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Sampling and reconstruction of operators
Götz E. Pfander,Member, IEEE, and David Walnut

Abstract—We study the recovery of operators with
bandlimited Kohn-Nirenberg symbol from the action of
such operators on a weighted impulse train, a procedure
we refer to as operator sampling. Kailath, and later Kozek
and the authors have shown that operator sampling is
possible if the symbol of the operator is bandlimited to
a set with area less than one. In this paper we develop
explicit reconstruction formulas for operator sampling
that generalize reconstruction formulas for bandlimited
functions. We give necessary and sufficient conditions on
the sampling rate that depend on size and geometry of
the bandlimiting set. Moreover, we show that under mild
geometric conditions, classes of operators bandlimited to
an unknown set of area less than one-half permit sampling
and reconstruction. A similar result considering unknown
sets of area less than one was independently achieved by
Heckel and Boelcskei.

Operators with bandlimited symbols have been used
to model doubly dispersive communication channels with
slowly-time-varying impulse response. The results in this
paper are rooted in work by Bello and Kailath in the
1960s.

Index Terms—Bandlimined Kohn-Nirenberg symbols,
spreading function, operator Paley-Wiener space, channel
measurement, channel identification, operator identifica-
tion, operator sampling, Gabor analysis, symplectic ma-
trices.
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I. INTRODUCTION

In this paper we develop a sampling theory and recon-
struction formulas for operators bandlimited to domains
of small area. Analogously to the classical sampling
theory of functions, the objective of operator sampling
is to fully characterize an object from at first sight
insufficient information, specifically by observing an
operator’s action on a single input, typically a discretely
supported distribution, viz; a weighted delta train. The
theory developed herein applies to so-called bandlimited
operators, defined as operators whose Kohn-Nirenberg
symbol is bandlimited. The symplectic Fourier transform
of the Kohn-Nirenberg symbol of an operator is referred
to as its spreading function, so that we are considering
operators whose spreading function is compactly sup-
ported or is contained in the fundamental domain of a
lattice. In engineering terms, the operators considered are
characterized by limited time-frequency dispersion.

A. Identification and sampling of operators

The operator identification problem addresses the
question whether an operator from a given class can be
recovered from its action on a single probing signal. That
is, for a given class of operatorsH, does there exist an
input signalg so thatHg determinesH. Mathematically
speaking, we require that the mapΦg : H 7→ Hg
be injective onH. In order to be stable under noise
introduced, for example, by physical considerations or
digital processing, it is reasonable to require in addition
that the mapΦg have a bounded inverse [16].

Definition 1.1: Let H be a collection of linear opera-
tors mapping a space of functions or distributionsX(R)
to a normed function spaceY (R). If for someg ∈ X(R),

Φg : H −→ Y (R), H 7→ Hg

is bounded above and below, that is, if there are constants
0 < A ≤ B < ∞ such that

A‖H‖H ≤ ‖Hg‖Y ≤ B ‖H‖H (1)

for all H ∈ H, then we say thatH is identifiable with
identifier g ∈ X(R). If H is not linear, then condition
(1) is replaced by

A‖H1 −H2‖H ≤ ‖H1g −H2g‖Y ≤ B ‖H1 −H2‖H
(2)

for all H1,H2 ∈ H.
We refer to operator identification asoperator sam-

pling when the identifier is a discretely supported distri-
bution.

Definition 1.2: A strictly increasing sequenceΛ =
{λn}n∈Z in R is a set of samplingfor an operator
classH, if for some never-vanishing sequence(dn)n∈Z,
we have that

∑
n∈Z dnδλn

identifiesH. We define the
sampling rateof Λ by

D(Λ) = lim
r→∞

n−(r)
r

where

n−(r) = inf
x∈R

#{n : λn ∈ [x, x+ r]}

assuming that the limit exists.
Remark 1.3:(1) D(Λ) can be interpreted as the aver-

age number of deltas appearing in the identifier per unit
time and corresponds to thelower Beurling densityof
Λ.
(2) The assumption that the sequence(dn) never van-
ishes ensures that the sampling rate depends only onΛ.
In particular, we avoid the situation in which for some
set Λ′ ⊇ Λ, of higher density thanΛ,

∑
m d′mδλ′

m
=∑

n dnδλn
where d′m = dn wheneverλ′

m = λn and
d′m = 0 otherwise.

In this paper we will consider mostly sampling sets
that are periodic subsets of a fixed lattice onR.

Definition 1.4: We say that an operator classH can
be identified byregular operator samplingif there exists
T > 0, L ∈ N, and a period-L sequencec = (cn) such
that

∑
n∈Z cnδnT identifiesH.

In regular operator sampling,D(Λ) = ‖c‖0/(TL)
where

‖c‖0 = #{n : 0 ≤ n ≤ L−1 andcn 6= 0}

is the support size of the vector(c0, . . . , cL−1). In the
remainder of this paper we will abuse notation and not
distinguish the vectorc ∈ CL from the doubly-infinite
L-periodizationc = (cn).

Our work addresses the identifiability of classes of
operators characterized by their Kohn-Nirenberg symbol
being bandlimited to a setS (the spreading support).

B. Operator representations, bandlimited operators, and
operator Paley-Wiener spaces

Similarly to linear operators on finite dimensional
space being represented by matrices, the Schwartz kernel
theorem implies that linear operators on any of the
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classical function spaces onR can be represented by
their kernel, that is, formally, we have

Hf(x) =

∫
κH(x, y)f(y) dy, (3)

for a unique kernelκH .1

As operators are in 1-1 correspondence with their
kernels, they can also be formally represented by their
time-varying impulse responseh, their Kohn-Nirenberg
symbolσ, or their spreading functionη. In fact, formally,

Hf(x) =

∫
hH(x, t) f(x− t) dt (4)

=

∫∫
ηH(t, ν) e2πiν(x−t) f(x− t) dν dt (5)

=

∫
σH(x, ξ) e2πixξ f̂(ξ) dξ, (6)

where

hH(x, t) = κH(x, x− t)

=

∫
σH(x, ξ) e2πiξt dξ,

=

∫
ηH(t, ν) e2πiν(x−t) dν (7)

and the Fourier transform in (6) is normalized as
Ff(ξ) = f̂(ξ) =

∫
f(x) e−2πixξ dx.

Operator representations such as those given in (4),
(5), (6) are considered in the theory ofpseudodifferential
operatorswhere we write

σ(x,D)f(x) =

∫
σ(x, ξ) e2πixξ f̂(ξ) dξ.

With the symplectic Fourier transformgiven by

FsF (t, ν) =

∫∫
F (x, ξ) e−2πi(xν−tξ) dx dξ,

(7) implies e−2πitν ηH(t, ν) = FsσH(t, ν). We say that
the operatorH is bandlimited to the setS ⊆ R2 if
supp ηH = suppFsσH ⊆ S.

Considering now spaces of such operators we arrive
at the following definition.

Definition 1.5: Given a setS ⊆ R2, define theoper-
ator Paley-Wiener spaceOPW (S) by

OPW (S) = {H ∈ L(L2(R), L2(R)) :

suppFsσH = supp ηH ⊆ S}
1In fact, withS(Rd) denoting the space of Schwartz class functions

andS ′(Rd) its dual, we can associate to any linear and continuous
operator mappingS(Rd) to S ′(Rd) a kernelκ ∈ S ′(R2d) so that
(3) holds in a weak sense. Below, we shall consider operatorsacting
boundedly on the space of square integrable functionsL2(R) which
fall in the framework outlined above. We refer to [24] for a more
detailed functional analytic treatment of operator and function spaces
involved.

whereL(L2(R), L2(R)) denotes bounded operators on
L2(R). The space of Hilbert-Schmidt operators in
OPW (S) is

OPW 2(S) = OPW (S) ∩HS(L2(R))

= {H ∈ L(L2(R), L2(R)) :

suppFsσH ⊆ S, σH ∈ L2(R2)}.

The reconstruction formulas presented in this paper for
OPW 2(S) hold formally for all ofOPW (S). Operator
Paley-Wiener spaces defined by membership of the sym-
bol in generic mixedLp spaces is considered in [24]; see
also Section II-D below for some examples.

C. Bandwidth of operators and analogies to classical
sampling of functions

The terminologyoperator samplingis intentionally
suggestive of the classical theory of sampling of ban-
dlimited functions, and is justified for the following
reasons.

(1) Classical sampling is in fact a special case of
operator sampling in the following sense. If for some
fixed Ω > 0, the operator classH consists of operators
given by multiplication by functionsm ∈ L2 with
supp m̂ ⊆ [−Ω/2,Ω/2], then choosing0 < T < 1/Ω
andg =

∑
n δnT , we have that forH ∈ H corresponding

to multiplier m, Hg =
∑

n m(nT )δnT from which m
and henceH can be recovered. In this case, our gen-
eral reconstruction formula (18) reproduces the classical
reconstruction formula. For details, see Section II-D.

Finally note that in this case, since‖c‖0 = L = 1, the
(operator) sampling rate‖c‖0/(TL) = 1/T coincides
with the sampling rate in the classical sense.

(2) In analogy with classical sampling, we can give
a necessary condition on the (operator) sampling rate
based on a natural measure of thebandwidthof an op-
erator modeling a time-varying communication channel.
T. Kailath in [13] defined thebandwidthof a channel
with spreading functionη(t, ν) by

inf{B > 0: η(t, ν) = 0, ∀t ∈ R, ν /∈ (−B/2, B/2)}.

Taking into account possible gaps in the spreading sup-
port S, we can more precisely define the bandwidth by

B(S) = sup
t∈R

| supp η(t, ν)| =
∥∥∥
∫

R

χS(·, ν) dν
∥∥∥
∞

(8)

whereχS is the characteristic function ofS. This quan-
tity can be interpreted as the maximum vertical extent of
S. The following theorem gives a necessary condition on
a set of sampling for the operator class with spreading
supportS.
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Theorem 1.6:If S is closed andΛ is a set of sampling
for OPW 2(S) with inf{|λ− µ| : λ, µ ∈ Λ} > 0, then

D(Λ) ≥ B(S).

(3) A sufficient condition on the (operator) sampling rate
is more elusive and is tied to both the area of the spread-
ing supportS and its shape. However, if|S| is small, then
it suffices to observeHg(t) on a correspondingly small
portion of the real line. For details, see Section II-E.

(4) It should be noted that not only is classical sampling
a special case of operator sampling, but also the well-
known result that time-invariant operators are character-
ized by their response to a delta centered at the origin.
Here Λ = {0} and S is a subset of thet-axis with
B(S) = 0. For details, see Section II-D2

D. Physical relevance of bandlimited operators

In communications engineering, (4) and (5) are com-
monly used as models for linear (time-varying) commu-
nication channels. Thetime-varying impulse responseof
the channelhH(x, t) is interpreted as the response of the
channel at timex to a unit impulse at timex− t, that is,
originating t time units earlier. Hence, ifhH(x, t) 6= 0
only for 0 ≤ t ≤ T , thenH is causal with maximum
time-dispersionT .

If hH(x, t) = hH(t) then the characteristics of the
channel are time-invariant and in this case the channel
is a convolution operator. As mentioned above, such
channels are identifiable sincehH(t) is the response of
the channel to the input signalδ0(t), the unit-impulse at
t = 0.

A mobile communication channel has the property that
hH(x, t) depends onx, but changes as a function ofx
rather slowly, since the change in the channel, for exam-
ple, by movement of receiver, transmitter, or reflecting
objects, is slow when compared with the speed of light
at which information travels. This slow variance can be
expressed through a bandlimitation ofhH(x, t) as a func-
tion of x, that is, as a support constraint on thespreading
function of H, ηH(t, ν) =

∫
hH(x, t) e−2πiν(x−t) dx, as

a function ofν. We conclude that a causal doubly disper-
sive communications channel with maximum time dis-
persionT , andhH(x, t) bandlimited inx to [−Ω/2,Ω/2]
is represented by a spreading function supported on
the set [0, T ]×[−Ω/2,Ω/2], that is, by operators in
OPW 2([0, T ]×[−Ω/2,Ω/2]) since|ηH | = |FsσH |.

To substantiate this bandlimitation onσH(x, t) further,
we denote translation byt by Tt : f(x) 7→ f(x− t) and
modulation byν by Mν : f(x) 7→ e2πiνx f(x). The latter
is also referred to as frequency shift aŝMνf = Tν f̂ .

Then (5) becomes the operator-valued integral

H =

∫∫
ηH(t, ν)Tt Mν dν dt

=

∫ T

0

∫ Ω

−Ω
ηH(t, ν)TtMν dν dt ,

that is, the spreading function is the coefficient vector of
the time-frequency shifts that a communication channel
carries out. Hence,OPW 2([0, T ]×[−Ω/2,Ω/2]) has
maximum time-delayT andmaximum frequency spread
Ω.

E. Relation to other work

In 1959, T. Kailath [13], [14], [15] asserted that for
time-variant communication channels to be identifiable
it is necessary and sufficient that the maximum time-
delay, a, and Doppler spread,b, satisfy ab ≤ 1 and
gave a convincing justification for his assertion on signal-
theoretic grounds. Kailath considers the response of the
channel to a train of impulses separated by at leasta time
units, so that in this sense the channel is being “sampled”
by a succession of evenly-spaced impulse responses. The
conditionab ≤ 1 allows for the recovery of sufficiently
many samples ofhH(x, t) to determine it uniquely. To
prove necessity, Kailath assumes that the channel can
be identified by a probing signal,g, essentially both
time- and band-limited. If the response,Hg, is also so
limited, the number of degrees of freedom inHg can be
estimated. This number is then compared to the number
of degrees of freedom in the impulse responsehH(x, t)
under the same time and band-limiting assumption as on
g in each variable. Comparing degrees of freedom leads
to the necessary inequalityab ≤ 1.

Kailath’s assertion was given the precise mathematical
framework described in Section I-A and proved in [16].

In 1969, P. A. Bello [2] argued that what is important
for channel identification is not the productab of the
maximum time-delay and Doppler shift of the channel
but the area of the support of the spreading function.
It is notable that Kailath also asserted something along
these lines. This means that a time-variant channel whose
spreading function has essentially arbitrary support is
identifiable as long as the area of that support is smaller
than one. Using ideas from [16], Bello’s result was
confirmed in [28].

Building on findings in [16], [28], [29] a number
of results have been established that are now part of
the herein described sampling theory for operators. For
example, the results in [28] were extended from the
setting of Hilbert-Schmidt operators to a much wider
class of pseudodifferential operators in [24]. In [12], the
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choice of non periodic (irregular/jitter) sampling loca-
tions for operator sampling was discussed. Necessary and
sufficient conditions for the identifiability of bandlimited
Multiple Input Multiple Output (MIMO) channels were
given in [23].

More recently, sampling results for stochastic oper-
ators, that is, for operators with stochastic spreading
functions, have been obtained [22], [32], [31]. Also, in
applications, it is required to replace the identifier con-
sidered in this paper by finite time or finite bandwidth,
that is, smooth, signals. Local recovery results in this
setting, as well as a reconstruction formula that allows
for the application of coarse quantization methods prior
to the approximate recovery of the operator are given in
[18]. Focusing on a parametric setup, the identification
of bandlimited operators was analyzed with respect to
applicability in super-resolution radar [1].

In Section II-F, we address the problem of iden-
tifiability of operators with unknown bandlimitation.
Independently, Heckel and Boelcskei ([3], [4]) have
obtained a result similar to Theorem 2.25 characterizing
identifiability of a certain (nonlinear) class of operators
with spreading support of area≤ 1/2. Theorem 2.25
gives a sufficient condition for a more general class of
operators, and Theorem 2.26 generalizes the result in [3],
[4]. In addition, Heckel and Boelcskei ([3], [4]) prove a
remarkable result in which they prove identifiability for
unknown support sets of area less than one, rather than
≤ 1/2.

II. M AIN RESULTS

A. Properties of Gabor system matrices

The basic strategy for operator sampling described in
this paper was laid out in [28]. The idea is to translate the
reconstruction problem into ana priori under-determined
linear system whose coefficients come from a finite
Gabor system, and then give conditions under which
that system can be solved. More specifically, given
H ∈ OPW 2(S), T > 0, andL ∈ N, let g =

∑
n cn δnT

for some period-L sequencec = (cn). Then from the
responseHg(x), we can derive theL×L2 linear system

ZHg(t, ν) = G(c)ηH(t, ν) (9)

whereZHg(t, ν) is anL–vector computed directly from
Hg, ηH(t, ν) is anL2–vector consisting of shifts of a
periodized version of the spreading functionηH of H
(see Lemma 3.7), andG(c) is anL× L2 Gabor system
matrix defined as follows.

Definition 2.1: GivenL ∈ N, let ω = e2πi/L and de-
fine thetranslation operatorT on (x0, . . . , xL−1) ∈ CL

by
Tx = (xL−1, x0, x1, . . . , xL−2),

and themodulation operatorM on CL by

Mx = (ω0x0, ω
1x1, . . . , ω

L−1xL−1).

Given a vectorc ∈ CL the finite Gabor system with
window c is the collection{T qMpc}L−1

q,p=0. Define the
full Gabor system matrixG(c) to be theL× L2 matrix

G(c) = [ D0 WL D1WL · · · DL−1WL ] (10)

whereDk is the diagonal matrix with diagonalT kc =
(cL−k, . . . , cL−1, c0, . . . , cL−k−1), andWL is theL×L
Fourier matrixWL = (e2πinm/L)L−1

n,m=0.
Remark 2.2:(1) For 0 ≤ q, p ≤ L − 1, the (q +

1)st column of the submatrixDpWL is the vector
MpT qc where the operatorsM and T are as in Defi-
nition 2.1. This means that each column of the matrix
G(c) is a unimodular constant multiple of an element
of the finite Gabor system with windowc, namely
{e−2πipq/L T qMpc}L−1

q,p=0.
(2) Note that the finite Gabor system defined above
consists ofL2 vectors inCL which form an overcomplete
tight frame forCL [20]. For details on Gabor frames in
finite dimensions, see [20], [19], [9] and the overview
article [33].

The reconstruction formulas in this paper are based on
explicitly and uniquely solving (9). for this purpose we
require conditions onG(c) under which this is possible.

Definition 2.3: [8] The Sparkof anM ×N matrix F
is the size of the smallest linearly dependent subset of
columns, i.e.,

Spark(F ) = min{‖x‖0 : Fx = 0, x 6= 0}
If Spark(F ) = M+1, thenF is said to havefull Spark.
Spark(F ) = k implies that any collection of fewer than
k columns ofF is linearly independent.

The existence of Gabor matrices with full Spark has
been addressed in [20] and [21].

Theorem 2.4:[20] If L is prime, then there exists a
dense, open subset ofc ∈ CL such that every minor of
G(c) is nonzero. In particular, for suchc, G(c) has full
Spark.

Note that if L is not prime then the result of this
theorem does not hold. That is, ifL is not prime, then
for any c ∈ CL there is a minor ofG(c) that vanishes.
However, it has recently been shown by Malikiosis that
for any L ∈ N, we can get the second half of the
conclusion.

Theorem 2.5:[21] For everyL ∈ N there exists a
dense, open subset ofc ∈ CL such thatG(c) has full
Spark.

This next result states that, again assuming thatL is
prime, the Spark of the matrixG(c) is related to the
support size of the vectorc.
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Theorem 2.6:[30] If L ∈ N is prime, andk ≤
L, there exists c ∈ CL with the property that
Spark(G(c)) = k+1, andsupp(c) ⊆ {0, 1, . . . , k−1}.
Moreover, the set of suchc forms an open, dense subset
of Ck × {0}.

These theorems show that it is possible to choose a
period-L sequencec such that the system (9) always has
a solution as long as there are no more thanL non-
vanishing unknowns on the right side. In fact, ifL is
prime, we can say a bit more, namely that if there are no
more thank ≤ L non-vanishing unknowns on the right
side, then we can guarantee solvability with a windowc
supported on no more thank contiguous indices.

B. Necessary and sufficient conditions for identifiability
of OPW 2(S)

In this section, we explore conditions under which
the operator classOPW 2(S) is identifiable. We give
necessary and sufficient conditions onS under which
identification is possible with any identifier, then char-
acterize when this is possible using regular operator
sampling.

In [16], [28] (cf. [29] and [24]), the following result
is given. Here and in the following,|S| denotes the
Lebesgue measure of the setS.

Theorem 2.7:OPW 2(S) is identifiable by regular
operator sampling ifS is compact and|S| < 1, and
not identifiable ifS is open and|S| > 1.

The following result guarantees the existence of a
discretely supported identifier for support setsS with
|S| ≤ 1 that satisfy certain periodization conditions. The
result characterizes operator Paley Wiener spaces that
can be identified by regular operator sampling.

Theorem 2.8:Let g =
∑

n∈Z cnδnT with c ∈ CL

chosen so thatG(c) has full Spark. ForS ⊆ R2 the
following are equivalent.

(i) The mapΦg : OPW 2(S) → L2(R), H 7→ Hg is
injective.

(ii) The functiong identifiesOPW 2(S).
(iii) S is a subset of a fundamental domain of the lattice

LTZ× (1/T )Z, that is,
∑

k,ℓ

χS+(kLT,ℓ/T ) ≤ 1 a.e. (11)

andS periodized by the latticeTZ× 1/(TL)Z is
at most anL-cover, that is

∑

k,ℓ

χS+(kT,ℓ/(TL)) ≤ L a.e. (12)

See Figures 1-3 for an illustration of spreading sup-
ports setsS that lead to identifiable operator Paley
Wiener spaces.

t

ν

T

Ω

LT

LΩ

Fig. 1. The spaceOPW 2(S) is identifiable forS (in blue) with area
1 as it clearly satisfies (11) and (12).S has a(T, 3)-rectification and
B(S) = Ω. Such sets were considered in [16], [28], [29]. Recovery of
operators inOPW 2(S) is possible using the reconstruction formula
(16).

t

ν

T

Ω

LT

LΩ

Fig. 2. The union of the colored sets,S, satisfies (11) and (12).
Hence,OPW 2(S) is identifiable by a weighted delta train with
period-3 weighting sequence even though a(T, 3)-rectification is not
possible (note that7 > 3 boxes are active). Recoveringη from Hg
using (9) directly requires solving three systems of linearequations,
one to recoverη on the yellow support set, one to recoverη on
the red support set, and one to recoverη on the blue support set.
H ∈ OPW 2(S) can be reconstructed using formula (17). Note also
thatB(S) = 2Ω and that the sampling rate is1/T = 3Ω > 2Ω.

Remark 2.9:(1) It is clear that ifS is bounded, then
(11) is satisfied as soon asS is contained in a rectangle
of width TL and height1/T .
(2) Note that (12) implies that|S| ≤ 1, and that if|S| =
1, the cover must be an exactL-cover, that is,

∑

k,ℓ

χS+(kT,ℓ/(TL)) = L a.e.

(3) As discussed in detail in Remark 2.12 below, for any
compact setS with |S| < 1, there existsT , L so that
(11) and (12) hold.
(4) Note that (11) and (12) are satisfied for some
unbounded sets with area less than or equal to one, for
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example,

S =
( ∞⋃

n=0

[n+ 1− 2−n, n+ 1− 2−(n+1)]
)
× [−1

2 ,
1
2 ]

permits the choice ofT = 1 andL = 1.
(5) On the other hand, it is not hard to construct an
unbounded setS of arbitrarily small measure so that
for all T and L, (11) fails. Indeed, let{qn}n∈N be an
enumeration of the countable set of rational numbersQ.
For ǫ, δ > 0 set

Sǫ,δ =
(
[−ǫ, ǫ] ∪

∞⋃

n=0

2−n[−ǫ, ǫ] + qn

)
× [−δ, δ].

We have|Sǫ,δ| < 8ǫδ since we are taking the union of
sets that are not disjoint, in fact, every set in the union
contains countably many sets in the union. In order to
show that there exist noT > 0 and L ∈ N such that
(11) holds, observe first that clearly,LT > ǫ, and there
existsn0 ∈ N so that|qn0

−LT | < ǫ. But thenSǫ,δ−LT
intersects withSǫ,δ on a set of positive measure since

∣∣[−ǫ, ǫ] ∩ 2−n[−ǫ, ǫ] + qn0
− LT

∣∣ > 0.

(6) If Spark(G(c)) = K ≤ L, then OPW 2(S) is
identifiable if the upper boundL in (12) is replaced by
K − 1.
(7) The conditions (11) and (12) are related to the
rectificationof the regionS, that is, its efficient covering
by small rectangles. (See Fig 3).

Definition 2.10: Let S ⊆ R2, |S| ≤ 1, T > 0,
and L ∈ N be given. We say thatS admits a(T,L)-
rectification if

(a) S is contained in a fundamental domain of the
lattice (TL)Z× (1/T )Z, and

(b) the set

S◦ =
⋃

(k,ℓ)∈Z2

S + (kTL, ℓ/T ) (13)

meets at mostL rectangles of the formRq,m =
[0, T ] × [0, 1/TL] + (qT,m/TL), 0 ≤ q,m < L.
The active boxesin the rectification are indexed
by

Γ = {(q,m), 0 ≤ q,m < L : Rq,m ∩ S◦ 6= ∅}.

It is clear that (11) and (12) are satisfied ifS admits
a (T,L)-rectification, but Figure 2 illustrates that the
converse is not true. However, (11) and (12) allow for
the linear system (9) to change depending on the point
(t, ν). In fact, such an observation further characterizes
regions S such thatOPW 2(S) can be identified by
regular operator sampling.

Lemma 2.11:Suppose that for someT > 0 andL ∈
N, S satisfies (11). Then

∑

k,ℓ

χS+(kT,ℓ/(TL)) ≤ K ≤ L a.e.

if and only if there exists a partition{Aj}Nj=1 of the set
[0, T ]× [0, 1/(LT )] with the property that for eachj, at
mostK of the setsAj + (kT, ℓ/(LT )), 0 ≤ k, ℓ < L
meetS◦. Moreover,S can be partitioned as

S =

N⋃

j=1

Sj (14)

where

Sj = S ∩
[ ⋃

k,ℓ∈Z
Aj + (kT, ℓ/(LT ))

]

and where eachSj admits a (T,L)-rectification with
|Γ| ≤ K.

Remark 2.12:(1) If S ⊆ R2 is compact and|S| <
1, then it is always possible to chooseT > 0 small
enough andL ∈ N large enough thatS admits a(T,L)-
rectification. In fact we can also require that for allǫ > 0
sufficiently small,

|Γ|
L

=
∑

(q,m)∈Γ
|Rq,m| < |S|(1 + ǫ) < 1.

(2) Under certain mild regularity assumptions on a
domainS, we can explicitly estimateT andL that work.
Specifically, L ∈ N can be chosen so that all such
domains have a(

√
L,L)-rectification.

Theorem 2.13:Fix A,B, ǫ, U > 0, N ∈ N, 0 < σ ≤
1. Suppose thatS ⊆ [−A,A]×[−B,B] and there exist
N Jordan curvesCi such that

1) S is contained in the interior sets of the Jordan
curves,

2) the sum of areas of the interior sets is less than
σ − ǫ, and

3) the sum of lengths of the Jordan curves is bounded
by U .

Then for everyL satisfying A,B ≤ (L − 1)/2 and
4(U/

√
L+N/L) ≤ ǫ, the setS+(A,B) has a(

√
L,L)-

rectification with|Γ| ≤ σL.

C. Sampling and reconstructing operators

One of the contributions of this paper is to give explicit
reconstruction formulas for the impulse response of the
channel operator from the operator’s response to the
identifier. Such formulas illustrate a connection between
operator identification and classical sampling theory.
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t

ν

T

Ω

LΩ

Fig. 3. The setS in blue, its rectification in gray. We haveL = 9
andTΩ = 1/9.

1) Operators with rectangular spreading domains:
We begin by recalling a result from [24]. It is a special
case of Theorem 2.15 below, and is the simplest example
on how Shannon’s sampling theorem can be extended to
apply to operators.

Theorem 2.14:For H ∈ OPW 2(S), S ⊆
[0, T )×[−Ω/2,Ω/2) compact andTΩ ≤ 1,

h(x, t) = e−πit/T
∑

n∈Z

[(
H

∑

k∈Z
δkT

)
(t+ nT )

×sin( πT ((x− t)− nT ))

π((x− t)− nT )

]
χ
[0,T ](t). (15)

where the sum converges inL2(R2) and for eacht,
uniformly in x.

2) Non-rectangular, rectifiable spreading domains:
The following theorem gives a reconstruction formula
for operators inOPW 2(S) when S has a rectification
in the sense of Defintion 2.10.

Theorem 2.15:Suppose thatS ⊆ R2 and that for
some(t0, ν0), S − (t0, ν0) admits a(T,L)-rectification,
and letΩ = 1/(TL). ThenOPW 2(S) can be identified
by regular operator sampling, and there exist period-L
sequencesb(q,m) = (b(q,m),k) and functionsΦ(q,m)(t, ν)
for (q,m) ∈ Γ, such that

h(x, t) = e2πi(t+t0)ν0

∑

k

∑

(q,m)∈Γ

[
b(q,m),k Hg(t− (q − k)T )

e−2πim(q−k)/L Φ(q,m)(t, x− (t+ t0) + (q − k)T )
]
.

(16)

where the sum converges unconditionally inL2(R2).
Here

Φ(q,m)(t, s) =

∫
e2πiνs χS(q,m)

(t, ν) dν

where

S(q,m) = S ∩
⋃

k,ℓ∈Z
(Rq,m + (k/Ω, ℓ/T )).

Remark 2.16:(1) The coefficient sequencesb(q,m) are
defined in (31) and are the rows of a left-inverse of the
L×|Γ| submatrix ofG(c) that allows (9) to be uniquely
solvable, extended to have periodL.
(2) In light of Lemma 2.11, it follows that for any
regionS ⊆ R2 for which regular operator sampling of
OPW 2(S) is possible, a formula like (16) holds. By
realizingS as a disjoint union of setsSj as in (14), each
of which admits a(T,L)-rectification, and moreover
where each(t, ν) ∈ Sj corresponds to the same reduced
linear system in (9), we can write

η(t, ν) =

N∑

j=1

η(t, ν)χSj
(t, ν) =

N∑

j=1

ηj(t, ν)

and by (7)

h(x, t) =

N∑

j=1

∫
ηj(t, ν) e

2πiν(x−t) dν =

N∑

j=1

hj(x, t).

For eachj, we can taket0 = ν0 = 0 in (16) and obtain

hj(x, t) =
∑

k

∑

(q,m)∈Γj

[
bj(q,m),k Hg(t− (q − k)T )

e−2πim(q−k)/L Φj
(q,m)(t, x− t+ (q − k)T )

]

where Γj indexes the active boxes in the(T,L)-
rectification ofSj,

Φj
(q,m)(t, s) =

∫
e2πiνs χSj

(q,m)
(t, ν) dν

and

Sj
(q,m) = Sj ∩

⋃

k,ℓ∈Z
(Rq,m + (k/Ω, ℓ/T )).

Settingbj
(q,m)

= 0 if (q,m) /∈ Γj,

h(x, t) =

N∑

j=1

hj(x, t)

=

N∑

j=1

∑

k

L−1∑

q,m=0

[
bj
(q,m),k

Hg(t− (q − k)T )

e−2πim(q−k)/L Φj
(q,m)(t, x− t+ (q − k)T )

]

=
∑

k

L−1∑

q,m=0

Hg(t− (q − k)T )

Φ̃(q,m),k(t, x− t+ (q − k)T ) (17)

where

Φ̃(q,m),k =

N∑

j=1

bj(q,m),k e
−2πim(q−k)/L Φj

(q,m).
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3) Smooth reconstruction functions in the “oversam-
pled” case: Note that Theorem 2.14, and Theorem 2.15
both involve the use of sharp cut-off functions in the
definition of the reconstruction functionsΦ(q,m)(t, s).
The passage to smooth cut-off and hence reconstruction
functions is enabled by the assumption thatS is compact
with |S| < 1. This allows for faster decay of the recon-
struction functions, and for the validity and convergence
of the reconstruction sums in more general function
spaces. These matters have been studied extensively in
[24]. Specifically, we have the following generalization
of Theorem 2.15.

Theorem 2.17:Suppose thatS ⊆ R2, |S| < 1, is
compact. Then there existT > 0, L ∈ N, (t0, ν0), and
a period-L sequencec = (cn) such thatg =

∑
n cn δnT

identifies OPW 2(S). Moreover, there exist period-L
sequencesb(q,m), (q,m) ∈ Γ such that

h(x, t) = e2πi(t+t0)ν0

∑

k

∑

(q,m)∈Γ

[
b(q,m),k Hg(t− (q − k)T )

e2πim(x−t)/LT φ(x− (t+ t0) + (q − k)T ) r(t− qT )
]

(18)

wherer, φ ∈ S(R) satisfy

∑

k∈Z
r(t+ kT ) = 1 =

∑

n∈Z
φ̂(γ + n/LT ), (19)

where r(t)φ̂(γ) is supported in a neighborhood of
[0, T ]×[0, 1/LT ], and where the sum in (18) converges
unconditionally inL2 and for eacht uniformly in x.

Equation (18) is a direct generalization of (15) under
the assumption thatr(t) = χ

[0,T ](t) and ϕ̂(γ) =
χ
[0,Ω](γ).

4) Rectification by parallelograms:It can be advan-
tageous to considerS to be a subset of a fundamental
domain of a general latticeAZ2 whereA =

(
a11 a12
a21 a22

)
.

Our next theorem relies on basic insights on the role of
symplectic geometry in time-frequency and generalizes
Theorem 2.15. For simplicity, we restrict our attention
to lower triangular matrices

(
a11 0
a21 a22

)
. In Section III-I

we discuss the general case in detail and compute the
quite involved resulting reconstruction formulas (38)–
(41), (45), (46).

Theorem 2.18:Let S ⊆ R2, |S| ≤ 1, and assume that
with A =

(
T 0
a Ω

)
, detA = TΩ = 1/L, for someν0 ∈ R,

S + (0, ν0) is contained in a fundamental domain of the
latticeLAZ2, and that

(
T 0
0 1/LT

)
A−1(S+(0, ν0)) admits

a (T,L)-rectification, that is, ifPq,m = A
(
[0, 1]2 +

(q,m)T
)
, q, m ∈ Z, then

LA
(
[0, 1]2

)
∩

⋃

k,ℓ∈Z
S+(0, ν0)+LA(k, ℓ)T ⊆

⋃

(q,m)∈Γ
Pq,m.

(20)
ThenOPW 2(S) can be identified by operator sampling.
Namely, with the period-L sequencesc = (cn) andb(q,m)

from Theorem 2.15, and functions

Φ(q,m)(t, s) =

∫
e2πiνs χS(q,m)

(t, ν) dν,

S(q,m) = S ∩
⋃

k,ℓ∈Z
(Pq,m + LA(k, ℓ)T ),

h(x, t) = e−πiat2/T
∑

k

∑

(q,m)∈Γ

[
b(q,m),k e

−πiaT (t/T−(q−k))2

Hg(t− (q − k)T )Φ(q,m)(t, x− (q − k)T ) e2πi(q−k)at
]
.

(21)

Here the identifierg =
∑

cne
πiTan2

δnT and the recon-
struction sum converges unconditionally inL2(R2). If
the productTa is rational, sayTa/2 = p/q in lowest
terms, then(cneπiTan2

)n is periodic with period being
the least common multiple ofq andL. In particular, if
LTa/2 is an integer, then the period isL as well.

Example 2.19:(1) Figure 4 illustrates Theorem 2.18.
In this case,S is the union of the red and yellow
triangles and hence is a parallelogram of area1 and
A =

(
T 0
Ω Ω

)
with TΩ = 1/L = 1/3. Theorem 2.18

says thatOPW 2(S) can be identified by a periodically
weighted delta train of period2L = 6. However, since

( T 0
0 1

LT

)
A−1 S =

( 1 0
−Ω

T
1

)
S = [0, LT ]× [0,Ω]

admits a(T,L)-rectification withL = 3, recovery of the
spreading function would only require solving a single
3 × 3 linear system or, equivalently, finding the three
period-3 sequencesb(q,m) in (21) would require inverting
a single3× 3 matrix.

(2) Alternatively, by considering the red and yellow
regions separately as in Remark 2.16(2),OPW 2(S)
can be identified by a periodically weighted delta train
of period 3. However, recovery ofη(t, ν) requires the
solution of two 3 × 3 linear systems and finding the
coefficientsbj(q,m) in (17) requires inverting two3 × 3
matrices.

Example 2.20:Figures 5 and 6 illustrate a situation in
whichOPW 2(S) can be identified by operator sampling
but not by regular operator sampling. In this case,
A =

( 2 2√
2
√
2+1/2

)
, S = A[0, 1]2 and henceA−1S =

[0, 1]2 admits a(T,L)-rectification with T = L = 1.
Therefore, following the notation in the proof of The-
orem 2.18,A = B, cn = 1 for all n, L′ = 2, and
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Fig. 4. The spaceOPW 2(S) where S is the union of the red
and the yellow sets is identifiable with reconstruction formula (21)
with a periodically weighted delta train of period6. Alternatively, we
can identifyOPW 2(S) using a periodically weighted delta train of
period3, but we have to solve2 linear systems or equivalently invert
2 3 × 3 matrices. In this case reconstruction is given by (17). See
Example 2.19 for details.

c′n = 1 − eπin. By equation (44),OPW 2(S) can be
identified by

g = µ(B)g̃ =
1√
2

∑
(1− eπin)eπin

2
√
2/2 δn,

a delta train with non-periodic weights.
Note thatB(S) = 1/2, and that since1 − eπin = 0

when n is even, the sampling density of the identifier
g is also1/2. Therefore, by Theorem 1.6, this identifier
achieves the minimal sampling rate for this region.

Next we observe that this region cannot be identified
by regular operator sampling for any value ofT or
L. Since |S| = 1, by Remark 2.9(2), theTZ × ΩZ-
periodization ofS must be an exactL-cover. In other
words, the inequality in (12) must be an equality. It can
be shown, however, that for any value ofT andL, this
is not possible. Details of the argument can be found in
Section III-J.

D. Operator Sampling as a Generalization of Classical
Sampling.

By generalizing the setting to other function spaces,
we can more precisely illustrate the connection between
operator sampling and the classical sampling theorem
of Shannon, Whittaker, and Kotelnikov among others,
and also the connection with the well-known fact that a
time-invariant operator can be identified by its impulse
response.

Definition 2.21: We define the operator Paley-Wiener

t

ν

1 2 3 4

1

2

3

4

(a)

ν

1

(b)

1

2

3

4

Fig. 5. (a) The the operator classOPW 2(S) with S =
(2, 2 ;

√
2,

√
2 + 1/2)[0, 1]2 whose area equals1 and bandwidth

equals 1/2 is identifiable by a (non-periodically) weighted delta
train with sampling density1/2. It is not identifiable using regular
operator sampling. (b)T = 1 periodization ofS. For details, see
Example 2.20.

t

ν

T

Ω

1 2 3 4

1

2

3

4

(a)
1.85.. 2.12..

(b)

Fig. 6. (a) For periodic operator sampling to succeed withS having
area 1, we require that theT,Ω periodization ofS leads to an exact
L cover of the time-frequency plane. (b) The central piece of the
setS. For the significance of this set, see Example 2.20.

spacesOPW∞,2(S) andOPW 2,∞(S) by

OPW∞,2(S) = {H ∈ L(L2(R), L2(R)) :

supp ηH ⊆ S, ‖σH‖L∞,2 < ∞}

where

‖σH‖L∞,2 =
∥∥∥
∫

|σH(·, ξ)|2dξ
∥∥∥
1/2

∞

and

OPW 2,∞(S) = {H ∈ L(L2(R), L2(R)) :

supp ηH ⊆ S, ‖σH‖L2,∞ < ∞}
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where

‖σH‖L2,∞ =
(∫

‖σH(x, ·)‖2∞dx
)1/2

([24], Theorem 4.2).OPW p,q(S) is a Banach space with
respect to the norm‖H‖OPW p,q = ‖σH‖Lpq .

Note that convolution with a compactly supported
kernel whose Fourier transform is inL2 is an operator in
OPW∞,2 and multiplication by a bandlimited function
in L2 is an operator inOPW 2,∞.

1) Identification of convolution operators:First, take
H to be ordinary convolution byhH(t), that is,
hH(x, t) = hH(t). In this caseH can be identified in
principle byg = δ0, the unit impulse at the origin, since
Hg(x) = hH(x). That is,Λ = {0} is a sampling set for
the class of convolution operators. Translating this into
our operator sampling formalism results in something
slightly different.

Assume thath is supported in the interval[0, T ′],
ĥ ∈ L2 and thatT > T ′, and Ω > 0 are chosen
so thatΩT < 1. In this case,ηH(t, ν) = h(t) δ0(ν)
and σH(x, ξ) = ĥ(ξ). Therefore σH ∈ L∞,2 and
H ∈ OPW∞,2([0, T ′]×[−Ω/2,Ω/2]).

Applying Theorem 2.17 to this situation, note that
if g =

∑
n δnT then Hg is simply theT–periodized

impulse responseh(t), and it follows from the theo-
rem (or by direct calculation) that withr, ϕ ∈ S(R),
r(t) = 1 on [0, T ′] and vanishing outside an interval
of lengthT containing[0, T ′], and with ϕ̂(0) = 1 and
supp ϕ̂ ⊆ [−Ω/2,Ω/2],

r(t)
∑

k∈Z
(Hg)(t+ kT )ϕ(x − t− kT )

=
∑

k∈Z

∑

n∈Z
r(t)h(t+ kT − nT )ϕ(x− t− kT )

=
∑

k∈Z
h(t)ϕ(x − t− kT ) = h(t).

Here we have used the fact thatr(t) = 1 on [0, T ′]
and vanishes outside a neighborhood of[0, T ′] and that∑

k ϕ(x − t − kT ) = 1 by the Poisson Summation
Formula and in consideration of the support constraints
on ϕ̂. Indeed the theorem says that the sum

∑
k ϕ(x −

t−kT ) converges to1 in theL∞ norm and in particular
uniformly on compact sets.

2) Identification of multiplication operators (Classical
Sampling):To compare Theorem 2.17 with the classical
sampling theorem, takeH to be multiplication by some
fixed function m ∈ L2 with supp m̂ ⊆ [−Ω/2,Ω/2]
then ηH(t, ν) = δ0(t)m̂(ν), h(t, x) = δ0(t)m(x − t),
and σH(x, ξ) = m(x). Let Ω′ > Ω and T > 0 be
such thatΩ′T < 1. Then σH ∈ L2,∞ and H ∈
OPW 2,∞([−T/2, T/2] × [−Ω/2,Ω/2]).

Chooser, ϕ ∈ S(R) such thatsupp r ⊆ [−T/2, T/2],
r(0) = 1, supp ϕ̂ ⊆ [−Ω′/2,Ω′/2], and ϕ̂(ν) =
1 on [−Ω/2,Ω/2]. If g =

∑
n δnT , then Hg =∑

nm(nT ) δnT , and it follows from Theorem 2.17 (and
by direct calculation) that

δ0(t)m(x− t)

= r(t)
∑

k∈Z
(Hg)(t+ kT )ϕ(x− t− kT )

= r(t)
∑

k∈Z

∑

n∈Z
m(nT ) δ(n−k)T (t)ϕ(x− t− kT )

=
∑

n∈Z
m(nT )ϕ(x− nT )

by support considerations on the functionr(t). Therefore
we have the summation formula

m(x) =
∑

n∈Z
m(nT )ϕ(x− nT )

where the sum converges unconditionally inL2. This
recovers the classical sampling formula when sampling
above the Nyquist rate.

E. Sufficient conditions on the sampling rate in operator
sampling

As was observed earlier, a natural measure of the
sampling rate in operator sampling is the quantityD(Λ)
(Definition 1.2), which in the case of regular operator
sampling is‖c‖0/(TL). A necessary condition on the
sampling rate in operator sampling was give in terms
of the bandwidth of a channel (Theorem 1.6). The goal
of this subsection is to investigate sufficient conditions
on the sampling rate in regular operator sampling that
guarantee identifiability.

In the classical sampling theory of functions, the
sampling rate must exceed the reciprocal of the area of
the bandlimiting set; and regardless of the measure of
the bandlimiting set, a (possibly high density) sampling
set always exists. As mentioned above (Theorem 2.7),
operator sampling ofOPW 2(S) is only possible if the
measure ofS satisfies|S| ≤ 1, and necessary sampling
rates in operator sampling depend on the geometry ofS.

The main result in this paper relevant to finding a suf-
ficient condition on the sampling rate for identification
of OPW 2(S) is the following.

Theorem 2.22:Let S ⊆ R2 be compact,|S| < 1,
ǫ > 0, and suppose thatS has a(T,N)-rectification
satisfying (|Γ| + 2)/N < |S|(1 + ǫ) < 1. Then for
every sufficiently largeL ∈ N, OPW 2(S) can be
identified via regular operator sampling by an identifier
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g =
∑

n cn δnT , wherec = (cn) is a period-L sequence
satisfying

‖c‖0
L

< |S|(1 + ǫ).

Moreover, ifL is prime, thenc can be chosen withcj = 0
if ‖c‖0 ≤ j < L, that is, such thatc is supported on its
first ‖c‖0 indices.

Remark 2.23:(1) Note that once an appropriate
(T,N)-rectification of S is found, the parameterT
associated to that rectification is fixed. Subsequently,
a periodic weighting sequence can be found for the
delta train

∑
n cnδnT whose relative support is bounded

essentially by the area ofS. Moreover, if L is prime,
and c is supported on{0, 1, . . . , ‖c‖0 − 1}, then this
represents abunched operator samplingthat can allow
for the efficient identification of the channel in the
following way.

If the area ofS is small, and ifK represents the
“memory” of the channel (that is, for eachν, η(t, ν)
is supported in the interval[0,K]), then the response of
the channel to the delta train

∑
n cnδnT is supported on

the set ⋃

j∈Z

(
[0, T‖c‖0 +K] + jLT

)

and hence vanishes on the set
⋃

j∈Z

(
[T‖c‖0 +K,LT ] + jLT

)
.

The “dead time” represented by this set can be used for
other purposes. Note also that|LT − (T‖c‖0 + K)| ≥
LT (1− |S|(1 + ǫ)−K/(LT )) so that the length of the
dead time within each period of the channel response
increases withL.
(2) Another interpretation of this result is that the sparsity
of the matrix G(c) in the linear system (9) can be
controlled by the area of the spreading support. In this
case,‖c‖0/L gives the fraction of nonvanishing entries
in each column ofG(c). HenceS with small support
guarantees thatG(c) can be chosen to be sparse.

Remark 2.24:The “dead time” referred to above can
be thought of as a measure of the capacity of the
unknown, bandlimited channel in the sense that only
during this time can data be sent over the channel. With
this notion of capacity, the above discussion says that
the capacity of a time-varying channel decays linearly
with the area of its spreading support.

F. Sampling and reconstruction of operators with small,
but unknown support

Just as in classical sampling, operator sampling re-
quires full knowledge of the bandlimitation we expect an

operator to have, that is, the reconstruction formulas for
OPW 2(S) depend on knowing the regionS. However,
in some applicationsS may not be known precisely, but
only some information on its size, geometry and location
is given by physical considerations. In this section we
address the question whether such operators can be
sampled and reconstructed in a stable matter.

Theorem 2.25:For A,B,U, ǫ, σ > 0 and N ∈ N,
let H(A,B,U,N, ǫ, σ) contain all operators such that
supp FsσH = supp ηH ⊆ [−A,A]×[−B,B] satisfies
the hypothesis of Theorem 2.13 withσ ≤ 1/2. Then
there existsL ∈ N and anL-periodic sequence(cn) such
that g =

∑
n cnδn/

√
L identifiesH(A,B,U,N, ǫ, σ).

The reconstruction of an operatorH ∈
H(A,B,U,N, ǫ, σ) is then carried out as follows.
First chooseL as in Theorem 2.13 and letRH denote
the rectified support of H, that is, the union of
(1/

√
L) × (1/

√
L) boxes that coversupp ηH having

area not greater than1/2. Under this assumption, we
determineRH . In the final step, we apply the operator
reconstruction formula developed in Theorem 2.15 to
OPW 2(RH).

To determine the rectified support ofηH with H ∈
H(A,B,U,N, ǫ, σ), we will apply ideas from com-
pressed sensing. Indeed, Lemma 3.7 below, shows that
from H

∑
n cnδn

√
L, we can compute a lengthL vector

y(t, ν) with y(t, ν) = G(c)x(t, ν) and where the un-
known discrete support of the lengthL2 vectorx(t, ν)
encodes the support of the bivariate functionηH(t, ν).
In fact, recovering the vectorx(t, ν) for a single point
(t, ν) provides us with the support structure ofηH . Note
that the conditions given above imply thatx(t, ν) has at
mostL/2 nonzero components.

The full-Spark matrixG(c) plays the role of amea-
surement matrixand has the ability to recover anyL/2-
sparse vectorx(t, ν) [19], [20]. But finding anL/2-
sparse vector requires consideration of every support
structure out of

(
L2

L/2

)
possible ones, which is hardly

possible forL not being of the order2, 3, 5. If we
know that far fewer thanL/2 cells are active, then we
can try to apply compressed sensing algorithms such as
Basis Pursuit or Orthogonal Matching Pursuit to recover
x from y = G(c)x. See [3], [4], [10], and [5] for
descriptions of the recovery algorithms.

In light of Theorem 2.8 we can extend Theorem 2.25
in a different direction and obtain a large class of opera-
tors that can be identified via regular operator sampling
without knowledge of the support set. This class is larger
than the class of area≤ 1/2 considered in [3], [4].

Theorem 2.26:Let T > 0, L ∈ N andc ∈ CL be cho-
sen so thatG(c) has full Spark, and letg =

∑
n∈Z cnδnT .

For 0 ≤ ∆ ≤ 1, define the operator classHT,L(∆) to
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be the collection of operatorsH in OPW 2(R2) such
that for some fixed fundamental domainR of the lattice
(TL)Z× (1/T )Z , supp ηH = SH ⊆ R and

∑

k,ℓ

χSH+(kT,ℓ/(TL)) ≤ ∆L a.e. (22)

Then the following are equivalent.

(i) ∆ < 1/2 + 1/(2L).
(ii) For all H1, H2 ∈ HT,L(∆), H1g = H2g implies

H1 = H2

(iii) HT,L(∆) is identifiable with identifierg in the
sense of (2)

Boelcskei and Heckel ([3], [4]) have shown that, for
operator classes like those in Theorem 2.25, if onlyL−
1 cells are active, these can be determined, and hence
the operator class can be identified without knowing the
spreading support. Their analysis and derived recovery
algorithms rely on the fact that by varying(t, ν) you
obtain a family of equationsy(t, ν) = G(c)x(t, ν) where
the vectorsx(t, ν) have identical sparsity structure. This
allows for the recovery of almost every operator ([10],
[5]) in the given class.

In Theorem 2.8 we give up joint sparsity, i.e., the
sparsity structure ofx(t, ν) varies with(t, ν). A compro-
mise based on the characterization found in Lemma 2.11
that guarantees joint sparsity and allows us to use
Theorem 2.8 is given by the following generalization
of Theorem 3 in [3] (cf. Theorem 3 in [4]). Note that
the additional parameterK can be chosen independently
of T andL, i.e., choosingK large does not increase the
sampling rate, nor the size of the compressive sensing
problem, i.e., of the matrixG(c).

Theorem 2.27:For T > 0, andL ∈ N, let c ∈ CL be
chosen so thatG(c) has full Spark. GivenK ∈ N, define
the operator classHT,L,K ⊆ OPW (R2) by H ∈ HT,L,K

if and only if supp ηH = SH ⊆ [0, LT ] × [0, 1/T ]
satisfies

(a)
∑

k,ℓ

χSH+(kT,ℓ/(TL)) ≤ L− 1 a.e., and

(b) each setAj in the partition of[0, T ]× [0, 1/(LT )]
given in Lemma 2.11 can be written as a union
of sets of the form[0, T/K] × [0, 1/(KLT )] +
(qT/K,m/(KLT )), 0 ≤ q,m < K.

Then almost every operator inH ∈ HT,L,K can be
identified by regular operator sampling.

Note that alternatively to choosingK, we could at-
tempt to introduce joint sparsity by assuming that, for
example,ηH is smooth.

III. PROOFS OFTHEOREMS

A. Proof of Theorem 1.6

SinceS is closed, eacht-sectionSt of S is closed and,
hence, measurable. Therefore,χS(t, ·) is a nonnegative
measurable function and

∫
R
χS(t, ν) dν ∈ [0,∞] is well

defined for allt ∈ R. It suffices to show the result for
A∞ =

∥∥ ∫
R
χS(·, ν) dν

∥∥
∞ finite, the infinite case then

follows from this.
Assume thatΛ is a set of sampling withD(Λ) <

a∞ < A∞.
Then, we can choose a setP with positive measure

and
∫
R
χS(t, ν) dν ≥ a∞ for all t ∈ P . Assume without

loss of generalityP ⊆ [0, 1]. For any ǫ, there exist
mt ∈ PW (St) with ‖mt‖L2 = 1 and ‖mt|Λ‖ℓ2 ≤ ǫ,
t ∈ P . DefineκH(x, y) = mx−y(y) for x− y ∈ P , and
0 otherwise. ThenhH(x, t) = κH(x, x− t) = mt(x− t)
and ηH(t, ν) = m̂t(ν) for t ∈ P , and 0 otherwise,
so H ∈ OPW 2(S). Observe that‖σH‖L2 =

√
|P |.

Note that it is easily seen that if
∑

λ∈Λ cλδλ identifies
OPW 2(S), then (cλ) is bounded. Also, by hypothesis,
there existsK ∈ N which bounds the cardinality of
Λ ∩ [x, x+ 1] above for allx ∈ R. We compute

∥∥H
∑

λ∈Λ
cλδλ

∥∥2
L2 =

∫ ∣∣∑

λ∈Λ
cλκH(x, λ)

∣∣2 dx

=

∫ ∣∣∑

λ∈Λ
cλmx−λ(λ)

∣∣2 dx

≤ ‖(cλ)‖2ℓ∞
∫ ∣∣∑

λ∈Λ
mx−λ(λ)

∣∣2 dx

≤ ‖(cλ)‖2ℓ∞ K
∑

λ∈Λ

∫
|mx−λ(λ)|2 dx

= ‖(cλ)‖2ℓ∞ K
∑

λ∈Λ

∫ λ+1

λ
|mx−λ(λ)|2 dx

= ‖(cλ)‖2ℓ∞ K

∫ 1

0

∑

λ∈Λ
|mt(λ)|2 dt

≤ ‖(cλ)‖2ℓ∞ K

∫ 1

0
ǫ2 dt = ‖(cλ)‖2ℓ∞ K ǫ2 .

B. Proof of Equation(9)

Definition 3.1: The non-normalized Zak Transform is
defined forf ∈ S(R), anda > 0 by

Zaf(t, ν) =
∑

n∈Z
f(t− an) e2πianν .

Zaf(t, ν) satisfies the quasi-periodicity relations

Zaf(t+ a, ν) = e2πiaν Zaf(t, ν)
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and
Zaf(t, ν + 1/a) = Zaf(t, ν).

√
aZa can be extended to a unitary operator fromL2(R)

ontoL2([0, a]×[0, 1/a]).
The following Lemma connects the outputHg(x)

where g is a delta-train, to the spreading function
ηH(t, ν).

Lemma 3.2:Let a > 0 be given and letg =
∑

n δna.
Then for all (t, ν) ∈ R2,

(Za ◦H)g(t, ν)

= a−1
∑

k

∑

m

ηH(t+ ak, ν +m/a) e−2πiνka,

whereηH is the spreading function of the operatorH.
Proof: It can be verified by direct calculation that

if g =
∑

n δna then 〈Hg, f〉 = 〈ηH , Zaf〉 for all
f ∈ S(R) where the bracket on the left is theL2 inner
product onR and that on the right theL2 inner product
on the rectangle[0, a]×[0, 1/a]. Periodizing the integral
defining theL2 inner product on the left gives

〈ηH , Zaf〉 =
∫ 1/a

0

∫ a

0

∑

k

∑

m

ηH(t+ ka, ν +m/a)

e−2πiνkaZaf(t, ν) dt dν.

Since this holds for everyf ∈ S(R), the result follows.

Lemma 3.3:Let T,Ω > 0 be given such thatTΩ =
1/L for someL ∈ N, let (cn) be a period-L sequence,
and defineg =

∑
n cn δnT . Then for(t, ν) ∈ R× R̂,

(Z1/Ω ◦H)g(t, ν)

= Ω

L−1∑

q=0

c−q

∑

k

∑

m

ηH(t+ k/Ω + qT, ν +mΩ)

e−2πi(ν+mΩ)qT e−2πiνk/Ω.
(23)

Proof: Note first that lettingj = nL− q, 0 ≤ q ≤
L− 1, n ∈ Z,

g =
∑

cj δnT =

L−1∑

q=0

∑

n∈Z
cnL−q δnLT−qT

=

L−1∑

q=0

c−qT−q/LΩ

(∑

n∈Z
δn/Ω

)
.

For α ∈ R, the spreading function ofH ◦ Tα is ηH(t−
α, ν) e2πiνα and hence

(Z1/Ω ◦H)

(∑
cj δnT

)
(t, ν)

=

L−1∑

q=0

c−q(Z1/Ω ◦H ◦ T−q/LΩ)

(∑

n∈Z
δn/Ω

)
(t, ν).

Lemma 3.2 yields the result.
Changing summation indices in (23) bym = nL+ ℓ,

0 ≤ ℓ ≤ L− 1, n ∈ Z, yields the following lemma.
Lemma 3.4:Let T,Ω > 0 be given such thatTΩ =

1/L for someL ∈ N, let (cn) be a period-L sequence.
Then withg =

∑
n cn δnT , and for all(t, ν) ∈ R2,

(Z1/Ω ◦H)g(t, ν)

= Ω

L−1∑

q=0

c−q

L−1∑

m=0

∑

k

ηQP
H (t+ qT, ν +mΩ)

e−2πiνqT e−2πiνmq/L (24)

where ηQP
H (t, ν) is the (1/Ω, 1/T )–quasiperiodization

of ηH defined below.
Definition 3.5: Given a bivariate functionf(t, ν)

and parametersT,Ω > 0, define the (1/Ω, 1/T )–
quasiperiodizationof f , denotedfQP , by

fQP (t, ν) =
∑

k

∑

ℓ

f(t+ k/Ω, ν + ℓ/T ) e−2πiνk/Ω

(25)
whenever the sum is defined. Note thatfQP (t, ν +
1/T ) = fQP (t, ν) and fQP (t + 1/Ω, ν) =
e2πiν/Ω fQP (t, ν) for all (t, ν) ∈ R2.

Lemma 3.6:Suppose thatsupp(f) = S is contained
in a fundamental domain of1/ΩZ× 1/T Z. Then

f(t, ν) =
∑

k

∑

ℓ

fQP (t− k/Ω, ν − ℓ/T )

χ
[0,1/Ω](t− k/Ω)χ[0,1/T ](ν − ℓ/T ) e2πikν/Ω χ

S(t, ν)
(26)

where if f ∈ L2(R2), the sum converges inL2 and
uniformly on compact sets.

Proof: Under the given assumptions, the functions
being summed in (26) have pairwise disjoint supports.
Since|S| < 1, the sum converges inL2 if f ∈ L2(R2).
Moreover, since on each compact set, the sum is finite,
we get uniform convergence on compact sets.

To complete the proof, we show that (26) holds point-
wise. SinceS is a fundamental domain, for(t, ν) ∈ S
only the(k, ℓ) = (0, 0) term survives in (25). Hence, for
all (t, ν),

fQP (t, ν)χS(t, ν) = f(t, ν).

By direct calculation,

fQP (t, ν) =
∑

k

∑

ℓ

fQP (t− k/Ω, ν − ℓ/T )

χ
[0,1/Ω](t− k/Ω) χ[0,1/T ](ν − ℓ/T ) e2πikν/Ω

for each(t, ν) ∈ R2.
Lemma 3.7:Let T,Ω > 0 be given such thatTΩ =

1/L for someL ∈ N, let (cn) be a period-L sequence.
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Then with g =
∑

n cn δnT , (t, ν) ∈ R2, and p =
0, 1, . . . , L−1,

e−2πiνTp (Z1/Ω ◦H)g(t + Tp, ν)

= Ω

L−1∑

q,m=0

(T q Mmc)p e
−2πiνTq ηQP

H (t+ Tq, ν +Ωm).

(27)

Proof: By (24),

(Z1/Ω ◦H)g(t + pT, ν)

= Ω

L−1∑

q=0

c−q

L−1∑

ℓ=0

ηQP
H (t+ (q + p)T, ν +mΩ)

e−2πiνqT e−2πiνmq/L.

Making the change of indexq 7→ q−p, rearranging terms
and using the fact thatLT = 1/Ω yields

(Z1/Ω ◦H)g(t+ Tp, ν)

= Ω

L−1∑

q=0

L−1∑

m=0

c−(q−p) e
−2πim(q−p)/L

ηQP
H (t+ qT, ν +mΩ) e−2πiν(q−p)T .

Since (T q Mmc)p = cp−q e
2πim(p−q)/L, the result fol-

lows.
Letting

ZHg(t, ν)p = (Z1/Ω ◦H)g(t+ pT, ν) e−2πiνpT (28)

and

ηH(t, ν)(q,m) = Ω ηQP
H (t+qT, ν+mΩ) e−2πiνqT e−2πiqm/L,

(29)
we have that

ZHg(t, ν)p =

L−1∑

q,m=0

G(c)p,(q,m) ηH(t, ν)(q,m)

which is (9).

C. Proof of Theorem 2.6

We first recall and outline the proof of Theorem 2.4.
Given any square submatrix ofG(c), call it M ,

det(M) is a homogeneous polynomial of degreeL in
the L variablesc0, c1, . . . , cL−1. In order to show that
this polynomial does not vanish identically, it suffices to
show that there is at least one monomial indet(M) with
a nonzero coefficient.

Such a monomial,pM , is defined recursively as fol-
lows. If M is 1 × 1, then det(M) is a multiple of a
single variablecj and we definepM = cj . If M is d×d,
let cj be the variable of lowest index appearing inM .
Choose any entry ofM in which cj appears, eliminate

from M the row and column containing that entry, and
call the remaining(d− 1)× (d− 1) matrix M ′. Define
pM = cj pM ′ .

The remainder of the proof consists of showing that
the coefficient ofpM is nonzero. In fact, it is a product of
minors ofWL which, sinceL is prime, never vanish due
to a classical result known as Chebotarev’s Theorem.

Proof: (Theorem 2.6) Letk ≤ L and choose
k columns ofG(c). Applying the algorithm described
above to the non-squareL × k matrix M0 formed by
those columns, we can identify a monomialpM0

. The
key observation is that at each step in the algorithm,
a variablecj appears for which0 ≤ j < k. Once k
rows of M0 have been eliminated, defineM to be the
k × k submatrix ofG(c) consisting of those rows and
the columns ofG(c) chosen originally.

Since the polynomialdet(M) is not identically zero,
and since at least one nonvanishing monomial ofdet(M)
has only variablescj for 0 ≤ j < k appearing, there is
a c ∈ CL, with supp(c) ⊆ {0, . . . , k − 1} such that the
columns ofG(c) are linearly independent.

Since the exceptional set of suchc is the zero set of a
polynomial ink variables, its complement is dense and
open inCk×{0}. Hence the (finite) intersection of these
sets over all choices ofk columns ofG(c) is also dense
and open inCk × {0}.

D. Proof of Theorem 2.8

Proof: Note first that by (28) and (29),

L∑

p=0

∫∫

[0,T ]×[0,Ω]
|ZHg(t, ν)p|2dt dν

=

∫∫

[0,T ]×[0,LΩ]
|Z1/ΩHg(t, ν)|2dt dν = ‖Hg‖2L2

and

L∑

q,m=0

∫∫

[0,T ]×[0,Ω]
|ηH(t, ν)q,m|2dt dν

= Ω‖ηQP
H ‖L2([0,LT ]×[0,LΩ]).

(i)=⇒(iii). If (11) fails, then there exist integersq0 and
m0 with S′ = S∩S+(m0LT, n0LΩ) is a set of positive
measure. This implies that there exists an operatorH ∈
OPW 2(S) with spreading functionη ∈ L2(R) \ {0}
and ηQP = 0. Indeed, asS′ ⊆ S+(m0LT, n0LΩ), we
haveS′, S′′ = S′−(m0LT, n0LΩ) ⊆ S and η(t, ν) =
χS′(t, ν) − χS′′(t, ν)e2πiνm0ν 6= 0 but ηQP = 0. Then
ZHg = 0 which is equivalent toHg = 0, showing that
(i) fails.
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Assume now that (11) holds, and, without loss
of generality, supp η ⊆ [0, LT ]× [0, LΩ], so that
ηQP |[0,LT ]×[0,LΩ] = η.

If (12) fails,Then there exists a set of positive measure
A with

∑
k,ℓ χS+(kT,ℓΩ)(t, ν) ≥ L+ 1, (t, ν) ∈ A.

Hence, there exists̃A ⊆ A of positive measure and
a fixed collection ofL + 1 rectanglesRk,ℓ indexed
by Λ out of the L2 rectangles of size[0, T ]×[0,Ω]
tiling [0, LT ]×[0, LΩ] with

∑
(k,ℓ)∈Λ χS+(kT,ℓΩ)(t, ν) ≥

L + 1, (t, ν) ∈ Ã. SinceG(c)|Λ hasL + 1 linearly
dependent columns, we can choose a nontrivial vectorx

supported onΛ with with 0 = G(c)x, and, this allows us
similarly to above to define a functionηH 6= 0 supported
on Ã ⊆ S with G(c)ηH(t, ν) = 0. As before, we
conclude thatHg = 0 while H 6= 0.

(iii)=⇒(ii). Following the arguments above,

A‖H‖HS ≤ ‖Hg‖L2 ≤ B‖H‖HS

with A is the minimum over all singular values ofL×L
sub-matrices ofG(c) and B is the maximum over all
singular values ofL× L sub-matrices ofG(c).

(ii)=⇒(i). Obvious.

E. Proof of Theorem 2.13

Proof: Let L ∈ N be as described. We will show
thatS meets at mostσL rectanglesRq,m, with T =

√
L.

To this end, note that a Jordan curveCi with length
ui ∈ ((ki−1)/

√
L, ki/

√
L), ki ∈ N, touches at most4ki

rectanglesRq,m, in fact, this bound is rather pessimistic
and only sharp forki = 1. Note that

√
LU ≥

√
L

N∑

i=1

ui

≥
√
L

N∑

i=1

(ki − 1)/
√
L =

( N∑

i=1

ki
)
−N,

and, hence, the number of rectanglesB(∂S) needed to
cover the boundary∂S of S satisfies

B(∂S) ≤
N∑

i=1

B(Ci) ≤
N∑

i=1

4ki ≤ 4(
√
LU +N).

We conclude that the ”fat” boundary, that is, the1/
√
L×

1/
√
L rectification of the boundary has area bounded

above by

4(
√
LU +N)/(

√
L)2 = 4(U/

√
L+N/L) ≤ ǫ.

It follows immediately, that at mostσL setsRq,m are
needed to coverS.

F. Proof of Lemma 2.11

Proof: Note first that withS◦ given by (13),
∑

k,ℓ

χS+(kT,ℓ/(TL)) =
∑

0≤q,m<L

χS◦+(qT,m/(TL))

so that (12) is equivalent to

sup
(t,ν)∈[0,T ]×[0,1/(TL)]

∑

0≤q,m<L

χS◦+(qT,m/(TL))(t, ν) ≤ L.

Assume that (12) holds. Then for each(t, ν) ∈ [0, T ]×
[0, 1/(TL)] there is a unique0 ≤ n ≤ L and |Γ| = n
such that

∑

0≤q,m<L

χS◦+(qT,m/(TL))(t, ν)

=
∑

(q,m)∈Γ
χS◦+(qT,m/(TL))(t, ν) = n. (30)

For each suchn andΓ, define the set

An,Γ = {(t, ν) ∈ [0, T ]× [0, 1/(TL)] : (30) holds}.

This collection of sets forms the desired partition of
[0, T ] × [0, 1/(TL)]. It is clear that the setsSj defined
in (14) satisfy the required conditions.

For the other implication, ifAj + (kT, ℓ/(LT )), 0 ≤
k, ℓ < L, meetsS◦ at mostL times, then

sup
(t,ν)∈[0,T ]×[0,1/(TL)]

∑

0≤q,m<L

χS◦+(qT,m/(TL))(t, ν)

= sup
(t,ν)∈[0,T ]×[0,1/(TL)]

sup
1≤j≤N

∑

0≤q,m<L

χAj+(qT,m/(TL))(t, ν) ≤ L.

G. Proof of Theorem 2.15

Proof: Suppose first that(t0, ν0) = (0, 0), and that
c is chosen so thatG(c) has full spark. By the support
assumption onS, (27) implies that for0 ≤ p ≤ L − 1,
(9) takes the form

ZHg(t, ν)p =

L−1∑

q,m=0

G(c)p,(q,m) ηH(t, ν)(q,m).

Let [b(q,m),p] be a left-inverse of theL × |Γ| matrix
[G(c)p,(q,m)]0≤p<L,(q,m)∈Γ. That is, for every(q,m),
(q′,m′) ∈ Γ,

L−1∑

p=0

b(q,m),pG(c)p,(q′,m′) =
1

Ω
e2πiqm/Lδq−q′ δm−m′ .

(31)
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Again by support considerations onS, ηH ∈
OPW 2(S) satisfies

ηQP
H (t, ν)χ[0,1/Ω](t)χ[0,1/T ](ν)

=
∑

(q,m)∈Γ
ηQP
H (t, ν)χ[0,T ](t− qT )χ[0,Ω](ν −mΩ),

and for each(q,m) ∈ Γ,

ηQP
H (t+ qT, ν +mΩ)χ[0,T ](t)χ[0,Ω](ν)

=

L−1∑

p=0

b(q,m),p
χ
[0,T ](t)χ[0,Ω](ν) e

2πiν(q−p)T

(Z1/Ω ◦H)g(t+ pT, ν).

Therefore, by the quasiperiodicity of the Zak transform,

ηQP
H (t, ν)χ[0,1/Ω](t)χ[0,1/T ](ν)

=
∑

(q,m)∈Γ

L−1∑

p=0

b(q,m),p
χ
[0,T ](t− qT )χ[0,Ω](ν −mΩ)

e2πi(ν−mΩ)(q−p)T (Z1/Ω ◦H)g(t− (q − p)T, ν).

Applying (26),

ηH(t, ν) = ηQP
H (t, ν)χS(t, ν)

=
∑

k,ℓ

e2πikν/Ω ηQP
H (t− k/Ω, ν − ℓ/T )

[
χ
[0,1/Ω](t− k/Ω)χ[0,1/T ](ν − ℓ/T )χS(t, ν)

]

=
∑

k,ℓ

e2πikν/Ω
L−1∑

(q,m)∈Γ,p=0

b(q,m),p e
2πi(ν−ℓ/T−mΩ)(q−p)T

(Z1/Ω ◦H)g(t − k/Ω− (q − p)T, ν − ℓ/T )[
χ
[0,T ](t− k/Ω− qT )χ[0,Ω](ν − ℓ/T −mΩ)χS(t, ν)

]

=
∑

k,ℓ

e2πikν/Ω
L−1∑

(q,m)∈Γ,p=0

b(q,m),p e
2πi(ν−mΩ)(q−p)T

e−2πiνkΩ (Z1/Ω ◦H)g(t− (q − p)T, ν)[
χ
[0,T ](t− k/Ω− qT )χ[0,Ω](ν − ℓ/T −mΩ)χS(t, ν)

]

=

L−1∑

(q,m)∈Γ,p=0

b(q,m),p e
2πi(ν−mΩ)(q−p)T

(Z1/Ω ◦H)g(t − (q − p)T, ν)[∑

k,ℓ

χ
[0,T ](t− k/Ω− qT )

χ
[0,Ω](ν − ℓ/T −mΩ)χS(t, ν)

]
.

Defining

S(q,m) = S ∩
(⋃

k,ℓ

Rq,m + (k/Ω, ℓ/T )

)
,

it follows that S =
⋃

(q,m)∈Γ S(q,m), that the union is
disjoint, and that

χ
S(q,m)

(t, ν) =
∑

k,ℓ

χ
[0,T ](t− k/Ω − qT )

χ
[0,Ω](ν − ℓ/T −mΩ)χS(t, ν).

Therefore,

ηH(t, ν)

=

L−1∑

(q,m)∈Γ,p=0

b(q,m),p e
−2πi(ν−mΩ)(q−p)T

∑

n∈Z
Hg(t− n/Ω− (q − p)T ) e2πiνn/Ω χ

S(q,m)
(t, ν)

=
∑

(q,m)∈Γ

[ L−1∑

p=0

∑

n∈Z
b(q,m),p e

−2πi(ν−mΩ)(q−p)T

Hg(t− nLT − (q − p)T ) e2πiνnLT χ
S(q,m)

(t, ν)

]
.

Extendingb(q,m),p to have periodL in p, it follows that

ηH(t, ν)

=
∑

(q,m)∈Γ

[ L−1∑

p=0

∑

n∈Z
b(q,m),p−nL e−2πi(ν−mΩ)(q−(p−nL))T

Hg(t− (q − (p− nL))T )χS(q,m)
(t, ν)

]

=
∑

(q,m)∈Γ

∑

k

b(q,m),k e
−2πi(ν−mΩ)(q−k)T

Hg(t− (q − k)T )χS(q,m)
(t, ν).

Finally, writing

h(x, t) =

∫
η(t, ν) e2πi(x−t)ν dν

yields (16) with(t0, ν0) = (0, 0).
To complete the proof, note that for almost everyt, the

set,{ν : (t, ν) ∈ S(q,m)} is contained in a fundamental
domain of the latticeTZ of R. This implies that the
measure of each such section is no more than1/T , and in
particular that for almost everyt, χS(q,m)

(t, ·) ∈ L2(R).
Therefore, by Plancherel’s Formula,

∫∫
|Φ(q,m)(t, s)|2 dt ds

=

∫∫ ∣∣∣∣
∫

e2πiνs χS(q,m)
(t, ν) dν

∣∣∣∣
2

ds dt

=

∫∫
|χS(q,m)

(t, ν)|2 dν dt = |S(q,m)|2 < ∞

and for almost every(t, s),

|Φ(q,m)(t, s)| ≤
∫

χ
S(q,m)

(t, ν) dν ≤ 1/T.
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HenceΦ(q,m) ∈ L2 ∩ L∞(R2). Convergence of the re-
construction sum inL2(R2) follows from the observation
thatHg ∈ L2(R) (see Lemma 3.2) and basic properties
of the Zak Transform (see e.g., [11], Section 8.2).

If (t0, ν0) 6= (0, 0), we formally compute

H =

∫∫

S
ηH(t, ν)MνTt dt dν

=

∫∫

S−(t0,ν0)
ηH(t+ t0, ν + ν0) Tt+t0Mν+ν0

dt dν

= Tt0Mν0
H̃,

where ηH̃(t, ν) = e−2πitν0 ηH(t + t0, ν + ν0). Taking
inverse Fourier transformsν → x on both sides, we
obtainhH̃(t, x) = e−2πitν0 hH(t+ t0, x) e

−2πiν0x which
is

hH(t, x) = e2πi(x+t−t0)ν0 hH̃(t− t0, x). (32)

With S̃ = S−(t0, ν0), we can apply (16) with(t0, ν0) =
(0, 0) to reconstructhH̃ from H̃g with the sameg =∑

cnδnT , that is,

hH̃(x, t)

=
∑

k

∑

(q,m)∈Γ
b(q,m),k H̃g(t− (q − k)T ) e−2πim(q−k)/L

Φ̃(q,m)(t, (x− t) + (q − k)T ). (33)

where

Φ̃(q,m)(t, s) =

∫
e2πiνs χS̃(q,m)

(t, ν) dν

and

S̃(q,m) = S̃ ∩
⋃

k,ℓ∈Z
(R̃q,m + (k/Ω, ℓ/T )).

Observing thatS(q,m) = S̃(q,m) + (t0, ν0), we obtain

Φ(q,m)(t, s) = e2πisν0 Φ̃(q,m)(t− t0, s).

combining (33) with (32) yields

h(x, t)

∑

k

L−1∑

j=0

b(q,m),k (M−ν0
T−t0H)g(t − t0 − (q − k)T )

e−2πim(q−k)/L e−2πi(x−t−t0+(q−k)T )ν0

Φ(q,m)(t, (x− t− t0) + (q − k)T )

= e2πi(x+t−t0)ν0

∑

k

∑

(q,m)∈Γ
b(q,m),k e

−2πi(t−t0−(q−k)T )ν0Hg(t− (q − k)T )

e−2πim(q−k)/L e−2πi(x−t−t0+(q−k)T )ν0

Φ(q,m)(t, (x− t− t0) + (q − k)T )

= e2πi(t+t0)ν0

∑

k

∑

(q,m)∈Γ
b(q,m),k Hg(t− (q − k)T ) e−2πim(q−k)/L

Φ(q,m)(t, (x− (t+ t0) + (q − k)T ) .

H. Outline of Proof of Theorem 2.17.

The proof follows that of Theorem 2.15 once we es-
tablish that we can replace the sharp cut-offs,χ

[0,T ] and
χ
[0,Ω] by smooth ones. SinceS is compact and|S| < 1,

for δ > 0 sufficiently small, the setSδ = S+[−δ, δ]2 also
satisfies|Sδ| < 1. Since Theorem 2.15 allows us to shift
the region, and since|S| < 1, we can assume without
loss of generality that there existT > 0 and L ∈ N
such thatS ⊆ (0, TL) × (0, 1/T ) and thatSδ has a
(T,L)-rectification. SinceS ⊆ ∪(q,m)∈ΓRq,m = R, it is
sufficient to prove the theorem withOPW 2(S) replaced
by OPW 2(R).

By Lemma 3.7, givenH ∈ OPW 2(R) with spreading
function ηH(t, ν), and given any weighted delta train of
the form g =

∑
n cn δnT where c = (cn) is a period-

L sequence, (27) holds withηQP
H replaced byηH for

all (t, ν) in an ǫ-neighborhood of[0, T ]×[0,Ω], Rǫ
0,0 =

([−ǫ/2, T + ǫ/2]×[−ǫ/2,Ω + ǫ/2].
Let r, ϕ ∈ S(R) satisfy

supp r ⊆ [−ǫ/2, T + ǫ/2], (34)

supp ϕ̂ ⊆ [−ǫ/2,Ω + ǫ/2],

so thatsupp r(t)ϕ̂(ν) ⊆ Rǫ
0,0, and

∑

k∈Z
r(t+ kT ) = 1 =

∑

n∈Z
ϕ̂(ν + nΩ), (35)

for all (t, ν) ∈ R2. For ǫ < δ, it is not hard to show that
if Rq,m 6⊆ R then

ηH(t, ν)r(t− qT )ϕ̂(ν −mΩ) = 0. (36)
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Therefore,

ηH(t, ν) =
∑

(q,m)∈Γ
ηQP
H (t, ν) r(t− qT ) ϕ̂(ν −mΩ).

Following the proof of Theorem 2.15, withr(t) replacing
χ
[0,T ](t) and ϕ̂(ν) replacingχ[0,Ω](ν),

ηH(t, ν) =
∑

(q,m)∈Γ

∑

k

b(q,m),k e
−2πi(ν−mΩ)(q−k)T

Hg(t− (q − k)T )R(q,m)(t, ν)

where

R(q,m)(t, ν)

=
∑

k,ℓ

r(t− k/Ω− qT )ϕ̂(ν − ℓ/T −mΩ)χR(t, ν)

= r(t− qT ) ϕ̂(ν −mΩ).

Finally,

h(x, t)

=
∑

(q,m)∈Γ

∑

k

b(q,m),k e
2πim(q−k)/L Hg(t− (q − k)T )

Φ(q,m)(t, (x− t) + (q − k)T )

where here

Φ(q,m)(t, s) =

∫
e2πiνsR(q,m)(t, ν) dν

= r(t− qT ) e2πismΩϕ(s).

Plugging this into (16) gives the result.

I. Lattice tilings and proof of Theorem 2.18

In this section we will prove Theorem 2.18, but also
derive results where the tiling ofS is defined by arbitrary
full rank lattices inR2. The reconstruction formulas use
results from representation theory; these carry over to the
higher dimensional setting if the lattice is symplectic.

Proof: As before, we assume thatS ⊆ R2 satisfies
|S| < 1. Suppose that for someA =

(
a11 a12
a21 a22

)
with

detA = 1/L, S is contained in a fundamental domain
of the latticeLAZ2. The latticeLAZ2 is the so-called ad-
joint latticeA◦ of A. Indeed,A◦ = (1/

√
L) (

√
LA)◦ =√

L
√
LA = LA (see [11] for details). We shall assume

without loss of generality thata11 6= 0. Otherwise, we
could replace the first column with the second and the
second with the negative of the first, leading to a different
parametrization of the same lattice. Further assume that
there existt0, ν0, andΓ ⊆ Z2, |Γ| ≤ L such that with
Pq,m = A

(
[0, 1]2+(t0, ν0) + (q,m)T

)
, q, m ∈ Z,

LA[0, 1]2 ∩
( ⋃

k,ℓ∈Z
S + LA(k, ℓ)T

)
⊆

⋃

(q,m)∈Γ
Pq,m.

(37)

As before, we will set

Φ(q,m)(t, s) =

∫
e2πiνs χS(q,m)

(t, ν) dν

where

S(q,m) = S ∩
⋃

k,ℓ∈Z
(Pq,m + LA(k, ℓ)T ).

We will derive reconstruction formulas and show that
if a12/a11 is rational, thenOPW 2(S) can be identified
with a weighted delta train and ifa21a11 is rational as
well, then the coefficient sequence(c̃n) of that delta
train is periodic and we are in the framework of regular
operator sampling.

We shall assign to each operatorH ∈ OPW 2(S)
an operator inH̃ ∈ OPW 2(L−1/2A−1S) and then
apply the reconstruction formula in Theorem 2.15 to
reconstruct̃h = hH̃ of H̃ ∈ OPW 2(L−1/2A−1S). From
this, we will constructh = hH and thereforeH.

The result is based on the existence of the operators
µ(
√
LA) that appear in the following computation. The

existence follows from the representation theory of the
Weyl-Heisenberg group and is discussed in this setting
in [16], [24]. Let ρ(t, ν) = eπitνTtMν , η#(t, ν) =
e−πitνη(t, ν), andB =

√
LA. Then

H =

∫∫
η(t, ν)TtMν dt dν

=

∫∫

S
η(t, ν)e−πitν eπitνTtMν dt dν

=

∫∫

S
η#(t, ν) ρ(t, ν) dt dν

=

∫∫

B−1(S)
η#(B(t, ν)) ρ(B(t, ν)) dt dν

=

∫∫
η#(B(t, ν)) µ(B)ρ(t, ν)µ(B)∗ dt dν

= µ(B)

∫∫
η#(B(t, ν)) ρ(t, ν) dt dν µ(B)∗

= µ(B) H̃ µ(B)∗ ,

with η̃#(t, ν) = η#(B(t, ν)). SettingQ1(t, ν) = t and
Q2(t, ν) = ν we have

η̃(t, ν) = eπi(tν−Q1B(t,ν)·Q2B(t,ν))η(B(t, ν)).

Moreover, observe that̃S = B−1S satisfies the
hypothesis of Theorem 2.15 withT = Ω = 1/

√
L.

We have therefore with anL periodic sequence(c̃n),
g̃ =

∑
c̃nδn

√
L, andB−1 =

(
b22 −b12
−b21 b11

)
the reconstruc-

tion formulas

h̃(x, t) = e2πi(t+t0)ν0

∑

k

∑

(q,m)∈Γ

[
b(q,m),k

H̃g̃(t− (q − k)/
√
L)e−2πim(q−k)/L

Φ̃(q,m)(t+t0, x− (t+t0) + (q − k)/
√
L)

]
,
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η̃(t, ν) = e2πi(t+t0)ν0

∑

k

∑

(q,m)∈Γ

[
b(q,m),k

H̃g̃(t− (q − k)/
√
L)e−2πim(q−k)/L

χB−1S(q,m)
(t+t0, ν)e

2πi(t+t0−(q−k)/
√
L)ν

]

= eπi(tν−Q1B(t,ν)·Q2B(t,ν))η(B(t, ν))

η(t, ν) = e2πi(Q1B−1(t,ν)+t0)ν0

e−πi(Q1B−1(t,ν)·Q2B−1(t,ν)−tν)
∑

k

∑

(q,m)∈Γ

[
b(q,m),k

H̃g̃(Q1B
−1(t, ν)− (q − k)/

√
L)

e−2πim(q−k)/LχSj

(
(t, ν)+B(t0, 0)

)

e2πi(Q1B−1(t,ν)+t0−(q−k)/
√
L)Q2B−1(t,ν)

]

= e2πi((b22t−b12ν)ν0+t0(b11ν−b21t)+t0ν0)

eπi((b22t−b12ν)·(b11ν−b21t)−tν)
∑

k

∑

(q,m)∈Γ

[
b(q,m),k

H̃g̃((b22t− b12ν)− (q − k)/
√
L)

e−2πim(q−k)/LχS(q,m)

(
(t, ν)+(b11t0, b21t0)

)

e−2πi(q−k)/
√
L)(b11ν−b21t)

]

= e2πi
(
[(a22t−a12ν)ν0+t0(a11ν−a21t)]

√
L+t0ν0

)

eπi(L(a22t−a12ν)·(a11ν−a21t)−tν)
∑

k

∑

(q,m)∈Γ

[
b(q,m),k

H̃g̃((a22t− a12ν)
√
L− (q − k)/

√
L)

e−2πim(q−k)/LχS(q,m)
(t+

√
La11t0, ν +

√
La21t0)

e−2πi(q−k)(a11ν−a21t)
]
. (38)

Taking inverse Fourier transformsν → x on both
sides gives us a formula forh, but as the right hand
side contains the product of three functions inν, the
resulting formula forh does not give much insight in
general. Ifa12 = 0 though, the above simplifies (using
a11a22 = 1/L) to

η(t, ν) =
∑

k

∑

(q,m)∈Γ

[
b(q,m),k H̃g̃(a22

√
Lt− (q − k)/

√
L)

e−2πim(q−k)/L χS(q,m)
(t+

√
La11t0, ν +

√
La21t0)

e2πi(t0ν0a11

√
L−(q−k)a11)ν e−2πi(

√
Lt0ν0+L/2)a22a21t2

e2πit0ν0 e2πi(q−k)a21t
]

(39)

which leads to

h(x, t) = e−2πi(
√
Lt0ν0+L/2)a22a21t2 e2πit0ν0

∑

k

∑

(q,m)∈Γ

[
b(q,m),kH̃g̃(

√
L(a22t− (q − k)/L))

e−2πim(q−k)/L

Φ(q,m)(t+
√
La11t0t, x+ t0ν0a11

√
L− (q − k)a11)

e−2πi
√
La21t0(x+t0ν0a11

√
L−(q−k)a11) e2πi(q−k)a21t

]

(40)

and, if t0 = 0,

h(x, t) = e−πiLa22a21t2

∑

k

∑

(q,m)∈Γ

[
b(q,m),k H̃g̃(

√
L(a22t− (q − k)/L))

e−2πim(q−k)/L e2πi(q−k)a21t

Φ(q,m)(t, x− (q − k)a11)
]

(41)

By construction, we havẽHg̃ = µ(B)∗Hµ(B)g̃ with
g̃ =

∑
c̃nδn/

√
L. Hence, we can replacẽH in (38) by

µ(B)∗H andg̃ by g whereg = µ(B)g̃. In the following,
we will give explicit representation ofµ(B) and examine
g = µ(B)g̃. Note that the given reconstruction formulas
hold true for any tempered distributiong = µ(B)g̃,
but we are mainly interested in the case thatµ(B)g̃ is
discretely supported, or, better,g = µ(B)g̃ =

∑
c̃nδnT

for someT > 0 and a periodic sequencec = (cn). In
applications, this would allow us to use any hardware de-
veloped to excite an operator described in Theorem 2.15.

Recall thatB =
√
LA, sodetB = 1 and we assume

b11 6= 0. We have

(
b11 b12
b21 b22

)

=
( 1 0
b21/b11 1

)(
0 −1
1 0

)(
1 0

−b11b12 1

)(
0 1
−1 0

)( b11 0
0 1/b11

)
(42)

Using notation from [11], we have

µ1(α) = µ
(
1 0
α 1

)
: f 7→ eπiα(·)

2

f ,

F = µ
(

0 1
−1 0

)
: f 7→ f̂ ,

µ2(α) = µ
( α 0
0 1/α

)
: f 7→ α−1/2f( · /α),

hence,

µ
(
b11 b12
b21 b22

)
= µ1(b21/b11)F∗µ1(−b11b12)F µ2(b11)

= µ1(a21/a11)F∗µ1(−La11a12)F µ2(
√
La11).



21

This leads to

µ(B)g̃ = µ
(
b11 b12
b21 b22

)∑
cnδn/

√
L

= µ1(a21/a11)F∗µ1(−La11a12)F◦
µ2(

√
La11)

∑
cnδn/

√
L

= (
√
La11)

−1/2 µ1(a21/a11)F∗µ1(−La11a12)◦
F
∑

cnδna11

= (
√
La11)

−1/2 µ1(a21/a11)◦
F∗µ1(−La11a12)

∑
ĉmδm/(La11)

= (
√
La11)

−1/2 µ1(a21/a11)◦
F∗ ∑ ĉm e−2πim2a12/(2La11)δm/(La11)

where we have used the fact that the Fourier transform of
a delta train of the form

∑
n∈Z cnδnT , wherec = (cn)

has periodL is another delta train of the same form.
Specifically,

F
∑

n∈Z
cnδnT =

1

LT

∑

m∈Z
ĉm δm/LT (43)

whereĉ denotes the Discrete Fourier Transform ofc, that
is

ĉm =

L−1∑

k=0

ck e
−2πikm/L.

Equation (43) is a simple consequence of the fact that

F
∑

n∈Z
δnW =

1

W

∑

m

δm/W .

The sequencee−2πim2a12/(2La11) is periodic in m if
e−2πima12/(2La11) is, that is, ifa12/a11 is rational. In the
following, LCM refers to least common multiples of nat-
ural numbers, and for a rational numbera, q[a] denotes
the smallest natural numberq such thatqa is an integer.
With this notation,(ĉ′)m = ĉm e−2πima12/(2La11) forms
a sequence with periodL′ = LCM{q[a12/(2La11)], L}.
Once again employing (43),

µ(B)g̃ = (
√
La11)

−1/2 µ1(a21/a11)F∗ ∑(ĉ′)mδm/(La11)

= (
√
La11)

−1/2 µ1(a21/a11)
∑

c′nδna11L/L′

= (
√
La11)

−1/2
∑

c′n e
2πin2a21a11(L/L′)2/2δna11L/L′ .

(44)

We conclude thatµ(B)g =
∑

c̃nδnT with T =
a11L/q[a12/(2La11)] if a12/a11 is rational. Moreover,

if a21a11 is rational as well, then we are assured that the
coefficient sequence(c̃n) has period

L′′ = LCM{q[a21a11(L/L′)2/2], L′}
= LCM{q[a21a11(L/q[a12/(2La11)])2/2],

q[a12/(2La11)], L},

that is, we are in the framework of regular operator
sampling.

Let us consider the special case thata12/(2a11) is an
integer (for example, ifa12 = 0 as in Theorem 2.18),
then q[a12/(2La11)] ∈ {1, L}, so L′ = L and L′′ =
LCM{q[a21a11/2], L}. If in addition La21a11/2 is an
integer, thenq[a21a11/2] ∈ {1, L} andL′′ = L.

To complete the proof of Theorem 2.18, observe first
thatL = L′, and indeed(cn) = (c′n). Consequently

g = µ(B)g̃ =
∑

cn e
πin2a21a11δna11

.

Further, observe that

µ
(
b11 b12
b21 b22

)∗

= µ2(
√
La11)

∗F∗µ1(−La11a12)
∗F µ1(a21/a11)

∗

= µ2(1/(
√
La11))F∗µ1(La11a12)F µ1(−a21/a11).

Hence, ifa12 = 0, then

µ
(
b11 0
b21 b22

)∗
f(x)

= µ2(1/(
√
La11))µ1(−a21/a11)f(x)

= (
√
La11)

1/2 e−πia21/a11(
√
La11x)2 f(

√
La11x)

= (
√
La11)

1/2 e−πiLa21a11x2

f(
√
La11x)

and

µ(B)∗Hg(
√
L(a22t− (q − k)/L))

= (
√
La11)

1/2 e−πiLa21a11(
√
L(a22t−(q−k)/L))2

Hg(
√
La11

√
L(a22t− (q − k)/L))

= (
√
La11)

1/2 e−πia21a11(La22t−(q−k))2

Hg(t− a11(q − k))

We conclude that

h(x, t) = (
√
La11)

1/2e−2πi(
√
Lt0ν0+L/2)a22a21t2 e2πit0ν0

∑

k

∑

(q,m)∈Γ

[
b(q,m),k e

−πia21a11(La22t−(q−k))2

Hg(t− a11(q − k)) e−2πim(q−k)/L

Φ(q,m)(t+
√
La11t0t, x+ t0ν0a11

√
L− (q − k)a11)

e−2πi
√
La21t0(x+t0ν0a11

√
L−(q−k)a11)e2πi(q−k)a21t

]

(45)
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and, if t0 = 0,

h(x, t) = (
√
La11)

1/2e−πiLa22a21t2

∑

k

∑

(q,m)∈Γ
b(q,m),k e

−πia21a11(La22t−(q−k))2

Hg(t− a11(q − k))

Φ(q,m)(t, x− (q − k)a11) e
2πi(q−k)a21t . (46)

J. Proof of assertion in Example 2.20.

The goal is to show thatOPW 2(S) whereS is the
region shown in Figure 5 cannot be identified by regular
operator sampling for anyT or L. We will show that
theTZ× (1/LT )Z periodization ofS does not form an
exactL-cover for anyT or L, thus violating (12) and
Remark 2.9(2)

Proof: Assume first thatT is rational. We can
assume without loss of generality thatT = 1/K for
K ∈ N, and hence thatΩ = 1/LT = K/L is also
rational. Indeed, ifT = p/q and if for someL ∈ N,
g =

∑
cnδnT (cn with periodL) identifiesOPW 2(S)

then lettingT ′ = 1/q, L′ = pL, and dn = cn/p if p
dividesn and zero otherwise, thendn has periodL′ and
g =

∑
n dnδnT ′ . Note that the set of discontinuities of

the functionχ
S+(kT,ℓΩ), (k, ℓ) ∈ Z2 in the rectangle

R = [0, T ]× [0,Ω] must occur on line segments of slope√
2
2 or

√
2
2 + 1

4 passing throughR (that is, intersecting
two edges ofR). In order that

∑
χ
S+(kT,ℓΩ) be constant

and hence continuous onR, each such segment must
coincide with at least one(kT, ℓΩ)-shift of a different
such segment. In particular, the segment of slope

√
2
2 + 1

4
containing (0, 0) and intersecting one side ofR must
be met by some(kT, ℓΩ)-shift of the segment joining
(2,

√
2) and (4, 2

√
2 + 1/2), which implies that this

segment must contain a point of the form(kT, ℓΩ).
However, a simple calculation shows that sinceT and
Ω are rational, this is impossible.

Now assume thatT , and hence alsoΩ = 1/(LT )
is irrational. In this case, discontinuities ofχS+(kT,ℓΩ),
in the rectangleR must lie on lines passing throughR
with slopes as above, or on a pair of line segments of
those slopes terminating at their intersection point in the
interior of R (see Figure 6(b)). There are at least one
and at most three shifts with discontinuities of the latter
type. To see this, note that sinceT is irrational, neither
(2,

√
2) nor (2,

√
2 + 1/2) lies on a vertical grid line of

the form t = mT and that sinceΩ is irrational at least
one of these points does not lie on a horizontal grid line
of the formν = nΩ. Similarly, (4, 2

√
2+1/2) cannot lie

on a vertical grid line but may lie on a horizontal grid

line. Then by considering the cases in which exactly1,
2, or 3 of these points do not lie on a horizontal grid
line, it is clear that in order for all discontinuities to be
resolved,(4, 2

√
2+1/2) must differ from either(2,

√
2)

or (2,
√
2+1/2) by some(kT, ℓΩ), which is impossible

sinceT is irrational.

K. Proof of Theorem 2.22.

Proof: Let L ≥ N2 be prime, letΩ = 1/(TL) and
let Rq,m, (q,m) ∈ Γ be the rectangles in the(T,N)-
rectification ofS. Then letting

R′
q′,m′ = [0, T ]×[0,Ω] + (q′T,m′Ω),

(q′,m′) ∈ Z2, each rectangleRq,m is covered by a
collection of rectanglesR′

q′,m′ satisfying

∑

{(q′,m′) : Rq′,m′∩Rq,m 6=∅}
|Rq′,m′ | ≤ |Rq,m|+ 2

L
.

Let Γ′ be those(q′,m′) ∈ Z2 such thatR′
q′,m′ has

nonempty intersection withS◦. Therefore,

∑

(q′,m′)∈Γ′

|R′
q′,m′ |

≤
∑

(q,m)∈Γ

∑

{(q′,m′) : R′

q′ ,m′
∩Rq,m 6=∅}

|R′
q′,m′ |

≤
∑

(q,m)∈Γ

(
|Rq,m|+ 2

L

)

≤
∑

(q,m)∈Γ
|Rq,m|+ 2N

L

≤ |Γ|
N

+
2N

L
≤ |Γ|+ 2

N
< |S|(1 + ǫ).

Consequently,|Γ′|/L ≤ |S|(1 + ǫ), and S◦ ⊆
∪(q′,m′)∈Γ′R′

q′,m′ = R. By Theorem 2.6, we can choose
c ∈ CL such that‖c‖0 ≤ |Γ′|, Spark(G(c)) = |Γ′| and
c is supported on its first‖c‖0 indices. SinceS◦ ⊆ R,
any identifier of OPW 2(R) is also an identifier of
OPW 2(S). SinceR consists of only|Γ′| rectangles, it
follows that vector on the right side of (9) has at most
|Γ′| nonzero entries and hence is solvable as long as
Spark(G(c)) = |Γ′|. From this it follows immediately
that

∑
n cnδnT identifiesOPW 2(R) and

‖c‖0
L

≤ |Γ′|
L

< |S|(1 + ǫ).
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L. Proof of Theorem 2.25 and Theorem 2.26

Proof: (Theorem 2.25) By Theorem 2.13, we
can chooseL ∈ N so that every operator in
H(A,B,U,N, ǫ, 1/2) has the property thatsupp η
touches at mostL/2 sets of the form

Rq,m = [0, 1/
√
L]× [0, 1/

√
L] + (q/

√
L,m/

√
L),

(47)

q,m = −(L− 1)/2,−(L − 1)/2 + 1, . . . , (L− 1)/2.
Now, let {Sm : m = 1, . . . ,

(
L2

L

)
} be the collection

of area 1 sets that are formed by exactlyL subsets of
the formRq,m in (47). Choosingc ∈ CL so thatG(c)
is full spark, it follows that for eachm, OPW (Sm)
is identifiable with identifier

∑
n∈Z cn δn

√
L and that

constantsC1, C2 > 0 exist such that

C1‖H‖HS ≤ ‖H
∑

n∈Z
cnδn/

√
L‖L2 ≤ C2‖H‖HS ,

for all

H ∈
⋃

m=1,...,
(
L2

L

)
OPW 2(Sm).

The proof is complete by observing that forH1,H2 ∈
H(A,B,U,N, ǫ, 1/2) (which is not a linear space), we
haveH1 −H2 ∈ OPW 2(Sm) for somem, and, hence,

C1‖H1 −H2‖HS ≤ ‖(H1 −H2)
∑

n∈Z
cnδn/

√
L‖L2

≤ C2‖H1 −H2‖HS ,

H1,H2 ∈ H(A,B,U,N, ǫ, 1/2). Clearly, this leads also
to the weaker statement(H1 − H2)

∑
n cnδn/

√
L = 0

impliesH1 = H2.
Proof: (Theorem 2.26) The proof of this result

follows the proof of Theorem 2.8.
(i)=⇒(iii) Note first that if ∆ < 1/2 + 1/(2L) then
∆L < (L + 1)/2. Hence ifH1, H2 ∈ HT,L(∆), then
with supp ηH1−H2

⊆ supp ηH1
∪ supp ηH2

= S,
∑

k,ℓ

χS+(kT,ℓ/(TL)) ≤ 2∆L < L+ 1

and since the left side of the inequality is an integer,
H1 −H2 ∈ HT,L(1). Therefore, (11) and (12) hold, and
by the same argument as in the proof of Theorem 2.8
(iii) holds.
(iii)=⇒(ii) Obvious.
(ii)=⇒(i) Suppose that∆ ≥ 1/2+1/(2L). Then we can
find disjoint setsS1, S2 ⊆ R such that

∥∥∥∥
∑

k,ℓ

χSi+(kT,ℓ/(TL))

∥∥∥∥
∞

= ∆L ≥ (L+ 1)/2

This is easily seen by considering the sets
⋃

k,ℓ

[Rq,m + (kTL, ℓ/T )] ∩R

where for each0 ≤ q,m < L,

Rq,m = ([0, T ] × [0, 1/TL]) + (qT,m/TL).

ThenS1 andS2 can be formed by choosing two disjoint
collections of⌈(L+ 1)/2⌉ such sets. Since

∑

k,ℓ

χ(S1∪S2)+(kT,ℓ/(TL)) ≥ (L+ 1) a.e.

the same argument as in the proof of Theorem 2.8 allows
us to define distinct operatorsH1, H2 ∈ HT,L(∆) with
supp ηH1

⊆ S1 and supp ηH2
⊆ S2 such that(H1 −

H2)g = 0. Hence (ii) fails to hold.

IV. CONCLUSION

This paper contains results relevant to two questions
on the identification and recovery of operators with
bandlimited symbols from the response of the operator
to a regular weighted delta train. Such operators model
time-variant linear communication channels. When the
identifier is a weighted delta train, we refer to this the
identification as operator sampling and when the weight-
ing sequence is periodic as regular operator sampling
The procedure is a generalization of classical sampling
results for bandlimited functions, and of the determi-
nation of a time-invariant communication channel by
measuring its response to a unit impulse.

We obtain a simple condition on the setS that char-
acterizes whenOPW 2(S) can be identified by regular
operator sampling. The condition requires thatS be
contained in a fundamental domain of a rectangular
lattice and that its periodization on a reciprocal lattice be
bounded above by a constant depending on the lattice. In
this case,|S| ≤ 1, and we obtain explicit reconstruction
formulas for the operators inOPW 2(S). We consider
the case in whichS is contained in a fundamental
domain of a general symplectic lattice and give sufficient
conditions on the lattice under whichOPW 2(S) can
be identified by regular operator sampling and obtain
explicit reconstruction formulas in this case as well. We
provide an example of a setS for whichOPW 2(S) can
be identified by operator sampling but not by regular
operator sampling.

For these results it is required that the support set
be known. We also obtain a result showing that, under
mild geometric conditions, recovery is possible when the
support set is unknown but has area smaller than1/2 and
we characterize all support sets for which identification is
possible via regular operator sampling when the support
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set has area≤ 1/2. This characterization allows us to
define a large class of operators for which identification
is possible when the spreading support is small. This
class includes the class similarly characterized in [3], [4].
It is shown in [3], [4] that this class can be identified
without knowledge of the spreading support for areas
less than one. Following the ideas given in [3], [4], we
define a larger class of operators with area less than
one that can be similarly identified without knowing the
spreading support.

Finally, we give a necessary condition on the rate of
sampling, that is, the average number of deltas in the
identifying weighted delta train per unit time, required
to identify an operator with bandlimited symbol. The
necessary rate depends on the bandwidth of the spreading
support. We give a sufficient condition on the sampling
rate in terms of the area of the spreading region. As
a consequence of this result, it is observed that if the
area of the spreading support is small, then any operator
in the class of operators having that spreading support
can be identified by only a portion of its response to
an appropriate identifier. The fraction of the response
sufficient for identification is asymptotically proportional
to the area of the spreading support.
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