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Cristóbal Camarero1 and Carmen Mart́ınez1
1Computer Science and Electronics Department, University of Cantabria

Abstract

A construction of 2-quasi-perfect Lee codes is given over the space Zn
p for p prime, p ≡ ±5 (mod 12) and

n = 2[ p
4
]. It is known that there are infinitely many such primes. Golomb and Welch conjectured that perfect codes

for the Lee-metric do not exist for dimension n ≥ 3 and radius r ≥ 2. This conjecture was proved to be true for
large radii as well as for low dimensions. The codes found are very close to be perfect, which exhibits the hardness
of the conjecture. A series of computations show that related graphs are Ramanujan, which could provide further
connections between Coding and Graph Theories.

1 Introduction

Golomb and Welch conjectured in their seminal paper [13] that perfect Lee codes only exist for spheres of radius
r = 1 or in Lee spaces of dimension n = 1, 2. A constructive result for 1-perfect Lee codes was also given in that
paper. Moreover, for a radius sufficiently greater than the space dimension, a negative existence result was obtained
by approximating the problem to the densest tessellation of Rn with cross-polytopes. Afterwards, Molnár enumerated
all lattice-like 1-perfect codes in [28]. Later, Post in [30] gave a strong negative result. For the cases in which a
periodic perfect code exists, Post determined an upper bound for its radius. In this upper bound the radius must
fulfill r < 1

2n
√

2 − 3
4

√
2 − 1

2 for n ≥ 6. Later, J. Astola [7] and Lepistö [22] improved the bound given by Post to a
quadratic relation between r and n, which can be considered as an Elias-type bound for Lee codes. These negative
results suggest that the conjecture is more difficult for radius 2, as was argued by Horak in [16].

Other authors have considered the conjecture for low dimensions. For example, Gravier et al. in [14] proved the
non-existence of perfect codes in 3-dimensional Lee spaces, even considering spheres of different radii. Dimension 4
was studied by Špacapan in [33], again with the possibility of spheres of different radii and all of them being greater
or equal to 2. Also, Horak in [17] and [16] proved the non-existence of perfect Lee codes for r = 2 and spaces of
dimension n = 5, 6. Later, Horak and Grošek in [19] computationally proved the non-existence of perfect Lee codes
for dimension n ≤ 12 and radius r = 2 by restricting the problem to linear codes.

In addition, several papers have considered problems involving the conjecture that could provide some insight about
it. One approach has been to generalize the Lee metric. Huber in [20] gave 1-perfect codes over Gaussian integers and
some non-perfect codes with greater correction. In [9] Costa et al. considered a relation between tessellations, graphs
and codes over flat tori. In [24, 26, 25] Martinez et al. gave a generalization of the Lee distance by means of a family
of Cayley graphs over Cayley–Dickson algebras. Also, the existence of perfect codes being ideals of the algebras was
considered. Nishimura and Hiramatsu in [29] generalized the Lee distance using a surjective function from Zl into a
finite field and constructed some non-perfect 2-error correcting codes for this metric.

The existence of Lee codes has also been considered in terms of the size q of the alphabet. AlBdaiwi et al. in
[3] enumerated all the alphabet sizes q such that there exists a linear 1-perfect Lee code over Zn

q . In [6] H. Astola
and Tabus obtained, for small alphabet size q and dimension n, an upper bound of the number of codewords of error
correcting Lee codes.
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Recently, a new approach has been taken in terms of diameter perfect codes, which were introduced by Ahlswede
et al. in [1]. A subset C ⊆ Zn

q is a diameter perfect code if there exists an anticode A such that |C||A| = qn. This
concept generalizes perfect codes since diameter perfect codes with minimum distance being odd are in fact the perfect
codes. Etzion in [11] built diameter perfect codes of minimum distance 4. Later, Horak and AlBdaiwi [18] enumerated
the arities q such that there are 4-diameter perfect codes over Zn

q . Araujo et al. in [4] presented a generalization of
diameter perfect Lee codes, together with a new conjecture that extends the conjecture by Golomb and Welch. Etzion
et al. in [12] built Lee codes for large dimension by means of weighing matrices.

Another way of proving the existence of perfect Lee codes has been to relax the condition of being perfect. Thus,
although not widely used, quasi-perfect codes for the Lee metric have been considered. AlBdaiwi and Bose in [2]
presented some quasi-perfect codes for dimension n = 2. Also, in [19] the authors presented some quasi-perfect
codes for n = 3 and a few radii. Later, Queiroz et al. in [31] characterized quasi-perfect codes over Gaussian and
Eisenstein–Jacobi integers being linear. As a consequence, linear quasi-perfect Lee codes were obtained for n = 2.

In the present paper an explicit construction of linear quasi-perfect Lee codes of radius 2 for arbitrarily large
dimensions. It will be shown that these codes are very close to be perfect, since they have half the density of potential
perfect codes. By contrast, all other results to this date depend on the dimension of the space. As a consequence,
combinatorial arguments may be insufficient to address the conjecture. Nevertheless, the relation with Cayley graphs
studied in this paper indicates that the conjecture has also algebraic features. Moreover, in the authors opinion, the
existence of these quasi-perfect codes, hints that a perfect code might exist for small radius, although this is contrary
to the general believe.

These quasi-perfect 2-error correcting Lee codes will be defined by means of Cayley graphs over Abelian finite
groups. The degree of the graph will be the double of the dimension of the Lee space. The order of the graph will be
in inverse relation to the density of the quasi-perfect code. Thus, the main contribution of the paper is presented in
the next result.

Theorem 1. For any prime p ≥ 7 such that p ≡ ±5 (mod 12) there exists a linear 2-quasi-perfect p-ary Lee code
over Zn

p , where n = 2
[
p
4

]
and with pn−2 codewords.

Note that the notation [a] stands for the closest integer to the rational number a. As an example of the codes
obtained in previous result, let us consider the following:

Example 1. Let n = 4, p = 7. Then, the code over Z4
7 defined by the parity-check matrix(

1 0 2 −2
0 1 2 2

)
results in a 2-quasi-perfect 7-ary Lee code over Z4

7. This code has pn−2 = 49 codewords. It is known that perfect codes

do not exist in this case since the sphere packing bound is 74

41 ≈ 58.56.

As a consequence of Dirichlet’s theorem on arithmetic progressions, there are infinitely many primes p such that
p ≡ 5 (mod 12) and infinitely many primes such that p ≡ −5 (mod 12). Thus, for any constant c, there is a prime
p ≡ ±5 (mod 12) such that the dimension n = 2

[
p
4

]
is greater than c. As a consequence of this and Theorem 1, it is

obtained that:

Corollary 2. There are infinitely many n ∈ N such that there exists a 2-quasi-perfect Lee code over a n-dimensional
Lee space.

As it will be shown later, the result is constructive, and any application that requires the use of Lee-codes could
benefit from it. For example, Roth and Siegel in [32] considered BCH Lee codes and their application to constrained
and partial-response channels. Using space embeddings, Jiang et al. in [21] gave a method to construct Charge-
Constrained Rank-Modulation codes (CCRM codes) from Lee error-correcting codes, which could be employed for
flash memories. H. Astola and Stankovic in [5] considered Lee codes to build decision diagrams.

The rest of the paper is organized as follows. Since the codes considered in this paper will be defined by means
of Cayley graphs, in Section 2 the relation between Lee codes and Cayley graphs over Gaussian integers is stated.
Moreover, the family of Cayley graphs under study is defined. Then, in Section 3 the Cayley graphs selected are
proved to have error correction capacity 2. In Section 4 those Cayley graphs are shown to attain diameter 3, which
implies that they define 2-quasi-perfect codes. Finally, in Section 5 the results presented in this paper are discussed,
and some open problems and future lines of research are detailed.

2 Codes and Graphs

Linear 2-quasi-perfect p-ary linear Lee codes are going to be defined by means of Cayley graphs. Therefore, the
correspondence between a linear code and a Cayley graph is explained in this section. First, some fundamental
definitions are stated here.
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Since Lee codes are the target of our study, the natural space to be considered is the finite integer lattice Zn
p .

However, for convenience, also the infinite lattice Zn will be considered. Therefore, a code C will be a subset of either
Zn
p or Zn. This code is said to be linear if it is a subgroup of the corresponding space.

The Manhattan distance will be used in the space Zn. For any two words v, w ∈ Zn its Manhattan distance is
defined as:

d(v, w) =

n∑
j=1

|vi − wi|.

On the other hand, the Lee distance will be the metric used when considering Zn
p . For v, w ∈ Zn

p its Lee distance is
defined as

d(v, w) =

n∑
j=1

min{|s| | s ≡ vj − wj (mod p), s ∈ Z}.

Since the Lee distance becomes the Manhattan distance for p = ∞, there will be no opportunity for confusion. In
both cases the weight of a word v is defined as its distance to the origin, which will be denoted as |v| = d(v,O). For
any positive integer r, the Lee sphere of radius r is defined as all the points whose weight is less or equal to r, that is:

Bn
r = {v | |v| ≤ r}.

Note that, for any dimension n ≥ 1, the cardinal |Bn
2 | = 2n2 + 2n+ 1, [13].

A code C is said to be t-error correcting if t is the greatest integer such that for any word w there is at the most
one codeword c ∈ C with d(w, c) ≤ t. Thus, t is called the error correction of C. A code C is said r-covering if r is the
smallest integer such that for any word w there is at least one codeword c ∈ C with d(w, c) ≤ r. Thus, r denotes the
covering radius of C. Then, a code that is both t-error correcting and t-covering, or equivalently with error correction
equal to its covering radius, is said to be perfect. Golomb and Welch in [13] conjectured that there only exist perfect
Lee codes for t = 1 or n = 2. Therefore, the existence of quasi-perfect codes must be studied since they are the best
alternative to the perfect codes. Thus, a code that is t-error correcting and (t+1)-covering is said to be t-quasi-perfect.
In this work 2-quasi-perfect Lee codes are found for arbitrarily large dimensions. This is done by the construction of
a family of Cayley graphs that leads to the codes definition. The remainder of this section is devoted to define this
relation between codes and graphs. For simplicity, the infinite lattice Zn will be considered and an equivalent relation
can be stated in the case of Zn

p .
Given a group Γ and a set of generators H = {β1, . . . , βs} ⊂ Γ, the Cayley graph over Γ generated by H is defined

as the graph with set of vertices the elements of Γ, and adjacencies (u, u+βi), for every u ∈ Γ and i = 1, . . . , s. H must
satisfy H = −H and 0 6∈ H in order to be a simple undirected graph. Since only Abelian groups will be considered,
the operation of the group will be denoted by + and the neutral element by 0. Now, given a linear code C ⊂ Zn the
associated graph is

G = Cay(Zn/C; {±e1, . . . ,±en}).

Reciprocally, given a Cayley graph Cay(Γ; {±a1, . . . ,±an}) a linear code can be built. First, let us consider the
homomorphism φ : Zn −→ Γ such that φ(ej) = aj . Then, the code is given by

C = {x ∈ Zn | φ(x) = 0} = kerφ.

Next, distance and correction parameters of both the code and the graph are related as Theorem 4 states. Now,
let us recall some basic definitions. The distance dG(v, w) between two vertices v, w in a graph G is defined as the
number of edges in the shortest path from v to w. Then, the diameter of a graph G is the maximum among distances
between every pair of vertices. Since Cayley graphs are vertex-transitive, this can also be calculated as the maximum
distance to one particular vertex, usually 0 ∈ Γ.

Definition 3. Given a Cayley graph Cay(Γ; {±a1, . . . ,±an}) over an Abelian group Γ, its error correction capacity
is defined as the greatest integer t such that for every vertex v ∈ Γ there are |Bn

t | vertices at distance t or less from v.

Note that since G is a Cayley graph, it is vertex-transitive and therefore it is enough to count the number of vertices
around one vertex to determine its error correction capacity. Thus, the equivalence between distance and covering
properties of a linear Lee code and its associated Cayley graph over an Abelian group is proved in the following
theorem:

Theorem 4. Let Γ be a finite Abelian group that is generated by {a1, . . . , an} and let G = Cay(Γ; {±a1, . . . ,±an}).
Let φ be the homomorphism from Zn into Γ defined by φ(ej) = aj and let C = kerφ. Then,

1. the diameter of G equals the covering radius of C and

2. the error correction capacity of G equals the error correction of C.

But first of all, let us prove the following technical result.
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Lemma 5. In the hypothesis of Theorem 4, for every x ∈ Zn it is obtained that dG(φ(x), 0) = d(x, C).

Proof. Let x be an arbitrary element of Zn. Let us prove first that dG(φ(x), 0) ≤ d(x, C). Let c be the closest codeword
to x, so d(x, C) = d(x, c). By the definition of Manhattan distance, d(x, c) =

∑n
j=1 |xj − cj |. As C is the kernel of φ,

φ(x) = φ(x− c) =
∑n

j=1(xj − cj)aj . The distance in a Cayley graph over an Abelian group of a vertex v to 0 is given

by dG(v, 0) = min{
∑n

j=1 |yj | |
∑n

j=1 yjaj = v}. Hence, taking v = φ(x) and y = x − c in the previous expression,

dG(φ(x), 0) ≤
∑n

j=1 |xj − cj | = d(x, C).
For the second inequality, dG(φ(x), 0) ≥ d(x, C), let y ∈ Zn be the vector such that dG(φ(x), 0) =

∑n
j=1 |yj | and

φ(x) =
∑n

j=1 yjaj . By definition of y, φ(x) = φ(y), so the difference c = x − y ∈ C is a codeword. Thus, as C is a
linear code, d(x, C) ≤ d(x, c) = d(x− c,O) = d(y,O), and by the definition of Manhattan distance d(x, C) ≤ d(y,O) =∑n

j=1 |yj | = dG(φ(x), 0).

Proof. (of Theorem 4). For the first item in the theorem note that diam(G) = max{dG(v, 0) | v ∈ Γ} = max{dG(φ(x), 0) |
x ∈ Zn}, since φ is surjective. Then, by Lemma 5 it is obtained that max{dG(φ(x), 0) | x ∈ Zn} = max{d(x, C) | x ∈
Zn} = covering radius(C).

For the second item let us proof that for every integer s > 0, φ(Bn
s ) = {v ∈ Γ | dG(v, 0) ≤ s}. If x belongs to Bn

s

then d(x,O) ≤ s and, by Lemma 5, φ(x) is at distance at most s from 0. Reciprocally, if there is a vertex v ∈ Γ such
that dG(v, 0) ≤ s then, there exists x such that φ(x) = v and x ∈ Bn

s .
Now, let t be the error correction of C, that is, the greatest integer such that all the words in Bn

t are closer to O
than to any other codeword. If x, y ∈ Bn

t are such that φ(x) = φ(y) then φ(x − y) = 0. Hence, x − y ∈ kerφ = C.
Since d(x, y) ≤ 2t it is obtained that x = y. Therefore, the cardinal numbers |Bn

t | = |φ(Bn
t )| are equal. Thus, by

previous step |{v ∈ Γ | dG(v, 0) ≤ t}| = |Bn
t |, which implies that the error correction capacity of G is at least t.

Finally, let us denote by t′ the error correction capacity of G. Again, there are |Bn
t′ | words at a distance less of

equal to t′ from 0. Let x ∈ Zn and let c1, c2 ∈ C be such that d(x, c1), d(x, c2) ≤ t′. Then, note that c1−x, c2−x ∈ Bn
t′

and φ(−x) = φ(c1) + φ(−x) = φ(c1 − x) = φ(c2 − x). From |Bn
t′ | = |φ(Bn

t′)|, it is obtained that φ restricted to this set
is a bijection, which implies that c1 − x = c2 − x, that is, c1 = c2, which concludes the proof.

Remark 6. Note that Cay(Γ; {±a1, . . . ,±an}) ∼= Cay(Zn/ kerφ; {±e1, . . . ,±en}). Thus, applying the previous pro-
cedure to obtain a code from a graph and applying it again to obtain a graph from a code, then an isomorphic graph
is obtained.

Remark 7. Theorem 4 can be graphically interpreted by means of tessellations, as illustrated in Figure 1. Subfigure
a) shows C = 〈(4, 4), (−4, 4)〉, a 3-quasi-perfect linear Lee code over Z2

16. This is, the code has error correction 3 and
covering radius 4. Subfigure b) shows a Voronoi tessellation induced by C, in which every tile has as center a codeword.
Subfigure c) shows in detail one of these tiles. As it can be observed, it contains the Lee sphere B2

3 and it is contained

in the Lee sphere B2
4 . Subfigure d) shows the Cayley graph Cay(

Z2
16

C ; {±e1,±e2}). This graph is induced by tessellation
as follows. The vertices are the words in the tile and two vertices are adjacent if they are at a distance 1, modulo the
tessellation. Finally, observe that the graph has diameter 4 since there are 7 vertices at distance 4 from the center.
Also, it has error correction capacity 3 since there are 25 = |B2

3 | vertices at a distance less or equal to 3.

The remainder of the paper describes a family of Cayley graphs over Gaussian integers. Let us denote by Z[i] =
{a + bi | a, b ∈ Z} the ring of the Gaussian integers. In [15] the fundamentals on this ring can be found. Given
an integer prime p, let us denote by Z[i]/pZ[i] the quotient additive group of the Gaussian integers over the group
generated by (p) ⊂ Z[i]. Thus, the graph is defined as follows.

Definition 8. Given an integer prime p, let us define the Cayley graph Gp = Cay(Z[i]/pZ[i], H), where

H = {β ∈ Z[i]/pZ[i] | N (β) = 1}.

Note that in the previous definition N (β) = N (b1 + b2i) = b21 + b22 denotes the norm of β. Moreover, the adjacency
in the graph is determined by the elements with unitary norm. In the subsequent sections, it will be proved that Gp
induces a 2-quasi-perfect Lee code over Zn

p under some conditions. Therefore, it must be determined which primes p
are such that Gp has error correction capacity 2 and diameter 3, as proved in Theorem 4.

3 Error Correction Capacity of Gp
As explained in previous section, 2-quasi-perfect Lee codes will be obtained by means of Cayley graphs. In particular,
it will be determined under which conditions the Cayley graph Gp over the additive group Z[i]/pZ[i] and generating
set the elements with unitary norm, induces a 2-quasi-perfect code. In this section it will be proved that p ≡ ±5
(mod 12) implies that Gp has error correction capacity 2 over Zn

p for n = 2[p4 ]. Hence, in the remainder of the paper,
let us assume that p > 2 is a prime integer. Therefore, the natural number n = 2[p4 ] fulfills p = 2n± 1.
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Figure 1: a) A 3-correcting and 4-covering linear Lee code over Z2
16. b) A Voronoi tessellation of the code. c) The tile

associated to a codeword. d) The associated graph Cay(
Z2
16

C ; {±e1,±e2}) in minimum distance representation.
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First, let us introduce some notation. Given a Gaussian integer β = b1 + b2i ∈ Z[i], β∗ will denote its conjugate,
that is β∗ = b1 − b2i. Also, <(β) = b1 will stand for its real part and =(β) = b2 for its imaginary part. Then, the
following formula about the norm of a sum of Gaussian integers will be useful in several points of this paper.

Lemma 9. For any pair of Gaussian integers β, γ ∈ Z[i],

N (β + γ) = N (β) +N (γ) + 2<(βγ∗).

Then, the previous result can be used to prove the following technical lemma:

Lemma 10. For any γ1, γ2 ∈ Z[i]/pZ[i], if N (γ1) = N (γ2) and N (1 + γ1) = N (1 + γ2) then γ1 ∈ {γ2, γ∗2}.

Proof. Since N (1+γ1) = N (1+γ2), by Lemma 9 it is obtained that <(γ1) = <(γ2). Therefore, there are x, y, z ∈ Z/pZ
such that γ1 = x + yi and γ2 = x + zi. Now, N (γ1) = N (γ2) implies that x2 + y2 = x2 + z2. As a consequence,
y2 = z2 and therefore y ∈ {±z}, which means γ1 ∈ {γ2, γ∗2}.

Corollary 11. Let β ∈ Z[i]/pZ[i] be such that N (β) = 1. Then, 1 + β is not a proper zero divisor.

Proof. If 1 + β is a zero divisor then N (1 + β) = 0 = N (1 + (−1)). By Lemma 10, β ∈ {−1,−1∗} = {−1} and
1 + β = 0.

Let us denote by G = U(Z[i]/pZ[i]) the multiplicative group formed by the units of the ring. Then, the set

H = {β ∈ G | N (β) = 1}

is clearly a multiplicative normal subgroup of G. It is actually a cyclic group, although this fact will not be used in
the proofs. Note that H is the set of adjacencies of Gp, that is, Gp = Cay(Z[i]/pZ[i], H). For any γ ∈ Z[i]/pZ[i], the
following notation is introduced:

γH = {γβ | β ∈ H}.

Notice that if γ ∈ G, then γH is the coset of H in G with respect to γ. Nevertheless, this notation is also defined for
elements outside G, i.e., for zero divisors of Z[i]/pZ[i].

The following lemma tells us that cosets can be identified by the norms of its elements.

Lemma 12. For any γ ∈ G,
γH = {β ∈ Z[i]/pZ[i] | N (β) = N (γ)}.

Proof. In order to prove the sets equality, it will be first proved that γH ⊆ {β ∈ G | N (β) = N (γ)}. Thus, let us
consider β ∈ γH and it has to be proved that N (β) = N (γ). Since β ∈ γH, then there exists η ∈ H such that β = γη.
Hence N (β) = N (γ)N (η) = N (γ).

Now, let us consider the other inclusion, that is, γH ⊇ {β ∈ G | N (β) = N (γ)}. Therefore, let β ∈ G be such that
N (β) = N (γ). Since γ is invertible, β = γ(βγ−1). Now, as N (βγ−1) = 1 it is obtained that β ∈ γH.

Theorem 14 states that the degree of the graph Gp is 2n. To prove it some particular cases of the Quadratic
Reciprocity Law will be necessary, which are recalled in the following theorem for self-containedness.

Theorem 13 (Quadratic Reciprocity). If p is an integer prime, then:

1. The number of solutions to −1 = x2 in Z/pZ is:

• 2 if p ≡ 1 (mod 4),

• 1 if p = 2 and

• 0 if p ≡ 3 (mod 4).

2. The number of solutions to 3 = x2 in Z/pZ is:

• 2 if p ≡ ±1 (mod 12),

• 1 if p = 3 or p = 2 and

• 0 otherwise.

Theorem 14. For any odd prime integer p, let n = 2[p4 ]. Then,

|H| = |{β ∈ Z[i]/pZ[i] | N (β) = 1}| = 2n.
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Proof. It is clear that
|H| = |{(x, y) | x, y ∈ Z/pZ, x2 + y2 = 1}|.

Therefore, let us consider the solutions of x, y ∈ Z/pZ of equation x2 + y2 = 1. First, if x = 1 then y2 = 0 whose
unique solution is y = 0. Let us assume x 6= 1 to find the rest of the solutions. Since x 6= 1, x − 1 has inverse and
it is possible to define s = y/(x − 1) ∈ Z/pZ. By considering the intersection of the straight line y = s(x − 1) with
the curve x2 + y2 = 1 it is obtained that x2 + (s(x − 1))2 = 1. The only solutions of this equation are x = 1 (which

has already been considered) and x = s2−1
s2+1 . This second solution for x equals 1 if and only if p = 2. Thus, the only

solutions with x 6= 1 are x = s2−1
s2+1 and y = −2s

s2+1 .
Now, for each possible value of s, there is one solution with this form, that is, p minus the number of solutions of

s2 + 1 = 0. By the Quadratic Reciprocity Law (first item of Theorem 13) there are p + 1 solutions if p ≡ 3 (mod 4)
and p − 1 if p ≡ 1 (mod 4). Thus, for primes of the form p = 1 + 4k, there are p − 1 = 4k = 2n solutions and for
primes p = −1 + 4k there are p+ 1 = 4k = 2n solutions, where k ∈ N.

Finally, just to ensure that the counted solutions are all different, note that if for a pair s1, s2 the same solution
(x, y) is obtained, then s1 = s2 = y/(x− 1).

Next, it is easy to obtain the following consequence of previous theorem, which will be used in Section 4 to determine
the diameter of the graph Gp.

Corollary 15. For any odd prime integer p, let n = 2[p4 ]. If 0 6= γ ∈ Z[i]/pZ[i] then |γH| = 2n.

Proof. Firstly, note that if γ ∈ G, then γH is a coset, which is widely known to have the same cardinal. Thus, the
non-immediate part of the proof lies on the zero divisors. By Theorem 14, it is straightforward that |γH| ≤ 2n.
Proceeding by reductio ad absurdum, let us assume |γH| < 2n. Then, there exist β1 6= β2 such that γβ1 = γβ2, thus
γ(β1 − β2) = 0. Since γ 6= 0 then β1 − β2 must be a zero divisor. Now, multiplying by β−11 , 1− β2β−11 is also a zero
divisor. By Corollary 11, 1− β2β−11 = 0 and hence β1 = β2, which is a contradiction.

Before stating the conditions under which Gp has error correction capacity 2, the following lemma is going to be
proved. This lemma determines the number of possible norms among the neighbours of a vertex with a given norm.

Lemma 16. For any c ∈ Z/pZ, c 6= 0, let us consider the set Np(c) = {N (1 + β) | N (β) = c} ⊂ Z/pZ. Then, it is
obtained that:

|Np(c)| =

{
n+ 1 if c is a square residue mod p,

n if c is not a square residue mod p.

Proof. In the first case, that is c being a square residue, there must exists s ∈ Z/pZ such that c = s2. By Lemma 12
and Corollary 15 there are 2n elements with norm c, which are:

{β | N (β) = c}
= {s,−s, β1, β2, . . . , βn−1, β∗1 , β∗2 , . . . , β∗n−1},

for some β1, . . . , βn−1 ∈ Z[i]/pZ[i]. Then,

Np(c) = {N (1 + β) | N (β) = c} =

{N (1 + s),N (1− s),N (1 + β1),N (1 + β2), . . . ,N (1 + βn−1)},

which are different by Lemma 10. Hence |Np(c)| = 2 + (n− 1) = n+ 1.
For the case of c being a square non-residue let us proceed in a similar way. It is obtained that

{β | N (β) = c}
= {β0, β1, β2, . . . , βn−1, β∗0 , β∗1 , β∗2 , . . . , β∗n−1}.

Then

Np(c) = {N (1 + β) | N (β) = c} =

{N (1 + β0),N (1 + β1),N (1 + β2), . . . ,N (1 + βn−1)},

which are different by Lemma 10. Hence |Np(c)| = n.

As it is noted afterwards, the case c = 1 in previous lemma will be used to prove the error correction capacity.
Later, the fact that n is a lower bound of |Np(c)| will be considered to determine the graph diameter.

To finish the section, next theorem establishes the conditions for p such that Gp has error correction capacity 2.
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Theorem 17. Let p be a prime integer satisfying p ≡ ±5 (mod 12). Then, the Cayley graph Gp has error correction
capacity 2.

Proof. Let n = 2
[
p
4

]
. As it was explained in previous section, it has to be proved that Gp contains |Bn

2 | = 2n2 +2n+1
vertices at distance 2 or less from 0. Clearly, 0 is the unique vertex at distance 0. Now, the set H contains all the
vertices at distance 1 and |H| = 2n by Theorem 14.

The vertices at distance 2 is the set A = {βa + βb | βa, βb ∈ H} \ (H ∪ {0}). Thus, let us prove that |A| = 2n2.
By Lemma 12 and Corollary 15, |A| = 2n · |Np(1) \ {0, 1}|. Since 1 is always a square residue for any p, hence by
Lemma 16, |Np(1) \ {0}| = n. It remains to be proved that 1 does not belong to Np(1).

Suppose that there is β with N (β) = 1 and N (1 + β) = 1. Then, by Lemma 9, 1 = 2 + 2<(β) and hence
<(β) = −2−1. Let β = −2−1 + yi, which implies 1 = N (β) = 2−2 + y2. Then, 3 = (2y)2, which only has solutions
for p = 3 or p ≡ ±1 (mod 12) by the second item of Theorem 13. Thus, |Np(1) \ {0, 1}| = |Np(1) \ {0}| = n and
|A| = 2n · n, which concludes the proof.

Remark 18. If p is a prime greater than 3 that does not satisfy p ≡ ±5 (mod 12), then p ≡ ±1 (mod 12). In this
case, Gp only contains 2n2 + 1 vertices at distance 2 or less from vertex 0. Although it is not a 2-error correcting code,
it is very close to it, since only 2n syndromes cannot be corrected.

4 Diameter of Gp
In this section it will be proved that Gp has diameter 3 for any prime p > 5. The proof will be divided into two
subsections. The first considers the case p ≡ 3 (mod 4) and the second the case p ≡ 1 (mod 4). Also, from here
onwards it will be assumed again that n = 2[p4 ]. Note that, since |Z[i]/pZ[i]| = p2 > |Bn

2 |, there are vertices outside
the sphere of radius 2, which means that the diameter of the graph is at least 3. As it will be seen next, the proofs
proceed by reductio ad absurdum by the assumption of the existence of a vertex at a distance 4 from vertex 0, thus
reaching a contradiction.

4.1 Case p ≡ 3 (mod 4)

In this case the proof of the diameter can be easily obtained by using a counting argument. Note that in this case
p = 2n− 1 and therefore Z[i]/pZ[i] is a field.

Theorem 19. For any prime p such that p ≡ 3 (mod 4) the graph Gp has diameter 3.

Proof. By reductio ad absurdum let us assume that there exists a vertex γ ∈ Z[i]/pZ[i] at distance 4 from vertex 0.
Let c = N (γ). Since γ is so far, it is obtained that Np(1) ∩Np(c) = ∅.

Let us denote by Wt(0) the number of vertices at a distance t from vertex 0. Then, {Wt(0) | t = 0, . . . , 4} is
the distance distribution of the graph Gp. Now, the cardinals W1(0) = |H| and W4(0) ≥ |γH| can be calculated by
Corollary 15. Also, by Lemma 16 it can be computed that |Np(1)| = n + 1 and |Np(c)| ≥ n. Thus, the obtained
bounds for the distance distribution are summarized as follows:

W0(0) = |{0}| = 1
W1(0) = |H| = 1 · 2n
W2(0) = 2n · |Np(1) \ {0, 1}| ≥ (n− 1) · 2n
W3(0) ≥ 2n · |Np(c) \ {c}| ≥ (n− 1) · 2n
W4(0) ≥ |γH| = 1 · 2n

As a consequence, the total number of vertices satisfies |Z[i]/pZ[i]| ≥ 1 + 2n(1 + (n − 1) + (n − 1) + 1) = 4n2 + 1 >
4n2 − 4n+ 1 = p2 = |Z[i]/pZ[i]|, which is a contradiction.

4.2 Case p ≡ 1 (mod 4)

Unfortunately, the reasoning made in the previous case fails to give us a contradiction if p ≡ 1 (mod 4). Therefore, it
will be needed to resort to the tight bound from algebraic geometry obtained in the Hasse–Weil Theorem. Note that,
in this case, p = 2n+ 1 and the ring Z[i]/pZ[i] contains zero divisors.

First, let us prove two technical lemmas that analyze what happens with the zero divisors of the ring.

Lemma 20. For any proper zero divisor ζ ∈ Z[i]/pZ[i],

ζH = {xζ | x ∈ Z/pZ, x 6= 0}.
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Proof. On the one hand, by Corollary 15, the cardinal |ζH| is 2n. On the other hand, |{xζ | x ∈ Z/pZ, x 6= 0}| has
p− 1 = 2n elements. Since both sets have the same size, it is enough to prove one inclusion to show the sets equality.
Therefore, let us prove the left to right inclusion.

Let β = a+ bi be an element of norm 1 and ζ = u+ vi a proper zero divisor, hence of norm 0. As ζ 6= 0 and Z/pZ
is a field, both u and v are nonzero. Let us define x = a− b vu ∈ Z/pZ. Therefore,

xζ = (a− b v
u

)(u+ vi) = (au− bv) + (av − bv
2

u
)i

= (au− bv) + (av − b−u
2

u
)i = (au− bv) + (av + bu)i

= (a+ bi)(u+ vi) = βζ.

Finally, note that if x were zero, then β would be a zero divisor, contradicting N (β) = 1.

The following lemma has its inspiration in Lemma 16, but with the intention of generalizing to the case of zero
divisors.

Lemma 21. For any proper zero divisor ζ ∈ Z[i]/pZ[i],

{N (β + ζ) | N (β) = 1} = Z/pZ \ {1}.

Proof. Let ζ = u+ vi be a proper zero divisor. By Lemma 20,

{N (β + ζ) | N (β) = 1} = {N (1 + βζ) | N (β) = 1}
= {N (1 + xζ) | x ∈ Z/pZ, x 6= 0}
= {1 + 2xu | x ∈ Z/pZ, x 6= 0}.

To finish, note that y = 1 + 2xu with x 6= 0 has solution for every value of y except 1.

The previous lemma indicates that proper zero divisors are neighbours of every vertex at distance 2 from 0, and
hence they are at distance 3 from 0. Then, the following lemma gives a polynomial description of the sets Np(t).

Lemma 22. Let p ≡ 1 (mod 4) be a prime in Z. For any t ∈ Z/pZ, t 6= 0, it is obtained that

Np(t) = {x−1(x+ 1)(x+ t) | x ∈ Z/pZ, x 6= 0}.

Proof. By the first item of Theorem 13, there exists r ∈ Z/pZ such that r2 = −1. Note that x−1(x + 1)(x + t) =
x+ tx−1 + t+1. First, let us prove the left to right inclusion of the sets. In this aim, let β = a+ bi, N (β) = a2 + b2 = t
for a generic element N (1 + β) in Np(t). Thus, let us check that x = a+ rb satisfies N (1 + β) = x+ tx−1 + t+ 1. By
Lemma 9, xN (1 + β) = x(N (1) +N (β) + 2<(β)) = x(t+ 1) + 2ax. Hence,

x(x+ tx−1 + t+ 1)− xN (1 + β)

= x2 + t− 2ax

= t+ (a+ rb)2 − 2a(a+ rb)

= t+ (a2 + 2rab+ r2b2)− (2a2 + 2rab)

= t− a2 + r2b2

= t− a2 − b2

= 0

For the right to left inclusion, let x 6= 0 and y = x−1(x + 1)(x + t) being an element of {x−1(x + 1)(x + t) | x ∈
Z/pZ, x 6= 0}. Now, define β = x+x−1(t−x2) + 2−1x−1(t−x2)ri. Then, by calculation N (β) = (x+x−1(t−x2))2 +
(2−1x−1(t−x2)r)2 = t. Moreover, N (1 +β) = 1 + t+ 2<(β) = 1 + t+ 2x+x−1(t−x2) = y, which ends the proof.

The intersection between Np(1) and Np(t) will be given by the roots of the polynomial Pt(x, y) = y(x+1)2−x(y+
1)(y + t). In order to apply the Hasse–Weil bound, the polynomial must be irreducible. Therefore, let us introduce
the following definition and two useful results in Lemma 24 and Corollary 25.

Definition 23. Given a field F, a polynomial P ∈ F[x, y] is called absolutely irreducible if it is irreducible in the
algebraic closure of F.

Lemma 24. For any prime p, the polynomial Pt(x, y) = y(x+ 1)2−x(y+ 1)(y+ t) ∈ Zp[x, y] is absolutely irreducible
for t 6= 0, 1.

9



Proof. The polynomial Pt(x, y) = xy(x− y) + (1− t)xy + y − tx has degree 3. If Pt(x, y) is not absolute irreducible,
then there exist polynomials A(x, y), B(x, y) with coefficients in the algebraic closure of Z/pZ such that Pt(x, y) = AB
with degA(x, y) = 2 and degB(x, y) = 1. Furthermore, the product of the leading terms of A(x, y) and B(x, y) must
be xy(x − y). Let us consider the following three mutually exclusive cases, depending on polynomials A(x, y) and
B(x, y)

1. Case A(x, y) = (xy+ax+by+c), B(x, y) = (x−y+d). The coefficient of x2 in A(x, y) ·B(x, y) is a and the one of
y2 is −b. By hypothesis, both are 0 in Pt(x, y). Then, the coefficient of xy is d = 1−t, the coefficient of x is c = −t
and the coefficient of y is −c = t = 1. Hence, for t = 1 there exists the factorization P1(x, y) = (xy − 1)(x− y).

2. Case A(x, y) = (x(x− y) + ax+ by+ c), B(x, y) = (y+ d). Now, the coefficient of x2 in A(x, y) ·B(x, y) is d = 0
and the coefficient of y2 is b = 0. Then, the coefficient of xy is a = 1− t, the coefficient of x is 0 = −t and the
coefficient of y is c = 1. Hence, for t = 0 there exists the factorization P0(x, y) = (x2 − xy + x+ 1)y.

3. Case A(x, y) = (y(x− y) + ax+ by + c), B(x, y) = (x+ d). The coefficient of x2 is a = 0 and the coefficient of
y2 is −d = 0. Then, the coefficient of y would be 0 = 1, which implies that there exists no factorization.

Finally, there are factorizations of Pt(x, y) only for t = 0 and t = 1, which proves the result.

Corollary 25. The homogeneous polynomial

hPt(x, y, z) = xy(x− y) + (1− t)xyz + (y − tx)z2

is absolutely irreducible for t 6= 0, 1.

Proof. If hPt(x, y, z) had a factorization, then its evaluation at z = 1 would be a factorization of Pt(x, y), contradicting
Lemma 24.

Finally, let us conclude the section by proving the main result.

Theorem 26. If p is a prime such that p ≡ 1 (mod 4) and p > 5, then the diameter of Gp is 3.

Proof. Let us proceed again by reductio ad absurdum. First, let us assume the existence of a vertex γ at distance 4
from 0 in Gp, with p fulfilling the hypothesis of the statement. Let t = N (γ). Note that t 6= 1 since the vertices with
norm equal to 1 are at distance 1. Also, t 6= 0 by Lemma 21. Hence, by Lemma 12, the vertices with norm in the set
Np(t) \ {0} are at distance at least 3. Meanwhile, the vertices with norm in Np(1) \ {0} are at distance at most 2 from
0. Therefore, the intersection of previous two sets is Np(1) ∩Np(t) = {0}.

Now, using polynomial notation, previous sets equality is equivalent, by Lemma 22, to the non-existence of solutions
to x−1(x + 1)2 = y−1(y + 1)(y + t) other than x = −1. Let us highlight that the solution x = −1 corresponds with
norm 0. Thus, vertices in H have vertex 0 as their neighbour, while vertices in γH have as some of their neighbours
vertices that are proper zero divisors.

The contradiction will be obtained when proving the existence of a solution to Pt(x, y) = 0 other than the trivial
ones (x, y) ∈ {(0, 0), (−1,−1), (−1,−t)}. To this aim, let us define the varieties

Vt = {(x, y) ∈ (Z/pZ)2 | Pt(x, y) = 0},

Xt = {(x : y : z) ∈ P2
Z/pZ |

hPt(x, y, z) = 0},

where P2
Z/pZ denotes the projective space of dimension 2 over Z/pZ. The notation (x : y : z) indicates a projective

point, which is the same point as (λx : λy : λz) for any λ 6= 0. Thus, affine solutions can be recovered by taking
λ = z−1; except for solutions (x : y : 0), which are the points at the infinite.

Hasse–Weil’s theorem [8] states that ∣∣|Xt| − (p+ 1)
∣∣ ≤ 2

√
p,

for absolutely irreducible polynomial curves Xt of degree 3. Note that, by Corollary 25, Hasse–Weil’s theorem can be
applied to hPt(x, y, z). Therefore,

|Xt| ≥ p+ 1− 2
√
p.

Now, the only 3 projective solutions for hPt(x, y, z) = 0 with z = 0 are (x : y : z) ∈ {(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 0)}.
Thus, |Vt| = |Xt| − 3, which implies:

|Vt| ≥ p− 2− 2
√
p.

As a consequence, those primes p such that |Vt| ≥ 4 provide the expected contradiction. Clearly, if p ≥ 17 then,

|Vt| ≥ p− 2− 2
√
p ≥ 17− 2− 2

√
17 ≥ 6.7.

Finally, the unique prime p ≡ 1 (mod 4) such that 5 < p < 17 is 13. In this particular case, it can be computed
that |Vt| ≥ 9 for any t, which concludes the proof.

Remark 27. G5 has diameter 4 since vertex 2 + 2i and its associates are at distance 4 from vertex 0.
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n p H p2 |Bn
3 |

4 13 ±{1, 3 + 4i, i,−4 + 3i} 169 129
6 26 ±{1, 4 + 4i, 9 + 11i, i,−4 + 4i,−11 + 9i} 676 377
8 41 ±{1, 2 + 13i, 6 + 18i, 11 + i, i,−13 + 2i,−18 + 6i,−1 + 11i} 1681 833

Table 1: Gp graphs that generate 3-quasi-perfect Lee codes over Zn
p .

5 Discussion

In this final section, conclusions of this work and future research will be presented. In the first subsection, the main
result is rewritten using parity-check matrices. Besides, a formal proof of the infiniteness of the constructed family
of quasi-perfect codes is given. Some considerations on the density of the codes are taken into account. Moreover,
other examples of codes presenting greater density and an upper error correction capacity are shown. In the final
subsection, the authors exhibit the relations between the graphs considered in the present study with other graph
theoretical problems, trying to give a new insight into the perfect Lee codes conjecture formulated by Golomb and
Welch more than forty years ago.

5.1 Quasi-perfect Lee codes

As it has been proved in previous Sections 3 and 4, Gp has error correction capacity 2 and diameter 3, for any prime
p > 5 and p ≡ ±5 (mod 12).

Dirichlet’s theorem on arithmetic progressions asserts that, in any arithmetic progression whose initial term is
coprime with its increment, there are infinitely many primes. As a natural consequence, congruences can be considered
as arithmetic progressions, and therefore it can be obtained:

Corollary 28. There are infinitely many n ∈ N such that p = 2n± 1, p ≥ 7 prime in Z, p ≡ ±5 (mod 12).

Then, when applying the previous result it is obtained:

Corollary 29. The family of graphs Gp contains infinitely many graphs with error correction capacity 2 and diameter
3.

Then, as it was discussed in Section 2, each of these graphs induces a 2-quasi-perfect Lee code.

Theorem 30. Let p be a prime. Let {β1, . . . , β2n} = {±β1, . . . ,±βn} be the elements of Z[i]/pZ[i] with unitary
norm. Let Gp = Cay(Z[i]/pZ[i], {β1, . . . , β2n}) and C ⊂ Zn

p be the code associated to Gp such that C = kerφ and
φ : Zn

p −→ Z[i]/pZ[i] such that φ(ej) = βj. Then,

M =

(
<(β1) <(β2) · · · <(βn)
=(β1) =(β2) · · · =(βn)

)
.

is the parity-check matrix of C.

Proof. Let us denote by ψ : Z[i] −→ Z2 such that ψ(β) = (<(β),=(β)). Note that the homomorphism defined by the
matrix M is equal to the mapping ψ ◦ φ. Thus, C = ker(φ) = ker(ψ ◦ φ) = {x |Mx = 0}.

Now, let us give some considerations on the quality of the constructed codes. Note that, since the Lee sphere
of radius 2 contains |B2| = 2n2 + 2n + 1 words, the graph induced by any 2-quasi-perfect linear code has at least
2n2 + 2n + 1 vertices. The graphs Gp constructed in this paper have p2 vertices. Therefore, for the case p = 2n + 1,
the number of vertices is p2 = 4n2 + 4n + 1 = 2|B2| − 1. Also, for the case p = 2n − 1, the number of vertices is
p2 = 4n2 − 4n+ 1 = 2|B2| − 8n− 1. Thus, the reached vertices are asymptotically the double of those that would be
reached in the graph associated to a perfect code. In other words, the density of the codes presented is 1

p2 .

Although the obtained density is quite good, for some small cases (low dimensions), graphs with a smaller number
of vertices have been computationally found. Let us consider the following examples.

Example 2. Let n = 8 be the dimension and p = 13. The set of generators of the Cayley graph will be H =
{
βu |

β ∈ {1, 4 + 10i, 8, 7 + 11i}, u ∈ U(Z[i])
}

. In this case the Cayley graph G = Cay(Z[i]/pZ[i], H) induces a 2-quasi-
perfect code. Note that G has p2 = 169 vertices, which is just 17% over |B8

2 | = 145, the cardinal of the sphere in this
dimension.

Example 3. Let n = 16 be the dimension. In this case, by extending the search into a different ring, a new graph has
been found. The graph is built over the Quaternion integers H(Z) modulo p = 5, being the generator set H =

{
βu |

β ∈ {1, 1 + 2i + 3j, 3i + 4j + 4k, 3 + 4i + 3j}, u ∈ U(H(Z))
}

. In this case, the number of vertices of the graph is
p4 = 625, which is 15% over |B16

2 | = 545.
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These small examples suggest that there exist codes very close to be perfect, although general constructions seem
to be difficult to find.

Golomb and Welch in [13] noted that there cannot be perfect codes with correction greater than a constant that
depends on the dimension by the use of the maximum density of packing with cross-polytopes. Clearly, this can be
applied to quasi-perfect codes. For every n there exists tn such that there are no t-quasi-perfect codes for t ≥ tn.
Hence, this might suggest that the radius 2 case is an exceptional one. Nevertheless, some 3-quasi-perfect codes
have been found for small dimensions. Note that in this case the n-dimensional sphere of radius 3 has cardinal
|Bn

3 | = 1
3 (1 + 2n)(3 + 2n+ 2n2). The examples that we have found are summarized in Table 1. The codes are obtained

from Cayley graphs Cay(Z[i]/pZ[i], H), for parameters n, p,H as shown in the table. As it can be seen, the first
example is just 31% over the cardinal of the sphere, while the second and third are 79% and 102%, respectively. Any
of the three examples can be considered as 3-quasi-perfect codes really near to the perfect code.

In the authors’ opinion, the construction of an infinite family of graphs containing these codes or similar ones
would have a great practical value. Moreover, it would contribute to a better understanding of the Golomb and Welch
conjecture.

5.2 Related Problems

This study could be used to deal with problems from areas of study different from Coding Theory. For example,
this graph theoretical study of perfect codes can be seen as the reverse of the degree-diameter problem for Cayley
graphs over Abelian finite groups [27]. In this problem, for a given diameter, graphs with the maximum possible
number of vertices are searched. Specifically, for a positive integer t, graphs providing t-covering codes but without
considering the correction are looked for. Note that in this case, the order of the graphs obtained is lower than the
cardinal of the corresponding sphere |Bn

t |. Therefore, in the present paper graphs providing t-correcting codes and
enforcing additionally (t + 1)-covering have been constructed. In our case, the order of the Cayley graphs is always
greater than the cardinal of the sphere |Bn

t |. The degree-diameter problem for t = 2 and t = 3 has been considered
in [23, 34]. In those papers families of graphs with smaller number of vertices than the sphere cardinal were given.
Specifically, one of the graph constructions in Macbeth et al. [23] is given for infinitely many degrees 2n of graphs
of diameter 2 and 3

2 (n2 − 1) = 3
4 |B

n
2 | − 3

2n −
9
4 vertices. Then, Vetŕık [34] constructs graphs with diameter 3 and

9
128 (2n+ 3)2(2n− 5) vertices, which is asymptotically 27

64 |B
n
3 |; it is remarkable that these graphs have error correction

capacity 1 instead of the expected 2, and thus they do not induce quasi-perfect codes. Note that a Cayley graph
attaining the degree-diameter bound will induce a perfect code and vice versa.

Furthermore, the graphs considered in this paper seemed to be good expanders. Therefore, the authors computed
the spectrum of some of them and the results show that they are Ramanujan graphs. Ramanujan graphs are good
expander graphs that attain the spectral bound [10]. More specifically, G is a Ramanujan graph if and only if for
every eigenvalue λ of its adjacency matrix it holds either |λ| = deg(G) or |λ| ≤ 2

√
deg(G)− 1. Therefore, the following

conjecture is proposed.

Conjecture 31. Gp is a Ramanujan graph for any prime p ≡ 3 (mod 4).

This conjecture has been verified for all primes p < 1000; the only primes in that range for which Gp is not
Ramanujan are 17, 53 and 541. Moreover, the authors believe that most primes fulfilling p ≡ 1 (mod 4) are such that
Gp is also a Ramanujan graphs. Therefore, the proof of this conjecture and the study of the relation between Golomb
and Welch conjecture and spectral analysis will be considered as future work.
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