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Abstract—The characterization of fundamental performance
bounds of many-to-many communication systems in which partic-
ipating nodes are active in an intermittent way is one of the major
challenges in communication theory. In order to address this
issue, we introduce the multiple-input multiple-output (MIMO)
three-way channel (3WC) with an intermittent node and study
its degrees-of-freedom (DoF) region and sum-DoF. We devise a
non-adaptive encoding scheme based on zero-forcing, interference
alignment and erasure coding, and show its DoF region (and thus
sum-DoF) optimality for non-intermittent 3WCs and its sum-DoF
optimality for (node-)intermittent 3WCs. However, we show by
example that in general some DoF tuples in the intermittent
3WC can only be achieved by adaptive schemes, such as decode-
forward relaying. This shows that non-adaptive encoding is
sufficient for the non-intermittent 3WC and for the sum-DoF
of intermittent 3WCs, but adaptive encoding is necessary for
the DoF region of intermittent 3WCs. Our work contributes to
a better understanding of the fundamental limits of multi-way
communication systems with intermittency and the impact of
adaptation therein.

Index Terms—Degrees-of-freedom, three-way channel, MIMO,
intermittent connectivity, interference alignment, zero forcing,
relay networks, interference channel.

I. INTRODUCTION

IN multi-way communication scenarios multiple nodes com-
municate with each other, each acting as a source, a

destination, and possibly a relay at the same time. This mode
of communication is especially important for future systems
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employing full-duplex and device-to-device (D2D) commu-
nication, [2]–[4]. It is an important technique for efficient
resource utilization that is expected to gain more prominence
in future communication systems, especially with the rise of
mesh networks, e.g., in industrial and vehicular networks.

Several multi-way communication scenarios have been stud-
ied in the literature, [5]. It started with the two-way channel
which was first studied by Shannon in [6] and subsequently
in [7]–[10] for instance. Then, the scope was extended to
two-way networks where two groups of nodes communicate
with each other in a two-way fashion [11]–[13], and two-way
relay networks where two nodes communicate with each other
in a two-way fashion via a relay node [14]–[17]. This line
of research has been further extended to multi-way networks
where multiple nodes communicate with each other in a multi-
way fashion, each node being a source and a destination at the
same time [18]–[22], and to multi-way relay networks where
the same communication as in multi-way networks takes place
via a relay node [23]–[34].

A. The Three-Way Channel with Intermittency

In this work, we focus on the multiple-input multiple-output
(MIMO) three-way channel (3WC) which can be described
as follows: Consider a system consisting of three terminals
communicating with each other in a multi-way fashion, e.g.,
two D2D user terminals and a base station (BS) where the
D2D users communicate with each other while exchanging
signals with the BS (control signals or data). This 3WC is
an extension of Shannon’s two-way channel [6] and has been
studied in [20]–[22].

Therein, it is assumed that the three nodes are connected all
the time (Fig. 1a). This forms a non-intermittent 3WC, which,
although subsumed by the work in this paper, is not its main
focus. The main focus of this paper is the intermittent 3WC
instead. There are several reasons which motivate studying the
intermittent 3WC channel, some of which are discussed next.

One motivation stems from practice, where connectivity can
be intermittent. For instance, a pair of D2D users, commonly
chosen to be nearby users [3], [4], might be both disconnected
from the BS due to shadowing (Fig. 1b). Future generations of
mobile communication systems (e.g., using mmWaves, where
line-of-sight (LOS) propagation will become dominant) are
expected to be heavily susceptible to this type of shadowing.
In another scenario, the D2D users might operate in an
underlay mode over a resource block used by the BS to
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1
(a) No intermittency

2 3

1
τ τ

1
(b) Node-intermittency

Fig. 1. MIMO 3WC with no intermittency such that all nodes are always
connected (a) and node-intermittency where node 1 is available only τ fraction
of the time (b)

communicate to cellular users (CUs). The BS connects to the
D2D users whenever it does not communicate with a CU,
and disconnects from the D2D users otherwise (see Fig. 2).
Note that D2D users are chosen so that they cause/receive
negligible interference (relative to the desired signals) to/from
other nodes using the same resource block [35], [36]. In both
cases the two links from the D2D users to the BS are jointly
intermittent, i.e., both are available or blocked at the same
time. We call this node intermittency and call the BS an
intermittent node (from the D2D users’ perspective).

Another motivation stems from theory. A channel with in-
termittency is a special ‘extreme’ case of a channel with state.
Point-to-point channels, multiple-access channels (MAC), and
broadcast channels (BC) with state have been studied in the
past, see [37, ch. 7] and references therein. The impact of
intermittency on these channels can be studied based on these
results. There are two approaches to extend results on channels
with intermittency. The first consists of considering larger
networks, such as the X channel [38]. The other is to consider
networks with bidirectional links (feedback) such as [39]–
[41]. We take the second approach in this paper by focusing
on multi-way communication. In such networks, feedback
links enable relaying and hence provide additional paths for
information flow that might be interrupted by intermittency.
This gives intermittency a more ‘global’ impact since it affects
all nodes indirectly by interrupting useful paths through nodes
that act as relays. Thus it is important to study networks with
feedback and intermittency. The smallest multi-way network
(in terms of number of nodes) that one could study in
this context is the two-way channel (TWC) [6]. However,
analyzing the impact of intermittency in the Gaussian TWC is
straightforward as we shall see in Section II-A. Therefore, the
3WC is the smallest viable example of a multi-way network
with non-trivial behavior under intermittency. Moreover, the
3WC subsumes other channels of interest such as the two-
way MAC and BC [11], and MAC and BC with cooperation
[42], [43].

B. Degrees-of-Freedom and Intermittency

In many previously mentioned works, the focus is generally
on the capacity of the studied network. Since finding the
capacity is elusive in most cases, some works (and also this
work) focus on the degrees-of-freedom (DoF) which provide
a good capacity approximation at high signal-to-noise ratio
(SNR) [44], thereby highlighting the interaction between the
signals of the different nodes while diminishing the impact

BS

D2D

D2D
(a) BS serving D2D users

BS

D2D

D2DCU

negligible
interference

(b) BS serving CU

Fig. 2. A D2D pair sharing the same resources with a cellular user (CU),
where the BS communicates with the D2D pair part of the time (a) and with
the CU the rest of the time (b). The D2D pair is far enough from both the
BS and the CU and thus causes/receives negligible interference (dotted).

of noise. This is of interest since state-of-the-art wireless
communication systems operate in a regime where they are
essentially interference-limited rather than noise-limited.

The concept of intermittency as a form of channel impair-
ment also fits well with the philosophy of DoFs: With increas-
ing SNR, signal components ‘harden’ in the sense that some
allow (almost) noise- and interference-free communication at
a rate that scales with SNR on a logarithmic scale, while
others are hopelessly burried in uncancelable interference and
are therefore useless. This effect is exactly what the DoF
perspective captures as it essentially counts available Shannon-
Hartley communication ‘units’. Intermittency is the channel
impairment that goes well together with this ‘all or nothing’
perspective, capturing the notion that some signal dimensions
might become useless due to stochastic processes in the
channel, such as shadowing of dominant LOS components.

C. Scope of this Work

Here, we study the impact of node-intermittency on the
DoF region and sum-DoF, i.e., the capacity scaling versus
SNR in a dB scale, of a full-duplex MIMO 3WC. In this
MIMO network, each node generally has two independent
messages, each intended for one of the remaining two nodes.
We pay particular attention to the necessity (or the lack
thereof) of adaptive encoding for reaching DoF region/sum-
DoF. Adaptive encoding enables cooperative communication
schemes by allowing the transmit signal of a node to depend
on its previously received signals, which can be interpreted as
a form of feedback. In contrast, with non-adaptive encoding
transmit signals depend only on the messages to be sent, and
cooperation (e.g., in the form of relaying) is excluded. The
issue of (non-)adaptive encoding has been studied for other
networks earlier in [9]–[11], [45] for instance.

We assume that nodes have strictly causal knowledge of
the intermittency state of adjacent links. This can be obtained
by estimating the connectivity from the receive signals (e.g.,
signal strength). Note that in some cases the intermittency state
can be known without the need for estimation, occasionally
even ahead of time, e.g., in the scenario of D2D/CU/BS users
(Fig. 2), where the BS knows its scheduling of users in advance
and can anticipate when it will not be able to receive the D2D
user signals.
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The reader might ask how our findings relate to previous
results on channels with state and whether the intermittent
3WC is just a channel with state to which known techniques
[37, ch. 7] can be applied. In fact, we make use of the known
results for point-to-point channels with random state known
to the receiver [37, eq. (7.2)] throughout this paper. However,
the multi-way intermittent 3WC asks for a holistic analysis of
its fundamental limits and cannot be exhaustively studied as
a mere collection of independent one-way one-hop multi-user
channels with state, e.g., MACs with state [37, p. 175].

D. Outline and Overview of Results

After introducing the details of the system model in Sec-
tion II-B and highlighting the main results in Section III,
we examine the (node-)intermittent 3WC in Section IV. We
devise a non-adaptive encoding scheme based on zero-forcing
(ZF), interference alignment (IA) and erasure coding (EC)
and derive its achievable DoF region and sum-DoF. We
present the genie-aided converse techniques used to derive
DoF region and sum-DoF upper bounds, both under non-
adaptive and adaptive encoding. We conclude that for the
intermittent 3WC the presented non-adaptive scheme is sum-
DoF optimal, so adaptation is not necessary to achieve sum-
DoF. Then, we provide examples of adaptive relaying schemes
that can achieve a DoF region point that no non-adaptive
scheme can achieve. This shows that adaptive schemes can
achieve strictly larger DoF regions, and therefore adaptation
is required to achieve the DoF region of intermittent 3WCs. To
complete the picture, we examine the non-intermittent 3WC
as special case of intermittent 3WCs in Section V. We show
that for the non-intermittent 3WC the presented scheme is
DoF region optimal (and thus also sum-DoF optimal) and
therefore adaptive encoding is not required. This reveals an
interesting interplay between intermittency and adaptation. In
Section VI we provide conclusive remarks and directions for
future research.

E. Notation

Throughout the paper, we use xni , (xi,1, . . . , xi,n) for
some index i, and xni,` , (xi,`, . . . , xi,n). We use regular
letters to denote scalar-valued quantities, boldface letters to
denote vector- und matrix-valued quantities; lowercase letters
for scalar and vector values (e.g., realizations of random
variables), uppercase letters for matrix values and for random
variables. The N×N identity matrix is denoted IN , the N×N
all-zero matrix is 0N . We write X ∼ CN (0,Q) to indicate
that X is a multivariate complex Gaussian random variable
with zero mean and covariance matrix Q, and S ∼ Bern(τ) to
indicate that S is Bernoulli distributed with Pr[S = 1] = τ and
Pr[S = 0] = 1−τ =: τ . We write x+ to denote max{0, x} for
some x ∈ R, and H†, HT, HH, and span(H) to denote the
Moore-Penrose pseudo-inverse, the transpose, the Hermitian
transpose, and the subspace spanned by the columns of the
matrix H . By log(x) we denote the logarithm of x to base 2,
by i→ j the communication from node i to node j one-way,
and by i ↔ j both i → j and j → i. By pX(x) we denote
the probability density function (PDF) of random variable X .

Encoder pY |XS Decoder

pS

M Xn Y n M̂

Sn Sn

(a) DMC with DM state known at the decoder

H
Xn

Sn Zn

Y n

(b) Intermittent Gaussian MIMO channel

Fig. 3. The capacity of the DMC with state known at the decoder (a) is well-
known, and used to derive the capacity of the intermittent Gaussian MIMO
channel (b)

II. PREREQUISITES AND SYSTEM MODEL

In this section, we briefly recite the basics of channels with
state, a fundamental building block of multi-way communica-
tion scenarios with intermittency. We then present the system
model of the intermittent 3WC.

A. Channels with State and Intermittency

Recall the definition of a discrete memoryless channel
(DMC) with discrete memoryless (DM) state known at the
decoder (Fig. 3a): Its state sequence Sn is independent and
identically distributed (i.i.d.) S` ∼ pS and independent of the
input Xn, where n is the number of channel uses. Since both
output Y n and state sequence Sn are known at the decoder,
it can be viewed as a DMC with channel law

pY nSn|Xn(yn, sn|xn) =

n∏
`=1

pY |XS(y`|x`, s`)pS(s`).

The capacity of this channel is [37, eq. (7.2)]

C = max
pX

I(X;Y S) = max
pX

I(X;Y | S).

We use this result to derive the capacity of the intermittent
Gaussian MIMO channel (Fig. 3b) which will be useful in the
sequel. Here, the input Xn is a sequence of vectors x` of
length M with average power constraint

n∑
`=1

E[‖X`‖22] ≤ nP.

S` ∼ Bern(τ) models the intermittency. The output Y n of
dimension N is given as

y` = s`Hx` + z`, ∀`,

where H ∈ CN×M is the channel matrix, and Zn is a noise
sequence, i.i.d., with Z` ∼ CN (0, σ2IN ).

Lemma 1. The capacity of the intermittent Gaussian MIMO
point-to-point (P2P) channel is

CP2P = I(X;Y | S)

= τI(X;Y | S = 1) + τI(X;Y | S = 0)
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= τ log det

(
IN +

P

σ2
HHH

)
.

Now we turn to the intermittent Gaussian MIMO TWC,
where two nodes communicate full-duplex over a bidirectional
intermittent Gaussian MIMO channel and the intermittency
state is known strictly causally at the encoders and decoders,
i.e., only intermittency states s`−1 can be used in encoding. For
simplicity, let the channel be reciprocal, such that the channel
matrices for the two directions are H and HH, respectively.
As the outputs (Y n

1 , S
n) and (Y n

2 , S
n) at nodes 1 and 2, with

y1,` = s`H
Hx2,` + z1,`, Z1,` ∼ CN (0, σ2IM ), ∀`,

y2,` = s`H x1,` + z2,`, Z2,` ∼ CN (0, σ2IN ), ∀`,

and Z1,` and Z2,` independent, depend only on the inputs
Xn

2 and Xn
1 of the respective other node, the channel law

distributes as

pY n
1 Y n

2 S
n|Xn

1 Xn
2

(yn1 ,y
n
2 , s

n|xn1xn2 )

=

n∏
`=1

pY1|X2S(y1,`|x2,`, s`)pY2|X1S(y2,`|x1,`, s`)pS(s`).

One can readily show that Shannon’s outer bound [37, p. 447]
holds despite the shared state S of X2  Y1 and X1  
Y2. The bounds are achieved by coding independently in both
directions for an intermittent Gaussian MIMO P2P channel.
Hence, the capacity region of this TWC is the rectangle

CTWC = {(R1, R2) ∈ R2
+ | R1 ≤ CP2P, R2 ≤ CP2P},

and the sum-capacity of the TWC is twice the capacity of the
P2P channel,

CTWC = 2CP2P.

We presented the capacity of the intermittent Gaussian
MIMO P2P channel and TWC, which follow from established
results for channels with state. In particular, intermittency
affects these channels in that it linearly scales the capacity
of the non-intermittent channel with the fraction τ of time
in which the channel is non-intermittent. While the impact
of intermittency is straightforward in the TWC, we shall see
that this is not the case in larger multi-way communication
channels. The smallest (in terms of number of nodes) scenario
larger than the TWC where this can be demonstrated is the
3WC. Hence, the impact of intermittency on the 3WC is
studied in this paper. In the following, we introduce the system
model of the intermittent 3WC.

B. The MIMO Three-Way Channel with Node-Intermittency

Throughout this section we assume i, j, k ∈ {1, 2, 3} and
mutually distinct, and n is the number of channel accesses.
The MIMO 3WC with node-intermittency is comprised of
three terminals 1, 2 and 3 communicating with each other in
full-duplex mode over a shared medium. Each node i has two
messages wij and wik (wi , (wij , wik)) to be delivered to the
remaining nodes j and k, and two messages ŵji and ŵki to
be decoded from the received signals (Fig. 4). Each message
wij is a realization of the random variable Wij . All random
variables Wij are independent. In the (node-)intermittent 3WC

one link is always available and two links are jointly intermit-
tent with probability of being available τ (Fig. 1b and 4).

Our objects under investigation (sum-DoF and DoF region
of the intermittent 3WC – both are introduced in the sequel)
depend on how the numbers of antennas at each node relate to
each other, i.e., whether the intermittent node has most, second
most, or least antennas. To reduce the number of cases one
has to analyze, yet study the system without loss of generality
(w.l.o.g.), two symmetries come to mind that can be exploited:
Either a) fix a certain node to be intermittent (e.g., node 1
is intermittent), and investigate all possible relations among
the numbers of antennas, or b) fix a relation between the
numbers of antennas, and allow any one of the three nodes
to be intermittent. The respective remaining cases follow by
renaming. Preliminary work [1] fixed node 1 to be intermittent
and further assumed a relation on the numbers of antennas,
which is not w.l.o.g. We fix node 1 to be intermittent, but
allow for any combination of numbers of antennas, which is
approach a) and w.l.o.g.

Node i is equipped with Mi antennas that are used for re-
ception and transmission simultaneously. We assume channel
accesses of the nodes are synchronized and time-discretized:
At time instance ` the transmit signal xi,` ∈ CMi is a
realization of a random vector Xi,` satisfying the power
constraint

n∑
`=1

E[‖Xi,`‖22] ≤ nP.

The receive signals yi,` ∈ CMi are

y1,` = s`H21x2,` + s`H31x3,` + z1,`,

y2,` = s`H12x1,` + H32x3,` + z2,`,

y3,` = s`H13x1,` + H23x2,` + z3,`.

Hij ∈ CMj×Mi represents the channel matrix from node
i to node j and is constant over time and known to all
nodes in advance. The elements of these matrices are drawn
independently from the same continuous distribution, such
that rank(Hij) = min(Mj ,Mi) almost surely. zi,` ∈ CMi

is a realization of the noise process Zi,` ∼ CN (0, σ2IMi
)

independent and identically distributed (i.i.d.) with respect to
(w.r.t.) `, and s` ∈ {0, 1} is a realization of the intermittency
state process S`. S` ∼ Bern(τ) is assumed to be i.i.d.
w.r.t. `. The state sequence sn is known strictly causally
at all nodes (i.e., in time instance ` all nodes know s`−1),
because every node can correctly estimate s` from its yi,`
with very high probability, e.g., based on the received signal
strength. Due to the physical properties of the channel and
the distinct receivers, all random variables Hij , Zn

i and Sn

are assumed to be mutually independent. We remark that our
analysis continues to hold if the noise at different receivers
is correlated. We denote ρ , P

σ2 and call it SNR (signal-to-
noise-power-ratio) throughout the paper.

The messages Wij are each uniformly distributed over
Wij = {1, . . . , |Wij(ρ)|}. Using an encoding function Ei,`
node i constructs xi,` either from (wij , wik) (non-adaptive
encoding) or from (wij , wik,y

`−1
i , s`−1) (adaptive encoding).

After n transmissions (where n is the code length), node i
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Node 2 Node 3

Node 1

S

W12,W13 Ŵ21, Ŵ31

W21,W23 Ŵ12, Ŵ32
W31,W32 Ŵ13, Ŵ23

Fig. 4. Every node i in the MIMO 3WC with node-intermittency sends
messages wij and wik to nodes j and k, respectively (with i, j, k ∈ {1, 2, 3}
mutually distinct). W.l.o.g. node 1 is assumed to be intermittent.

decodes its desired messages using a decoding function Fi
to obtain (ŵji, ŵki) = Fi(sn,yni , wij , wik). Transmission is
considered successful if all messages are recovered success-
fully (wij = ŵij), otherwise an error is reported. The average
over all messages of the error probability is denoted by Pe,n.

A rate tuple

R(ρ) ,
(
R12(ρ), R13(ρ), R21(ρ),

R23(ρ), R31(ρ), R32(ρ)
)
∈ R6

+

with Rij(ρ) =
log(|Wij(ρ)|)

n is said to be achievable if there
exists a sequence of encoder-decoder pairs for increasing code
length n, where Pe,n → 0 as n → ∞. The capacity region
C(ρ) is the set of all achievable rate tuples.

The DoF region D is the set of achievable DoF tuples

d , (d12, d13, d21, d23, d31, d32) ∈ R6
+

defined as in [46], i.e.,

D ,

{
(d12, ..., d32) ∈ R6

+

∣∣∣∣ ∀(β12, ..., β32) ∈ R6
+ :

∑
i,j

βijdij ≤ lim sup
ρ→∞

sup
R(ρ)∈C(ρ)

∑
i,j

βij
Rij(ρ)

log(ρ)

}
.

Roughly speaking, if a rate tuple R(ρ) as a function of ρ
is achievable, i.e., R(ρ) ∈ C(ρ) for all ρ > 0, then the
DoF tuple d with dij = lim supρ→∞

Rij(ρ)
log(ρ) is achievable.

We denote DoF regions with D and use suitable subscripts
when further restricting assumptions apply (e.g., under non-
adaptive encoding). We define the corresponding sum-DoF as
dsum = maxd∈D

∑
i,j∈{1,2,3},i6=j dij . The DoF perspective

only captures rate contributions that are non-vanishing relative
to log(ρ) as we let ρ→∞. It neglects vanishing rate portions
f(ρ) that grow sublinear in log(ρ) and are therefore o [log(ρ)],
i.e., where limρ→∞

f(ρ)
log(ρ) = 0.

III. MAIN RESULTS

In this section, we summarize and discuss the main results
of this paper, listed in Table I. We denote the DoF region of
the intermittent 3WC under adaptive encoding by DI, the DoF

region of the intermittent 3WC under non-adaptive encoding
by DI

A
, and the sum-DoF by dI

sum. Obviously, DI
A
⊆ DI. We

denote the DoF region of the non-intermittent 3WC by DN

and the sum-DoF by dN
sum. In Section IV-A we devise a non-

adaptive encoding scheme whose achievable DoF region (DoF
region inner bound) we denote by DI

IB,A
. We start with this

achievable DoF region given in the following theorem.

Theorem 1 (DoF Region Inner Bound for Node-Intermittent
3WC). All DoF tuples d ∈ DI

IB,A
satisfying the following set

of inequalities are achievable in the node-intermittent 3WC
using non-adaptive encoding:

max{d12 + d13, d21 + d31} ≤ τM1

max{d21 + τd23, d12 + τd32} ≤ τM2

max{d31 + τd32, d13 + τd23} ≤ τM3

max{d12 + d13 + τd23, d21 + d31 + τd32} ≤ τ max {M1,M3}
max{d12 + d13 + τd32, d21 + d31 + τd23} ≤ τ max {M1,M2}
max{d12 + d31 + τd32, d21 + d13 + τd23} ≤ τ max {M2,M3}

min{d12, d13, d21, d23, d31, d32} ≥ 0

Therefore, DI
IB,A

constitutes an inner bound on the DoF region
of the node-intermittent 3WC, such that

DI
IB,A

⊆ DI
A
⊆ DI.

Proof. This theorem follows by the ZF/IA/EC-based construc-
tion in Section IV-A.

Subsequently we investigate whether this non-adaptive
scheme is optimal. For the intermittent 3WC it turns out to be
sum-DoF optimal, establishing the sum-DoF of the intermittent
3WC and the fact that adaptive encoding is not necessary to
achieve it.

Theorem 2 (Sum-DoF of Node-Intermittent 3WC). A non-
adaptive encoding scheme achieves the sum-DoF of the node-
intermittent 3WC given by

dI
sum = 2τ min{M2,M3}+ 2τ

(
M1 +M2 +M3

−min{M1,M2,M3} −max{M1,M2,M3}
)
.

Proof. The theorem follows from achievability and converse
results developed in Sections IV-B1 and IV-B2 (Lemmas 2
and 3).

Theorem 2 is based on an instrumental genie-aided upper
bound, which we prove to be tighter than cut-set bounds in
Section IV-C. Hence, cut-set bounds alone can not describe
the DoF of this network comprehensively.

The sum-DoF optimality of non-adaptive schemes, i.e., of
schemes that dispense with relaying, agrees with the following
intuition: Assume relaying was used for (any part of) any
message, say wik was relayed via node j. Then this message
occupies communication resources on two links, i → j and
j → k, introducing redundancy and thus waste of resources.
Since the sum-DoF criterion allows to trade DoFs among
messages, one could instead use the resources used by the one
relayed message wik to increase the DoFs of the two non-
relayed messages wij and wjk. This is possible since every
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TABLE I
OVERVIEW OF MAIN RESULTS

Channel Criterion Necessity of Adaptation Coding Scheme

Node-intermittent 3WC Sum-DoF Non-adaptive encoding suffices
(Theorem 2)

ZF/IA/EC-based
(Section IV-A, Theorems 1 and 2)

DoF region Adaptive encoding required
(Theorem 3)

Counterexample based on decode-forward relaying
(Section IV-D2)

Non-intermittent 3WC Sum-DoF Non-adaptive encoding suffices
(Theorem 4, Corollary 1)

ZF/IA-based
(Sections IV-A, V-A and V-C)

DoF region Non-adaptive encoding suffices
(Theorem 4)

ZF/IA-based
(Sections IV-A and V-A)

node has messages for the two other nodes in the 3WC. Such
a reassignment could improve resource utilization and thus
sum-DoF, rendering relaying dispensable.

From a DoF region perspective however it turns out that
non-adaptive schemes cannot be optimal, and therefore the
presented scheme is not DoF region optimal in the intermittent
3WC.

Theorem 3 (Necessity of Adaptive Encoding for DoF Region
of Node-Intermittent 3WC). Adaptive encoding is required to
achieve the DoF region of the node-intermittent 3WC, i.e.,

DI \ DI
A
6= ∅.

Proof. The theorem follows from an upper bound on d31

under non-adaptive encoding, presented in Section IV-D1, and
counterexamples of adaptive schemes exceeding this bound,
devised in Section IV-D2.

Theorems 2 and 3 show that non-adaptive encoding is
sufficient to achieve sum-DoF, but not sufficient to achieve
the DoF region of the intermittent 3WC. Unlike the sum-DoF
criterion, the DoF region criterion does not allow to trade DoFs
among messages. Instead, e.g., ‘extreme’ DoF tuples need to
be achievable as well, that make every effort (e.g., through
relaying) to maximize a single message’s DoF, usually at the
cost of low sum-DoF. The result is particularly interesting in
light of the fact, that non-adaptive encoding is sufficient to
achieve the DoF region of the non-intermittent 3WC, which
the presented non-adaptive scheme does.

Theorem 4 (DoF Region of Non-Intermittent 3WC). The DoF
region of the non-intermittent 3WC DN (with M1 ≥M2 ≥M3

w.l.o.g.) is given by

max{d12 + d13 + d23, d12 + d13 + d32} ≤M1

max{d21 + d31 + d32, d21 + d31 + d23} ≤M1

max{d21 + d13 + d23, d12 + d31 + d32} ≤M2

max{d31 + d32, d13 + d23} ≤M3

min{d12, d13, d21, d23, d31, d32} ≥ 0

and achievable using a non-adaptive encoding scheme.

Proof. The theorem follows from the ZF/IA-based achievabil-
ity results in Section V-A ((55) to (63)) and the converse
results in Section V-B ((72) to (79)).

This complements earlier work [18] that characterized the
sum-DoF of the non-intermittent 3WC and showed its achiev-
ability using non-adaptive encoding.
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Fig. 5. Sum-DoF of 3WC (red) and intermittent 3WC (blue) with varying τ
(black marks show the case τ = 0.25 as convex combination of the extreme
cases τ = 0 and τ = 1)
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Fig. 6. Sum-DoF of 3WC (red) and intermittent 3WC (blue) for varying M2

Our results show that intermittency does not decrease sum-
DoF as long as node 1 has the smallest number of antennas.
Otherwise, intermittency does affect sum-DoF, which is affine-
linearly increasing in τ . Fig. 5 and 6 plot sum-DoF of non-
intermittent and node-intermittent 3WC against M3, for differ-
ent values of τ and M2, respectively, in a scenario where node
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1 has the largest number of antennas. The resulting graphs are
piecewise linear with a change in slope at M3 = M2. For
M3 < M2 the sum-DoF of the 3WC is a constant depending
only on M2, for M3 > M2 it is linear in M3. The slope of
the sum-DoF of the intermittent 3WC is proportional to τ for
M3 < M2 and proportional to τ for M3 > M2.

The sum-DoF of the intermittent 3WC with 0 < τ < 1 is
a convex time-sharing combination of the two extreme cases
τ = 0 and τ = 1 (Fig. 5). Note, that such a time-sharing
combination is the best any non-adaptive coding scheme
can achieve, when each node knows the intermittency state
ahead of time and codes optimally for the respective state
in each time instance `. The achievability scheme presented
in this work does not use intermittency state information at
the encoder, yet achieves the same sum-DoF, averaging out
intermittency state through erasure coding. This shows that
intermittency state information is dispensable at the transmitter
for the non-adaptive scheme in this case. Furthermore, note
that the sum-DoF of the 3WC is larger than the sum-DoF of
the intermittent 3WC (Fig. 6).

Intermittency impacts the DoF region of the 3WC in a
pivotal way: While non-adaptive encoding schemes, if suitably
designed, are optimal for the non-intermittent 3WC, adaptive
encoding techniques are indispensable for the intermittent
3WC. For sum-DoF this is not the case; instead, non-adaptive
encoding suffices for both intermittent and non-intermittent
3WC. This reinforces that changes in fundamental qualitative
channel properties might not be recognizable from the sum-
DoF perspective, corroborating the necessity to study the full
DoF region of multi-way communication scenarios.

Considering multi-way communication networks, recall that
adaptive encoding opens new paths for information flow
which are otherwise unavailable to non-adaptive schemes.
As intermittency impairs parts of the network, the ability of
adaptive schemes to exploit path diversity and steer clear of the
impairment becomes crucial to achieve ‘extreme’ DoF tuples
(e.g., tuples where all resources are used to maximize a certain
DoF). It is in line with this informal reasoning to find that
adaptive encoding is required to achieve the DoF region of a
multi-way communication network with intermittency.

In the sequel we provide detailed derivations and proofs of
our main results highlighted in this section.

IV. NODE INTERMITTENCY

In this section we first introduce a non-adaptive ZF/IA/EC-
based scheme and derive its achievable sum-DoF and DoF
region. We then show, using enhanced genie-aided bounds for
both adaptive and non-adaptive encoding, that this scheme is
sum-DoF optimal, but not DoF region optimal. Furthermore,
no non-adaptive scheme can be DoF region optimal, since
tighter outer bounds hold for non-adaptive schemes, that
however can be exceeded by adaptive schemes, as we show by
the example of decode-forward relaying. This establishes that
adaptive encoding is necessary from a DoF region perspective,
but non-adaptive encoding is sufficient to achieve sum-DoF.

Node 2 Node 3

Node 1

S3 ∼ Bern(τ3) S2 ∼ Bern(τ2)

S1 ∼ Bern(τ1)

Fig. 7. Rationale behind the aliases s1,` , 1, s2,` , s3,` , s`, τ1 , 1, τ2 ,
τ3 , τ introduced in Section IV-A: treating every link j ↔ k as potentially
intermittent with intermittency state variable si,` (marginally distributed as
Bern(τi)) allows to derive general expressions for, e.g., yi,` based on xj,`,
xk,`, sj,` and sk,`, independent of whether i = 1, i = 2 or i = 3

A. A Non-Adaptive Scheme Based on ZF, IA and EC

In this subsection we present a non-adaptive transmission
scheme based on ZF, IA and EC that provides an inner
bound on sum-DoF and DoF region of 3WCs. Previous works
[18], [19], [21], [47] developed similar ZF/IA-based schemes
only to the limited extent necessary to analyze the sum-DoF
of various 3WCs. We take EC as additional technique to
mitigate intermittency and develop the resulting ZF/IA/EC-
based scheme in full generality, i.e., for arbitrary numbers
of antennas and flexible allocation of DoFs to the available
transmission techniques ZF, IA and EC. The resulting DoF
region is optimal for the non-intermittent 3WC. Further-
more, the DoF region/sum-DoF constitutes inner/lower bounds
for 3WCs with arbitrary intermittency models beyond node-
intermittency, some of which are mentioned in Section VI.

Throughout this section we continue to assume i, j, k ∈
{1, 2, 3} and mutually distinct. For notational simplicity (cap-
turing the symmetries inherent in the model thereby avoiding
case distinctions), we introduce the following aliases that will
be resubstituted towards the end of the section,

s1,` , 1, s2,` , s3,` , s`, τ1 , 1, τ2 , τ3 , τ. (1)

The idea behind these aliases is visualized in Fig. 7: Using
these aliases we can, for instance, find a general expression for
the receive signal yi,` of node i in terms of the transmit signals
xj,` and xk,` of nodes j and k, and the intermittency states sk,`
and sj,` (marginally distributed as Bern(τk) and Bern(τj),
respectively) of the links j ↔ i and k ↔ i, respectively. The
fact that 2 ↔ 3 is not intermittent, and 1 ↔ 2 and 1 ↔ 3
are jointly intermittent, is accounted for by the appropriate
resubstitution at due time.

1) Encoding: Each node splits each message wij into
w

[ZF]
ij and w

[IA]
ij to be sent via zero-forcing and interference

alignment, respectively. At node i, the four messages w
[q]
ij

(q ∈ {ZF, IA}) are encoded into codewords x
[q]n
ij with sym-

bols x[q]
ij,` ∈ Ca

[q]
ij each, for some vector lengths a[q]

ij ∈ N0. The
symbols of these codewords are chosen i.i.d. CN (0, piIa[q]ij

)

respectively, where pi is the power. The power constraints on
xni stated in Section II-B are satisfied by choosing

pi =
P

a
[ZF]
ij + a

[IA]
ij + a

[ZF]
ik + a

[IA]
ik

. (2)
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Node 1 Node 2

Node 3

TX space TX space

τ

τ

RX space

Z2
1 Z3

1 A2
1 A3

1 Z1
2 Z3

2 A1
2 A3

2

Z3
1 Z3

2 A3
1 A3

2 A2
1 A1

2

Z3
2 A3

2 A1
2

Fig. 8. Visualization of transmit (TX) signal spaces at nodes 1 and 2 and
receive (RX) signal space at node 3 depending on intermittency state of 1↔
3 where the first and second row are received with probability τ and τ ,
respectively (Zj

i denotes w[ZF]
ij , Aj

i denotes w[IA]
ij , desired signals in red,

interfering signals in blue)

For encoding, the codes are designed to employ EC to be
able to tolerate a certain number of symbol erasures (e.g.,
caused by intermittency), by not using all codeword symbols
for net user data, but deliberately adding some redundancy.
The rates and DoFs are thereby reduced accordingly. While
for the non-intermittent 3WC this additional layer of EC is
not required, it is made use of for intermittent 3WCs to cope
with intermittency.

2) Transmission: At time `, node i sends

xi,` =
∑

q∈{ZF,IA}

[
V

[q]
ij x

[q]
ij,` + V

[q]
ik x

[q]
ik,`

]

where V
[q]
ij ∈ CMi×a[q]ij are pre-coding matrices with unit-

norm column vectors. Zero-forcing is achieved by choosing
the V

[ZF]
ij such that

HikV
[ZF]
ij = 0. (3)

Such matrices V
[ZF]
ij exist if node i has enough antennas to

send a[ZF]
ij streams to node j without interfering with node k,

i.e.

a
[ZF]
ij ≤ (Mi −Mk)+. (4)

To avoid any overlap of the different transmit signal subspaces,
we require furthermore that

a
[ZF]
ij + a

[IA]
ij + a

[ZF]
ik + a

[IA]
ik ≤Mi. (5)

3) Decoding: Node i receives (Fig. 8)

yi,` = sk,`Hjixj,` + sj,`Hkixk,` + zi,`

=
∑

q∈{ZF,IA}

[
sk,`HjiV

[q]
ji x

[q]
ji,` + sj,`HkiV

[q]
ki x

[q]
ki,`

]

+ Gi

[
x

[IA]
jk,`

x
[IA]
kj,`

]
+ zi,`

with Gi = [ sk,`HjiV
[IA]
jk sj,`HkiV

[IA]
kj ]. Note that the terms

HjiV
[ZF]
jk x

[ZF]
jk,` and HkiV

[ZF]
kj x

[ZF]
kj,` vanished due to the zero-

forcing condition (3). The first summand represents the four
desired signals from j → i and k → i, the second summand
represents occasional interference from j ↔ k, and the third
summand is noise.

To decode a desired signal x
[q]n
ji , node i zero-forces the

remaining signals by multiplying yni with a suitable post-coder
T

[q]
ji ∈ Ca

[q]
ji ×Mi with unit-norm row vectors satisfying:

T
[q]
ji T

[q]H
ji = I

a
[q]
ji

(6)

T
[q]
ji

[
HjiV

[q]
ji HkiV

[ZF]
ki HkiV

[IA]
ki Gi

]
= 0

with q ∈ {ZF, IA} \ {q} (7)

rank(T
[q]
ji HjiV

[q]
ji ) = a

[q]
ji (8)

Here, (7) ensures zero-forcing of the remaining three messages
and the interference and (8) ensures post-coding without loss
of meaningful signal dimensions. The existence of such post-
coders T

[q]
ji is guaranteed as long as the columns of[

HjiV
[ZF]
ji HjiV

[IA]
ji HkiV

[ZF]
ki HkiV

[IA]
ki Gi

]
are linearly independent. Let γi be the dimension of
span(HjiV

[IA]
jk ) ∩ span(HkiV

[IA]
kj ). Then, the dimension of

span(Gi) is a[IA]
jk + a

[IA]
kj − γi, and the above linear indepen-

dence is possible almost surely if we choose

a
[ZF]
ji + a

[IA]
ji + a

[ZF]
ki + a

[IA]
ki + (a

[IA]
jk + a

[IA]
kj − γi) ≤Mi.

(9)

To minimize the impact of interference, we choose the pre-
coders V

[q]
ij such that all γi are maximized, i.e., we ‘maxi-

mally’ align the interference subspaces at the receivers. The γi
cannot be chosen arbitrarily large, the dimension of the inter-
section of the interference subspaces (γi) is upper bounded by
the dimensions of the interference subspaces (a[IA]

jk and a[IA]
kj ).

Furthermore, γi needs to be smaller than the dimension of
span(Hji)∩ span(Hki), which is (Mj +Mk −Mi)

+ almost
surely. Therefore, we require that

γi ≤ min{a[IA]
jk , a

[IA]
kj , (Mj +Mk −Mi)

+}. (10)

After post-coding, node i is left with the signals

y
[q]
ji,` = sk,`T

[q]
ji HjiV

[q]
ji x

[q]
ji,` + T

[q]
ji zi,`.

The resulting channel is an erasure-Gaussian MIMO channel
with erasure probability τk, i.e., a channel whose output is

Y
[q]
ji = SkT

[q]
ji HjiV

[q]
ji X

[q]
ji + T

[q]
ji Zi

with random variables Sk ∼ Bern(τk), X [q]
ji ∼ CN (0, pjIa[q]ji

)

and Zi ∼ CN (0, σ2IMi
). We treat this as a channel with state

known causally to the receiver, cf. Section II-A, Lemma 1,
such that for large n, the achievable rate over this channel is
the mutual information between X

[q]
ji and (Y

[q]
ji , Sk):

I(X
[q]
ji ;Y

[q]
ji Sk)

= I(X
[q]
ji ;Y

[q]
ji | Sk)
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= τk log det
(
I
a
[q]
ji

+
pj
σ2

T
[q]
ji HjiV

[q]
ji V

[q]H
ji HH

jiT
[q]H
ji

)
Due to (2) and (8), this leads to a DoF of τka

[q]
ji , and the code

that achieves it is an EC.
4) Achievable DoF Region: For n large, i→ j has a total

of τka
[ZF]
ij + τka

[IA]
ij DoFs per channel use,

dij = τka
[ZF]
ij + τka

[IA]
ij . (11)

Collecting (4), (5), (9) and (10) as well as non-negativity
of every a[q]

ij , we obtain:

a
[ZF]
ij + a

[IA]
ij + a

[ZF]
ik + a

[IA]
ik ≤Mi

(12)

a
[ZF]
ji + a

[IA]
ji + a

[ZF]
ki + a

[IA]
ki + (a

[IA]
jk + a

[IA]
kj − γi) ≤Mi

(13)

a
[ZF]
ij ≤ (Mi −Mk)+ (14)

γi ≤ min{a[IA]
jk , a

[IA]
kj , (Mj +Mk −Mi)

+} (15)

0 ≤ a[q]
ij (16)

Using (11), we obtain:

τjdij + τkdik ≤ τjτkMi (17)
τjτidji + τkτidki + τjτkdjk + τkτjdkj

− τiτjτka[ZF]
jk − τiτkτja

[ZF]
kj − τiτjτkγi ≤ τiτjτkMi (18)

τi(γi + a
[ZF]
jk ) ≤ djk (19)

γi ≤ (Mj +Mk −Mi)
+ (20)

a
[ZF]
ij ≤ (Mi −Mk)+ (21)

min{a[ZF]
ij , dij , γi} ≥ 0 (22)

Instantiating these constraints for every possible combi-
nation of i, j, k ∈ {1, 2, 3} mutually distinct, resubstituting
all τi from (1), collecting the resulting bounds and elim-
inating redundant bounds, finally yields (for both (i, i) ∈
{(2, 3), (3, 2)}):

d12 + d13 ≤ τM1 (23)
di1 + τdii ≤ τMi (24)

d21 + d31 + τd23 + τd32

− τa[ZF]
23 − τa[ZF]

32 − τγ1 ≤ τM1 (25)
d1i + τdii + d1i + di1

− τa[ZF]

1i
− τa[ZF]

i1
− τγi ≤ τMi (26)

0 ≤ (γ1 + a
[ZF]

ii
) ≤ dii (27)

0 ≤ τ(γi + a
[ZF]

1i
) ≤ d1i (28)

0 ≤ τ(γi + a
[ZF]

i1
) ≤ di1 (29)

0 ≤ γ1 ≤ (M2 +M3 −M1)+ (30)
0 ≤ γi ≤ (M1 +Mi −Mi)

+ (31)

0 ≤ a[ZF]
1i ≤ (M1 −Mi)

+ (32)

0 ≤ a[ZF]
i1 ≤ (Mi −Mi)

+ (33)

0 ≤ a[ZF]

ii
≤ (Mi −M1)+ (34)

In order to resolve the (.)+ expressions, we do the following
for each of the twelve cases of Mi ≥ Mj + Mk ≥ Mj ≥
Mk and Mj + Mk ≥ Mi ≥ Mj ≥ Mk (for all possible
combinations i, j, k ∈ {1, 2, 3} mutually distinct):

1) Instantiate the (.)+ expressions under the respective
assumption on the numbers of antennas, therefore some
of the a[ZF]

ij and γi will be forced to zero.
2) Perform Fourier-Motzkin’s elimination to remove all

remaining a
[ZF]
ij and γi and obtain the achievable DoF

region.

We then combine the resulting achievable DoF regions into
the following compact formulation:

max{d12 + d13, d21 + d31} ≤ τM1 (35)
max{d21 + τd23, d12 + τd32} ≤ τM2 (36)
max{d31 + τd32, d13 + τd23} ≤ τM3 (37)

max{d12 + d13 + τd23,

d21 + d31 + τd32} ≤ τ max {M1,M3} (38)
max{d12 + d13 + τd32,

d21 + d31 + τd23} ≤ τ max {M1,M2} (39)
max{d12 + d31 + τd32,

d21 + d13 + τd23} ≤ τ max {M2,M3} (40)
min{d12, d13, d21, d23, d31, d32} ≥ 0 (41)

This region is achievable for tuples d with non-negative integer
entries. Tuples with non-negative real entries (such as the
corner points of the region) are first approximated by non-
negative rationals which then can be achieved using symbol
extension, as in [48].

The set of all DoF tuples d satisfying constraints (35) to
(41) is denoted by DI

IB,A
. This proves Theorem 1. What is

the rationale behind the DoF region inner bound (35) to (41)?
The first three inequalities constrain the sum-DoF of out-

bound and inbound streams at each node, similar to cut-set
bounds. The next three inequalities follow this rule: For each
of the three links 1 ↔ 2, 1 ↔ 3 and 2 ↔ 3 there are
two DoF variables, one for each direction (i.e., d12 and d21,
etc.). For each link pick one direction. There are eight such
combinations. Whenever a combination contains both DoF
variables that occur in a node’s outbound or inbound sum-
DoF constraint, the number of antennas at this node appears
in the max{.} operator at the right side of the inequality. This
means that whenever a node’s index appears two times as left
or two times as right index, this node’s index appears also in
the max{.} on the right side.

As can be seen above, there are six cases where each case
applies to two nodes each, while for the third node it does not,
because the third node’s index appears once as left and once
as right index. There are two cases missing altogether, d12 +
d31 +τd23 and d21 +d13 +τd32, where the indices of all three
nodes appear once as left and once as right index. Depending
on numbers of antennas, this achievable DoF region yields four
bounds for the largest and two bounds for the second largest
node from the inequalities (38) to (40), and two bounds for
the third largest node from (35) to (37). The remaining bounds
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from (35) to (37) are inactive due to the tighter bounds from
(38) to (40).

Although we proved that the above region is achievable, it is
still useful to provide a ‘recipe’ which describes how a specific
DoF tuple can be achieved. To obtain the actual allocation of
signal dimensions a[q]

ij for a DoF tuple d satisfying (35) to
(41), proceed as follows: First, use as many ZF resources as
possible. Only once the ZF dimensions are exhausted, assign
IA resources and align as much of the resulting interference
as possible. Throughout the process, account for redundancy
required by EC to be able to tolerate intermittency. As an
example (Fig. 9), assume (M1,M2,M3, τ) = (5, 7, 4, 0.5).
There is one ZF dimension 1 → 2, three ZF dimensions
2 → 1 and two ZF dimensions 2 → 3, all other com-
munication cannot be zero-forced. We try to achieve d =
(0.5, 0, 0.5, 4, 0, 4). To transmit on average half a symbol
per channel access full-duplex over the intermittent 1 ↔ 2,
we use a rate 1

2 EC over one available ZF dimension in
each direction (a[ZF]

12 = a
[ZF]
21 = 1), the remaining two ZF

dimensions 2 → 1 remain unused. IA is not required for
1 ↔ 2 (a[IA]

12 = a
[IA]
21 = 0). No communication 1 ↔ 3 takes

place (a[ZF]
13 = a

[IA]
13 = a

[ZF]
31 = a

[IA]
31 = 0). To transmit

four symbols per channel access 2 → 3, we use the two
available ZF dimensions for two of them (a[ZF]

23 = 2), and
two IA dimensions (a[IA]

23 = 2) that occupy a two-dimensional
interference subspace at node 1. To transmit four symbols per
channel access 3→ 2, we use four IA dimensions (a[IA]

32 = 4),
since ZF is not possible (a[ZF]

32 = 0). All of them create
interference at node 1, but this four-dimensional interference
subspace can be aligned with the two-dimensional interference
subspace caused by 2 → 3 (γ1 = 2). As a result, four of the
five receive dimensions at node 1 are interference of 2 ↔ 3
communication, while the remaining was used for zero-forced
and erasure-coded communication 2 → 1. At nodes 2 and 3
no interference is caused, such that no interference alignment
takes place (γ2 = γ3 = 0).

B. Sum-DoF

The devised non-adaptive encoding scheme based on ZF,
IA and EC is sum-DoF optimal in the intermittent 3WC, as
we will prove in this section.

1) Lower Bounds: Using (23) to (34), we derive a lower
bound on the sum-DoF of the intermittent 3WC with intermit-
tent node 1. For each of the six cases of Mi ≥Mj ≥Mk (for
all possible combinations i, j, k ∈ {1, 2, 3} mutually distinct),
we solve the linear program maximizing sum-DoF using, e.g.,
the simplex algorithm.

Definition 1. We denote

dI
sum,LB,A

, max
d∈DI

IB,A

[d12 + d13 + d21 + d23 + d31 + d32] .

The resulting lower bounds for each of the different cases
are listed in Table II, and are condensed into a single expres-
sion in the following lemma:

Node 1

Node 2 Node 3

TX

RX τ

τ

TX

RX τ

τ

TX

RX τ

τ

Z2
1

A2
3Z1

2 A3
2

Z1
2 Z3

2 A3
2

Z2
1 A2

3

A2
3

A2
3

Z3
2 A3

2

Z3
2 A3

2

Fig. 9. Visualization of transmit (TX) and receive (RX) signal spaces achiev-
ing d = (0.5, 0, 0.5, 4, 0, 4) under the assumption of (M1,M2,M3, τ) =
(5, 7, 4, 0.5) (depending on intermittency state, where the first and second
row are received with probability τ and τ , respectively; Zj

i denotes w[ZF]
ij ,

Aj
i denotes w[IA]

ij )

TABLE II
ACHIEVABLE SUM-DOFS OF INTERMITTENT 3WC

Case Sum-DoF Lower Bound

M1 ≥M2 ≥M3 dI
sum,LB,A

= 2M3 + 2τM2 − 2τM3

M2 ≥M1 ≥M3 dI
sum,LB,A

= 2M3 + 2τM1 − 2τM3

M2 ≥M3 ≥M1 dI
sum,LB,A

= 2M3

M1 ≥M3 ≥M2 dI
sum,LB,A

= 2M2 + 2τM3 − 2τM2

M3 ≥M1 ≥M2 dI
sum,LB,A

= 2M2 + 2τM1 − 2τM2

M3 ≥M2 ≥M1 dI
sum,LB,A

= 2M2

Lemma 2 (Sum-DoF Lower Bound for Node-Intermittent
3WC). The sum-DoF

dI
sum,LB,A

= 2τ min{M2,M3}+ 2τ
(
M1 +M2 +M3

− min{M1,M2,M3} −max{M1,M2,M3}
)

≤ dI
sum

is achievable in the node-intermittent 3WC and therefore
constitutes a lower bound on the sum-DoF of the node-
intermittent 3WC.

2) Upper Bounds: We first motivate the converse tech-
niques used throughout this section, then summarize the re-
sulting upper bounds in Lemma 3, and in the sequel provide
rigorous proofs. The general approach for upper bounding the
sum-DoF of the intermittent 3WC is as follows: Partition the
DoF sum dij+dik+dji+djk+dki+dkj into two partial sums
dij+dkj+dki and dik+djk+dji (Fig. 10), where wij , wkj , wki
are to be decoded by node j and wik, wjk, wji are to be
decoded by node k. There are three such partitions, and the
partition is fully determined by choosing which node takes the
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j k

i

(a)

j k

i

(b)

Fig. 10. Partition the DoF sum dij + dik + dji + djk + dki + dkj into two
partial sums dij +dkj +dki to be decoded at node j (a) and dik+djk+dji
to be decoded at node k (b), where nodes j and k are provided enough side
information such that they can recover the receive signal yn

i of node i and
from it decode the one message not originally intended for them (additional
dki and dji DoFs, respectively).

role of node i. While nodes j and k function exclusively as
source and sink in any one of the partial sums, node i is an
intermediary node in both.

Have an imaginary genie provide just enough side informa-
tion to node j and k (hence the name ‘genie-aided’ bound),
respectively, such that they can recover the receive signal yni of
node i, then (assuming existence of a suitable coding scheme)
nodes j and k can decode the additional messages wki and
wji, respectively. The details of this decoding process and the
required side information will be presented in due course. Here
we only remark, that the side information can serve for the
following four purposes (some cases might not require some
of the types of side information):

1) An additional message is required such that node j (or
k) can decode the additional message wki (or wji) from
the recovered yni , because decoding requires knowledge
of wi, and node j (or k) only knows wij (or wik) from
decoding its own receive signal ynj (or ynk ).

2) Node j (or k) might be incapable of capturing enough
information about yni because Mj (or Mk) is small.
In this case, additional measurements about yni (or
alternatively about the unknown ‘ingredient’ of interest,
xnk or xnj , respectively) need to be provided by side
information.

3) Node j (or k) might be incapable of capturing enough
information about yni because of intermittency. In this
case, additional measurements about yni for those time
instances ` where s` = 0 need to be provided by side
information.

4) For rather technical reasons a noise correction signal is
required to accurately recover yni . However, the infor-
mation contained in this signal about the three desired
messages in question scales only as o [log(ρ)].

Assuming reliable communication, the partial DoF sum of
each three messages is necessarily upper bounded by a mutual
information expression, using Fano’s inequality. Adding the
two resulting bounds yields an upper bound on the sum-DoF.
The challenge with this approach is two-fold: a) Provide as
little side information as possible to the respective nodes. Oth-
erwise the genie can be ‘mis-used’ for information exchange,
resulting in a larger DoF for the genie-enhanced system and
thus loose bounds for the non-enhanced system. b) Use tight
bounding when expanding the mutual information expression
from Fano’s inequality.

For the intermittent 3WC the partition that yields the tightest
upper bound on the sum-DoF depends on the numbers of
antennas. The node with largest number of antennas should
take the role of the intermediary node i (Fig. 10). The order
among the remaining two nodes decides about which side in-
formation to give to which node, to compensate for insufficient
number of antennas or intermittency. We prove upper bounds
for the three cases M1 ≥ M2 ≥ M3, M2 ≥ M1 ≥ M3 and
M2 ≥ M3 ≥ M1, the remaining three cases go by renaming
node 2 and 3. We obtain:

Lemma 3 (Sum-DoF Upper Bound for Node-Intermittent
3WC).

dI
sum ≤ 2τ min{M2,M3}+ 2τ

(
M1 +M2 +M3

− min{M1,M2,M3} −max{M1,M2,M3}
)

Proof. The lemma follows from (44), (47), (50) below, and
symmetry of node 2 and 3.

Using the achievability and converse results developed in
Sections IV-B1 and IV-B2, we establish the sum-DoF of
the intermittent 3WC for which non-adaptive encoding is
sufficient, i.e.

dI
sum,LB,A

= 2τ min{M2,M3}+ 2τ
(
M1 +M2 +M3

− min{M1,M2,M3} −max{M1,M2,M3}
)

= dI
sum.

This proves Theorem 2. We proceed to present rigorous
proofs for the aforementioned three cases.

a) Case 1: M1 ≥M2 ≥M3: For the case where M1 is
the largest number of antennas, we develop two partial sums
around nodes 2 and 3 (Fig. 10a and 10b, with (i, j, k) =
(1, 2, 3)), respectively. We start with the bound around node
2 (Fig. 10a, with (i, j, k) = (1, 2, 3)), as it requires less side
information and is therefore simpler to argue, and in the sequel
extend the basic technique to develop the bound around node
3 (Fig. 10b, with (i, j, k) = (1, 2, 3)), which requires more
side information and is therefore slightly more involved.

Which side information does node 2 need to be able to
recover yn1 and decode w31 from it, assuming a scheme
allowing every node to decode its desired messages with
high probability? We present a suitable iterative multi-step
process depicted in Fig. 11. Along the way, side information
is introduced (highlighted in italic) as found necessary for the
reconstruction process. At the end of the transmission, node 2
has w2, yn2 , sn and xn2 , as shown on the top left of the figure.
Using the decoder F2 it can decode (ŵ12, ŵ32) = (w12, w32)
with high probability. Assume we provide w13 as side infor-
mation, so that node 2 can decode messages intended for node
1 using F1 as soon as it obtains yn1 , as shown on the bottom
left of the figure. Node 2 can now obtain x1,1 from w1 using
E1,1. From (s1,y2,1) it can obtain H32x3,1 +z2,1 using x1,1.
Since H32 is a tall matrix, a noisy version of x3,1 can be
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sn,w2,y
n
2

Dec. F2

ŵ32, ŵ12

Enc. E1,`

w13

Cancel x1,`

x1,`

Invert`++

H32x3,` + z2,`

Combine

x3,` +H†32z2,`, if s` = 1

Enc. E2,`

x2,`

Dec. F1 y1,`
ŵ31

zcorr,`

Fig. 11. Decoding of w31 at node 2 by iterative reconstruction of yn
1 from a-priori knowledge w2 and observations (yn

2 , s
n) using side information

(w13,zn
corr) (grey box: a-priori knowledge and channel output, dashed boxes: side information as introduced in the running text): successively obtain x1,`,

cancel its effect from y2,` to obtain a noisy version of x3,`, and combine this with x2,` and zcorr,` to finally obtain y1,`; repeat for next `.

obtained from H32x3,1 + z2,1 using the pseudo-inverse H†32,
i.e.,

H†32 (H32x3,1 + z2,1) = x3,1 + H†32z2,1.

Using the noisy version of x3,1, node 2 can obtain a noisy
version of y1,1, i.e.,

s1

(
H21x2,1 + H31

(
x3,1 + H†32z2,1

))
= s1H21x2,1 + s1H31x3,1 + s1H31H

†
32z2,1.

Given a suitably formed noise correction term zcorr,1 , z1,1−
s1H31H

†
32z2,1 as side information, node 2 can finally obtain

y1,1, i.e.

y1,1 = s1H21x2,1 + s1H31x3,1 + s1H31H
†
32z2,1 + zcorr,1.

Then, this reconstruction cycle repeats for the next ` = 2, ..., n,
where all previous (y`−1

1 , s`−1) are used to obtain x1,` using
E1,`. After completing reconstruction of yn1 , node 2 uses F1

and (ŵ12, w13) to decode ŵ31 = w31 with high probability.
From the four abstract types of side information introduced
before, only two are required for the reconstruction and subse-
quently for this bound: a message and a noise correction term.
No side information to compensate for insufficient number of
antennas or intermittency is required.

In a nutshell, side information w13 and zncorr is provided to
node 2 by a genie, defined as

Zcorr,` , Z1,` − S`H31H
†
32Z2,`.

Since the scheme ought to be reliable, we bound the sum rate
of w12, w32 and w31 using Fano’s inequality:

n(R12 +R32 +R31 − ε(1)
n )

≤ I(W12W32W31;W2Y
n

2 S
n

side information︷ ︸︸ ︷
W13Z

n
corr )

(a)
= I(W12W32W31;Y n

2 |W13W2S
nZn

corr)

(b)
=

n∑
`=1

I(W12W3;Y2,` | Y `−1
2 SnW13W2Z

n
corr)

=

n∑
`=1

[
h(Y2,` | Y `−1

2 SnW13W2Z
n
corr)

− h(Y2,` | Y `−1
2 SnW1W2W3Z

n
corr)

]
(c)

≤
n∑
`=1

[
h(Y2,` | S`)

− h(Y2,` | Y `−1
2 SnW1W2W3Z

n
corrX1,`X3,`)

]
(d)
=

n∑
`=1

[
h(Y2,` | S`)− h(Y2,` | S`Zcorr,`X1,`X3,`)

]
=

n∑
`=1

I(Zcorr,`X1,`X3,`;Y2,` | S`)

(b)
=

n∑
`=1

[
I(X1,`X3,`;Y2,` | S`)

+ I(Zcorr,`;Y2,` | S`X1,`X3,`)
]

(e)
=

n∑
`=1

[
I(X1,`X3,`;Y2,` | S`) +

=o[log(ρ)]︷ ︸︸ ︷
I(Zcorr,`;Z2,` | S`)

]
(f)

≤ n [τM2 + τM3] log(ρ) + no [log(ρ)]

These steps are justified as follows:

(a) (W12,W3) is independent of (W13,W2, S
n,Zn

corr)
(b) Chain rule for mutual information
(c) Conditioning reduces entropy
(d) Y2,` is independent of (Y `−1

2 , S`−1, Sn`+1,Z
`−1
corr ,

Zn
corr,`+1,W1,W2,W3) given (S`,Zcorr,`,X1,`,X3,`)

(e) I(Zcorr,`;Y2,` | S`X1,`X3,`) = I(Zcorr,`;Z2,` | S`X1,`

X3,`), and (Zcorr,`,Z2,`) is independent of (X1,`,X3,`)
given S`

(f) (X1,`,X3,`) Y2,` is a MIMO channel with min{M1+
M3,M2} = M2 DoFs if s` = 1, and min{0+M3,M2} =
M3 DoFs if s` = 0

Dividing both sides by n log(ρ) and letting ρ, n → ∞ we
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obtain

d12 + d32 + d31 ≤ τM2 + τM3. (42)

We turn to the second partial sum, developed around node
3 (Fig. 10b, with (i, j, k) = (1, 2, 3)). This bound is slightly
more involved, as an additional type of side information is
required which compensates for the small number of antennas
M3. Which side information does node 3 need to be able
to recover yn1 and decode w21 from it, assuming a scheme
allowing every node to decode its desired messages with high
probability? A suitable process is depicted in Fig. 12. At the
end of the transmission, node 3 has w3, yn3 , sn and xn3 , as
shown on the top left of the figure. Using the decoder F3 it can
decode (ŵ13, ŵ23) = (w13, w23) with high probability. Assume
we provide w12 as side information, so that node 3 can decode
messages intended for node 1 using F1 as soon as it obtains
yn1 , as shown on the bottom left of the figure. Node 3 can now
obtain x1,1 from w1 using E1,1. From (s1,y3,1) it can obtain
H23x2,1 +z3,1 using x1,1. Assume we ‘virtually’ increase the
number of antennas at node 3 so that it can fully observe x2,1

whenever node 1 can, by providing ỹ3,1 = H̃23x2,1 + z̃3,1 as
side information if s1 = 1, with H̃23 ∈ C(M2−M3)×M2 such
that rank(

[
H23

H̃23

]
) = M2. Note that if s1 = 0 then x2,1 does

not contribute to y1,1. In this case, x2,1 does not need to be
reconstructed, and therefore no side information to compensate
for insufficient number of antennas is required. We define
shortcuts to group receive signal yn3 and side information ỹn3
into a joint signal ŷn3 , i.e.,

ŷ3,1 ,
[
y3,1

ỹ3,1

]
, Ĥ23 ,

[
H23

H̃23

]
, ẑ3,1 ,

[
z3,1

z̃3,1

]
.

A matrix H̃23 satisfying rank(Ĥ23) = M2 exists almost
surely and it allows to obtain x2,1 + Ĥ−1

23 ẑ3,1 if s1 = 1.
Assume we provide zcorr,1 = z1,1 − s1H21Ĥ

−1
23 ẑ3,1 as side

information. Then node 3 can obtain y1,1 from zcorr,1 if
s1 = 0, and from x3,1, x2,1 + Ĥ−1

23 ẑ3,1 and zcorr,1 if s1 = 1,
i.e.,

y1,1 = s1H21(x2,1 + Ĥ−1
23 ẑ3,1) + s1H31x3,1 + zcorr,1

= s1H21x2,1 + s1H31x3,1 + z1,1.

Using (y1,1, s1,w1) and the encoder E1,2 node 3 can obtain
x1,2 and the cycle repeats, for ` = 2, ..., n. Finally, node
3 obtains yn1 , and decodes w21 from (yn1 ,w1, s

n). Side
information to compensate for intermittency is not required.

In a nutshell, side information w12, ỹn3 and zncorr is provided
to node 3 by a genie, following the definitions

Ỹ3,` , S`(H̃23X2,` + Z̃3,`),

Zcorr,` , Z1,` − S`(H21Ĥ
−1
23 Ẑ3,`),

where

Ĥ23 ,
[
H23

H̃23

]
,

H̃23 ∈ C(M2−M3)×M2 such that rank(Ĥ23) = M2,

Z̃3,` ∼ CN (0, σ2IM2−M3),

Ẑ3,` ,
[
Z3,`

Z̃3,`

]
, Ŷ3,` ,

[
Y3,`

Ỹ3,`

]
.

Since the scheme ought to be reliable, we again bound the
sum rate of w13, w23 and w21 using Fano’s inequality, and
following similar steps as before (for details see Appendix B)
we obtain

d13 + d23 + d21 ≤ τM2 + τM3. (43)

Adding (42) and (43) yields a sum-DoF upper bound for
the case M1 ≥M2 ≥M3,

dI
sum ≤ 2τM2 + 2τM3. (44)

b) Case 2: M2 ≥ M1 ≥ M3: Since M2 is the largest
number of antennas, we develop two partial sums around
nodes 3 and 1 (Fig. 10a and 10b, with (i, j, k) = (2, 3, 1)),
respectively.

The reasoning around node 3 in this case proceeds in close
analogy to the bound around node 3 in the previous case, just
with 1 and 2 interchanged. We provide as side information
w21 (to allow for decoding using F2), ỹn3 (to compensate for
small number of antennas M3) and zncorr (a noise correction),
defined as

Ỹ3,` , S`(H̃13X1,` + Z̃3,`),

Zcorr,` , Z2,` − S`(H12Ĥ
−1
13 Ẑ3,`),

where

Ĥ13 ,
[
H13

H̃13

]
,

H̃13 ∈ C(M1−M3)×M1 such that rank(Ĥ13) = M1,

Z̃3,` ∼ CN (0, σ2IM1−M3
),

Ẑ3,` ,
[
Z3,`

Z̃3,`

]
, Ŷ3,` ,

[
Y3,`

Ỹ3,`

]
.

With this information, node 3 can construct x2,1 from w2

using E2,1 (since w23 is a message intended for node 3 and
assumed to have been decoded from yn3 using F3, and w21 is
side information), obtain a noisy version of x1,1 from channel
output y3,1 and side information ỹ3,1 as necessary for y2,1

(i.e., if s1 = 1), combine all relevant signals into y2,1, encode
w2 using E2,2 and (y2,1, s1) to obtain x2,2, and continue this
cycle for the next ` = 2, ..., n until yn2 is complete, from which
w12 can be decoded with the help of w2 using F2.

After similar steps as before (see Appendix C for details)
we obtain

d13 + d23 + d12 ≤ τM1 + τM3. (45)

We turn to the second partial sum, developed around node
1 (Fig. 10b, with (i, j, k) = (2, 3, 1)), where node 1 should be
enabled to decode w32. The main difference to the previous
cases is that the link 3 ↔ 2 is always available, while the
link 3 ↔ 1 is intermittent. Therefore, y1,` does not contain
information about x3,` if s` = 0; this needs to be compensated
for by side information, here ỹn1 defined as

ỹ1,` , s`(H31x3,` + z̃1,`),

which provides measurements of xn3 for those time instances
where node 1 is intermittent, i.e., s` = 0. This is an instance
of the fourth type of side information, that for previous bounds
was not necessary, namely side information that compensates
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sn,w3,y
n
3

Dec. F3

ŵ23, ŵ13

Enc. E1,`

w12

Cancel x1,`

x1,`

Invert`++

H23x2,` + z3,`

ỹ3,`

Combine

x2,` + Ĥ−1
23 ẑ3,`, if s` = 1

Enc. E3,`

x3,`

Dec. F1 y1,`
ŵ21

zcorr,`

Fig. 12. Decoding of w21 at node 3 by iterative reconstruction of yn
1 from a-priori knowledge w3 and observations (yn

3 , s
n) using side information

(w12, ỹn
3 ,z

n
corr) (grey box: a-priori knowledge and channel output, dashed boxes: side information): successively obtain x1,`, cancel its effect from y3,`

(using side information ỹ3,`) to obtain a noisy version of x2,`, and combine this with x3,` and zcorr,` to finally obtain y1,`; repeat for next `.

for intermittency. Given this side information and the custom-
ary side information (a message, to allow for decoding, and a
noise correction signal), the reconstruction proceeds in analogy
to the previous cases. In a nutshell, the genie provides w23,
ỹn1 and zncorr to node 1, defined as

Ỹ1,` , S`(H31X3,` + Z̃1,`),

Zcorr,` , Z2,` −H32H
†
31(S`Z1,` + S`Z̃1,`),

with

Z̃1,` ∼ CN (0, σ2IM1
),

Ẑ1,` , (Z1,`, S`Z̃1,`),

Ŷ1,` , (Y1,`, Ỹ1,`).

At the end of the transmission, node 1 has w1, yn1 , sn and
xn1 . It decodes (w21, w31) from yn1 using its decoder F1, and
gets w23 from side information. It generates x2,1, then uses
its channel output y1,1 (if s1 = 1) or side information ỹ1,1 (if
s1 = 0) to obtain a noisy version of x3,1, and with it y2,1.
From there the cycle repeats, until yn2 is obtained and w32 can
be decoded.

After similar steps as before (see Appendix D for details)
we obtain

d21 + d31 + d32 ≤ τM1 + τM3. (46)

Adding (45) and (46) yields a sum-DoF upper bound for
the case M2 ≥M1 ≥M3,

dI
sum ≤ 2τM1 + 2τM3. (47)

c) Case 3: M2 ≥M3 ≥M1: Since M2 is still the largest
number of antennas, we again develop two partial sums around
nodes 3 and 1 (Fig. 10a and 10b, with (i, j, k) = (2, 3, 1)),
respectively. The only difference to the previous case is that
this time M3 ≥ M1, therefore the number of antennas at
node 1 needs to be augmented ‘virtually’ to obtain sufficient
measurements of xn3 , while node 3 remains unchanged.

We turn to the partial sum around node 3 and provide as
side information w21 and zncorr with

Zcorr,` , Z2,` − S`(H12H
†
13Z3,`).

Note that x1,` contributes to y2,` only if s` = 1. In these
instances, node 3 has sufficient information about x1,` from
y3,`. If s` = 0, node 3 does not have information about x1,`,
but x1,` does not contribute to y2,` anyhow, so node 3 does
not need additional side information in these cases. Therefore,
with the given side information, node 3 can construct x2,1

from w2, obtain a noisy version of x1,1 from channel output
y3,1 as necessary for y2,1 (i.e., if s1 = 1), generate y2,1,
and continue this cycle for the next ` = 2, ..., n until yn2 is
complete, from which w12 can be decoded with the help of
w2.

After similar steps as before (see Appendix E for details)
we obtain

d13 + d23 + d12 ≤M3. (48)

We turn to the second partial sum, developed around node
1 (Fig. 10b, with (i, j, k) = (2, 3, 1)), where node 1 should
be enabled to decode w32. Again the main difference to the
previous cases is that the link 3 ↔ 2 is always available,
while the link 3 ↔ 1 is intermittent. Therefore, y1,` does
not contain information about x3,` if s` = 0; this effect of
intermittency needs to be compensated for by side information,
here ỹn1 (a formal definition follows). Furthermore, the number
of antennas at node 1 needs to be increased to fully capture
x3,`, here accomplished by side information y̆n1 (a formal
definition follows). In addition, the genie provides the message
w23 and noise correction zncorr to node 1. In a nutshell, side
information variables are defined as

Ỹ1,` , S`(H31X3,` + Z̃1,`),

Y̆1,` , H̆31X3,` + Z̆1,`,

Zcorr,` , Z2,` −H32Ĥ
−1
31

[
S`Z1,`+S`Z̃1,`

Z̆1,`

]
,

with auxiliary variables

Z̃1,` ∼ CN (0, σ2IM1
),
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Z̆1,` ∼ CN (0, σ2IM3−M1
),

Ĥ31 ,
[
H31

H̆31

]
,

H̆31 ∈ C(M3−M1)×M3 such that rank(Ĥ31) = M3,

Ŷ1,` , (Y1,`, Ỹ1,`, Y̆1,`),

Ẑ1,` , (Z1,`, S`Z̃1,`, Z̆1,`).

At the end of the transmission, node 1 has w1, yn1 , sn

and xn1 . It decodes (w21, w31) using F1, and gets w23 from
side information. It generates x2,1 using E2,1, then uses side
information y̆1,1 and channel output y1,1 (if s1 = 1) or side
information y̆1,1 and ỹ1,1 (if s1 = 0) to obtain a noisy version
of x3,1, and with it y2,1 using zcorr,1. From there the cycle
repeats, until yn2 is obtained and w32 can be decoded using
F2.

After similar steps as before (see Appendix F for details)
we obtain

d21 + d31 + d32 ≤M3. (49)

Adding (48) and (49) yields a sum-DoF upper bound for
the case M2 ≥M3 ≥M1,

dI
sum ≤ 2M3. (50)

Lemma 3 follows from (44), (47), (50), and symmetry of
node 2 and 3. The achievability and converse results developed
in Sections IV-B1 and IV-B2 establish the sum-DoF of the
intermittent 3WC and prove Theorem 2.

Note that neither our achievability nor our converse result
requires the noise at different receivers to be uncorrelated. This
complies with the intuition that the DoF perspective captures
the impact of interference rather than noise. For ρ → ∞,
usable DoFs become practically noise-free, hence it is also
insignificant whether the noise is correlated or not.

C. Necessity of Genie-Aided Upper Bounds

To underline the necessity of the genie-aided upper
bounds devised in Section IV-B2, we show that ‘clas-
sic’ cut-set type bounds [49] admit DoF tuples d =
(d12, d13, d21, d23, d31, d32) that strictly exceed the sum-DoF
of the intermittent 3WC stated in Theorem 2. For the inter-
mittent 3WC with M1 ≥ M2 + M3 ≥ M2 ≥ M3, the cut-set
bounds read

max{d12 + d13, d21 + d31} ≤ τ(M2 +M3), (Cut node 1)
max{d21 + d23, d12 + d32} ≤ τM2 + τM3, (Cut node 2)
max{d31 + d32, d13 + d23} ≤M3. (Cut node 3)

Let M2 = M3 = 2, τ = τ = 1
2 , M1 = M2 + M3 = 4.

Then, the cut-set bounds admit d = (1, 1, 1, 1, 1, 1), with a
sum-DoF of 6. However, according to Theorem 2, for M1 ≥
M2 +M3 ≥M2 ≥M3,

dI
sum = 2τM2 + 2τM3,

in the example at hand, dI
sum = 4. Hence, cut-set type bounds

are too loose to characterize the sum-DoF of the intermittent
3WC. The genie-aided upper bounds devised in Section IV-B2
fill this gap.

D. DoF Region

In this section we first derive an upper bound on d31

under the assumption of non-adaptive encoding. We then show
that adaptive schemes can exceed this bound, e.g., decode-
forward relaying. This proves that some DoF region points are
only achievable by adaptive encoding schemes, hence adaptive
encoding is in general required to achieve the DoF region of
the intermittent 3WC. Note that we leave design and analysis
of comprehensive adaptive encoding schemes for future work
and prove our claim by means of minimal counterexamples.
For the counterexample we may assume M1 ≥M2 ≥M3.

1) Upper Bound on d31 under Non-Adaptive Encoding:
Node 1 is able to decode w31 from its channel output (yn1 , s

n)
and a-priori knowledge w1 with high probability. We further
provide xn2 as side information and bound the rate of w31

using Fano’s inequality:

n(R31 − εn)

≤ I(W31;W1Y
n

1 S
n

side information︷︸︸︷
Xn

2 )
(a)
= I(W31;Y n

1 |W1X
n
2 S

n)

(b)
=

n∑
`=1

I(W31;Y1,` | Y `−1
1 W1X

n
2 S

n)

=

n∑
`=1

[
h(Y1,` | Y `−1

1 W1X
n
2 S

n)

− h(Y1,` | Y `−1
1 W1X

n
2 S

nW31)
]

(c)

≤
n∑
`=1

[
h(Y1,` |X2,`S`)

− h(Y1,` | Y `−1
1 W1X

n
2 S

nW31X3,`)
]

(d)
=

n∑
`=1

[
h(Y1,` |X2,`S`)− h(Y1,` |X2,`S`X3,`)

]
=

n∑
`=1

I(X3,`;Y1,` |X2,`S`)

(e)

≤ nτM3 log(ρ) + nτo [log(ρ)] (51)

These steps are justified as follows:

(a) W31 is independent of (W1,X
n
2 , S

n) due to non-adaptive
encoding Xn

2 = E2(W2)
(b) Chain rule for mutual information
(c) Conditioning reduces entropy
(d) Y1,` is independent of (Y `−1

1 ,W1,X
`−1
2,1 ,X

n
2,`+1, S

`−1,
Sn`+1,W31) given (S`,X2,`,X3,`)

(e) X3,`  Y1,` given X2,` is a MIMO channel with
maximum DoF M3 and 0 for s` = 1 and s` = 0,
respectively

Dividing both sides of (51) by n log(ρ) and taking ρ, n→
∞, we see that the achievable DoF tuples of non-adaptive
encoding schemes are constrained by

d31 ≤ τM3. (52)
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2) Adaptive Schemes Achieving d31 > τM3: We assume all
messages are fixed to 0, except for w31, which node 3 wants to
convey to node 1, potentially with the help of node 2. Consider
using decode-forward relaying at node 2. This can be used to
achieve min{τM1, τ(M2 +M3),M3} DoFs and outperforms
any non-adaptive scheme as soon as M1 > M3. We derive the
achievable DoF for d31 based on the well-known lower bound
for decode-forward relaying [50]:

C ≥ max
pX3X2

min{I(X3X2;Y1S), I(X3;Y2S |X2)}

≥ min{I(X3X2;Y1 | S), I(X3;Y2 |X2)}
with X2,X3 Gaussian

= min{τ min{M1, (M2 +M3)},M3} log(ρ) + o [log(ρ)]

= min{τM1, τ(M2 +M3),M3} log(ρ) + o [log(ρ)] (53)

Dividing both sides of (53) by log(ρ) and taking ρ → ∞,
we see that the decode-forward relaying achieves

d31 ≥ min{τM1, τ(M2 +M3),M3}. (54)

Note that if τM2 > τM3 and τM1 > M3, then we can
transmit at M3 DoF from node 3 to node 1 using this adaptive
scheme, compensating all the the loss due to intermittency.

We proved in (52) that the DoF region point

d = (0, 0, 0, 0, d31,A, 0)

d31,A , min{τM1, τ(M2 +M3),M3}

is not achievable for any non-adaptive encoding scheme if
M1 > M3, while we showed in (54) that there exist adaptive
schemes that achieve it. This proves Theorem 3, which states
that adaptive encoding is in general required to achieve the
DoF region of the intermittent 3WC.

Theorems 2 and 3 show that non-adaptive encoding is
sufficient to achieve sum-DoF, but not sufficient to achieve
the DoF region of the intermittent 3WC. This is particularly
interesting in light of the next section, where we show that
adaptive encoding is not beneficial in the non-intermittent
3WC even from a DoF region perspective.

V. NO INTERMITTENCY

The sum-DoF of the non-intermittent 3WC was investigated
in [18]. We present the DoF region of the non-intermittent
3WC and show that the non-adaptive encoding scheme pre-
sented in Section IV-A is sufficient to achieve it; therefore,
adaptive encoding is neither required from a sum-DoF nor
from a DoF region perspective in the non-intermittent 3WC.
The non-intermittent 3WC is a special case of the intermittent
3WC with τ = 1. We may assume without loss of generality
M1 ≥M2 ≥M3.

A. Achievability

From (35) to (41) we obtain with τ = 1:

d12 + d13 + d23 ≤M1 (55)
d12 + d13 + d32 ≤M1 (56)
d21 + d31 + d32 ≤M1 (57)
d21 + d31 + d23 ≤M1 (58)

d21 + d13 + d23 ≤M2 (59)
d12 + d31 + d32 ≤M2 (60)

d31 + d32 ≤M3 (61)
d13 + d23 ≤M3 (62)

min{d12, d13, d21, d23, d31, d32} ≥ 0 (63)

All DoF tuples d satisfying constraints (55) to (63) are
achievable in the non-intermittent 3WC. Therefore, by con-
struction in Section IV-A, said set of inequalities constitutes
an inner bound on the DoF region of the non-intermittent
3WC. We show in the following that the parametrization
of the ZF/IA/EC-based scheme presented in Section IV-A
is sufficiently general to capture the whole DoF region of
the non-intermittent 3WC. Note that only in the generality
elaborated in this paper does the ZF/IA-based scheme achieve
the DoF region of the non-intermittent 3WC (instead of just
its sum-DoF as in [18]).

B. Converses

Previous works studied the sum-DoF of different variants
of the non-intermittent 3WC. To this end, several bounds are
reported in the literature, among them cut-set outer bounds
[49] on pairs of DoFs (involving two messages either intended
for or originating at a certain node), and tighter genie-aided
outer bounds on triplets of DoFs (involving two messages
either intended for or originating at a certain node, and one
message exchanged between the remaining two nodes). The
latter bounding technique is due to [18], [19] and was later
taken up in [21], [47].

R13 +R23 ≤M3 log(ρ) + o [log(ρ)]

(see [18, (7)], [49]) (64)
R31 +R32 ≤M3 log(ρ) + o [log(ρ)]

(see [18, (8)], [49]) (65)
R21 +R31 +R32 ≤ min{M1,M2 +M3} log(ρ) + o [log(ρ)]

(see [21, (23)], [47, (25)]) (66)
R21 +R31 +R23 ≤ min{M1,M2 +M3} log(ρ) + o [log(ρ)]

(see [21, (25)], [47, (27)]) (67)
R12 +R32 +R13 ≤M1 log(ρ) + o [log(ρ)]

(see [47, (29)]) (68)
R13 +R23 +R12 ≤M1 log(ρ) + o [log(ρ)]

(see [47, (31)]) (69)
R12 +R32 +R31 ≤M2 log(ρ) + o [log(ρ)]

(see (42), [18, (15)], [47, (28)]) (70)
R13 +R23 +R21 ≤M2 log(ρ) + o [log(ρ)]

(see (43), [18, (11)], [47, (30)]) (71)

Note that if M2 + M3 ≤ M1, then (66) and (67) are
redundant given (65) and (71), therefore min{M1,M2 +M3}
can be replaced with M1 in (66) and (67). Dividing these
bounds by log(ρ) and taking ρ → ∞ yields to the following
DoF region outer bounds:

d21 + d31 + d32 ≤M1 (72)
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d21 + d31 + d23 ≤M1 (73)
d12 + d32 + d13 ≤M1 (74)
d13 + d23 + d12 ≤M1 (75)
d12 + d32 + d31 ≤M2 (76)
d13 + d23 + d21 ≤M2 (77)

d13 + d23 ≤M3 (78)
d31 + d32 ≤M3 (79)

No DoF tuple d violating any of the constraints (72) to (79)
can be achievable in the non-intermittent 3WC. Therefore, said
set of inequalities constitutes an outer bound on the DoF region
of the non-intermittent 3WC.

C. DoF Region and Sum-DoF of Non-Intermittent 3WC

The previous achievability and converse results establish the
DoF region (and thus sum-DoF) optimality of non-adaptive
schemes. In particular, the scheme introduced in Section IV-A
is DoF region and sum-DoF optimal. This renders adaptive
encoding dispensable for the non-intermittent 3WC and proves
Theorem 4. From the DoF region of the 3WC and using the
sum-DoF of the intermittent 3WC, we reproduce the sum-DoF
of the 3WC given in [18]:

Corollary 1 (Sum-DoF of Non-Intermittent 3WC).

dN
sum = 2M2

Proof. The statement follows from Theorems 2 and 4.

VI. CONCLUSION

We introduced the MIMO 3WC with node-intermittency and
studied its DoF region and sum-DoF. In particular, we devised
a non-adaptive encoding scheme based on zero-forcing, inter-
ference alignment and erasure coding, and showed its DoF
region (and thus sum-DoF) optimality for non-intermittent
3WCs and its sum-DoF optimality for node-intermittent
3WCs. This shows that adaptive encoding is not required in
those cases. However, we showed by example that in general
there are DoF region points in the node-intermittent 3WC that
can only be achieved by adaptive schemes, such as decode-
forward relaying, making adaptive encoding a necessity. Our
work contributes to a better understanding of the necessity of
adaptive schemes such as relaying in multi-way communica-
tions with intermittency.

As remarked in the introduction, node-intermittency is only
one of a multitude of practically relevant intermittency scenar-
ios. Links might be intermittent independently of each other,
e.g., moving objects passing by only interrupt the link between
the two D2D users from time to time, while the other links
remain intact. Or all links being intermittent, but independently
of each other, and with different probabilities. Here, we speak
of link intermittency and intermittent links. Intermittent 3WCs
with other intermittency models are interesting directions for
future research.

APPENDIX

A. Proof Template for Sum-DoF Upper Bounds for Intermit-
tent 3WC

Throughout the derivations of sum-DoF upper bounds for
the intermittent 3WC, certain steps reappear in slight varia-
tions. To avoid repetition, we formulate the following ‘proof
template’, where the Fraktur variables WA, WB, X, Y,
and Z serve as placeholders and need to be replaced by
random variables as specified in the context of the template’s
invocation. We require that
(a) WA is independent of (WB, S

n,Zn
corr),

(b) Y` is independent of (Y`−1, S`−1, Sn`+1,Z
`−1
corr ,

Zn
corr,`+1,W1,W2,W3) given (S`,Zcorr,`,X`),

(c) I(Zcorr,`;Y` | S`X`) = I(Zcorr,`;Z` | S`X`), and
(Zcorr,`,Z`) is independent of X` given S`,

(d) I(Zcorr,`;Z` | S`) = o [log(ρ)].
Note that these preconditions are satisfied for every invocation
of the template in this paper. Then we have

I(WA;WBY
nSnZn

corr)
(a)
= I(WA;Yn |WBS

nZn
corr)

=

n∑
`=1

I(WA;Y` |Y
`−1WBS

nZn
corr)

=

n∑
`=1

[
h(Y` |Y

`−1WBS
nZn

corr)

− h(Y` |Y
`−1W1W2W3S

nZn
corr)

]
≤

n∑
`=1

[
h(Y` | S`)

− h(Y` |Y
`−1W1W2W3X`S

nZn
corr)

]
(b)
=

n∑
`=1

[
h(Y` | S`)− h(Y` | S`Zcorr,`X`)

]
=

n∑
`=1

I(Zcorr,`X`;Y` | S`)

=

n∑
`=1

[
I(X`;Y` | S`) + I(Zcorr,`;Y` | S`X`)

]
(c)
=

n∑
`=1

[
I(X`;Y` | S`) + I(Zcorr,`;Z` | S`)

]
(d)
=

n∑
`=1

I(X`;Y` | S`) + no [log(ρ)]

where the letters indicate the precondition that justifies each
step.

B. Sum-DoF Upper Bound for Intermittent 3WC with M1 ≥
M2 ≥M3 (Part II)

Since the scheme ought to be reliable, we bound the sum
rate of w13, w23 and w21 using Fano’s inequality:

n(R13 +R23 +R21 − ε(2)
n )
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≤ I(W13W23W21;W3Y
n

3 S
n

side information︷ ︸︸ ︷
W12Ỹ

n
3 Zn

corr)

(a)

≤
n∑
`=1

I(X1,`X2,`; Ŷ3,` | S`) + no [log(ρ)]

(b)

≤ n [τM2 + τM3] log(ρ) + no [log(ρ)]

These steps are justified as follows:
(a) Using the proof template presented in Appendix A, with

WA , (W13,W21,W23), WB , (W12,W31,W32), X ,
(X1,X2), Y , Ŷ3, Z , Ẑ3

(b) (X1,`,X2,`)  (Y3,`, Ỹ3,`) is a MIMO channel with
min{M1 +M2,M3 +(M2−M3)} = M2 DoFs if s` = 1,
and min{M1 +M2,M3 + 0} = M3 DoFs if s` = 0

Dividing both sides by n log(ρ) and letting ρ, n → ∞ we
obtain

d13 + d23 + d21 ≤ τM2 + τM3.

C. Sum-DoF Upper Bound for Intermittent 3WC with M2 ≥
M1 ≥M3 (Part I)

Since this scheme ought to be reliable, we bound the sum
rate of w13, w23 and w12 using Fano’s inequality:

n(R13 +R23 +R12 − ε(1)
n )

≤ I(W13W23W12;W3Y
n

3 S
n

side information︷ ︸︸ ︷
W21Ỹ

n
3 Zn

corr)

(a)

≤
n∑
`=1

I(X1,`X2,`; Ŷ3,` | S`) + no [log(ρ)]

(b)

≤ n [τM1 + τM3] log(ρ) + no [log(ρ)]

These steps are justified as follows:
(a) Using the proof template presented in Appendix A, with

WA , (W12,W13,W23), WB , (W21,W31,W32), X ,
(X1,X2), Y , Ŷ3, Z , Ẑ3

(b) (X1,`,X2,`)  (Y3,`, Ỹ3,`) is a MIMO channel with
min{M1 +M2,M3 +(M1−M3)} = M1 DoFs if s` = 1,
and min{M1 +M2,M3 + 0} = M3 DoFs if s` = 0

Dividing both sides by n log(ρ) and letting ρ, n → ∞ we
obtain

d13 + d23 + d12 ≤ τM1 + τM3.

D. Sum-DoF Upper Bound for Intermittent 3WC with M2 ≥
M1 ≥M3 (Part II)

We bound the sum rate of w21, w31 and w32 using Fano’s
inequality:

n(R21 +R31 +R32 − ε(2)
n )

≤ I(W21W31W32;W1Y
n

1 S
n

side information︷ ︸︸ ︷
W23Ỹ

n
1 Zn

corr)

(a)

≤
n∑
`=1

I(X2,`X3,`; Ŷ1,` | S`) + no [log(ρ)]

(b)
=

n∑
`=1

[
I(X2,`X3,`;Y1,` | S`)

+ I(X2,`X3,`; Ỹ1,` | S`Y1,`)
]

+ no [log(ρ)]

(c)

≤ n [τM1 + τM3] log(ρ) + no [log(ρ)]

These steps are justified as follows:
(a) Using the proof template presented in Appendix A, with

WA , (W21,W31,W32), WB , (W12,W13,W23), X ,
(X2,X3), Y , Ŷ1, Z , Ẑ1

(b) Chain rule for mutual information
(c) (X2,`,X3,`) Y1,` is a MIMO channel with min{M2+

M3,M1} = M1 DoFs if s` = 1, and 0 DoFs if s` = 0;
(X2,`,X3,`) Ỹ1,` is a MIMO channel with 0 DoFs if
s` = 1 (because then Ỹ1,` = 0), and min{0+M3,M1} =
M3 DoFs if s` = 0 (because then Y1,` is noise, and Ỹ1,`

is independent of X2,`)
Dividing both sides by n log(ρ) and letting ρ, n → ∞ we
obtain

d21 + d31 + d32 ≤ τM1 + τM3.

E. Sum-DoF Upper Bound for Intermittent 3WC with M2 ≥
M3 ≥M1 (Part I)

We bound the sum rate of w13, w23 and w12 using Fano’s
inequality:

n(R13 +R23 +R12 − ε(1)
n )

≤ I(W13W23W12;W3Y
n

3 S
n

side information︷ ︸︸ ︷
W21Z

n
corr )

(a)

≤
n∑
`=1

I(X1,`X2,`;Y3,` | S`) + no [log(ρ)]

(b)

≤ n [M3] log(ρ) + no [log(ρ)]

These steps are justified as follows:
(a) Using the proof template presented in Appendix A, with

WA , (W12,W13,W23), WB , (W21,W31,W32), X ,
(X1,X2), Y , Y3, Z , Z3

(b) (X1,`,X2,`) Y3,` is a MIMO channel with min{M1+
M2,M3} = M3 DoFs if s` = 1, and min{M2,M3} =
M3 DoFs if s` = 0 (because X1,` is independent of Y3,`)

Dividing both sides by n log(ρ) and letting ρ, n → ∞ we
obtain

d13 + d23 + d12 ≤M3.

F. Sum-DoF Upper Bound for Intermittent 3WC with M2 ≥
M3 ≥M1 (Part II)

We bound the sum rate of w21, w31 and w32 using Fano’s
inequality:

n(R21 +R31 +R32 − ε(2)
n )

≤ I(W21W31W32;W1Y
n

1 S
n

side information︷ ︸︸ ︷
W23Ỹ

n
1 Y̆ n

1 Zn
corr)

(a)

≤
n∑
`=1

I(X2,`X3,`; Ŷ1,` | S`) + no [log(ρ)]

(b)

≤ n [M3] log(ρ) + no [log(ρ)]
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These steps are justified as follows:
(a) Using the proof template presented in Appendix A, with

WA , (W21,W31,W32), WB , (W12,W13,W23), X ,
(X2,X3), Y , Ŷ1, Z , Ẑ1

(b) (X2,`,X3,`)  (Y1,`, Ỹ1,`, Y̆1,`) is a MIMO channel
with min{M2+M3,M1+0+(M3−M1)} = M3 DoFs if
s` = 1, and min{M2 +M3, 0+M1 +(M3−M1)} = M3

DoFs if s` = 0

Dividing both sides by n log(ρ) and letting ρ, n → ∞ we
obtain

d21 + d31 + d32 ≤M3.
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