out of L/227 possible ones, which is hardly
guarantees thaf/(c) can be chosen to be sparse. possible for L, not being of the order,3,5. If we
Remark 2.24:The “dead time” referred to above carkNOW that far fewer tharl./2 cells are active, then we
be thought of as a measure of the capacity of t%&" try to apply compressed sensing algorithms such as
unknown. bandlimited channel in the sense that Onl%psis Pursuit or Orthogonal Matching Pursuit to recover
during this time can data be sent over the channel. with from y = G(c)x. See [[3], [4], [10], and([5] for

this notion of capacity, the above discussion says tH$SCriptions of the recovery algorithms. ’
the capacity of a time-varying channel decays linearly I light of Theoreni 2.8 we can extend Theorem 2.25

with the area of its spreading support. in a different dire_ction_e_md qbtain a large class of opera-
tors that can be identified via regular operator sampling
_ _ _ without knowledge of the support set. This class is larger
F. Sampling and reconstruction of operators with smalli, 5, the class of area 1/2 considered in[[3],T4].
but unknown support Theorem 2.26:LetT > 0, L € N andc € C* be cho-
Just as in classical sampling, operator sampling rgen so that(c) has full Spark, and lej = 3, c,0n7.
quires full knowledge of the bandlimitation we expect afor 0 < A < 1, define the operator clasgr 1 (A) to

and hence vanishes on the set
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be the collection of operator& in OPW?(R?) such [1l. PROOFS OFTHEOREMS
that for some fixed fundamental domafihof the lattice 5 proof of Theoreri 1.6

TL)Z x (1/T =Sy C R and
(TL) (I/T)Z , supp i " SinceS is closed, each-sectionS; of S is closed and,

hence, measurable. Thereforgs (¢, -) is a nonnegative

> Xsuttreyrry <AL ae. (22) measurable function anfl, xs(t,v) dv € [0, oc] is well
k¢ defined for allt € R. It suffices to show the result for
As = || Ja xs(-,v)dv|_ finite, the infinite case then
Then the following are equivalent. follows from this.

Assume thatA is a set of sampling withD(A) <
Aoo < Ao
Then, we can choose a sBtwith positive measure

() A<1/2+1/(2L).
(i) Forall Hy, Hy € Hr(A), Hig = Hyg implies

H, = H, .
o - o - . and [, xs(t,v) dv > ax for all t € P. Assume without
(i iﬂéé@ﬁ;)'den“ﬁable with identifierg in the " of generalityP C [0,1]. For anye, there exist

my € PW(St) with ||thL2 =1 and Hmt|A||Z2 < e

Boelcskei and Heckel[([3]/[4]) have shown that, fot € P. Definexy(z,y) = mg—y(y) for x —y € P, and
operator classes like those in Theorlem P.25, if ably 0 otherwise. Therhy (x,t) = ky(z,z —t) = my(x —t)
1 cells are active, these can be determined, and heae®l 7y (t,v) = m(v) for t € P, and 0 otherwise,
the operator class can be identified without knowing tte® H € OPW?(S). Observe that|joy|: = /|P].
spreading support. Their analysis and derived recové¥pte that it is easily seen that }°,_, c\d, identifies
algorithms rely on the fact that by varying,») you OPW?(S), then(c,) is bounded. Also, by hypothesis,
obtain a family of equationg(¢,v) = G(c¢)x(¢t,v) where there existsK' € N which bounds the cardinality of
the vectorsx(t, v) have identical sparsity structure. This\ N [z, z + 1] above for allz € R. We compute
allows for the recovery of almost every operator 1[10]

HL2 /‘ZC)\RHx)\‘ dx

[5]) in the given class.

In Theorem[ZB we give up joint sparsity, i.e., the AEA AEA
sparsity structure ot (¢, v) varies with(¢, ). A compro- /| Z ez | dx
mise based on the characterization found in Lernma 2.11 \ea
that guarantees joint sparsity and allows us to use
Theorem[ 28 is given by the following generalization < ez~ /‘Zmr A( ‘ dzx
of Theorem 3 in[[8] (cf. Theorem 3 ir_[4]). Note that AEA
the additional parametét can be chosen independently < (e |7 K Z/Imx AN da
of T"and L, i.e., choosingk large does not increase the \eA
sampling rate, nor the size of the compressive sensing A1
problem, i.e., of the matrix3(c). = |l(ex) 7~ K Z/ [y A(V)[? dx
Theorem 2.27:For T > 0, andL € N, let c € CL be AEA
chosen so thaf(c) has full Spark. Giverk € N, define = (e~ K Z e (V)2 dt
the operator claskr . xk € OPW (R?) by H € Hr [k 0 i=x

if and only if suppny = Sy C [0,LT] x [0,1/T]
satisfies §||(c>\)||§xK/ .t = ||(cy)|2 K €2.
0

(a) ZXSHJr kre/rryy <L -1 ae., and

(b) each setd; in the partition of[0, 7] x [0, 1/(LT)]
given in Lemmdﬂl can be written as a unioB- Proof of Equation(9)

of sets of the form[0,T/K] x [0,1/(KLT)] + Definition 3.1: The non-normalized Zak Transform is
(¢T/K,m/(KLT)),0<¢,m< K. defined forf € S(R), anda > 0 by

Then almost every operator il € Hr x can be Zof (t,v) Zf (t — an) eXmian

identified by regular operator sampling. nez

Note that alternatively to choosing, we could at-
tempt to introduce joint sparsity by assuming that, for '
exampleny is smooth. Zof(t +a,v) = *™WY Z,f(t,v)

Z.f(t,v) satisfies the quasi-periodicity relations
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and
Zof(t,v+1/a) = Zaf(t,v).
Vva Z, can be extended to a unitary operator fraf{R)
onto L2([0,a]x [0, 1/a)).
The following Lemma connects the outpifg(z)

where ¢ is a delta-train, to the spreading function €N Withg =3-, ¢,

nH(t, I/).
Lemma 3.2:Let a > 0 be given and ley = >, dnq.
Then for all(¢,v) € R?,

(Za o H)g(t,v)
=a! Z Zm{(t + ak,v +m/a) e~ 2"Vka
k. m

whereny is the spreading function of the operathr.

Lemmal3.2 yields the result. [ |
Changing summation indices in_(23) by = nL + ¢,
0<¢<L-1,n €7, yields the following lemma.
Lemma 3.4:Let 7,2 > 0 be given such thai’2 =
1/L for someL € N, let (¢,,) be a periodE sequence.
S.r, and for all(¢,v) € R?,

(Z1jo o H)g(t,v)

L-1 L-1
=Q ) ey DYy (t+aTv+mR)
q=0 m=0 k

e—27rizqu e—27ri1/mq/L (24)
where ngp(t, v) is the (1/Q, 1/T)—quasiperiodization
of ny defined below.

Proof: It can be verified by direct calculation that pefinition 3.5: Given a bivariate function f(t,v)

if g = >, 0na then (Hg, f) = (nu,Z.f) for all
f € S(R) where the bracket on the left is tHe® inner
product onR and that on the right th&? inner product

on the rectanglé0, a] x [0, 1/a]. Periodizing the integral

defining theL? inner product on the left gives

1/a ra
o Zuf) = [ [0S natt+ kaw -+ ma)
k m

e 2mivkag f(t,v)dtdv.

Since this holds for every € S(R), the result follows.
[
Lemma 3.3:Let 7,2 > 0 be given such thal’2 =
1/L for someL € N, let (c,) be a periodE sequence,
and defineg = " ¢, d,7. Then for(t,v) € R x R,

(Zl/Q o H)g(t7 V)

L—1
=0 g C_q
q=0

ZZnH(t—I—k:/Q+qT,V—I—mQ)

k. m
e—2m’(u+mQ)qT e—27ri1/k/Q

(23)
Proof: Note first that lettingj = nL — ¢, 0 < ¢ <

L-1,ne?Z,
L—1

g = Z Cj onT = Z Z CnL—q 5nLT—qT

q=0 nez

L-1
= Z c—dT_q/10 (Z 5n/9>-
q=0

nez
For a € R, the spreading function off o T, is ng(t —
a,v)e?™* and hence

(Zyjq 0 H)(ch 5nT> (t,v)

-1
= Z c—q(ZyjgoHoT_y10) <Z 5n/9> (t,v).
q=0 nez

and parametersd’,Q2 > 0, define the(1/Q, 1/T)-
quasiperiodizatiorof f, denotedf?”, by

Pt v) = Z Z f(t+k/Quv+1£/T) o~ 2mivk/Q
koot

(25)
whenever the sum is defined. Note th&®”(¢,v +
1/T) fOP(t,v) and fOP(t + 1/Qv)
2w/ fQP (¢ 1) for all (t,v) € R2.
Lemma 3.6:Suppose thatupp(f) = S is contained
in a fundamental domain of/Q7Z x 1/T Z. Then

Fltv) =D Pt — k/Qv —¢/T)
k l

X(o,1/0)(t — k/Q) X1 /7y (v — £/T) 2™/ Xg(t,v)
(26)

where if f € L?*(R?), the sum converges if? and
uniformly on compact sets.

Proof: Under the given assumptions, the functions
being summed in[(26) have pairwise disjoint supports.
Since|S| < 1, the sum converges ih? if f € L?(R?).

Moreover, since on each compact set, the sum is finite,

we get uniform convergence on compact sets.

To complete the proof, we show that[26) holds point-
wise. SinceS is a fundamental domain, forv) € S
only the (&, ¢) = (0,0) term survives in[(25). Hence, for
all (¢,v),

FOP(tv) Xs(t,v) = f(t,v).
By direct calculation,

FP ) =Y Ot —k/Qv —T)
l

k
Xpo.1/0)(t — k/) Xo1/71(v — £/T) 2mkv/2
for each(t,v) € R2. .

Lemma 3.7:Let 7,2 > 0 be given such thai’2 =
1/L for someL € N, let (¢,,) be a periodE sequence.
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Then withg = > ¢, 67, (t,v) € R?, and p = from M the row and column containing that entry, and

0,1,..., L—1, call the remainingd — 1) x (d — 1) matrix M’. Define
—2mivTp Pm = Cjpm-
¢ ; (IZVQ o H)g(t +Tp,v) The remainder of the proof consists of showing that
— , the coefficient op,, is nonzero. In fact, it is a product of
_ q m —2mivTq , QP M y
=9 Z (T M™c)pe ng (E+Tq,v+Qm). o of W, which, sinceL is prime, never vanish due
¢m=0 27) to a classical result known as Chebotarev’s Theorem.
Proof: (Theorem[26) Letk < L and choose
Proof: By (24), k columns of G(c). Applying the algorithm described
(Zy )0 0 H)g (t +pT V) above to the non-squark x k matrix M, formed by
/ 1 those columns, we can identify a monomjal;,. The
key observation is that at each step in the algorithm,
=0 _ (t T, Q
ng]c 1 ZU Flat+p)Tvtmd) a variablec; appears for whicth < j < k. Oncek

rows of M, have been eliminated, define to be the
k x k submatrix ofG(c) consisting of those rows and

Making the change of index— ¢—p, rearranging terms the columns ofG/(c) chosen originally.

6—27r21/qT e—27rwmq/L )

and using the fact thatT = 1/ yields Since the polynomiadlet(A/) is not identically zero,
and since at least one nonvanishing monomiale{ /)
(Z1ya 0 H)g(t +Tp,v) has only variables; for 0 < j < k appearing, there is
(o _omim{q—p)/L ac e CL, with supp(c) C {0, ..., k— 1} such that the
= Z Z Cg-pp€ T columns ofG(c) are linearly independent.
g=0 m=0 . Since the exceptional set of suclis the zero set of a
ngp(t +¢T, v +mQ) e rva—pT, polynomial ink variables, its complement is dense and

open inC* x {0}. Hence the (finite) intersection of these
sets over all choices df columns ofG(c) is also dense
and open inC* x {0}. |

Since (T4 M™c), = c,_qe?™™P=9/L | the result fol-
lows. [
Letting

Zio(t,v), = (Z H)g(t + pT,v) e~ 7¥PT (28
Hgll:v)p = (Zyja 0 H)g(t +pT,v)e (28) D. Proof of Theoreri 218

and ' ' Proof: Note first that by[(ZB) and (29),
e (V) (qm) = 1y (t44T, vpmQ) e 2mvdl g=2miam/L,
(29) //
we have that Z 0.Tx[0.9] Zarg (2, vl dt du
L—1
Zitg(t.0)y = Y Gl tam) Mt g - / [ \zyeHg(t)Pdidy = |Hg:
Gm=0 Y ’ [0,7]x[0,L9]
which is [9). and
C. Proof of Theoreri 2.6 Z // (V) gm|2dt dv
We first recall and outline the proof of Theorém]2.4. gm=0 7 OTI0, Q]
Given any square submatrix of/(c), call it M, = QHnH | 22 (jo, 277 % [0,L9) -
det(M) is a homogeneous polynomial of degréein
the L variablescy, ¢, ..., cp—1. In order to show that (i)=(iii). If (L1) fails, then there exist integerg and

this polynomial does not vanish identically, it suffices tawy with S” = SN S+(moLT,ng L) is a set of positive
show that there is at least one monomiadlin()/) with measure. This implies that there exists an operatar
a nonzero coefficient. OPW?(S) with spreading functiom; € L?(R) \ {0}

Such a monomialp,,, is defined recursively as fol-and n®” = 0. Indeed, asS’ C S+ (moLT,noLsY), we
lows. If M is 1 x 1, thendet(M) is a multiple of a haveS’, 8" = S'—(moLT,noLQ) C S andn(t,v) =
single variabler; and we definey, = ¢;. If M isdxd, xg (t,v) — xs/(t,v)e2™ ™o =£ 0 but n9F = 0. Then
let c; be the variable of lowest index appearing. Zp, = 0 which is equivalent ta{g = 0, showing that
Choose any entry o/ in which ¢; appears, eliminate (i) fails.
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Assume now that[{11) holds, and, without losB. Proof of Lemma=Z2.11

of generality, su C [0,LT] x [0,LL], so that . : S QO (i
o 3 Y, SUpP7 = [ ] x| ] Proof: Note first that withS° given by [I3),
n |[O,LT]><[O,LQ] =1n.
If (L2) fails,Then there exists a set of positive measure Z XS+(kT,/(TL)) = Z XSo+(qT,m/(TL))
Awith 37, o Xsygre)(t,v) > L+1, (t,v) € A k.l 0<q,m<L

Hence, there existsl C A of positive measure andgg that [IP) is equivalent to
a fixed collection of L + 1 rectanglesR; , indexed
by A out of the L? rectangles of siz€0, T]x[0, ] sup Z XSo+(qT,m/ (L)) (t, V) < L.
tiling [0, LT %[0, L§2] with Z(W)eA X+ (ke (tv) > (tV)€[0,T]x[0,1/(TL)] o< g-m e,
L+1, (t,v) € A SinceG(c)|x hasL +1 linearly  assume thaf{12) holds. Then for eaghv) € [0, T]x
dependent columns, we can choose a nontrivial vector 1 /(TL)] there is a uniqué < n < L and || = n
supported om\ with with 0 = G(¢)x, and, this allows us gych that
similarly to above to define a functiayp; # 0 supported

on A C S with G(c)ny(t,v) = 0. As before, we Y Xsor(qrmyrry(tv)
conclude thatdg = 0 while H # 0. 0<g,m<L
(iiiy =(ii). Following the arguments above, = Z XSe+(qT,m/ (L)) (t,v) =n.  (30)

(¢;m)er
Al|lH||gs < ||H : < B||H||gs
15l 1]z 15z For each suclw andT’, define the set

with A is the minimum over all singular values éfx L
sub-matrices ofG(c) and B is the maximum over all ~ “nr = {(t;¥) € [0, 7] x [0,1/(TL)]: (30) holds}.

singular values of. x L sub-matrices ofx(c). This collection of sets forms the desired partition of
(i)==(i). Obvious. B [0,7] x[0,1/(TL)]. It is clear that the set§; defined
in (14) satisfy the required conditions.

For the other implication, ifA; + (KT, ¢/(LT)), 0 <

E. Proof of Theorerh 2.13
k, ¢ < L, meetsS° at mostL times, then
Proof: Let L € N be as described. We will show

thatS meets at most L rectanglesk, ,,, with 7' = VL. sup Z XSe+(qT,m/(TL)) (t; V)
To this end, note that a Jordan curgg with length (E)EOTIX01/(TL) o<gm<L
) L ) ) ) = sup
u; € ((k; 1)/@, k:z/\/f)_, ki € N, touches at mostk; s AT,
rectanglesi, ,,, in fact, this bound is rather pessimistic
and only sharp fok; = 1. Note that sup Z XAj+(qT,m/(TL))(t> v) < L.
1SN o< m<L
N <
VIU = VIS u .
i=1
N N G. Proof of Theorerh 2.15
> VLY (ki —1)/VL=()_k)—N, .
] e Proof: Suppose first thatty, v9) = (0,0), and that

¢ is chosen so thati(c) has full spark. By the support

and, hence, the number of rectangle&)S) needed to assumption orf, Z7) implies that for0 < p < L — 1,

cover the boundargsS of S satisfies @) takes the form
N N L—1
B(@S) < Z B(CZ) < 241% < 4(\/EU + N) ZHg(t7 I/)p _ Z G(C)p,(q,m) nH(tv V)(%m)'
i=1 i=1
q,m=0

We concluq_e th.at the "fat” boundary, that is, they'Lx | et [bgmy] bE @ left-inverse of thel x |T'| matrix
1/V/L rectification of the boundary has area boundef@g(c)p (m))o<p<L.(qmyer- That is, for every(q,m),

above by (¢,m'") eT,

AWLU + N)/(VL)? = 4U/VL + N/L) < e.

L—1
1 ..
b G(O)p (o) = = €ETALE 5.
It follows immediately, that at mostL setsR,,, are pz_% (@m)p A=p(am) = qa’Tmem

needed to coves. | - (31)
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Again by support considerations o, ny € it follows that S = U(q,m)er S(q,m)» that the union is

OPWQ( ) satisfies disjoint, and that
7"t v)x 01/9() 01/T}() Xsiqum (t:¥) = Y _ Xor)(t = k/Q — qT)
k0
)Xp0,77(t — ¢T)X 0,01 (v — mA),
; ) [0 Xjo.0(v — /T — mQ) Xs(t,v).
and for each(q,m) € T, Therefore,
t
Ny’ (t + qT,v + mQ)X o 1) (t) X (0,01 (V) i (&, VL)_1
L—1 :
miv(q— = b —2mi(v—mQ)(¢—p)T
= bigmyp Xjo,11(8)Xpo gy (v) 77PT ( 2; _ Vamp€
p:O q7m)€ 7p_0
(Z1/q © H)g(t +pT,v). > Hglt —n/Q — (g —p)T) ™ X, (t,v)
nez
Therefore, by the quasiperiodicity of the Zak transform, L1
— —2mi(v—mQ)(q—p)T
ng(ta v)X[0,1/0)(8)X[0,1/71 (V) Z {Z Z blgm)p €
I—1 (g;m)el - p=0neZ
- Z Z big.m)p Xj0,7)(t — ¢T)X (0,0 (v — mQ) Hg(t —nLT — (q — p)T) 2™ LT XS (V)]
(g;m)el’ p=0
2mi(v—mQ)(q—p)T (Z1/Q o H)g(t — (¢ — p)T,v). Extendingb .., to have periodl in p, it follows that
Applying (28), na(t,v)
L—1
nu(t,v) = nﬁp(t, v) Xs(t,v) = Z [Z Z b(gm) pnL e 2mi(v=mQ)(q—(p—nL))T
= Z 2/ QP (4w — )T (¢:m)€er - p=0 neZ
e Hg(t - (q— (p— nL))T)Xs,, ., (t,v)

[Xj0,1/01(t = k/Q)X[0,1/7)(v — £/T) Xs5(t, )]
Z Zb(qm —2mi(v—mQ)(q—k)T

L1

— Z e2m’ku/Q Z b(q,m),p e27ri(1/—€/T—mQ)(q—]u)T (gmer &
(@;m)€p=0 Hy(t — (¢ —k)T)Xs,, ., (t,v)-
(Z1ja 0 H)g(t = k/Q = (¢ —p)T,v = £/T)

Finally, writing
[Xjo.1)(t = k/Q = qT) X 0y (v — £/T — mQ)Xs(t,v)]

L-1 h(z,t) = /n(t, v) 2@y gy,
_ Z e27rz'k1//Q Z b(q m)p e27ri(1/—mQ)(q—p)T
(gmyelp=0 yields [I6) with(tg, o) = (0,0).

—omivkQ e To complete the proof, note that for almost everthe
€ (Ziya o H)g(t — (g = p)T,v) set, {v: (t,v) € Sgm)} IS contained in a fundamental
Xyt — K/ = qT) X 01 (v = £/T —mQ)Xs(t,v)]  domain of the latticeTZ of R. This implies that the

L-1 o N . measure of each such section is no more thyan and in
= Z b(g.m),p €T TMED@P) particular that for almost evert; Xg,, . (¢,-) € L*(R).
(g;m)€T,p=0 Therefore, by Plancherel's Formula,
ZijqoH)g(t — (qg—p)T,v
(Z1jq o H)g(t — (g —p)T,v) // Dt ) dt ds

[Z Xt — k/Q — qT)

b 2
k¢ = //‘/62“”8 XS gm) (t,v)dv

X v—AL/T —mf) Xst,u].
[O,Q]( / ) ( ) _ // |XS(q,m) (t,l/)|2 dv dt = |S(q,m)|2 < 00
and for almost everyt, s),

S(q,m) =5N <g Rgm + (k/€, K/T)>7 |(I)(q,m) (t,s)| < /XS(q,m) (t,v)dv < 1/T.

dsdt

Defining
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Hence®, ) € L? N L>=(R?). Convergence of the re-combining [38) with [(3R) yields

construction sum id.2(R?) follows from the observation

that Hg € L*(R) (see Lemm&3]2) and basic propertles( ’ )

of the Zak Transform (see e.d., [11], Section 8.2). Z Z b
q,m)

w (M_, Ty H)g(t —tog — (¢ — k)T
If (to,10) # (0,0), we formally compute sl o~ (g=K)T)

k 7=0
e—27rim(q—k)/L e—27ri(:c—t—t0+(q—k)T)V0
H = // 77H t I/ MTt dt dv . q>(q,m)(tv(x_t_t0)+(q_k)T)
_ e27r2(m+t—t0)1/0
// ne (t + t(), v+ V()) ﬂ+t0Mu+V0 dt dv Z Z b(q,m),k‘ 6—27ri(t—to—(q_k‘)T)V0Hg(t _ (q _ k)T)
§=(to.v0) k (g;m)er
=Ty, M, H, o~ 2mim(g—k)/L ,~2mi(a—t—to-+(q—k)T)vo
q>(q,m)( ) (33‘ —t— tO) + (q - k)T)
whereng;(t,v) = e 2™ g (t + to,v + 1). Taking = e2milt+to)o
inverse Fourier transforms — x on both sides, we —omim(g—k)/L
obtainh (¢, z) = e 2™ hy (t + to, x) e~ 2™ which zk:( Z ) bigmyk Hg(t — (@ —k)T)e
is g,m)e
q>(q,m)( ) (33‘ - (t + tO) + ((] - k)T) :
hi(t,x) = 2™eti=tolvo p (¢t — 45, 2).  (32) u

H. Outline of Proof of Theorem Z.117.

With S = S — (to, ), we can applyl(I6) wittito, o) = The proof follows that of Theorefl 215 once we es-
(0,0) to reconstructh; from Hg with the samey = taplish that we can replace the sharp cut-offg,;) and
> cndnr, that is, X0,y by smooth ones. Sincg is compact andS| < 1,

for 6 > 0 sufficiently small, the se$s = S+[—46, 6] also
satisfiegSs| < 1. Since Theorermn 2.15 allows us to shift
hi(x,t) the region, and sincgS| < 1, we can assume without
Z Z b(g.m). ng (t—(q—k)T) e—2mim(¢—k)/L  loss of generality that there exi§t > 0 and L € N
b (qm)er such thatS C (0,7L) x (0,1/T) and thatSs has a
(T, L)-rectification. SinceS C U myerRym = R, itis
sufficient to prove the theorem with PW?(S) replaced
by OPW?2(R).

By Lemmd3.y, giverl] € OPW?(R) with spreading
functionng (¢, v), and given any weighted delta train of
the formg = )" ¢, onr wherec = (¢,) Is a period-
L sequence,[(27) holds W|th replaced byny for
all (¢,v) in an e-neighborhood of0, 7'1x [0, ], R, =
([—€/2,T + €/2]x[—€/2,Q + €/2].

Let r, o € S(R) satisfy

suppr C [—€¢/2,T +¢/2], (34)
supp ¢ € [—€/2,Q + €/2],
so thatsuppr(t)@(v) C R, and
drt+kT)=1=) 3(r+nQ), (35)
kEZ nez

for all (t,v) € R%. Fore < 4, it is not hard to show that
if Rym € R then

P (g (t,5) = €70 Dy ) (t — o, 5). na (6 v)r(t — qT)p(v —mQ) = 0. (36)

(I)(q,m)( ) (x - t) + (q - k)T) (33)

where

<I>(q7m)(t,s) = /62“”5 X§<q,m>(t’ v)dv

and

Stam) = S0 | Rgm + (k/Q,0/T)).
kEZ

Observing thatS, ;) = S(gm) -+ (to, v0), We obtain
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Therefore, As before, we will set

nH(t’ y) = Z ngp(t7 ]/) T‘(t - QT) (,/5(1/ — ’I’)’LQ) (I)(q,m) (t’ S) = /627ri1/s XS(q,m) (t, 1/) dv
(g;m)eT
: . _ where
Following the proof of Theorein Z2.15, with{¢) replacing T
X[o,7](t) andp(v) replacingX o) (v), S(gm) = 51N kLZJ (Pom + LA(K, €)7).
, LT
nu(tv) = Y > bgmype TETmOEHT We will derive reconstruction formulas and show that

(gm)er k if ay2/ay1; is rational, thenOPW?2(S) can be identified

Hg(t — (q—k)T) Rigm)(t,v) with a weighted delta train and if;a,; is rational as
well, then the coefficient sequendg,) of that delta
train is periodic and we are in the framework of regular

Rgm)(t,v) operator sampling.

i 2
_ Zr(t —kJQ — qT)3(v — /T — mQ) Xa(t,v) We shall assign to each operathh € OPW=(S5)
k

where

- an operator inH € OPW?2(L~1/24-15) and then

’ . apply the reconstruction formula in Theordm 2.15 to
=r(t —qT) v —mA). reconstruch = h; of H € OPW?2(L~'/2A~1S). From
Finally, this, we will constructh = hy and thereforeH.
The result is based on the existence of the operators

hiz, ) ' w(v/LA) that appear in the following computation. The
= > > bk ™M/ E Hg(t — (¢ k)T)  existence follows from the representation theory of the
(gm)er &k Weyl-Heisenberg group and is discussed in this setting
D (. (& — 1) + (g — K)T) in [6], [24]. Let p(t.v) = e"™TM,, n*(t,v) =

e ™n(t,v), and B = v/LA. Then
where here

q)(q7m) (t,s) — /627Tills R(q’m) (t, I/) dl/ H = // n(t7 V) TtMl/ dt dV
— T(t _ qT) 627TZ'STI’LQ(‘D(S). — /L n(ty y)e—ﬂ'itll eﬂ'itl/TtMy dt d]/

Plugging this into[(16) gives the result. // Rt 0) plt,v) dt dv
S

I. Lattice tilings and proof of Theorem 2118 _ // P (B(tv)) p(B(t,v)) dtdy
B

In this section we will prove Theorem 2]18, but also -1(8)
derive results where the tiling ¢f is defined by arbitrary B # .
full rank lattices inR2. The reconstruction formulas use //77 (B(t,v)) w(B)p(t,v) u(B)" dt dv
results from representation theory; these carry over to the " .
higher dimensional setting if the lattice is symplectic. = uB) /77 (B(t,v)) p(t,v) dtdv u(B)
Proof: As before, we assume th&tC R? satisfies ~ *
we assume At = u(B) H u(B)",

|S| < 1. Suppose that for somd = (g 42) with _
det A = 1/L, S is contained in a fundamental domaiVith 7 (t,v) = n*(B(t,v)). SettingQ:(t,v) = t and
of the latticeL. AZ2. The latticeL AZ? is the so-called ad- @2(t,v) = v we have
joint lattice A° of A. Indeed,A° = (1/vL) (VL A)° = fi(t,v) = et =QuBt)QBEV) (B (¢, 1)),
\/tzh\/ztAl ~ L’i (see [1IL'3 f(:;;ietalls)d Vé/)e':[hshal_l assume Moreover, observe thatS = B~'S satisfies the
Wi Igu OISS oﬂ?e?er:nyl 1 ﬁ] h erW|sde, V\éetﬁl pothesis of Theorerl ZN5 withh = Q = 1/v/L.
could replace the nirst coiumn wi € second an e have therefore with al periodic sequencéc,),
second with the negative of the first, leading to a different ~ — ~ 1 { by —bis

o , = >0, s, andB~! = (%2 7 72) the reconstruc-
parametrization of the same lattice. Further assume tﬁgh 15 21 01

there existty, v, andI’ C Z2, |T'| < L such that with ~formu|as (et
P(Lm = A([07 1]2+(t07 VO) + (q>m)T)1 q, m S Z, h(l’,t) =¢ o Z Z [b(%m),k
k (q;m)er
LA[O, 1]2 M ( U S+ LA(]{:,E)T> C U Pq,m- ﬁfgv(t . (q _ k)/\/z)e—Zwim(q—k)/L

Kt sm
ez @t B (g.m) (10, — (t+0) + (g — k) /VI)],
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i(t,v) = e2mitn 3§
k (gm)er
ﬁﬁ(t —(q— k)/\/Z)e—27rim(q_k)/L
XBils(q’m) (t—‘-to’ ]j)e2ﬂ-i(t+t0_(q—k)/\/f)y]
= 67r2(t1/—Q1B(t,l/)-QgB(t,y))n(B(t7 )

T](t, V) — e27ri(QlBil(t,I/)+to)l/o

i@ B (L) QB (1) ~tv) Z Z [b(q m),k

k- (g;m)el
HG(QiB™\(t,v) = (¢ — k)/VT)
e—27rim(q—k)/LXSj ((t,v)+B(to,0))
2RiQUE™ (tw)+to—(a=k)/VI)Qa B ()]
— 27i((ba2t=biav)votto(br1v—bart)+ovo)
6m((b22t—b12u)~(buV—bzlt)‘t”)Z Z [b(g.m).
k(gm)el
H((baat — bizv) — (q — k)/VL)
o= 2mim(a— )/LXS(W)((t,u)+(b11t07521t0))
¢ 2mila=k) V) (buv=bait)]

— 6271'2 ( [([lzzt—[llz l/)l/() +to ([111 V—asi t)] \/Z-‘rto l/())

67Ti(L(a22t—alzl/)‘(alll/_a21t)_tl/) Z Z

k (gm)el’

ﬁg((aggt — algy)\/f — (q — k)/\/z)

e—27rim(q—k)/LXS(q)m) (t + \/Zant(], v+ \/Zamto)

6—27ri(q—k)(a11l/—a21t)] )

Taking inverse Fourier transforms — 2z on both

which leads to

h(x’ t) — e—27T’i(\/Zt0V0+L/2)a22a21t2 e27T’it0V0

Yo > [b@maHG(VI(azt — (¢ —k)/L))

k (gm)el
6—27rim(q—k)/L

(I)(q’m) (t+ \/Ealltot, T+ toVoall\/E — (¢ —k)an)
e—27ri\/Za21to(w+toyoa11\/Z—(q—k)au) e27rz(q—k)a21t]

(40)
and, iftg = 0,

h(;U,t) — e—ﬂ'iLaggagltz

S > Bamr HIVI(aznt - (¢ - k)/L))
k (gm)el
e—27rim(q—k)/L 627ri(q—k)a21t

D(gm)(t, © — (q — Kk)ai1)] (41)

By construction, we havélg = u(B)* Hyu(B)g with
g = ¢, IV Hence, we can replacH in (38) by
w(B)*H andg by g whereg = 1(B)g. In the following,
we will give explicit representation ¢f( B) and examine
g = u(B)g. Note that the given reconstruction formulas
hold true for any tempered distribution = u(B)g,
but we are mainly interested in the case théB)g is
discretely supported, or, better,= u(B)g = >_ ¢,0nr
for someT > 0 and a periodic sequenee= (c,). In
applications, this would allow us to use any hardware de-
veloped to excite an operator described in Thedrem 2.15.

Recall thatB = VLA, sodet B = 1 and we assume

(38) by; # 0. We have

(3 5e)

= (baronn D (0 (o D () (6 12,) 42)

sides gives us a formula fat, but as the right hand
side contains the product of three functions:inthe
resulting formula forh does not give much insight in
general. Ifa;o = 0 though, the above simplifies (using
a11a99 = 1/L) to

Using notation from[[11], we have

=3 > [bgmw HilazVLt — (¢ — k)/VL)

k (gm)el hence,
e—2m’m(q—k)/L XS(g.m) (t + \/Zauto, v+ \/Zamto)
627ri(t01/0a11 VL—(g—k)a1)v 6—27ri(\/ft01/0+L/2)a22a21t2 ,u( II;; 22 ) = Nl(b21/b11) f*,ul(—bllblg) fug(bll)

e2mitovo 62ﬂi(q—k)a21t] (39) = p1(az1/ann) F*pa(—Lararz) fﬂ2(\/fa11)-
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This leads to if as1a11 is rational as well, then we are assured that the
coefficient sequencg,) has period
BT = (3 52) X enduyv ) o
= pi(a21/a11) F* pn(—Larrarz) Fo L = LCM{dqlag1a11 (L/L')"/2], L'} ,
=LCM L 2L 2
ug(\/fall)chén/ﬁ C {q[a21a11( /q[a12/( all)]) / ]7

alai2/(2La11)], L},

= (VLa11) V% pi(ag1 /a11) F*pi(—Lanain)o  that is, we are in the framework of regular operator
z 5 sampling.
ZC” na Let us consider the special case that/(2a11) is an
integer (for example, ifz1o = 0 as in Theorenf_2.18),

= (VLan) ™" p(azi/a11)o then gla1p/(2Law)] € {1,L}, so L’ = L and L" =
LCM{q[az1a11/2], L}. If in addition Lasia;1/2 is an
Fm(~Lararz) Zcm5M/(La11) integer, themjasia11/2] € {1, L} andL” = L
To complete the proof of Theorelm 2118, observe first
— (VTan)™M2 jn(as Jan)o that L = L/, and indeed¢,) = (¢,). Consequently
F* Z o e—2mm alg/(ZLau)(Sm/(Lau) g= N(B)a _ Z Cn €7rin2a21a11 5na11 )

where we have used the fact that the Fourier transformmirther, observe that

a delta train of the formd_ _, c,d,7, Wherec = (c,)

has periodL is another delta train of the same form. n(}} 52)°
Specifically, = po(VLai ) " F* i (—Layiara)* F pi(asi /ai1)*
1 ~ = V'Lay1)) F*uy (L F i (—
O = — ) 43 p2(1/(VLa)) F*py(Lariai) F p(—azi/a1).
]:nze%c T LTmze:ZC m/LT (43)

Hence, ifa12 = 0, then
wherec denotes the Discrete Fourier Transforntpfhat

is o (oot o) £ (2)
G = cpe2mkmiL, = pi2(1/(VLan)) p(—az1 /ain) f ()
k=0 = (\/Eall)l/z 6—m’a21/a11(\/fa11x)2 f(\/fallx)
Equation [4B) is a simple consequence of the fact that = (v/Layq)"/? e ™219u2* £(y/Lay 2)
1
FY ouw =55 O Oy and
nezZ m

w(B)*Hg(VL(azt — (q — k)/L))

The Sequence—%rim?am/(?lzall) is pel"iOdiC inm if — (\/Zall)l/2 6_MLa21a11(\/Z(azzt—(q—k)/L))2

e~ 2mimaiz/(2Lan) i that is, ifaiz/aq, is rational. In the

following, LCM refers to least common multiples of nat- Hg(V'Lay1VL(axt — (¢ — k)/L))
ural numbers, and for a rational numherq|a] denotes _ (\/Zan)lﬂ o~ Tiaziar (Lazt—(g—k))?

the smallest natural numbersuch thatga is an integer.

With this notation, (), = &, e~2"maz/(2Lau) forms Hy(t —an(g=k))

a sequence with periol’ = LCM{q[a12/(2La11)], L}. \We conclude that
Once again employind_(43),

) (\/—a11)1/2 —2mi(v/Ltovo+L/2)azzast? 627rit0u0
1(B)g = (VLa11)™? pu(an /a1r) F* Z

mOm/(Laiy) Z Z b(qm o~ Tiaz1a11 (Lazt—(q—k))?

= (VLan) ™" (a1 /a11) > hbpanrir % (qm)el
(\/_all -1/2 Zc e27rm az1a11(L/L")? /25na LI Hg(t - all(q . k)) e—2m’m(q—k)/L
(44) (I)(q’m)(t + \/Zalltot, T+ tOVoall\/E — (¢ —k)an)
We conclude thatu(B)g = 3. G0, with T = e~ 2miVLonto(ettoroan VI—(g-k)an) 2milg—k)azt)

a11L/q[a12/(2Lay)] if a12/a1; is rational. Moreover, (45)
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and, iftg = 0, line. Then by considering the cases in which exattly
- 2 2, or 3 of these points do not lie on a horizontal grid
— 1/2 —7rzLa22a21t )
h(z,t) = (VLa)" e line, it is clear that in order for all discontinuities to be

D7D bgmype T en bant=ak)? resolved,(4, 2v/2+1/2) must differ from either(2, v/2)
k (gm)er or (2,v/2+1/2) by some(kT, £92), which is impossible
Hg(t —ai(q—k)) sinceT is irrational. [ |

Dy (t, z— (g — k)ary) ™0 Rt (46)
m K. Proof of Theoremh 2.22.

Proof: Let L > N? be prime, letQ = 1/(T'L) and
J. Proof of assertion in Example_2Z]20. let R, ., (¢g,m) € T' be the rectangles in thel', N)-

The goal is to show thaDPW2(S) where S is the rectification ofS. Then letting
region shown in Figurgl5 cannot be identified by regular , , ,
operator sampling for an§” or L. We will show that ¢ = [0, T1x[0, Q] + (¢'T,m'Q),
the TZ x (1/LT)Z periodization ofS does not form an

/ / 2 H
exact L-cover for anyT or L, thus violating [IR) and (¢:™') € Z°, €ach rectangleR,,, is covered by a

Remark ZD(2) collection of rectanglest;, ., satisfying

Proof: Assume first that?" is rational. We can 9
assume without loss of generality that = 1/K for Z |Ry | < |Rgm| + I
K € N, and hence thaf2 = 1/LT = K/L is also {(¢;m"): Ry i NRqm#0}

rational. Indeed, ifl" = p/q and if for someL € N,

g =Y cadnr (e, with period L) identifiesOPW?2(S) Let I' be those(q',m) € Z* such thatR], . has
then letting7’ = 1/q, L' = pL, andd,, = ¢, , if p nonempty intersection witly°. Therefore,

dividesn and zero otherwise, thef), has periodZ’ and

g = >, d.0nr . Note that the set of discontinuities of Z |Rf1,,m,|
the functionXg .70, (k,¢) € Z? in the rectangle (q',m")er
R =[0,T] x [0, ] must occur on line segments of slope < Z Z Rl ]

@ or @ + % passing through® (that is, intersecting

(g;m)€eT {(¢’,m’): R;/ m/qu,M5’é®}
two edges off). In order that) S X, (x7,¢) be constant '

and hence continuous oR, each such segment must < Z <!Rq,m! + 2)

coincide with at least onékT, ¢Q2)-shift of a different (gm)eT L

such segment. In particular, the segment of SI@&% 2N

containing (0,0) and intersecting one side d® must < Z |[Rgm| + I

be met by somdkT, /Q)-shift of the segment joining (g:m)er

(2,v2) and (4,2v2 + 1/2), which implies that this il L2V M +2 S|+ o).
segment must contain a point of the for(RT, (). - N L~ N

However, a simple calculation shows that sirEeand
Q) are rational, this is impossible.

Now assume thaf’, and hence als§ = 1/(LT)
is irrational. In this case, discontinuities 8k (x7 ),

Consequently,|I"|/L < |[S|(1 4+ €), and S° C
U(g',mer Ry = R. By Theoren{2J6, we can choose
c € CF such that|c|lo < [TV, Spark(G(c)) = |T’| and

in the rectangleR must lie on lines passing through ¢ 'S Supported on its firsfcllo indices. Sinces® € R,

with slopes as above, or on a pair of line segments 3 |d2ent|f|er_ of OPW (_R) is also an identifier 9“
:%PW (S). SinceR consists of only|l”| rectangles, it
e

those slopes terminating at their intersection point in t I H he right sid o h
interior of R (see Figurdl6(b)). There are at least o ,OWS that vecto_r on the right Siae dfl(9) has at most
e£F| nonzero entries and hence is solvable as long as

and at most three shifts with discontinuities of the latt ) L ) :
type. To see this, note that singeis irrational, neither Spark(G(c)) = |I'|. From th'§ it follows immediately
(2,v/2) nor (2,v/2 +1/2) lies on a vertical grid line of that ., cndnr identifiesOPW*(R) and

the formt = mT and that since? is irrational at least lelo T

one of these points does not lie on a horizontal grid line — < — < |S|(1+e).

of the formv = nQ. Similarly, (4,2v/2+1/2) cannot lie L L

on a vertical grid line but may lie on a horizontal grid [ |
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L. Proof of Theorerh 2.25 and Theorém 2.26 This is easily seen by considering the sets

Proof: (Theorem[2.25) By Theorem 2]13, we U[Rq,m+(kTL,£/T)]ﬂR
can chooseL € N so that every operator in ket
H(A,B,U,N,e,1/2) has the property thatsuppn
touches at mosL /2 sets of the form

Rgm = [0,1/VIL] x [0,1/VL] + (¢/VL,m/VL),

(47) ThenS; andS; can be formed by choosing two disjoint
collections of[(L + 1)/2] such sets. Since

where for each) < ¢,m < L,

Rym = ([0,T] x [0,1/TL)) + (¢T,m/TL).

gm=—(L—-1)/2,—(L—-1)/2+1,...,(L—1)/2.
Now, let {S,, : m =1,..., (%)} be the collection D Xswusa+re/rny) > (L+1) ae,
of area 1 sets that are formed by exadilysubsets of k.t
the form R, in (@7). Choosingc € CL so thatG(c) the same argument as in the proof of Theokem 2.8 allows
is full spark, it follows that for eachn, OPW(S,,) us to define distinct operatois;, Hy € Hr (A) with
is identifiable with identifier)" _, c, 6m@ and that suppng, C S; andsuppng, C Sy such that(H; —

constants’, Cy > 0 exist such that Hs)g = 0. Hence (ii) fails to hold. [ |
Cl|Hllzs < IH Y ead, yzllzz < Col | H|us, IV. CONCLUSION
nez . . .
This paper contains results relevant to two questions
for all on the identification and recovery of operators with
H e U OPW?(S,,). bandlimited symbols from the response of the operator
S <L2> to a regular weighted delta train. Such operators model
=1, (F

time-variant linear communication channels. When the
The proof is complete by observing that féF,, H, € identifier is a weighted delta train, we refer to this the
H(A, B,U, N,e,1/2) (which is not a linear space), weidentification as operator sampling and when the weight-
have H; — H, € OPW?(S,,) for somem, and, hence, ing sequence is periodic as regular operator sampling
The procedure is a generalization of classical sampling
Cy||H1 — Ha|lus < ||(H1 — H2) ch5n/@\|L2 results for bandlimited functions, and of the determi-
nez nation of a time-invariant communication channel by
< Col|Hy — Ha| B, measuring its response to a unit impulse.
_ We obtain a simple condition on the sgtthat char-
Hy, Hy € H(A, B,U, N, ¢,1/2). Clearly, this leads also 5 (o765 wherO PW?2(S) can be identified by regular
_to the weaker statemertth — Hy)3 ., C"‘sn/\/f =0 operator sampling. The condition requires thatbe
implies Hy = Ho. ) contained in a fundamental domain of a rectangular
Proof. (Theorem[2.26) The proof of this resuliyice and that its periodization on a reciprocal lattiee b
follows the proof of Theorern 2.8. bounded above by a constant depending on the lattice. In
(i)==(iii) Note first that if A < 1/2+ 1/(2L) then nis case|S| < 1, and we obtain explicit reconstruction
AL < (L +1)/2. Hence if Hy, Hy € Hr,r(A), then  t5:mjas for the operators i0 PW?(S). We consider
with supp nu,— g, C suppnu, Usuppnu, = S, the case in whichS is contained in a fundamental
domain of a general symplectic lattice and give sufficient
;XS“’“T’Z/(TL)) S2AL<L+l conditions on the lattice under which PW?2(S) can
’ be identified by regular operator sampling and obtain
and since the left side of the inequality is an integesxplicit reconstruction formulas in this case as well. We
Hy — H; € Hr,1(1). Therefore,[(I1) and_(12) hold, andorovide an example of a sétfor which O PW?(S) can
by the same argument as in the proof of Theofemh 208 identified by operator sampling but not by regular

(ii) holds. operator sampling.

(iiiy =>(ii) Obvious. For these results it is required that the support set

(i)=(i) Suppose that\ > 1/2+1/(2L). Then we can be known. We also obtain a result showing that, under

find disjoint setsS;, Sy C R such that mild geometric conditions, recovery is possible when the
support set is unknown but has area smaller thenand

=AL>(L+1)/2 we characterize all support sets for which identification is

Z XSi+(kT,¢/(TL)) ‘ . . :
0o possible via regular operator sampling when the support

k0
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set

has areaC 1/2. This characterization allows us to11]

define a large class of operators for which identification

is possible when the spreading support is small.
class includes the class similarly characterizedlin [q], [

i,

It is shown in [3], [4] that this class can be identifiegh;
without knowledge of the spreading support for areas
less than one. Following the ideas givenlin [3], [4], we
define a larger class of operators with area less thigf!
one that can be similarly identified without knowing the

spreading support.

[15]

Finally, we give a necessary condition on the rate of
sampling, that is, the average number of deltas in the

identifying weighted delta train per unit time, require

to identify an operator with bandlimited symbol. The
necessary rate depends on the bandwidth of the spreading F. Krahmer, S. Mendelson, and H. Rauhut. Suprema ofshao
support. We give a sufficient condition on the sampling
rate in terms of the area of the spreading region. A
a consequence of this result, it is observed that if the
area of the spreading support is small, then any operatg;j
in the class of operators having that spreading support
can be identified by only a portion of its response to
an appropriate identifier. The fraction of the respon?é—:‘o]
sufficient for identification is asymptotically proportiain

to the area of the spreading support.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]
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