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Abstract

The design of lattice coset codes for wiretap channels is considered. Bounds on the eavesdropper’s correct

decoding probability and information leakage are first revisited. From these bounds, it is explicit that both the

information leakage and error probability are controlled by the average flatness factor of the eavesdropper’s lattice,

which we further interpret geometrically. It is concluded that the minimization of the (average) flatness factor of

the eavesdropper’s lattice leads to the study of well-rounded lattices, which are shown to be among the optimal in

order to achieve these minima. Constructions of some well-rounded lattices are also provided.

Index Terms

Coset codes, flatness factor, information theoretic security, lattices, multiple-input multiple-output (MIMO)

channels, number fields, physical layer security, Rayleigh fast-fading channels, single-input single-output (SISO)

channels, well-rounded lattices, wiretap channels.

I. INTRODUCTION

A. Background

In a wiretap channel Alice wishes to transmit information to Bob in the presence of an eavesdropper, Eve. A

general objective of code design in a wiretap channel is to maximize the data rate and Bob’s correct decoding

probability while simultaneously minimizing information leakage to Eve. It was shown in the seminal paper of

∗The first two authors contributed equally.

M. T. Damir and C. Hollanti are with the Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-00076, Aalto University,

Finland. E-mails: {mohamed.damir, camilla.hollanti}@aalto.fi.

A. Karrila is with the Institut des Hautes Études Scientifiques, 35 Route de Chartres, 91440 Bures-sur-Yvette, France. Email: karrila@ihes.fr;

alex.karrila@gmail.com.

L. Amorós is with the Department of Computer Science, P.O. Box 11100, FI-00076, Aalto University, Finland. E-mail: laia.amoros@aalto.fi.

O. Gnilke is with the Department of Mathematical Sciences, University of Aalborg, Denmark. Email: owg@math.aau.dk.

D. Karpuk was previously with the Department of Mathematics, Universidad de los Andes, Colombia. Email: davekarpuk@gmail.com.

Preliminary and partial results were presented in [1], [2], [3], [4]. The present article is a unification and an extension of these works as

well as the unpublished manuscript [5].

ar
X

iv
:1

60
9.

07
72

3v
4 

 [
cs

.I
T

] 
 3

0 
Ju

l 2
02

0



2

Wyner [6] that the legitimate parties can design codes with asymptotically nonzero rate, zero error probability and

zero information leakage. Today, this setup is particularly interesting in wireless channels that are open in nature.

As a practical construction of a wiretap code, [7] introduced the general technique of coset coding, where random

bits are added to the message to confuse the eavesdropper. In the specific case of a wireless channel, lattice codes

are commonly used and the code lattice Λb is endowed with a sublattice Λe ⊂ Λb, which carries random bits [8].

In this work, we study non-asymptotic design criteria for Λe to maximize the security of a lattice wiretap code for

a fixed dimension. We will tacitly assume throughout that Λe is a sublattice of a fixed reliable code lattice Λb with

fixed nesting index [Λb : Λe].

B. Related Work

The security of lattice coset codes is often measured either by Eve’s correct decision probability (ECDP), or

alternatively by the mutual information of the message and Eve’s received signal. For the additive white Gaussian

noise (AWGN) channel, upper bounds are known for both approaches [8], [9]. More importantly, both are increasing

functions of the flatness factor of the lattice Λe, yielding its minimization as a design criterion. In [10], the secrecy

criterion based on the flatness factor in [9] is extended to the case of multiple-input multiple-output (MIMO)

channels. Sequences of lattice coset codes achieving security and reliability are also constructed in [10].

Codes achieving AWGN channel capacity using the flatness factor are proposed in [11]. More recently some of

the extra conditions needed in [11] are removed in [12], establishing a direct link between AWGN-goodness and

capacity-achieving codes at the cost of using dithering. Polar lattices achieving AWGN channel capacity for any

signal-to-noise ratio (SNR) are given in [13].

For different fading channel models, various alternative design criteria based on error probability and information

leakage bounds were derived for both single-input single-output (SISO) and MIMO channels in [10], [14], [15],

and [16]. In the pioneering work [14], the authors derived the so-called inverse norm sum (cf. [14, Sec. III-B])

as a design criterion for the fading wiretap channel. To this end, they assume that eavesdroppers signal quality is

relatively high, so that certain terms in the eavesdropper’s correct decoding probability can be ignored or simplified.

Subsequently, the resulting inverse norm sum was studied in, e.g., [17], [18]. This inverse norm sum form naturally

leads to the study of Dedekind zeta functions as the related series is then taken over the field norms. In this

paper, we will take a step back and utilize an earlier derivation step (see [14, eq. (14)]) as our starting point,

hence avoiding making any assumption on the eavesdropper’s signal quality other than being worse than that of the

legitimate receiver’s. This results in an ECDP upper bound that is valid for any signal-to-noise ratio (SNR) and is

asymptotically tight at low SNR. With this derivation, the related series is taken over Euclidean norms, therefore

naturally leading to a study on the flatness factor and Epstein zeta functions.

For the SISO and MIMO fading wiretap channel the authors in [10] establish a design criterion for fading

and MIMO channels from an error probability perspective aiming at asymptotic and universal goodness. They

suggest that the normalized product distance (SISO) and the normalized minimum determinant (MIMO) of the
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faded lattice and its dual should be maximized simultaneously. Further, they proposed an algebraic construction of

lattices achieving strong secrecy and semantic security for all secrecy rates R < Cb − Ce − c, where Cb and Ce

are Bob’s and Eve’s channel capacities respectively, and c a constant depending on the lattice. Unfortunately, for

such constructions the value of c turns out to be relatively large, and the explicit construction is problematic (see

the discussion in [10, Sec. VIII] for more details).

To the best of our knowledge, constructive, non-asymptotic design criteria as well as practical and explicit

low-dimensional code constructions remain an open problem for the fading SISO and MIMO wiretap channels.

In the present paper we propose the set of well-rounded lattices as a search space for secure lattice codes

over wiretap channels. Well-rounded lattices appear in various arithmetic and geometric problems. For example, a

classical theorem due to Voronoi [19] implies that the local maxima of the sphere packing function are all realized at

well-rounded lattices. In [20], well-rounded lattices have been investigated in the context of Minkowski conjecture.

Furthermore, topological properties of the set of well-rounded lattices have also been of interest. For instance, in

[21], it was proved that the space of all (determinant one) lattices retracts to the space of well-rounded lattices.

More recently, a result in [22] states that for any lattice Λ there exists a determinant one diagonal real matrix a

with positive entries such that a · Λ is a well-rounded lattice. This result has been used in [23] to show that the

problem of maximizing the minimum product distance can be restricted to the set of well-rounded lattices without

loss of generality.

It is also worth mentioning that most of the lattice-based cryptographic protocols rely on the hardness of the

shortest vector problem. On the other hand, the problem of determining all the successive minima of an arbitrary

lattice is believed to be strictly harder [24]. However, if the lattice is well-rounded, these two problems become

equivalent.

C. Contributions

In this paper, we first motivate a natural and simple lattice design criterion. We take a general channel model with

linear fading and Gaussian noise. We recall the strategy used to derive probability bounds for Rayleigh fading SISO

and MIMO channels in [14], [15], and give a slight variant of the information leakage bounds derived in [25], [16].

We also derive an information leakage bound in the so-called mod Λs channel. In particular, we obtain all bounds

explicitly as increasing functions of the average flatness factor of Λe, and these reduce to the probability bounds

of [14] and [15] in Rayleigh fading channels. The equivalence of the error probability and information leakage

bounds as presented here hopefully clarifies the situation where several alternative design criteria for each different

channel model have been derived with occasionally rather complicated analytic expressions. Some of these results

are recovered from [5].

Having motivated analytic design criterion, we study practical finite-dimensional lattice designs. For AWGN and

Rayleigh fast fading channels, we motivate a geometric approach to minimize the (average) flatness factor. This is

done by using some results from the theory of Epstein zeta functions and spherical designs. It is shown that we
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can restrict the minimization problem to the family of well-rounded lattices. This provides a constructive criterion

for the search of well-performing lattice coset codes in a fixed dimension (in contrast to asymptotic approaches

from the capacity point of view). A collection of simulations are presented to give further credit to well-rounded

lattices.

While we intend this paper to mainly serve as a proof-of-concept for well-rounded lattices in communications, we

also provide some new constructions of well-rounded lattices. To this end, we point out that well-rounded lattices

are of measure zero among the space of all lattices of fixed dimension n. In fact, a lattice is well-rounded whenever

its successive minima are all equal. Consequently, the space of well-rounded lattices is defined by n− 1 equalities.

Thus, this space is of co-dimension n− 1. Note that this argument implies that the space of well-rounded lattices

is not full-dimensional in the space of all lattices and hence has vanishing (Haar) measure. While well-rounded

lattices may seem very rare from a probabilistic point of view, the dimensionality argument (co-dimension n− 1)

shows that the space of well-rounded lattices is indeed large enough to meaningfully construct such lattices; in

[26], infinitely many non-similar well-rounded lattices in every prime dimension p were constructed. In [27], the

authors constructed well-rounded lattices in all dimensions and showed the existence of infinitely many non-similar

well-rounded lattices in every dimension of the form n = s2 +2, where s is a positive odd integer such that s2 +1 is

square-free. In this paper, we contribute to this study by constructing well-rounded lattices over some real number

fields of dimension ϕ(m), where ϕ is the Euler totient function and m > 1 an odd integer.

It is worth mentioning that some previous design criteria could also be restricted to the space of well-rounded

lattices. For example in [10] the authors proposed the maximization of the normalized product distance of the lattice

and its dual in the case of the wiretap fading channel; and the maximization of the packing density of the lattice

and its dual for the Gaussian wiretap channel. Indeed, it is well known that the well-roundedness property is a

necessary condition for a lattice to achieve a local maximum for the packing density function. Namely, the local

maxima are achieved by extreme lattices, and by a classical resulf of Voronoi a lattice is known to be extreme if

and only if it is perfect and eutactic [28], [19]. It is easy to see that perfect lattices are well-rounded [29, Prop

3.3].Furthermore, it was proved in [23] that the maximization of the normalized product distance can be restricted

to the space of well-rounded lattices without loss of generality. This provides nice coherence to the asymptotic

(n→∞) results in [10] and the results concerning any fixed dimension in this paper.

Compared to the earlier conference publications [1], [2], [3], [4] preceding this paper, we provide more rigorous

justifications for the choice of well-rounded lattices as well as a new construction method(e.g., in Section VI).

Moreover, we hope to unify all the previous and new results here in a comprehensive way.

D. Organization

This paper is organized as follows. In Section II we give the mathematical preliminaries. Section III introduces

the channel models, lattice coset codes, and the detailed setups for the error probability and information leakage

bounds. In Section IV we give the eavesdropper’s information leakage and correct decoding probability bounds in
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the AWGN channel, yielding the average flatness factor analytic design criterion. In Section V we generalize the

previous bounds to an arbitrary fading channel. Section VI shows the importance of well-rounded lattices regarding

the behaviour of the flatness factor and presents a new construction.In Section VII we show some simulations of a

wiretap setting with the aim to back-up the design criterion deduced earlier. We first compare constructions from

well-rounded and from non-well-rounded lattices. Then we proceed to compare different well-rounded lattices,

showing how the choice among them is not necessarily straightforward and warrants interesting further research.

II. MATHEMATICAL PRELIMINARIES

A. Information-theoretic definitions

We consider a message as a random variable m taken from a finite message setM according to some distribution,

and denote by y the random variable representing the output of the channel at the eavesdropper’s end. The entropy

H[m], conditional entropy H[m|y] and mutual information I[m;y] are defined as usual, see e.g. [30]. We recall

the trivial bounds 0 ≤ I[m;y] ≤ H[m] ≤ log |M|. In this paper we are interested in minimizing the mutual

information I[m; (y,h)] where h is the channel state, known by the receiver. The random variables m and h are

assumed independent, and y depends on m, h and additionally a random variable describing noise. One has

I[m; (y,h)] = Eh{I[m; {y|h}]}, (1)

In other words, the quantity of interest is obtained as the expectation of the mutual information over the different

channel states. This will be our strategy to compute information leakage bounds. Throughout this paper, in order

to streamline the presentation, we will often use the same letter to denote a random variable and a realization of

that same random variable, with the meaning always clear from the context.

B. Lattices

1) Basic concepts: Throughout the paper, a lattice Λ is a discrete Abelian subgroup of a real vector space.

Let {b1, . . . ,bk} be linearly independent in Rn. Then we can write a lattice in terms of its basis {bi} as Λ =

{
∑k

i=1 zibi : zi ∈ Z, k ≤ n} ⊂ Rn. Here, k and n are referred to as the rank and dimension of the lattice,

respectively, and the lattice is said to be full (rank) if k = n. A lattice generator matrix MΛ = (bi)1≤i≤k ⊆ Rn×k

consists of the lattice basis vectors as columns. The volume of the lattice is defined as the volume of the fundamental

parallelotope, and can be computed as Vol(Λ) =
√

det(M t
ΛMΛ), where t denotes the transpose.The dual lattice is

denoted by Λ∗, which by definition has generator matrix (M t
Λ)−1. The Voronoi cell of Λ centered at 0 is defined

by V(Λ) = {x ∈ Rn : ∀t ∈ Λ ||x|| < ||x− t||}, where ||x|| =
√∑n

i=1 x
2
i is the euclidean norm of x. A lattice Λ

has full diversity if for all nonzero t ∈ Λ, all the components ti are nonzero. Unless stated otherwise, all lattices

we consider will be full.

A vector x 6= 0 of a lattice Λ is a minimal (length) vector if it is of minimal length among all nonzero lattice

vectors. The minimal norm of Λ is then λ1(Λ) = min06=x∈Λ ||x||. The problem of finding the lattice with maximal
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λ1(Λ) among all lattices of unit volume is the (lattice) sphere packing problem. The best sphere packings are

known in low dimensions [31], [32], [33], but in general the sphere packing problem is hard.

2) Well-rounded lattices: A special class of lattices that will be of our interest are the so-called well-rounded

lattices.

Definition II.1. Let Λ ⊂ Rn be a lattice and let S(Λ) := {t ∈ Λ : ||t|| = λ1(Λ)} be the set of shortest vectors.

Then we say that Λ is well-rounded (WR) if spanR(Λ) = spanR(S(Λ)).

In other words, the set of minimal vectors spans a vector space that has the same dimension as the span of the

whole lattice, and thus the vector spaces coincide. The set of minimal length vectors S(Λ) does not necessarily

form a basis for Λ [34, Chapter 2]. They are known to form a basis for all n ≤ 4 as mentioned in [35]. An

equivalent definition uses the successive minima of a lattice to define well-roundedness.

Definition II.2. Let Λ ⊂ Rn be a lattice of rank k ≤ n, and let λi = λi(Λ) := inf {r|dim(span(Λ ∩ Br)) ≥ i} be

the successive minima of Λ, where Br is the closed ball of radius r around the origin. Then Λ is called well-rounded

if λ1 = λ2 = · · · = λk.

A subclass of well-rounded lattices is given by the so called generic well-rounded lattices.

Definition II.3. Let Λ ⊂ Rn be a lattice of rank k ≤ n. We say that Λ is generic well-rounded if it is well-rounded

and has exactly κ(Λ) = |S(Λ)| = 2k shortest vectors, i.e., its kissing number κ coincides with κ(Zk).

Remark II.1. While the densest lattice packing is solely determined by the shortest vector, for the theta series

and consequently flatness factor minimization problem the kissing number also plays a role. Ideally, we would like

to simultaneously maximize the shortest vector length and minimize the number of them. This seems to be hard

problem; for instance, the lattice Zn is well-known to be the worst among WR lattices in terms of the packing

density (λ1 = 1). On the other hand, it has the smallest possible kissing number 2n among WR lattices. More

generally, the densest WR lattices provide the optimal solution in terms of the shortest vector, while the generic

WR lattices provide the lowest kissing numbers among WR lattices. However, no obvious tradeoff between the two

extremes is known.

Definition II.4. A lattice is called perfect, if it is completely determined by the set S(Λ), i.e., there is only one

positive definite quadratic form taking value 1 at all points of S(Λ).

It is easy to see that perfect lattices are WR [29, Prop. 3.3]. As mentioned before, extreme lattices give the local

minima of the sphere packing density, and a lattice is extreme if and only if it is perfect and eutactic [19], hence

also WR.

Well-rounded lattices have been previously proposed [1], [2], [3] as good lattices for coset codes (introduced

later), based on various performance measures (ECDP, flatness factor, mutual information) [9], [25], [10], [14],
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[16], and have been shown to outperform non-well-rounded ones. It is possible to find all WR sublattices of a

given lattice and a given index by searching through all possible combinations of vectors of suitable length. For

instance, the WR non-orthogonal lattices used in our simulations in Section VII were found after a few minutes

of randomly testing combinations of integer vectors. Nevertheless, theoretical results to construct a variety of good

(generic) well-rounded lattices is an open problem that has become of great interest [26], [27].

3) Gaussian sums, theta function, and flatness factor: We denote the n-dimensional Gaussian zero-mean prob-

ability density function (PDF) with variance σ2 by

gn(t;σ) =
1

(
√

2πσ)n
exp

(
−||t||

2

2σ2

)
, t ∈ Λ. (2)

and its (possibly shifted) lattice sums by

gn(Λ + x;σ) :=
∑
λ∈Λ

gn(λ+ x;σ), x ∈ Rn. (3)

One can associate to any (positive-definite) lattice a theta function given by

ΘΛ(q) =
∑
λ∈Λ

q||λ||
2

,

where q = eiπτ and Im τ > 0. The theta function of a lattice is then a holomorphic function on the upper half-

plane. In this paper, we only consider real theta functions and typically choose q = e−1/2σ2

, since gn(Λ;σ) =

1
(
√

2πσ)n
ΘΛ(e−1/2σ2

).

Then, we can also write it as the generating function

ΘΛ(q) =
∑
λ∈Λ

q||λ||
2

= 1 + #{λ ∈ Λ : ||λ||2 = λ1(Λ)2}qλ1(Λ)2

+ . . . (4)

where |q| < 1, and the series converges absolutely.

It is easy to see that gn(Λ+x;σ) is Λ-periodic as a function of x and it defines a PDF on V(Λ), called the lattice

Gaussian PDF. The deviation of the lattice Gaussian PDF from the uniform distribution on V(Λ) is characterized

by the flatness factor εΛ(σ), which we define for full lattices by

εΛ(σ) := max
u∈Rn

∣∣∣∣gn(Λ + u;σ)

1/Vol(Λ)
− 1

∣∣∣∣ , (5)

where we can maximize over Rn by periodicity. By average flatness factor we mean

E[εhΛe(σ)], (6)

where the expectation is taken over different fading realizations h.

The flatness factor was introduced as a wiretap information theory tool in [9]. The Poisson summation formula

yields the following useful equalities:

εΛ(σ) = Vol(Λ)gn(Λ;σ)− 1 =
Vol(Λ)

(
√

2πσ)n
ΘΛ(e−1/2σ2

)− 1 = ΘΛ∗(e
−2πσ2

)− 1. (7)
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From the last expression it is clear that the flatness factor is strictly decreasing in σ and tends to zero as σ →∞.

It also implies the scaling property εaΛ(aσ) = εΛ(σ). We remark that if a non-full lattice Λ is generated by

MΛ ∈ Rn×m, then εΛ = ε√
M t

ΛMΛ
, where the matrix square root Q =

√
M t

ΛMΛ ∈ Rm×m satisfies QtQ = M t
ΛMΛ.

We define the variational distance V (ρ, q) of two PDFs ρ and q as

V (ρ, q) =

ˆ
Rn
|ρ(y)− q(y)| dy. (8)

It is clear that the flatness factor bounds the variational distance of the lattice Gaussian distribution on V(Λ) and

the uniform distribution on V(Λ),

V (gn(Λ + y;σ)|V(Λ)1/Vol(V(Λ))|V(Λ)) ≤ εΛ(σ). (9)

The connection between the flatness factor and information leakage estimates is now illustrated by the following

lemma that is crucial both in the estimates of [9] and in this paper.

Lemma II.1. [9, Lemma 2] Let y be an Rn-valued random variable, and let m have any distribution on a message

set M such that |M| ≥ 4. Denote by ρy|m the PDF of y given a message realization. Suppose that there exists

some PDF q on Rn such that, for all message realizations, we have V (ρy|m, q) ≤ ε ≤ 1/2. Then we have

I[m;y] ≤ 2ε log |M| − 2ε log(2ε)

We remark that the assumption ε ≤ 1/2 is implicit in [9], where the authors are interested in sequences of codes

where I[m;y]→ 0. It is however necessary, as seen by taking ε→∞. We note that the above bound achieves the

trivial bound I[m;y] ≤ log |M| at ε = 1/2.

III. SYSTEM MODEL

A. Channel models

1) General wireless channel with fading and noise: We consider in this paper several models representing a

wireless channel model with (linear) fading and (additive white Gaussian) noise. That is, if Alice transmits a vector

x ∈ Rn, the receiver observes a vector

y = hx + n,

where h ∈ Rm×n, m ≥ n, is the channel fading matrix, and n ∈ Rm the noise vector, composed of i.i.d.

components ni ∼ N (0, σ2). In all our considerations, the random variables h, x and n are assumed independent,

and hth ∈ Rn×n is assumed to be full rank with high probability.

Both receivers, Bob and Eve, are assumed to have perfect channel state information (CSIR), i.e., know the realized

value of h. The transmitter is only assumed to know the channel statistics. The theoretical analysis in this paper

only considers the channel between Alice and Eve, and we consequently forgo subscripts specifying the receiver.

The assumptions on Bob’s channel come into play through the choice of typical code lattices Λb in the examples.

The information leakage bound derivations in this paper concern the general wireless channel model with linear

fading and additive white Gaussian noise.
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2) Important special cases: The general wireless channel model with fading and noise does not fix the distribution

of the fading matrix h. Different choices of this distribution will yield several classical channel models, some of

which we exemplify here. We refer the reader to [8], [15], [36] for background on these models.

The additive white Gaussian noise (AWGN) channel is obtained when h is deterministically the identity matrix

In ∈ Rn×n. AWGN wiretap channels have been studied in, e.g., [8].

The Rayleigh fast fading SISO channel is obtained by choosing h = diag(h1, . . . , hn) ∈ Rn×n a square diagonal

matrix, where the diagonal entries are i.i.d. Rayleigh distributed with parameter σh. We recall that this distribution

is characterized by the PDF

r(h) =
h

σh
exp

(
− h2

2σ2
h

)
(10)

on the positive real line h ∈ R≥0. The Rayleigh block fading SISO channel is similar to the fast fading case, except

that the diagonal entries are not all independent. Instead, n is assumed divisible by some integer L, n = m × L,

and the diagonal entries of h then consist of m i.i.d. Rayleigh random variables, each repeated L times. Rayleigh

block and fast fading wiretap channels have been studied in [14], [8], with a practical USRP implementation in

[37].

The quasi-static Rayleigh fading MIMO channel is obtained when h ∈ Rm×n, with m and n both even, is

the real matrix corresponding to a twice smaller complex matrix h̃ ∈ Cm/2×n/2 whose entries are i.i.d. complex

Gaussian, h̃i,j ∼ NC(0, σ2
h). That is, the real and imaginary parts ai,j and bi,j of h̃i,j are independent N (0, σ2

h/2)

real Gaussians, and h consists of 2× 2 blocks (
a −b

b a

)
.

Lattice code design criteria for MIMO wiretap channels have been considered in [15], [10], [16].

B. Coset coding

1) Basic concepts: Coset coding was first proposed by Ozarow and Wyner in [7] and adapted to the lattice

coding setting in [8]. In lattice coset coding, Alice and Bob use nested lattices Λe ⊂ Λb ⊂ Rn. For a message space

M with |M| = [Λb : Λe], we have a fixed injective map M→ Λb ∩ V(Λe). To transmit a message m, Alice first

maps it by this injection to λm. Then, she transmits a vector x which is a random representative of the [Λb : Λe]

equivalence class of λm. Alice’s transmitted vector can thus be written as

λm + λ ∈ λm + Λe ∈ Λb/Λe, (11)

where λ ∈ Λe is a random vector encoding the choice of the representative inside the [Λb : Λe] equivalence class.

Different distributions of λ yield different variants of coset coding. Note that λ need not be independent of m1.

1The vectors λ may also encode and hence be determined by public messages mpub. In this case one would typically assume λ independent

of Bob’s private message m and uniform over some subset of Λe.
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The rate is R = 1
n log2 |M| bits per real channel use. The rate can be divided into two parts, the one related to

the message and the other to the random bits:

R = Rm +Rr. (12)

Near-complete secrecy is then achieved even if Eve receives information with a nonzero rate, approximately equal

to Rr. Conceptually, Eve can decode the “coarse” lattice Λe, which contains only random bits, but not the “fine”

lattice, which contains the actual information.

If x = MΛz for z ∈ Zn, then hx = hMΛz, and we can think of a lattice code under fading with CSIR as a

Gaussian-channel lattice code where the code lattice realizes a random lattice with generator matrix hMΛ. We will

henceforth denote the faded lattices Λb and Λe by Λb,h and Λe,h, respectively.

2) Setups and bounds: The nature of the boundary of the transmission region in a lattice coset code is of utmost

importance in deriving probability and mutual information estimates. We consider three different estimates, arising

by neglecting the boundary, removing it by a modulo operation of a shaping lattice Λs, and smoothing the boundary,

respectively. The estimates are for:

Case 1: The eavesdropper’s correct decoding probability (ECDP), assuming that she decodes to the closest

point of Λb. The same ECDP estimate holds for closest-point decoding in the mod Λs channel discussed below.

Case 2: The eavesdropper’s information leakage, assuming that she has the mod Λs channel2 and Alice chooses

uniform random representatives of the coset classes.

Case 3: The eavesdropper’s information assuming that Alice uses Gaussian coset coding, also discussed below.

3) The mod Λs channel and uniform random representatives: The following shaping lattice approach is identical

to [9], called the mod Λs channel: take three nested lattices Λs ⊂ Λe ⊂ Λb ⊂ Rn called shaping, coset, and

code lattice, respectively. Then, the random part λ described in the general coset coding strategy has a uniform

distribution on the [Λe : Λs] representatives of Λe/Λs in V(Λs). This is called the uniform representative strategy.

The physical message received by Eve is y as in the channel equation, but in the mod Λs channel, Eve only receives

knowledge of the equivalence class y/Λs,h.

4) Discrete Gaussian coset coding: In the discrete Gaussian coding, the boundary effects of the transmission

region are handled by smoothing the boundary. Fixing a message m ∈ M, the random part λ of the message

m = λm +λ is chosen so that the transmitted vector x ∈ λm + Λe has the centered discrete Gaussian distribution

on the shifted lattice λm + Λe

P (x) = gn(x;σs)/gn(Λe + λm;σs) =: DΛe,λm
(x;σs), (13)

for all x ∈ λm + Λe. Here the shaping variance σ2
s should be taken large enough compared to Λe; see [9].

2The mod Λs channel with the shaping lattice is artificial; Eve only receives information about the equivalence class of the received vector

modulo the shaping lattice Λs. In the computations, this merely plays the technical role of removing boundary effects when Alice uses the

uniform representative strategy in Λs, so that we can derive an explicit information bound.



11

IV. THE AWGN CHANNEL

In this section we briefly recall the eavesdropper’s information leakage and correct decoding probability bounds

in the AWGN channel, that is, when h = In. These criteria were first derived in [8], [9]. This section serves to

align the analytic design criteria with our geometric intuition, and serves as a warm-up for the techniques used to

analyze the fading channel.

A. Case 1: Closest point decoding

Let us study the upper bound for Eve’s correct-decoding probability Pc,e;Λe,Λb , assuming that she performs a

closest-point decoding on the infinite lattice Λb. Let Λb,Λe ⊂ Rn both have rank m. We have

Pc,e;Λe,Λb(σ) ≤ Vol(Λb)g(Λe;σ) = [Λb : Λe]
−1(εΛe(σ) + 1). (14)

This bound was first derived in [8], and for non-full lattices in [15]. With the properties of the flatness factor, this

implies that the probability bound is decreasing with σ and, very intuitively, at poor signal quality σ → ∞, the

ECDP tends to the inverse codebook size [Λb : Λe]
−1, i.e the ECDP with a “uniform random guess”.

As pointed out in [8], due to the dominant term of the theta series being controlled by the sphere packing radius

of Λe, minimizing the flatness factor can be coarsely approximated by the sphere packing problem. More rigorously

but less generally, [38] proved that orthogonal lattices are always suboptimal in minimizing the theta series of a

lattice. More precisely, they showed that skewing an orthogonal lattice will always reduce both the decoding error

probablity for Bob and the ECDP.Recently, [39] provided an estimate of the flatness factor of a lattice in terms of

the sphere packing radius.

We illustrate the accuracy of the above intuition with simulation results in Fig. 1. We have computed the ECDP

bounds (14) for four coset codes based on 8-dimensional lattices. The first three have Λb = 1
2Z

8, and Λe has been

chosen to be Z8, L := 2Z× 1
2Z× Z6, and the Gosset lattice E8, respectively. For the fourth code, Λe is the unit-

volume scaling of the root lattice A∗8 and Λb = 1
2Λe. All these give a message set size of [Λb : Λe] = 28. Formulas

for the theta functions are given in [31] and for ΘA∗8 in [40, Remark 2]. The left-hand plot in Fig. 1 shows the

probability estimates obtained from the theta series as a function of the signal-to-noise ratio SNR= 10 log10(σ−2),

and the lattices are indeed ordered by their sphere packing density. For the right-hand plot, we use 24-dimensional

lattices with Λe = 2Λb, and have taken Λe to be Z24, the Leech lattice Λ24, E3
8 , and E4

6 . Again, the lattices appear

in order of their sphere packing density (the minimal norms are given, e.g., in [31]).

B. Cases 2 and 3: mod Λs channel and Gaussian coset coding

In Case 2, we have the information leakage bound for uniform coset representatives and a mod Λs channel,

I(m;y/Λs) ≤ 2ε log(|M|)− 2ε log(2ε), (15)
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Fig. 1. The ECDP upper bounds (14) as a function of SNR= 10 log10(σ−2) for certain lattices in 8 and 24 dimensions.

where we denote and assume ε = εΛe(σ) ≤ 1/2. This bound was proven in [9]. In Case 3, with discrete Gaussian

coset coding, we have the information leakage bound [9]

I(m;y) ≤ 8ε log(|M|)− 8ε log(8ε), (16)

denoting and assuming ε := εΛe(
σσs√
σ2+σ2

s

) ≤ 1/8. The information leakage bounds for fading channels derived in

this paper reduce to these bounds.

V. THE FADING CHANNEL

In this section, we generalize our channel model to an arbitrary linear fading channel model. Our aim is to

motivate our choice of the various previously suggested criteria, and to provide clarity to the earlier results. The

derivations are simple, hold in the general fading channel model (cf. Sec. III-A1), and are valid for any real lattice

coset code. Design criteria in Rayleigh fading MIMO and SISO channels based on bounds for what the authors

call average correct decision probability and average information leakage were derived in [14], [15] and [16], with

several alternative approximations.

In Case 1, we review the derivation of the probability bounds for the general fading channel, discussing how it

characterizes Eve’s performance. In Case 2, we derive a new information leakage bound for the mod Λs channel.

In Case 3, the average leakage and an information leakage bound from an achievability proof are known from [16],

[25]. We derive an analytic expression for an information leakage bound in a finite-dimensional code, roughly a

cross-breed of the two earlier ones. In particular, all our bounds agree on the design criterion of the average flatness

factor, which we hence take as an objective function.

A. Case 1

Let Λb,Λe ⊂ Rn be two lattices of rank m, and assume that Eve simply decodes the received signal to the closest

lattice point in Λb,h. The probability Pc,e of Eve correctly decoding the message is upper bounded [14], [15] by

Pc,e(σ) ≤ Eh [Vol(Λb,h)gm(Λe,h;σ)] = [Λb : Λe]
−1 (Eh

[
εΛe,h(σ)

]
+ 1
)
. (17)
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The expectation (17) can be computed explicitly for several channel models. The result is of the form

Eh

[
εΛe,h(σ)

]
+ 1 = Eh[Vol(Λb,h)g(Λe,h;σ)] = Vol(Λb)ψΛe

(σh
σ

)
(18)

where in the last step we assume that the distribution of the fading matrix h is some of those explicated in

Sec. III-A2, and σh is the associated parameter. The Rayleigh fast fading model ψΛe is given by [14]:

ψΛe

(σh
σ

)
= ψFF

Λe

(σh
σ

)
=
(σh

2σ

)n ∑
t∈Λe

n∏
i=1

1

(1 + |ti|2 σ
2
h

σ2 )3/2
. (19)

The series in the above equation converges, see the Appendix for a proof. Note that (by the monotone convergence

theorem) the convergence of (19) ensures the finiteness of Eh

[
εΛe,h(σ)

]
.

Remark V.1. This formula admits natural generalizations to block fading channels [14] and MIMO channels [15],

though in what follows we will only need the explicit expression for the Rayleigh fast fading model.

Remark V.2. The scaling property of the flatness factor is inherited for all fading models,

Eh [εhΛe(σ)] = Eh [εahΛe(aσ)] . (20)

In particular this implies that, for a fixed fading model, the channel can be studied only by varying σ. For instance,

the above explicit bounds only depend on the ratio σh/σ. Knowing the monotonicity and limit of the flatness factor,

this implies that the ECPD bound (17) is for any fading channel model a decreasing function of σ, tending at poor

signal quality σ →∞ to Vol(Λb)/Vol(Λe) = [Λb : Λe]
−1.

B. Case 2

We derive a new information leakage bound for Case 2, a fading mod Λs channel with uniform coset represen-

tatives.

Theorem V.1. In the mod Λs channel case, let m be a message with any distribution on the message space M

with |M| ≥ 4. Assume that E := Eh

[
εΛe,h(σ)

]
≤ 1/2. Then

I [m; (y/Λs,h,h)] ≤ (1− 2E)[2E log |M| − 2E log(2E)] + 2E log |M|. (21)

This bound is an increasing function of E, attaining the trivial bound log |M| at E = 1/2.

Proof. See the Appendix.

C. Case 3

We derive an information leakage bound for a fading channel with discrete Gaussian coset representatives. This

setup has been considered earlier in [16], [25], and our computation is a variant that yields an explicit bound as a

function of the average flatness factor. We first state a lemma which gives a discrete analogue of the fact that the

sum of two Gaussians is a Gaussian in the following sense: Suppose that h ∈ Rm×n is a deterministic matrix and
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x ∈ Rn and n ∈ Rm are independent (continuous) Gaussian vectors x ∼ N (0, σ2
sIn) and n ∼ N (0, σ2Im). Then,

by basic probability theory, hx + y is also a (continuous) Gaussian, with law N (0, σ2Im + σ2
shh

t). In the lemma

below we are interested in the case where x instead is discrete Gaussian with parameter σ2
s . Clearly, hx + y is

then not continuous Gaussian anymore, but the lemma quantizes the fact that (with suitable parameters) it is still

fairly close to N (0, σ2Im + σ2
shh

t).

Similar estimates depicting this have been given in [25, Lemma 5], [16, Lemma 1] and [41, Theorem 3.1].

Lemma V.1. Fix h ∈ Rm×n and let x have the centered discrete Gaussian distribution DΛe,λm
(x;σs), where

Λe ⊂ Rn is full. Let n ∼ N (0, σ2Im) be a spherical (continuous) Gaussian vector independent of x. Assume

furthermore that ε√
σ2/σ2

sIn+hthΛe
(σ) ≤ εmax for some εmax < 1. Let ρ̃(y) be the PDF of N (0, σ2Im + σ2

shh
t),

that is,

ρ̃(y) =
1

(
√

2π)m
√

det(σ2Im + σ2
shh

t)
exp

(
−1

2
yt(σ2Im + σ2

shh
t)−1y

)
. (22)

If ρ(y) denotes the PDF of y = hx + n, then

V (ρ̃(y), ρ(y)) ≤
2ε√

σ2/σ2
sIn+hthΛe

(σ)

1− εmax
. (23)

Proof. See the Appendix.

Theorem V.2. Consider the fading channel with discrete Gaussian coset coding. Take a message m with any

distribution on the message space M with |M| ≥ 4. Assume that E := Eh

[
ε√

σ2/σ2
sIn+hthΛe

(σ)
]
≤ 1/5. Then,

I [m; (y,h)] ≤ (1− 5E)[5E log |M| − 5E log(5E)] + 5E log |M|. (24)

This bound is an increasing function of E, attaining the trivial bound log |M| at E = 1/5.

Proof. See the Appendix.

Note that the derivations of Theorems V.1 and V.2 actually hold for any E. For E ≥ 1/2 or E ≥ 1/5 the

respective bounds coincide with the trivial bound log |M|, suggesting that the derivations are, in a way, optimal.

At the first glance, the flatness factors in the information leakage bounds of Theorems V.1 and V.2 are different.

However, it is often reasonable to assume that the power invested in coset coding is larger than that related to the

receiver’s noise, i.e that σ2/σ2
s � 1, and in the limit, σ2/σ2

s → 0+. The following proposition shows that the two

bounds coincide. A similar limit is stated in [16]. Intuitively, the more power Alice invests in coset coding, the

better secrecy she has.

Proposition V.1. The expectations E := Eh

[
ε√

σ2/σ2
sIn+hthΛe

(σ)
]
, when they are finite, are strictly decreasing as

a function of σs, and tend to Eh [εhΛe(σ)] as σs →∞.

Proof. We write the dual formula for the flatness factor (7) in the eigenbasis of hth, where hth = diag(h2
i ),

ε√
σ2/σ2

sIn+hthΛe
(σ) =

∑
t∈Λ∗e

exp

(
−2π

n∑
i=1

t2i
h2
i /σ

2 + 1/σ2
s

)
− 1, (25)
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and

εhΛe(σ) = ε√hthΛe
(σ) =

∑
t∈Λ∗e

exp

(
−2π

n∑
i=1

t2i
1/σ2

)
− 1. (26)

The monotonicity in σs is clear from (25), and the limiting property for the expected values follows by dominated

convergence, since from (25) and (26) we have that ε√
σ2/σ2

sIn+hthΛe
(σ) decreases to εhΛe(σ) as σs →∞.

D. Discussion

In both Gaussian and fading channel models, the error probability and information leakage bounds agree on

minimizing the (average) flatness factor εΛe(σ) and E[εhΛe(σ)], respectively (cf. (5), (6)).At poor signal quality

σ → ∞, the probability bound decreases to the uniform guess probability and the information decreases to zero.

The probability upper bound (14) is a relatively good approximation for large σ — see error terms in [14]. The

derivation of (17) contained no new approximations after (14), and can therefore be expected to be approximative

at poor signal quality.

On the contrary, the two information leakage bounds seem to be mostly suitable for achievability proofs and poor-

signal asymptotics σ →∞. Substituting the average flatness factors E = 1/2 and E = 1/5 for which the respective

information leakage bounds become trivial, the probability bound (17) suggests a notably good secrecy. Nonetheless,

the agreement of the information and probability bounds, the latter being more approximative a quantification and

the former a more rigorous approach, indeed suggests that the average flatness factor should be taken as a design

criterion of both practical lattice design and information-theoretic constructions.

We conclude this section by rephrasing the full wiretap problem and the design criterion: we study sublattices

Λe of a fixed reliability lattice Λb ⊂ Rn, with a fixed coset code rate log2[Λb : Λe]/n (bits per real channel use).

Equivalently, we fix the index [Λb : Λe]. We design secure coset codes Λb : Λe in the relevant low-SNR range by

The average flatness factor criterion: minimize Eh[εhΛe(σ)].

In the next section, we show how to translate this criterion into something constructive. Namely, we justify why

well-rounded lattices form an appropriate family to which this minimization problem can be restricted.

VI. WELL-ROUNDED LATTICES AND THE FLATNESS FACTOR

Finding lattices achieving local/global minima of the theta series is a long-standing problem in analytic number

theory. In fact, using an assortment of tools from analytic number theory and the theory of quadratic forms, Sarnak

and Strömbergsson [42] proved that, for any σ > 0, the D4 lattice, the E8 lattice, and the Leech lattice achieve

a strict local minimum of ΘΛ(σ) over the set of volume one lattices. In the next section we will analyze the

behaviour of D4 and E8 in the wiretap context and compare their performance to other lattices (in their respective

dimensions). Some of the best known sphere packings in low dimension are constructed in [43] and [44] from real

number fields. In our simulations we will consider the construction of D4 from [43] and E8 from [44].
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Note that the lattices above maximize the packing density function (globally), so a natural question to ask is

whether or not the global minimum for the theta series function is also the densest packing in a given dimension.

Unfortunately, this is not true in general. In fact, in [42] it was proven that the face-centered cubic lattice (fcc)

being the densest packing in dimension three cannot be a global minimum for the theta series. To make this precise,

we will first show some links between the theta series and the Epstein zeta function.

The Epstein zeta function of a lattice Λ ⊆ Rn is defined, for s ∈ C with <(s) > n
2 , as

E(Λ, s) =
∑

06=x∈Λ

1

||x||2s
.

In analogy to the Riemann zeta function, the Epstein zeta function admits a meromorphic continuation to the

complex plane with a simple pole at s = n
2 .

The Gamma function is defined as

Γ(s) =

ˆ ∞
0

zs−1e−zdz, for s ∈ C, <(s) > 0.

Using an elementary change of variables we get

(2π)−s||x||−2sΓ(s) = 2

ˆ ∞
0

e−2πσ2||x||2σ2s−1dσ. (27)

Let Λ be a lattice in Rn, then summing over all the non-zero lattice points in Λ∗ we get

(2π)−sΓ(s)E(Λ∗, s) = 2

ˆ ∞
0

εΛ(σ)σ2s−1dσ. (28)

Equation (28) shows that the minima of Λ 7→ εΛ are closely related to the minima of Λ 7→ E(Λ, s). In fact, we

have

εΛ1
≥ εΛ2

∀σ > 0 ⇒ E(Λ∗1, s) ≥ E(Λ∗2, s) ∀s > 0. (29)

Note that all the optimization problems above are taken over Ln the space of volume one lattices in Rn.

Definition VI.1. We say that a lattice L is E-extremal at s0 ∈ C if

E(Λ, s) ≥ E(L, s) ∀s > s0, Λ ∈ Ln.

We say that L is universally extremal if

E(Λ, s) ≥ E(L, s) ∀s > 0, Λ ∈ Ln.

Notice that the universality property for L∗ is a necessary condition for L to be a global minimum of the flatness

factor εΛ.

We will still go one step further and use the connection that theta and zeta functions have with spherical designs.

In [45], Coulangeon extended the study from [42] and established a relation between local minima of zeta and

theta functions of lattices and spherical designs.
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Definition VI.2. A spherical t-design X is a finite set of points on a sphere Sn such thatˆ
Sn−1

p(x)dx =
1

|X|
∑
x∈X

p(x),

for any homogeneous polynomial p of degree ≤ t.

There are various characterizations of a spherical design, and in what follows we will use the following alternative

definition.

Definition VI.3. Let n ≥ 2 and let X be a finite subset of a sphere Sn(r) of radius r. Assume that X is symmetric

with respect to the origin. Then, for any positive even integer t, X is a spherical t-design if and only if there exists

a constant c such that, for all α ∈ Rn, ∑
x∈X
〈x, α〉t = crt/2〈α, α〉t/2,

where 〈 , 〉 denotes the usual scalar product.

The following result connects local minimum for the Epstein zeta function and 4-designs.

Theorem VI.1 ([45], Thm 4.1). Let L be a lattice in Ln such that all its layers hold a 4-design. Then L is

E-extremal at s for any s > n/2. If moreover E(L, s) < 0 for 0 < s < n/2 , then L is universally extremal.

To name just a few examples of lattices with all layers holding a 4-design, we mention D4, E8, the Leech lattice

Λ24, and Barness-Wall lattices BW2m of dimension 22m . For a complete classification up to dimension 26 see [46].

Unfortunately, explicit construction of lattices satisfying the conditions of Theorem VI.1 is problematic in two

ways:

1) Lattices having all layers holding a 4-design do not exist in every dimension (3, 5 and 9 for example). In

general dimensions there are only finitely many similarity classes of such lattices.

2) The condition E(L, s) < 0 for 0 < s < n/2, implies that the Epstein zeta function has no zeros in the right

half plane. Indeed, Terras [47] showed that if λ1(L) ≤ µ
√

n
2πe , then E(L, s) has a zero in (0, n/2) for some

µ < 1 and sufficiently large n. The bound on λ1 is satisfied by all the known lattices in large dimension.

Relaxing the universality property, the minima of Epstein zeta functions at some s0 ∈ C have a tight relationship

with 2-designs in the following way.

Theorem VI.2 ([48], Thm. 4). Let Λ ⊂ Rn be a lattice of volume one. Then the following conditions are equivalent.

1) There exists s0 > 0 such that Λ is a local minimum for E(Λ, s) at s, for any s > s0.

2) Λ is perfect and all layers of Λ hold a 2-design.

We say that Λ is a global minimum of the flatness factor if εΛ′ ≥ εΛ for all σ > 0 and Λ′ ∈ Ln. We will use

Theorem VI.2 to prove the following proposition.

Proposition VI.1. Let Λ be a lattice in Ln such that Λ is a global minimum of the flatness factor. Then the dual

lattice Λ∗ is well-rounded.
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Proof. Let Λ ∈ Ln be a global minimum of the flatness factor. Then by equation (29) the lattice Λ∗ is E-extremal.

In particular, there exists s0 > 0 such that Λ∗ is a local minimum of E(·, s). Theorem VI.2 implies that Λ∗ is

perfect, hence, well-rounded.

In the above proof we used the fact that a local minimum of the Epstein zeta function is perfect, and that allowed

us to conclude its well-roundedness. In fact, the lattices Λ such that S(Λ) holds a 2-design are also WR.

Proposition VI.2. Let Λ be a lattice such that S(Λ) holds a 2-design. Then Λ is a well-rounded lattice.

Proof. Let Λ ⊂ Rn be a lattice such that S(Λ) holds a 2-design. Assume that Λ is not WR. Then S = SpanR(S(Λ))

is a proper subset of Rn. Hence, there exists α 6= 0 such that α ∈ S⊥. Thus, by Definition VI.3, we get∑
x∈S(Λ)

〈x, α〉2 = 0 = cλ1(Λ)||α||2,

and this contradicts the fact that α 6= 0.

Corollary VI.1. Lattices satisfying the conditions mentioned in Theorems VI.1 and VI.2 are well-rounded.

Remark VI.1. As mentioned in the introduction, in [10] the authors proposed the maximization of the normalized

product distance of the lattice and its dual in the case of the wiretap fading channel; and the maximization of

the packing density of the lattice and its dual for the Gaussian wiretap channel, both of which are optimization

problems that can be restricted to WR lattices.

A good general strategy is hence to consider WR sublattices of the legitimate receiver’s lattice, which is chosen

to have a large non-vanishing minimum product distance (SISO) or minimum determinant (MIMO), so that also

the dual of the sublattice shares these properties.

A. On the construction of well-rounded algebraic lattices

Let K be a number field of degree n = r1 + 2r2 and {σ1, . . . , σr1 , σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2} be the

embeddings of K into C. Let α be a totally real, totally positive element in K, i.e., σi(α) positive and real for any

1 ≤ i ≤ n. We denote by AK the set of totally real, totally positive elements in K.

The twisted embedding ρα : K → Rn is defined by

ρα(x) := (
√
σ1(α)σ1(x), . . . ,

√
σr1(α)σr1(x),√
2σr1+1(α)<σr1+1(x),

√
2σr1+1(α)=σr1+1(x), . . . ,

√
2σr1+r2(α)=σr1+r2(x)).

If α = 1, we will simply denote the lattice ρα(I) by ρ(I).

It is well known [49] that ρα(I) is a full rank lattice in Rn, where I is an (fractional) ideal in OK the ring of

integers of K and α ∈ AK . Furthermore, if K is a totally real number field, then ρα(I) is a full-diversity lattice.

For a detailed exposition on algebraic number fields see for instance [50], for lattices over number fields we refer
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the reader to [49]. The aim of this section is to present a generic construction of some full-diversity WR lattices

that are of the form Λ = ρα(I).

In [51], the authors studied the well-roundedness of ρ(OK), i.e., I = OK and α = 1.

Theorem VI.3. [51] Let K be a number field. Then ρ(OK) is WR if and only if K is a cyclotomic field, i.e.,

K = Q(ζm), where ζm is a primitive mth root of unity.

Theorem VI.3 ensures that ρ(OK) is never WR for any real number field K. Thus, to construct WR lattices over

real number fields K (full-diversity lattices) it is necessary to consider ρα(I), where I is a strict ideal in OK .

In the following we will exhibit a construction of WR lattices ρα(I), where I is a (fractional) ideal in the real

maximal sub-field K of the m-th cyclotomic field Q(ζm). More precisely, K = Q(ζm + ζ−1
m ).

We recall that Q(ζm) is a classic example of a complex multiplication field (CM), that is, a number field which

is a totally imaginary quadratic extension of a totally real number field K. Our construction relies on a shifting

technique proposed in [52] to obtain some of the well-known lattices as lattices over real number fields using CM

fields.

Hereon, we assume that K is a CM field and F is the maximal totally real subfield of K. By definition K

is a quadratic extension of F . Let γ ∈ F such that K = F (
√
γ). Assume that −1 is not a square in K, and

take K ′ = F (
√
−γ). The field K ′ is then a quadratic extension of F different from K. The extension K/F is

necessarily Galois. Furthermore, K ′ is a totally real number field.

We define φ : K → K ′ to be a K-linear map such that φ(1) = 1 and φ(γ) =
√
−γ. In [52], the authors

introduced a technique to ”shift” lattice constructions from ideals I over K to ideals over K ′. We say that an ideal

class [I] in the class group of K is ambiguous if σ([I]) = [I], where σ is the non-trivial automorphism of the

Galois group Gal(K/F ). Now we are ready to state the main results in [52].

Proposition VI.3. ([52]) Let I be an ambiguous ideal in K. Then φ(ρα(I)) is an ideal lattice of K ′ similar to

ρα(I).

Using the above notation, we have the following proposition.

Proposition VI.4. ([52]) If K/Q is not ramified at 2, then φ(OK) is a fractional ideal of K ′. Moreover, the ideal

I = φ(OK) satisfies I2 = 1
2OK′ .

We will use Proposition VI.4 to construct WR lattices from totally real fields Q(ζ4m + ζ−1
4m), where m > 1 is an

odd integer.

Theorem VI.4. The field Q(ζ4m+ζ−1
4m) contains a well-rounded lattice ρ(I) for any odd integer m > 1. Moreover,

I2 = 1
2Z[ζ4m + ζ−1

4m].

Proof. Let m > 1 be an odd integer. The field K = Q(ζm) is a quadratic extension of F = Q(ζm + ζ−1
m ). Using

the same notation as above, the corresponding field K ′ to K is K ′ = Q(ζ4m + ζ−1
4m). Using Proposition VI.3, we
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get that ρ(φ(OK)) is an ideal lattice over K ′ similar to ρ(OK). Finally, ρ(I) is WR by Theorem VI.3, where

I = φ(OK).

Remark VI.2. Note that Theorem VI.4 provides explicit constructions of WR lattices in dimensions ϕ(m), where

ϕ is the Euler totient function and m > 1 an odd integer. The WR lattices D4 and E8 used in the simulations in

the next section are obtained as lattices over such real maximal subfields.

VII. SIMULATIONS

All simulations in this section assume the standard Rayleigh fading channel model; fast fading in the SISO case

and quasi-static in the MIMO case. We will first compare well-rounded and non-well-rounded lattices to show

how the first ones outperform the second ones. After that, we will show how, when considering only WR lattices,

the choice of the best one among them seems to relate to the delicate problem of simultaneously maximizing the

shortest norm and minimizing the kissing number. As there is no obvious tradeoffs between these two extremes

provided by the densest sphere packing lattices and GWR lattices, we have resorted to a random search aiming at

finding a good sublattice with large minimal norm and small kissing number. Note that using known construction

methods for WR lattices can be challenging, since we start with a fixed lattice for Bob and as well as with a fixed

sublattice index determining the security level.

When using coset coding, every message (coset) is assigned several codewords. The sender chooses a random

codeword that represents the intended message and sends it. From the decoding perspective, two codewords λ, µ

in the lattice Λb represent the same message if λ − µ ∈ Λe, where Λe ⊂ Λb is a sublattice. The choice of Λe

can heavily influence the information leakage to a possible eavesdropper. We use the Planewalker sphere decoder

implementation [53] for our coset code simulations, with around 106 channel realizations per SNR. The depicted

SNR is the SNR observed by Eve. However, the same plot can be used for Bob’s correct decision probability just

by looking at relatively higher SNRs compared to Eve’s, as we assume σ2
e > σ2

b .

Note also that at the high SNR regime, the coset code plays little role and the performance is determined by the

minimum product distance. Hence, for the choice of the best sublattice, the low-to-moderate SNR regime is more

interesting. In this regime, our simulations indicate that the best sublattice is a non-orthogonal WR sublattice with

a large minimal norm and small kissing number. The signal constellation shape also plays a role.

A. Theta series approximation

In order to test what we called the average flatness factor criterion, we need to make use of the theta function of

the lattices that we want to compare. Unfortunately, these theta functions consist of infinite q-expansion, making it

impossible to compute them in an exact form. For some well-known lattices, a closed formula for the theta function

is known, but in general there is no way to evaluate effectively the theta function of a given lattice. Even for the

known ones, they still consist of infinite series.
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In [39] the authors propose the following approximation, referred to here as “Barreal approximation”, which

allows us to evaluate the theta function of any given lattice, allowing us in turn to compute an approximation of

the expected flatness factor of the lattices we want to compare. For the flatness factor computations (Fig. 7), we

have used the approximation for all lattices.

Proposition VII.1 ([39], Thm 4). Let Λ ∈ Rn be a full lattice with volume Vol(Λ) and minimal norm λ = λ2
1. The

theta series ΘΛ(q), where 0 ≤ q < 1 can be expressed as

ΘΛ(q) = (1− qλ)− log(q)λ
n

2
+1π

n

2

Γ(n2 + 1)Vol(Λ)

ˆ ∞
1

t
n

2 qλtdt+ E(Λ, n, L, q),

where

E(Λ, n, L, q) = −C(Λ, n, L) log(q)λ

ˆ ∞
1

t
n−1

2 qλtdt,

and the constant C(n,Λ, L) depends on n, Λ and a Lipschiz constant L.

We will denote by Θ̃Λ(q) the approximation ΘΛ(q)−E(Λ, n, L, q). We can then approximate the flatness factor

as

εΛ(σ2) =
Vol(Λ)

(
√

2πσ2)n
ΘΛ(e−

1

2σ2 )− 1≈ Vol(Λ)

(
√

2πσ2)n

((
1− e−

λ

2σ2

)
+

(λπ)
n

2

2σ2Γ(n2 + 1)Vol(Λ)

ˆ ∞
1

t
n

2 e−
λt

2σ2 dt

)
.

In Figure 2 we can see how good this approximation is for some lattices, comparing it with different truncations

of their theta series q-expansions. For a more rigorous study, we refer to [39].

B. Well-rounded vs non-well-rounded lattices

For WR lattices, we first restrict the code lattices Λb to orthonormal lattices, including: the Alamouti code,

the Golden code and some full diversity algebraic rotations as given in the table [54]. These lattices yield good

performance in the high SNR regime, their orthogonal structure simplifies calculations, and they are therefore

realistic candidates for actual implementations. We found well-rounded sublattices Λe of Zn with prescribed index,

and hence of the aforementioned orthonormal codes, by using a probabilistic search algorithm. We compared

these against scalings of Zn and a non-well-rounded lattice in a fast-fading Rayleigh SISO channel as well as in

quasi-static MIMO channels.

1) SISO: For the SISO channel we simulate a coset coding protocol for a wiretap channel with the three following

choices for Λe:

Λ1 =


16 0 0 0

0 4 0 0

0 0 2 0

0 0 0 2

Z4, Λ2 =


4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

Z4, Λ3 =


−2 −3 4 −1

0 −1 0 3

0 −3 −2 −3

−4 −1 0 −1

Z4
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Fig. 2. Comparison of the Barreal et al. approximation [39] Θ̃Λ(e
− 1

2σ2 ) with different truncated q-expansions of ΘΛ(e
− 1

2σ2 ).

Their parameters are compiled in Table I. All sublattices have the same index, so we have the same data rate in

all three cases. The non-well-rounded lattice has the lowest minimal norm, while Λ3 almost achieves the theoretical

maximum of γ4256
2

4 = 16
√

2 ≈ 22.63, where γn is the n-th Hermite constant. The optimal packing in 4 dimensions

is given by the D4 lattice, but although it is a sublattice of Z4 no integer scaling of D4 has the desired index 256.

Lattice λ1(Λ)2 κ WR index Ri Rc WR dual

Λ1 4 4 no 256 2 2 no

Λ2 16 8 yes 256 2 2 yes

Λ3 20 12 yes 256 2 2 yes
TABLE I

PARAMETERS FOR THREE DIFFERENT SUBLATTICES OF Z4 WITH KISSING NUMBER κ.



23

The simulation results for the ECDP are depicted in Figure 3. We see that the well-rounded lattices clearly

outperform the non-well-rounded sublattice and Λ3 approaches the theoretical minimum of 1
256 , which would be

equivalent to Eve guessing uniformly at random among the 256 different messages.

SNR
0 2 4 6 8 10 12 14

E
C

D
P

10 -3

10 -2

10 -1

$1
$2
$3
1/256

Fig. 3. Simulation of ECDP for three different Z4 sublattices.

2) MIMO: The Alamouti code is defined as a sublattice of C4 of rank 4. Since it is orthogonal it can be seen as

an isomorphic image of Z4 and we can use the same sublattices Λ2 and Λ3. We take Λ4 := 2Λ2 and Λ5 := 2Λ3.

Both lattices are well-rounded but the non-orthogonal choice, with longer minimal vectors, clearly outperforms

the trivial choice of a scalar multiple of Z4 in the low SNR regime, as seen in Fig. 4. Both sublattices behave

identically for high SNR since the coset coding rarely comes into play in these situations.

SNR in dB
-20 -15 -10 -5 0 5 10 15 20

E
C

D
P

10 -2

10 -1

100

$4 64-QAM Alamouti ortho
$5 64-QAM Alamouti non-ortho
1/256

Fig. 4. ECDP for 64-QAM Alamouti code.

For the Golden code we choose sublattices Λ′1,Λ
′
2,Λ

′
3 of Z8 with the following respective generator matrices.

Λ′1 = 2 · diag(2, 2, 2, 2, 2, 1, 1, 1), Λ′2 = 2 ·


1 0 1 0 0 0 1 1
0 0 0 0 1 −1 0 −1
1 1 0 0 0 −1 −1 0
0 −1 −1 1 0 0 0 0
0 0 0 1 0 1 0 −1
−1 0 0 1 0 0 0 0
0 1 −1 0 1 0 0 0
0 0 0 0 −1 0 1 0

, Λ′3 = 2 ·


−1 −1 −1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 −1 0 0 −2 0 0 0
−1 −1 0 0 0 2 0 0
−1 0 1 0 0 0 0 2
0 1 0 −1 0 0 0 0
0 0 −1 0 0 0 −2 0

.
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All three lattices have index 32 so we can encode 5 bits in each message, or equivalently achieve a rate of 2.5

bits per channel use. We vary the codebook size to allow for different rates of confusion rc as detailed in Table II.

4-QAM 16-QAM 64-QAM

index λ1(Λ)2 WR WR dual r ri rc r ri rc r ri rc

Λ′1 32 4 no no

Λ′2 32 12 yes yes 4 2.5 1.5 8 2.5 5.5 12 2.5 9.5

Λ′3 32 16 yes yes
TABLE II

SUBLATTICES OF THE GOLDEN CODE OF INDEX 32

The simulation results in Figure 5 clearly show that increasing the rate of confusion has strong implications for

the ECDP. Increasing rc from 1.5 bpcu to 5.5 bpcu leads to an SNR shift of about 10 dB and increasing rc to 9.5

bpcu increases the gap by another 8 dB. Both well-rounded lattices Λ′2 and Λ′3 perform very similarly despite their

different minimal lengths.

SNR in dB
-20 -15 -10 -5 0 5 10 15 20

E
C

D
P

10 -1

100
$1 4-QAM non-WR

$2 4-QAM WR
$3 4-QAM WR

$1 16-QAM non-WR
$2 16-QAM WR

$3 16-QAM WR
$1 64-QAM non-WR

$2 64-QAM WR
$3 64-QAM WR

1/32

Fig. 5. ECDP for 4-QAM, 16-QAM and 64-QAM Golden code.

C. Choosing among well-rounded lattices

Once we have seen that well-rounded lattices perform better than non-well-rounded ones, and that among WR

lattices, the non-orthogonal ones are better than the orthogonal ones, we are interested in choosing among well-

rounded lattices. To choose the best one among WR lattices, it seems beneficial to have a large minimal norm and

small kissing number.We will illustrate this in some examples for dimensions n = 4 and n = 8.

1) n = 4: We consider WR sublattices of the optimal rotation of Z4 in terms of the minimum product distance

proposed by Viterbo et al. [55], [54]. We refer to this rotated Z4 lattice by Krus4. We will compare the sublattice

having the best sphere packing shape to a randomly found non-orthogonal well-rounded sublattice of Krus4 (denoted
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by WR nonortho in the table below), which is not isometric to the best sphere packing. The basis matrix is given

by ( 2.6179140488 −2.414499458 −2.6174487992 0.6824076544
−3.0009700976 −2.338015074 2.3164903194 0.4021649334
3.4332588812 −1.6385571204 1.3956732198 −1.8920783058
0.8223162707 −1.4725414834 3.5158030921 2.1896452076

)
.

For the generators of the rotation, see [54]. The choice of this sublattice is based on trying to simultaneously obtain

a long shortest vector and a low kissing number, along the lines suggested previously.

In addition to the rotated Z4 lattice, we will consider the algebraic construction of D4 described in [4]. In Table

III we depict the minimum product distance, shortest norm, kissing number, and the average energy for the lattices

under comparison. We can see how the PAM signaling causes suboptimal average energy for the D4 superlattices

due to its skewness. It is also evident from the following simulations that the relationship between the shortest

vector length and kissing number is an interesting topic for further study.

Lattice d
1/n
p,min λ1(Λ)2 κ Eav

Krus4 (Viterbo [54]) 0.43899 1 8 84

4Krus4 16 8

WR nonortho 20 12

D4 (Costa [43]) 0.33856 1.41421 24 118

4D4 22.62735 24

TABLE III

VITERBO ET AL. Z4 ALGEBRAIC ROTATION VS COSTA ET AL. D4 ALGEBRAIC ROTATION. SUPERLATTICES BOLDFACED AND

NORMALIZED TO UNIT VOLUME. Eav STANDS FOR THE AVERAGE ENERGY OF THE OVERALL CODEBOOK WITH 8-PAM.

Fig. 6 shows the performance of different 4-dimensional lattices using 16-PAM. The results with 8-PAM are

very similar, except that the crossing point of the curves is slightly above ECDP = 10−2.

Fig. 6. Comparison of 4-dimensional WR lattices with 16-PAM. Sublattice index 256.
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2) n = 8: Analogously to the dimension 4 case, we consider WR sublattices of the optimal rotations of Z8

in terms of the minimum product distance proposed in [55], [54]. We refer to this rotated Z8 lattice by Cyclo8.

The Cyclo8 lattice has a rotated 2E8 as a sublattice since 2E8 ⊆ Z8. We will compare the sublattice having the

best sphere packing shape to randomly found non-orthogonal well-rounded sublattices of Cyclo8 (denoted by WR

nonortho in the table below), which is not isometric to the best sphere packing. The basis matrix is given by
0.7007035387 −1.8196532242 0.5098308731 0.5436478577 −0.354502581 1.0846703755 −0.47456554011 −0.3391191908
−0.1711086948 −1.2014038879 0.2876791984 −0.8163368876 0.70784566949 −0.3945408211 −0.8973956636 1.5218930146
0.40388427868 −0.3992399381 0.359383021 −0.3556171703 −0.8543195887 −0.4910135947 −1.6941162987 −1.2573300636
0.5710190406 1.817991942 0.7541367758 0.607964929 0.1228109789 −0.9716075716 −0.13023119099 −0.6741179039
−0.84701159571 −1.0127325492 0.8324416454 0.0586435438 −0.09880446362 −1.7873172339 −0.5616527529 0.2020567981
−0.04341452009 −0.3892212211 1.5903470277 −0.8144416018 0.8859851713 −0.084615344 1.3643633956 −0.022051583
1.70075388399 −0.6502044959 0.3252620337 −1.1219451349 −0.89655915559 −0.3737755366 0.10194674011 −0.6051400279
−1.5754499665 0.8921488186 0.5880215656 −0.3340078386 −1.0081995324 1.0730373751 0.0358312991 −0.3090920604


We will also consider two different constructions of E8 described in [4]. In Table IV we depict the minimum

product distance, shortest norm, kissing number, and the average energy for the lattices under comparison. We

can see how the PAM signaling causes suboptimal average energy for E8 due to its skewness. As before, one can

see from the following simulations that the relationship between the shortest vector length and kissing number is

nontrivial.

Lattice d
1/n
p,min λ1(Λ)2 κ Eav

Cyclo8 (Viterbo [55]) 0.289520 1 16 40

2Cyclo8 4 16

WR nonortho 6 40

2E8 8 240

E8 (Costa [44]) 0.293826 2 240 80

2E8 8 240

TABLE IV

VITERBO ET AL. Z8 ALGEBRAIC ROTATION VS COSTA ET AL. E8 ALGEBRAIC ROTATION. SUPERLATTICES BOLDFACED AND

NORMALIZED TO UNIT VOLUME. Eav STANDS FOR THE AVERAGE ENERGY OF THE OVERALL CODEBOOK WITH 4-PAM.

Fig. 7 displays the ECDP upper bounds in terms of the expected flatness factors (EFF) as explained in the

previous section, computed by using the approximation from [39]. We can see that for 8-dimensional WR lattices

(behavior of 4-dimensional lattices is very similar) the curves almost coincide, and the small differences do not

necessarily give the performance order observed in the simulations that follow. Hence, choosing the lattice with

the smallest EFF alone may not yield the desired outcome. Furthermore, even though the differences in the EFFs

of the lattices are negligible, the simulations show a very clear difference in the actual ECDP performance, even

beyond 10dB depending on the SNR range.

In Fig. 8 different 8-dimensional lattices are compared with 8-PAM. Again, the results with 4-PAM are very

similar, except that all the curves ultimately get to the asymptote, and the crossing point is slightly higher, just

above ECDP = 10−2. Both in dimension 4 and 8, the well-rounded non-orthogonal lattice outperforms the other

lattices in the regime close to the asymptote corresponding to uniform guessing. The curves cross at higher SNRs,

after which the Costa D4, E8 constructions become better, so the choice of the best lattice also depends on the
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Fig. 7. Comparison of the ECDP upper bounds (EFF + 1)/index for 8-dimensional WR sublattices with respect to the volume-to-noise

ratio (VNR).

Fig. 8. Comparison of 8-dimensional WR lattices with 8-PAM. Sublattice index 256.

target ECDP and Bob’s expected SNR. Note, however, that at higher SNRs lowering Eve’s decision probability

may also worsen Bob’s. Ideally, Bob’s and Eve’s SNRs would be located at the different ends of the “waterfall”

region. In all the simulations, if this is the case then the best choice is uniquely the same from both ECDP and

Bob’s error probability point of view: the one minimizing ECDP at low SNR is the same as the one minimizing

Bob’s error probability at high SNR.

We also remark again that using PAM signaling for the non-orthogonal superlattices is suboptimal (more so
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than for orthogonal lattices) in terms of average transmission power. To this end, we also ran simulations with

spherical shaping, depicted in Fig. 9. The differences get a lot smaller, and the crossing point seems to disappear.

In the interesting low SNR regime, the WR nonorthogonal sublattice still outperforms the others. Furthermore,

spherical encoding and decoding are much more complex than that of cubically shaped (i.e., with a symmetric

PAM coefficient set) constellations. It also makes bit labeling a delicate problem.

Fig. 9. Comparison of 8-dimensional WR lattices with spherical shaping; 216 shortest vectors chosen out of the 224 vectors gotten from

8-PAM. Sublattice index 256.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied how to constructively design lattices for a fixed dimension with the goal of minimizing the

expected lattice flatness factor, which is crucial for minimizing both the eavesdropper’s correct decision probability

and leaked information. While the flatness factor is closely related to the lattice theta series, which is very difficult

to analyze, we showed that the optimization problem can be restricted to the family of well-rounded lattices. Well-

rounded lattices can be constructed by using, e.g., algebraic methods or random search, and hence provide an

efficient means to produce well-performing wiretap codes. It was also pointed out that some previous, asymptotic

design criteria can also be met by WR lattices. Namely, the minimum product distance and minimum determinant

maximization problems can be restricted to WR lattices without loss of generality. Our extensive simulations in

SISO and MIMO channels show that WR lattices outperform non-WR ones, and moreover demonstrate that the

flatness factor is not sufficient alone for choosing the best lattice performance-wise. Hence, in conclusion, a good

general strategy combining the results of the present and previous works is to choose the eavesdropper’s sublattice to
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be non-orthogonal and WR with large minimal norm, small kissing number, and with large non-vanishing minimum

product distance/minimum determinant for both the lattice and its dual.

As future work, it is still open how to optimally choose among the WR lattices in order to achieve the best

performance. Deriving explicit constructions for different dimensions will aid studying this question, as well as

provide a repository for good wiretap lattices. The notion of generic well-rounded lattices seems also interesting

as a smaller kissing number seems beneficial at least for low SNRs. Optimizing the shortest norm among GWR

lattices may turn out to provide a solution to the first problem. Another interesting and most likely hard question

is to characterize a tradeoff between the shortest norm and the kissing number among WR lattices.
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APPENDIX

A. Proof of the convergence of the series in (19)

Let Λ be a lattice in Rn. We consider

f : Rn → R

t = (t1, . . . , tn) 7→
n∏
i=1

1

(1 + t2i
σ2
h

σ2 )3/2
.

In order to prove the convergence of the series in (19), we will compare
∑

t∈Λ Vol(Λ)f(t) and
´
x∈Rn f(x)dx, using

the observation ˆ
x∈Rn

f(x)dx =
∑
t∈Λ

ˆ
x∈V (t)

f(x)dx,
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where V (t) is the Voronoi cell around t. By explicit differentiation, the length of the logarithmic gradient (f(x)′/f(x))

is uniformly bounded by a constant C = C(σh/σ) > 0.

Thus, for f(x)/f(t), where x ∈ V (t), we have by the Intermediate value theorem

log[f(x)/f(t)] = log f(x)− log f(t) ≥ −Cd(x, t) ≥ −Cdiam(V )

and thus f(x) ≥ exp(−Cdiam(V ))f(t), where diam(V ) := max{||x− y|| : x, y ∈ V (t)}.

Note that C and diam(V ) above are uniform over all t ∈ Λ and x ∈ V (t). Hence,
ˆ
x∈V (t)

f(x)dx ≥ exp(−Cdiam(V ))Vol(Λ)f(t)

for all t ∈ Λ, and finally ∑
t∈Λ

Vol(Λ)f(t) ≤ exp(Cdiam(V ))

ˆ
x∈Rn

f(x)dx.

Clearly, the function f is integrable on Rn and f(0) = 1. Furthermore

ˆ
Rn
f(x)dx =

n∏
i=1

2

 1√
1/t2i +

σ2
h

σ2

+∞

0

=

(
2σ

σh

)n
<∞.

Hence, the convergence of the series in (19).

In fact, the average of ψΛe

(
σh

σ

)
over the set of determinant one lattices is 1 +

(
σh

2σ

)n. To prove this fact we use

a celebrated theorem by Siegel given below.

We first identify the space of all n-dimensional (volume one) lattices with

Xn := SLn(R)/SLn(Z).

It is well known that Xn has a unique (Haar) measure µn.

Theorem VIII.1 (Siegel’s mean value theorem). Suppose that n ≥ 2. Let f : Rn → R be an integrable function.

Let Λ ∈ Xn. Then ˆ
Xn

∑
t∈Λ

f(t)dµn =

ˆ
Rn
f(x)dx+ f(0).

Now, using the above notation, we can conclude that the mean of ψΛe

(
σh

σ

)
over Xn is 1 +

(
σh

2σ

)n
<∞.

B. Proof of Theorem V.1

Proof. By the independence assumptions, we have the identity

I [m; (y/Λs,h,h)] = Eh [I [m; (y/Λs,h|h)]] . (30)

We divide y into components y⊥ and y‖, perpendicular and parallel to the nested lattices Λ∗,h. Given h, y⊥

consists only of the perpendicular noise component n⊥ and is hence independent of both m and y‖. Thus,

I [m; (y/Λs,h|h)] = I
[
m; (y‖/Λs,h|h)

]
.
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Next, given also the message m, the variational distance of y‖/Λs,h and the uniform distribution on V(Λs,h) can

be bounded as in [9]: the respective PDFs are

ρ{y‖/Λs,h|m}(y) =
1

[Λe : Λs]
gn(Λe,h − λm + y, σ), (31)

where n = dim(span(Λ∗)) is the rank of the nested lattices and y ∈ V(Λs,h), and

ρUnif(y) =
1

[Λe : Λs]

1

Vol(Λe,h)
. (32)

The definition of the flatness factor now directly implies

V (ρ{y‖/Λs,h|M=m}, ρUnif) ≤ εΛe,h(σ). (33)

For simplicity, we denote ε = εΛe,h(σ) for the rest of this proof. For ε ≤ 1/2, Lemma II.1 now yields an information

leakage bound h(ε, |M|), and otherwise we have the trivial upper bound log |M|. Hence,

I [M ; (y/Λs,h,h)] = Eh[I
[
M ; (y‖/Λs,h|h)

]
] (34)

≤ Eh

[
1{ε≤1/2}h(ε, |M|)

]
+ Eh

[
1{ε>1/2} log |M|

]
(35)

= Ph [ε ≤ 1/2]E{h|ε≤1/2} [h(ε, |M|)] + Ph [ε > 1/2] log |M|. (36)

For the first term in (36), we apply Jensen’s inequality to the convex function h in ε,

E{h|ε≤1/2} [h(ε, |M|)] ≤ h
(
E{h|ε≤1/2} [ε] , |M|

)
(37)

≤ h (min{Eh [ε] , 1/2}, |M|) . (38)

The second inequality holds since 0 ≤ E{h|ε≤1/2} [ε] ≤ min{Eh [ε] , 1/2} ≤ 1/2, and h is increasing on [0, 1/2].

Next, write (36) as a convex combination of two numbers,

I [M ; (y/Λs,h,h)] ≤ (1− Ph [ε > 1/2])h (min{Eh [ε] , 1/2}, |M|) + Ph [ε > 1/2] log |M|. (39)

In the interval [0, 1/2], we have h(·, |M|) ≤ log |M|, so the latter number in the convex combination (39) is the

larger one. We can bound its weight using Markov’s inequality to obtain Ph [ε > 1/2] ≤ 2Eh [ε] . Thus, we have

I [M ; (y/Λs,h,h)] ≤ (1− 2Eh [ε])h (min{Eh [ε] , 1/2}, |M|) + 2Eh [ε] log |M| (40)

=

(1− 2Eh [ε])h (Eh [ε] , |M|) + 2Eh [ε] log |M|, Eh [ε] ≤ 1/2

log |M|, Eh [ε] ≥ 1/2.

(41)

The theorem follows.



34

C. Proof of Lemma V.1

Proof. We start with a technical modification of ρ(y). By construction, y = hx + n has the PDF

ρ(y) =
∑

x∈Λe+λM

P (x = x)ρy|x=x(y) (42)

=
1

gn(Λe + λM ;σs)

∑
x∈Λe+λM

gn(x;σs)gm(y − hx;σ) (43)

=
1

gm(Λe + λM ;σs)

1
√

2πσs
m√

2πσ
m

∑
x∈Λe+λM

exp

[
− 1

2σ2σ2
s

(
σ2|x|2 + σ2|y − hx|2

)]
. (44)

Let us expand separately the norms in the exponential:

σ2|x|2 + σ2
s |y − hx|2 = σ2xtx + σ2

sx
ththx− σ2

s(y
thx + xthty) + σ2

s |y|2 (45)

Notice that (σ2In + σ2
sh

th) is a positive definite symmetric matrix. Let Q ∈ Rn×n be its square-root matrix,

(σ2In + σ2
sh

th) = QtQ. Note that Q is invertible since ker(QtQ) = {0}. A straightforward calculation yields

σ2|x|2 + σ2
s |y − hx|2 = |Qx− σ2

sQ
−thty|2 + σ2

sy
t(Im − σ2

shQ
−1Q−tht)y (46)

= |Qx− σ2
sQ
−thty|2 + σ2

sσ
2yt(σ2Im + σ2

shh
t)−1y. (47)

We substitute this back into (44) to obtain

ρ(y) =
1

gm(Λe + λM ;σs)

1
√

2πσs
m√

2πσ
m exp(−1

2
yt(σ2Im + σ2

shh
t)−1y) (48)

×
∑

x∈Λe+λM

exp

[
− 1

2σ2σ2
s

|Qx− σ2
sQ
−thty|2

]
(49)

=
1

gm(Λe + λM ;σs)

√
det(σ2Im + σ2

shh
t)

(
√

2πσsσ)m
ρ̃(y)

∑
x∈Λe+λM

exp

[
− 1

2σ2σ2
s

|Qx− σ2
sQ
−thty|2

]
(50)

Let h = UDV be the singular value decomposition of h, where U ∈ Rm×m and V ∈ Rn×n are orthonormal and

D ∈ Rm×n is a (possibly nonsquare) diagonal matrix with diagonal entries d1, . . . , dn. Then, we have

det(QtQ) = det(V t(σ2In + σ2
sD

tD)V ) =

n∏
i=1

(σ2 + σ2
sd

2
i ), (51)

and similarly

det(σ2Im + σ2
shh

t) = det(U t(σ2Im + σ2
sDD

t)U) = σ2(m−n) det(QtQ). (52)

Hence,

ρ(y) = ρ̃(y)

√
det(σ2Im + σ2

shh
t)Vol(Λe)

Vol(Λe)gm(Λe + λM ;σs)

∑
t∈QΛe+u

gm(t;σsσ) (53)

= ρ̃(y)
Vol( 1

σQΛe)gn( 1
σQΛe + 1

σu;σs)

Vol(Λe)gn(Λe + λM ;σs)
(54)

where u is a suitable vector. This form of the PDF ρ(y) allows us to bound the variational distance to ρ̃(y).
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Let us study the latter factor in (54). Since the flatness factor is rotationally invariant, we may write everything

in terms of an eigenbasis of hth. Since hth is symmetric and positive semi-definite, the basis is orthonormal and

in this basis hth = diag(h2
i ), and Q = 1

σ

√
σ2In + σ2

sh
th = diag(

√
1 + σ2

sh
2
i /σ

2). We have∣∣∣∣Vol

(
1

σ
QΛe

)
gn

(
1

σ
QΛe +

1

σ
u;σs

)
− 1

∣∣∣∣ ≤ εdiag(h̃)Λe
(σs) (55)

= Θ(diag(h̃)Λe)∗

(
e−2πσ2

s

)
− 1 (56)

=
∑
t∈Λ∗e

exp

(
−2πσ2σ2

s

n∑
i=1

t2i
h2
iσ

2
s + σ2

)
− 1 (57)

=
∑
t∈Λ∗e

exp

(
−2π

n∑
i=1

t2i
h2
i /σ

2 + 1/σ2
s

)
− 1. (58)

Similarly, the denominator of the latter factor in (54) satisfies

|Vol(Λe)gn(Λe;σs)− 1| ≤ εdiag(h̃)Λe
(σs) =

∑
t∈Λ∗e

exp

(
−2π

n∑
i=1

t2i
1/σ2

s

)
− 1. (59)

From expressions (58) and (59) it is also clear that εdiag(h̃)Λe
(σsσ) ≥ εΛe(σs). Hence, the latter factor in (54) is

between 1−ε
1+ε and 1+ε

1−ε , where

ε = ε 1

σ
QΛe(σs) = ε 1

σs
QΛe(σ) = ε√

σ2/σ2
sIn+hthΛe

(σ),

using the scaling property. Consequently, the deviation of the latter factor in (54) from 1 is at most

1 + ε

1− ε
− 1 =

2ε

1− ε
≤ 2ε

1− εmax
, (60)

where we used the assumption ε ≤ εmax. Thus,

|ρ(y)− ρ̃(y)| ≤ 2ε

1− εmax
ρ̃(y) (61)

and integrating over Rn we get the proposed statistical distance.

D. Proof of Theorem V.2

Proof. The proof closely follows the steps of that of Theorem V.1. We start by writing

I [M ; (y,h)] = Eh [I [M ; (y|h = h)]] . (62)

For a fixed channel realization h, by Lemma V.1 the distribution of the received vector y is close to a fixed Gaussian

distribution ρ̃ for all messages M , with variational distance

V
(
ρ{y|M=m}, ρ̃

)
≤ 2ε√

σ2/σ2
sIn+hthΛe

(σ)/(1− εmax), (63)

provided that ε√
σ2/σ2

sIn+hthΛe
(σ) =: ε ≤ εmax for some fixed εmax < 1. Using Lemma II.1, we get an information

leakage bound for channel matrices h such that 2ε/(1− εmax) ≤ 1/2

I [M ; (y|h = h)] ≤ h
(

2ε

1− εmax
, |M|

)
. (64)
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This bound is applicable for a largest range of values of ε if we have 2εmax/(1 − εmax) = 1/2, so we choose

εmax = 1/5. Otherwise, we have the trivial information leakage bound log |M|. This yields

I [M ; (y,h)] ≤ Eh

[
1{ε≤1/5}h (5ε/2, |M|)

]
+ Eh

[
1{ε>1/5} log |M|

]
. (65)

The rest of the proof is identical to Theorem V.1: we use Jensen’s inequality for the first term,

Eh

[
1{ε≤1/5}h (5ε/2, |M|)

]
= P[ε ≤ 1/5] Eh|ε≤1/5 [h (5ε/2, |M|)] (66)

≤ P[ε ≤ 1/5] h (5 min{Eh[ε], 1/5}/2, |M|) (67)

and increase the weight of the latter larger term in the convex combination (65) by Markov’s inequality,

I [M ; (y,h)] ≤ (1− 5Eh[ε])h (5 min{Eh[ε], 1/5}/2, |M|) + 5Eh[ε] log |M| (68)

=

(1− 5Eh [ε])h (5Eh [ε] /2, |M|) + 5Eh [ε] log |M|, Eh [ε] ≤ 1/5

log |M|, Eh [ε] ≥ 1/5.

(69)

which concludes the proof.


