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Some quaternary additive codes outperform linear

counterparts
Chaofeng Guan, Ruihu Li, Yiting Liu, Zhi Ma

Abstract—The additive codes may have better parameters
than linear codes. However, it is still a challenging problem to
efficiently construct additive codes that outperform linear codes,
especially those with greater distances than linear codes of the
same lengths and dimensions. This paper focuses on constructing
additive codes that outperform linear codes based on quasi-
cyclic codes and combinatorial methods. Firstly, we propose a
lower bound on the symplectic distance of 1-generator quasi-
cyclic codes of index even. Secondly, we get many binary quasi-
cyclic codes with large symplectic distances utilizing computer-
supported combination and search methods, all of which corre-
spond to good quaternary additive codes. Notably, some additive
codes have greater distances than best-known quaternary linear
codes in Grassl’s code table (bounds on the minimum distance of
quaternary linear codes http://www.codetables.de) for the same
lengths and dimensions. Moreover, employing a combinatorial
approach, we partially determine the parameters of optimal
quaternary additive 3.5-dimensional codes with lengths from 28

to 254. Finally, as an extension, we also construct some good
additive complementary dual codes with larger distances than
the best-known quaternary linear complementary dual codes in
the literature.

Index Terms—quasi-cyclic codes, symplectic bound, additive
codes, optimal, additive complementary dual codes.

I. INTRODUCTION

O
NE of the most significant problems in coding theory is

constructing good error-correcting codes. After decades

of efforts, scholars have constructed a large number of linear

codes with suitable parameters, Grassl et al. summarized those

results and established an online code table [1] of best-known

linear codes over small finite fields Fq, q ≤ 9. Unlike linear

codes, additive codes are closed under vector addition but not

necessarily closed under scalar multiplication. All linear codes

can be considered as also additive codes, but additive codes are

not necessarily linear. Therefore, theoretically, additive codes

may have better parameters than linear codes. In addition,

additive codes also have critical applications in quantum

information [2], [3], computer memory systems [4], [5], [6],

deep space communication [7], and secret sharing [8]. Thus,

it is crucial to construct good additive codes, especially ones

with better performance than best linear codes.

Quaternary additive codes were the first to receive schol-

arly attention, given the links to communications, electronic

devices, computers, etc. In [9], Blokhuis and Brouwer deter-

mined the parameters of optimal quaternary additive codes

of lengths not more than 12, some of which have higher

information rates than optimal linear cases. Afterward, much

work has been done on quaternary additive codes with small

lengths [10], [11], [12], [13] or low dimensions [14], [15],

resulting in a general determination of the parameters of

quaternary additive codes of lengths up to 15 and a complete

determination of the parameters of 2.5-dimensional optimal

quaternary additive codes. Meanwhile, additive complemen-

tary dual codes1 (ACD codes) have also attracted a wild

attention of scholars owing to their utility in constructing

maximal-entanglement entanglement-assisted quantum codes

[16], [17], [18], and their application in resisting side-channel

attacks [19], [20], [21], [22], [23].

Quasi-cyclic codes are an interesting class of linear codes

that exhibit good performance in constructing record-breaking

or best-known linear codes in [1]. With appropriate mappings,

quasi-cyclic code can be used to construct good additive codes

[24], [25], [26], [27], [28], [29]. However, there is still a lack of

practical approaches to construct additive codes using quasi-

cyclic codes, which makes it challenging to construct good

additive codes with quasi-cyclic codes. This paper proposes

a lower bound on the symplectic distance of 1-generator

quasi-cyclic codes of index even and several combinatorial

construction methods of additive codes. Further, we construct

many good quaternary additive codes and ACD codes, which

perform better than linear counterparts in Grassl’s code table

[1] or best-known LCD codes in [30], [31], [32], [33].

This paper is structured as follows. In the next section, we

give some of the foundations used in this paper. In Sec. III,

we propose a lower bound on the symplectic distance of 1-

generator quasi-cyclic codes of index even. In Sec. IV, we give

some combinations, enhancements and derivations of additive

codes, and construct a large number of good additive codes. In

Sec. V, we discuss the construction of ACD codes, and obtain

some quaternary ACD codes that are better than the quaternary

LCD codes in the literature. Finally, in Sec. VI, we discuss our

main results and future research directions. The parameters of

linear or additive codes in this paper are computed by algebra

software Magma [34].

II. PRELIMINARIES

This section presents some fundamentals of additive codes

and quasi-cyclic codes. For more details, refer to [35], [36],

[37].

1In this paper, all additive complementary dual codes are with respect to
the trace Hermitian inner product, which can be simplified to Hermitian inner
product, in linear case [2], and all linear complementary dual codes (LCD
codes) are with respect to the Hermitian inner product.

http://arxiv.org/abs/2303.07156v4
http://www.codetables.de
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A. Additive codes

Let p be a prime, and Fq is the finite field of order

q, where q = pr for some positive integer r. For ~u =
(u0, . . . , un−1) ∈ F

n
q , the Hamming weight of ~u is wH(~u) =

# {i | ui 6= 0, 0 ≤ i ≤ n− 1}. Let ~u1, ~u2 ∈ F
n
q , then Eu-

clidean inner product of them is 〈~u1, ~u2〉e =
∑n−1

i=0 u1,iu2,i.

For ~v = (v0, . . . , v2n−1) ∈ F
2n
q , symplectic weight of ~v

is ws(~v) = # {i | (vi, vn+i) 6= (0, 0), 0 ≤ i ≤ n− 1}. Let

~v1, ~v2 ∈ F
2n
q , then the symplectic inner product of them is

〈~v1, ~v2〉s =
∑n−1

i=0 (v1,iv2,n+i − v1,n+iv2,i).
A code Cl is said to be linear over Fq if it is a linear

subspace of Fn
q . If Cl have dimension k, minimum Hamming

distance (weight) dH , then Cl can be denoted as [n, k, dH ]q.

Linear codes of even lengths can also be considered as

symplectic codes Cs. If Cs is a [2n, k]q symplectic code of the

minimum symplectic distance ds, then Cs can be denoted as

[2n, k, ds]
s
q. A code Ca is said to be an additive code over Fq2

if it is a subgroup of Fn
q2 , this means that scalar multiples of

the codewords do not necessarily belong to the code. Defining

ka as the dimension of Ca over Fq, then Ca have dimension
ka

2 over Fq2 . If Ca have minimum Hamming distance dH , then

Ca can be denoted as (n, ka

2 , dH)q2 .

The Euclidean dual code of Cl is C
⊥e

l =
{

~c1 ∈ F
n
q | 〈~c1,~c2〉e = 0, ∀~c2 ∈ Cl

}

. Symplectic dual of

Cs is C ⊥s

s =
{

~c1 ∈ F
2n
q | 〈~c1,~c2〉s = 0, ∀~c2 ∈ Cs

}

. Cl is an

Euclidean LCD code if and only if Cl ∩ C
⊥e

l = {0}. Cs is a

symplectic LCD code if and only if Cs ∩ C⊥s

s = {0}.

To establish the connection between F
2n
q and F

n
q2

. We

define two maps, φ and Φ, as follows. For x, y ∈
Fq, then φ(x, y) = x + wy, where w generates Fq2

over Fq. For ~v = (v0, . . . , v2n−1) ∈ F
2n
q , Φ(~v) =

(φ(v0, vn), φ(v1, vn+1), · · · , φ(vn−1, v2n−1)). Clearly, map-

ping Φ is a one-to-one mapping, and there is wH(Φ(~v)) =
ws(~v).

Let Gs denote generator matrix of Cs, then Φ(Gs) can

generate additive code Ca have parameters (n, k
2 , ds)q2 . Sim-

ilarly, Φ−1(Ca) = Cs. Therefore, a symplectic code Cs

with parameters [2n, k, ds]
s
q is equivalent to an additive code

(n, k
2 , ds)q2 . Notably, Calderbank et al. [2] also proved that bi-

nary symplectic inner product and quaternary trace Hermitian

inner product are equivalent. Therefore, a binary symplectic

LCD [2n, k, ds]
s
2 code is also a quaternary ACD code with

parameters (n, k
2 , ds)4.

In general, for an additive (n, k
2 , ds)q2 code, where k is

even, if the best linear code is [n, k
2 , < ds]q2 , then we regard

(n, k
2 , ds)q2 as better than linear counterpart in a strong sense.

When k is odd, for specific n and ds, if the best linear code

is [n, ⌊k
2⌋, ds]q2 , then (n, k

2 , ds)q2 is regarded better for the

higher information rate. However, there is also a particular

case in which the best linear codes are [n, ⌊k
2 ⌋, d1]q2 and

[n, ⌈k
2⌉, d2]q2 , with d2 < ds < d1. In this case, we can

consider that (n, k
2 , ds)q2 fills the distance gap of best linear

codes.

B. Cyclic codes and quasi-cyclic codes

Let C be an [n, k]q code over Fq, C is cyclic provided

that for all c = (c0, c1, · · · , cn−1) ∈ C , the cyclic shift c′ =

(cn−1, c0, · · · , cn−2) ∈ C . Considering each codeword c as

a coefficients vector of polynomial c(x) =
∑n−1

i=0 cix
i−1 in

Fq[x], then C corresponds to a principal ideal in the quotient

ring Rq,n = Fq[x]/ 〈x
n − 1〉, which is generated by a unique

monic non-zero polynomial g(x) of degree n − k. We call

g(x) the generator polynomial of cyclic code C , and C also

can be denoted as 〈g(x)〉. The parity check polynomial of C

is h(x) = (xn − 1) /g(x). The Euclidean dual code C⊥e of

C is also a cyclic code with generator polynomial g⊥e(x) =
h̃(x) = xdeg(h(x))h(x−1).

A linear code C of length nℓ over Fq is

called a quasi-cyclic code of index ℓ if c =
(c0, c1, . . . , cnℓ−1) is a codeword of C , then c′ =
(cn−1, c0, . . . , cn−2, c2n−1, cn, . . . , c2n−2, . . . , cnℓ−1, c(n−1)ℓ,
. . . , cnℓ−2) is also a codeword. Circulant matrices are basic

components in the generator matrix for quasi-cyclic codes.

An n× n circulant matrix M is defined as

M =











m0 m1 m2 . . . mn−1

mn−1 m0 m1 . . . mn−2

...
...

...
...

...

m1 m2 m3 . . . m0











. (1)

If the first row of M is mapped onto polynomial m(x),
then circulant matrix M is isomorphic to polynomial m(x) =
m0+m1x+· · ·+mn−1x

n−1 ∈ Rq,n. So M can be determined

by polynomial m(x). Generator matrix of h-generator quasi-

cyclic code with index ℓ has the following form:

G =











M1,0 M1,1 · · · M1,ℓ−1

M2,0 M2,1 · · · M2,ℓ−1

...
...

. . .
...

Mh,0 Mh,1 · · · Mh,ℓ−1











, (2)

where Mi,j are circulant matrices generated by the polynomi-

als mi,j(x) ∈ Rq,n, where 1 ≤ i ≤ h and 0 ≤ j ≤ ℓ− 1.

III. BOUND ON THE SYMPLECTIC WEIGHT OF

1-GENERATOR QUASI-CYCLIC CODES OF INDEX EVEN

For narrative convenience, we fix ℓ as an even number and

m = ℓ/2, throughout this paper. Let [s, t] (s ≤ t) denote the set

{s, s+1, · · · , t}. For g(x) = g0+g1x+g2x+· · ·+gn−1x
n−1 ∈

Rq,n, [g(x)] denote the vector generated by coefficients of g(x)
in F

n
q , i.e., [g(x)] = [g0, g1, g2, · · · , gn−1].

First, we introduce the relationship between the symplectic

and Hamming weights in Lemma 1.

Lemma 1: ([38]) If ~x, ~y be two vectors in F
n
q , then there is

q · ws(~x | ~y) = wH(~x) + wH(~y) +
∑

α∈F∗

q

wH(~x+ α~y). (3)

Definition 1: Let g(x) and fj(x) are polynomials in Rq,n,

g(x) | (xn−1), where j ∈ [0, ℓ−1]. If C is a quasi-cyclic code

generated by ([g(x)f0(x)], [g(x)f1(x)], · · · , [g(x)fℓ−1(x)]),
then C is called 1-generator quasi-cyclic code with index ℓ.
The generator matrix G of C have the following form:

G = (G0, G1, · · · , Gℓ−1) , (4)

where Gj are n × n circulant matrices generated by

[g(x)fj(x)].
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As a special class of quasi-cyclic codes, 1-generator quasi-

cyclic codes can be regarded as linear codes generated by

juxtaposing multiple cyclic codes. The following theorem

determines a lower bound on the symplectic distances of 1-

generator quasi-cyclic codes with even index.

Theorem 1: Suppose C is a 1-generator quasi-cyclic code in

Definition 1 of index ℓ. If gcd(fj(x)+αfj+m(x), xn
−1

g(x) ) = 1,

and deg(fj(x)fj+m(x)) ≥ 1, α ∈ Fq, i ∈ [0, ℓ − 1], j ∈
[0,m− 1], then the following equation holds.

ds(C ) ≥ m ·

⌈

q + 1

q
d(g(x))

⌉

, (5)

where ds(C ) is the symplectic distance of C , d(g(x)) is the

minimum Hamming distance of cyclic code 〈g(x)〉.

Proof: Given that a(x) is any polynomial in Rq,n,

then any codeword of C can be denoted as c =
([a(x)f0(x)g(x)], [a(x)f1(x)g(x)], · · · , [a(x)fℓ−1(x)g(x)]).

Let c1 = ([a(x)f0(x)g(x)], [a(x)f1(x)g(x)], · · · , [a(x)
fm−1(x)g(x)]), c2 = ([a(x)fm(x)g(x)], [a(x)fm+1(x)g(x)],
· · · , [a(x)fℓ−1(x)g(x)]), and c3 = c1 + αc2 =
([a(x)g(x)(f0(x)+αfm(x))], [a(x)g(x)(f1(x)+αfm+1(x))],
· · · , [a(x)g(x)(fm−1(x) + αfℓ−1(x))]), respectively. By

Lemma 1, the symplectic weight of c is

ws(c) =

(

wH(c1) + wH(c2) +
∑

α∈F∗

q

wH(c3)

)

/q

= (wH(c1) + wH(c2)) /q

+
m
∑

i=0

∑

α∈F∗

q

wH([a(x)g(x)(fi(x) + αfm+i(x))])/q.

For the reason that gcd(fi(x),
xn

−1
g(x) ) = 1, i ∈ [0, ℓ − 1],

there are wH(c1) ≥ m · d(g(x)) and wH(c2) ≥ m · d(g(x)).
In addition, it is easy to verify that when gcd(fj(x) +
αfj+m(x), xn

−1
g(x) ) = 1, there is wH([a(x)g(x)(fi(x) +

αfm+i(x))]) ≥ d(g(x)). Therefore, the following formula

holds.

ws(c) ≥ 2m · d(g(x))/q + (q − 1)m · d(g(x))/q

≥ m ·
⌈

q+1
q

d(g(x))
⌉

.

�

Lemma 2: Let gcd(n, q) = 1, g(x) | (xn − 1), and f(x) are

polynomials in Rq,n. If f(x) | g(x), then there is gcd(f(x) +
α, xn

−1
g(x) ) = 1, α ∈ Fq.

Proof: For gcd(n, q) = 1, xn − 1 has no repeated ir-

reducible factors over split field, so if f(x) | g(x), then

gcd(f(x), xn
−1

g(x) ) = 1. In addition, as f(x) +α is not a factor

of xn
−1

g(x) , gcd(f(x) + α, xn
−1

g(x) ) = 1. �

Corollary 1: When gcd(n, q) = 1 and k < n
2 , if there exists

a Fq- cyclic code of parameters [n, k, d]q , then there also exist

Fq2 - additive codes with parameters (mn, k
2 ,≥ m·

⌈

q+1
q

d
⌉

)q2 .

Proof: It is easy to conclude that Corollary 1 holds by

combining Theorem 1 and Lemma 2. �

The following lemma will help to determine the optimality

of low-dimensional additive codes.

Lemma 3: Let Ca be an quaternary additive code (n, k, d)4,

with k ≥ 1. Then,

3n ≥

2k−1
∑

i=0

⌈

d

2i−1

⌉

. (6)

Proof: The concatenated code of (n, k, d)4 code and [3, 2, 2]2
is [3n, 2k, 2d]2. By the Griesmer bound, there is Equation (6),

so this lemma holds. �

Example 1: Let q = 2, n = 31, taking generator polynomial

g(x) = x26 + x24 + x22 + x21 + x20 + x18 + x17 + x13 +
x12 + x11 + x10 + x9 + x6 + x5 + x3 + 1 from Chen’s

Database [39], this will generate a binary cyclic code C of

parameters [31, 5, 16]2. Through Theorem 1 and Lemma 2,

choosing f0(x) = x + 1 and f1(x) = 1, we can obtain

quaternary additive codes with parameters (31, 2.5,≥ 24)4.

By virtue of Lemma 3, (31, 2.5, 24)4 is optimal additive code,

which also has better performance than optimal quaternary

linear code with parameters [31, 2, 24]4.

It should be noted that similar results were also obtained

by Bierbrauer et al. [15]. However, the approach in this paper

is more concise, and our codes have a cyclic (or quasi-cyclic)

structure, which makes ours easier to encode and decode.

Theorem 2: If C is a 1-generator quasi-cyclic code with

parameters [tn, k, d]q of index t. Set polynomials fl(x), fr(x)
satisfy gcd(fl(x) + αfr(x),

xn
−1

g(x) ) = 1, α ∈ Fq , and

deg(fl(x)fr(x)) ≥ 1; then, there also exists an additive code

have parameters (tn, k
2 ,≥

⌈

q+1
q

d
⌉

)q2 .

Proof: Suppose generator of C is g(x) = ([g(x)f0(x)],
[g(x)f1(x)], · · · , [g(x)ft−1(x)]). Set C ′ is a 1-generator

quasi-cyclic code with generator g′(x) = (g(x)fl(x) |
g(x)fr(x)). Let a(x) be any polynomial in Rq,n, then any

codeword in C ′ can be denoted as c′ = (a(x)g(x)fl(x) |
a(x)g(x)fr(x)). Let c1

′ = (a(x)g(x)fl(x)), c2
′ =

(a(x)g(x)fr(x)), and c3
′ = c1

′ + αc2
′, respectively. With

the help of Lemma 1, the symplectic weight of c′ is given by

the following equation.

ws(c
′) =

(

wH(c1
′) + wH(c2

′) +
∑

α∈F∗

q

wH(c3
′)

)

/q.

Since, c1
′, c2

′ ∈ C , there are wH(c1
′) ≥ d, and wH(c2

′) ≥
d. In addition, for the reason that ∀α ∈ Fq, gcd(fl(x) +
αfr(x),

xn
−1

g(x) ) = 1, and c3
′ = a(x)(fl(x) + αfr(x))(g(x));

hence,
∑

α∈F∗

q

wH(c′
3
) ≥ (q − 1)d. Therefore, the following

formula holds.

ws(c
′) ≥ 2d/q + (q − 1)d/q

≥
⌈

q+1
q

d
⌉

.

Then it is clear that C ′ is an symplectic code have param-

eters
[

2tn, k,≥
⌈

q+1
q

d
⌉]s

q
, which corresponds to an additive

(

tn, k
2 ,≥

⌈

q+1
q

d
⌉)

q2
code.

�

Example 2: Let q = 2, n = 127, taking polynomial h(x) =
x7+x6+x5+x3+x2+x+1, then g(x) = xn

−1
h(x) will generate

an optimal binary cyclic code C of parameters [127, 7, 64]2.
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Through Lemma 2, choosing f0(x) = x + 1 and f1(x) = 1;

then ([g(x)f0(x)], [g(x)f1(x)]) can generate a quasi-cyclic

code Cl with parameters [254, 7, 128]2. By Theorem 1 and

Lemma 3, Φ(Cl) is an optimal quaternary (127, 3.5, 96)4
2,

which has better performance than optimal quaternary lin-

ear codes [127, 3, 96]4 in [1]. In addition, with Theorem 2,

taking fl(x) = f0(x), fr(x) = 1; then, ([g(x)f0(x)fl(x)],
[g(x)f1(x)fl(x)], [g(x)f0(x)fr(x)], [g(x)f1(x)fr(x)]) will

generate a [508, 7,≥ 192]s2 symplectic code. So, by Lemma 3,

there exist optimal (254, 3.5, 192)4 additive code, which also

outperform optimal quaternary linear codes [254, 3, 192]4.
Remark 1: Lemma 2 gives only one way to select fi(x)

that satisfies Theorem 1 and 2. This ensures that the distance

of the resulting additive code is greater than or equal to the

lower bound but is not necessarily the best. For additive codes

of dimension greater than 3.5, a computational search would

be an efficient way to construct additive codes with suitable

parameters. An efficient search approach is to choose the

generator polynomial of best cyclic code as g(x). It is more

probable to find codes with considerable distance even if the

lower bound of the distance derived from Theorem 1 and 2 is

not large. Similar to the ASR algorithm, proposed by Aydin,

Siap and Ray-Chaudhuri in [40], this can help us search for

good additive codes.

IV. GOOD QUATERNARY ADDITIVE CODES OUTPERFORM

BEST-KNOWN LINEAR CODES

This section focuses on constructing good additive codes.

We construct many additive codes superior to linear counter-

parts, specifically, some of which perform better than best-

known quaternary linear codes in [1]. Moreover, employing

a combinatorial approach, we partially determine the param-

eters of optimal quaternary additive 3.5-dimensional codes of

lengths from 28 to 254.

Consider the finite field of order 2 by F2 and the finite field

of order 4 by F4 = {0, 1, w, w2}, where w2 + w + 1 = 0.

In addition, 1n, wn, w2

n
denote all 1, w and w2 vectors of

length n, respectively.

Before starting construction, we introduce additive codes’

basic derivation and augmentation.

Lemma 4: If Ca is an additive code of parameters

(n, k, d)q2 , then the following additive codes also exist:

(1) For i ≥ 1, (n+ i, k,≥ d)q2 (Additive Extend);

(2) For i ≤ d, (n− i, k,≥ d− i)q2 (Additive Puncture);

(3) For i ≤ k, (n− i, k − i,≥ d)q2 (Additive Shorten);

Proof: The difference between generator matrix of additive

and linear codes is that the number of rows of additive codes

is 2k. For the reason that puncture and extension can be

considered as the extensions and deletions of the codewords.

Therefore, the extent and puncture of additive and linear codes

have similar properties, so (1) and (2) naturally hold. Since the

proof of Theorem 1.5.7 (i) in [35] is also valid for additive

codes, the puncture of Ca is equivalent to the shorten of C⊥
a .

By puncturing C⊥
a , one can get an additive code (n− 1, k)q2 ,

which satisfies that at least any d − 1 columns are linearly

2This code is also obtained by Guo et al. in [14], but our construction is
simpler and has a cyclic structure.

independent. Hence, there exist (n− i, k − i,≥ d)q2 additive

codes. Therefore, (3) also holds. �

Lemma 5: (Additive Augmentation) If Ca is an additive

code of parameters (n, k)q2 , and no codeword of weight n in

Ca, then the following additive codes exist.

(1) (n, k + 0.5)q2 .

(2) (n, k + 1)q2 .

Proof: For F
n
q2

, there are three special vectors of weight n,

1n, wn, w2

n
, which can be expressed in two bases 1n and

wn. Since, there is no codeword in Ca of weight n, then 1n

and wn both cannot be spanned by bases of Ca. Therefore,

adding 1n, one can get an (n, k+0.5)q2 additive code; adding

1n and wn to Ca, one can get an (n, k + 1)q2 additive code.

�

Example 3: Let q = 2, n = 63. Taking g(x) = x53 +x52 +
x51+x50+x48+x47+x45+x43+x42+x40+x39+x38+x31+
x28+x25+x24+x21+x20+x19+x17+x14+x13+x9+x8+
x5 + x + 1, 〈g(x)〉 can generator a [63, 10, 27]2 cyclic code,

selecting f0(x) = x61 + x59 + x58 + x54 + x52 + x50 + x45 +
x44+x43+x41+x39+x33+x32+x31+x26+x24+x23+x22+
x20 + x18 + x13 + x12 + x11 + x10 + x9 + x6 + x4 + x2 + x,

and f1(x) = 1. Since gcd(f0(x) + f1(x),
xn

−1
g(x) ) = 1, and

deg(f0(x)f1(x)) ≥ 1, ([g(x)f0(x)], [g(x)]) will generate a

symplectic [126, 10,≥ 41]s2 code Cs. Using Magma [34], the

real distance of Ca = Φ(Cs) can be calculated as 45. There-

fore, we can get an additive code of parameters (63, 5, 45)4,

which have a larger minimum distance compared with best-

known linear code [63, 5, 44]4 in [1].

In addition, augment (63, 5, 45)4, we can get (63, 5.5, 45)4;

extend (63, 5, 45)4, we can get (64, 5, 46)4. Extend

(63, 5.5, 45)4, we can get (64, 5.5, 46)4. Best-known linear

codes in [1] are [63, 5, 44]4, [64, 5, 45]4, so (63, 5.5, 45)4,

(64, 5, 46)4 and (64, 5.5, 46)4 all outperform best-known

linear counterparts.

Lemma 6: (Additive Construction X) If there are two

additive codes Ca2 ⊂ Ca1, with parameters (n, k2, d2)q2 ⊂
(n, k1, d1)q2 , where d2 > d1. Let Ca3 be an additive code with

parameters (l, k1−k2, δ)q2 , then there exists (n+l, k1,min{δ+
d1, d2})q2 additive code.

Proof: First, suppose the generator matrices of Ca1, Ca2

and Ca3 as Ga1, Ga2 and Ga3, respectively. Since, Ca2 ⊂

Ca1, there is Ga1 =

(

Ga2

Gax

)

. Then, constructing Gx =
(

Gax Ga3

Ga2 0

)

, which can generate an additive code with

parameters (n+ l, k1,min{δ + d1, d2})q2 . �

Example 4: Let q = 2, n = 35. Taking g(x) = x28 +x25 +
x24+x21+x20+x19+x18+x17+x15+x13+x12+x11+x9+
x8 + x6 + x2+ x+1, f0(x) = x34 + x33 + x30+ x28 + x27+
x25+x23+x22+x18+x17+x16+x11+x8+x7+x6+x5+x4,

f1(x) = x34+x27+x23+x21+x20+x19+x18+x16+x15+
x13+x11+x10+x5+x4+x. Then, ([g(x)f0(x)], [g(x)f1(x)])
will generate a symplectic [70, 7, 26]s2 code, which corresponds

to an additive code of parameters (35, 3.5, 26)4. Further, we

can get a subcode with parameters (35, 1.5, 30)4 by taking out

codewords of weight 30 from (35, 3.5, 26)4. Generator matrix

of additive (35, 1.5, 30)4 code is Gsub.
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Gsub =





1w 1w2w2 w 0 1w 1w2w2 w 0 1w 1w2w2 w 0 1w 1w2w2 w 0 1w 1w2w2 w 0
w 0 1 w 1 w2w2w 0 1 w 1 w2w2w 0 1 w 1 w2w2w 0 1 w 1 w2w2w 0 1 w 1 w2w2

0 1w 1 w2w2 w 0 1w 1 w2w2 w 0 1w 1 w2w2 w 0 1w 1 w2w2 w 0 1w 1 w2w2 w



 .

According to Lemma 6, select (5, 2, 4)4 as auxiliary code

which leads to an optimal additive code with parameters

(40, 3.5, 30)4. This code performs better than optimal linear

code [40, 3, 30]4 in [1].

It should be noted that Theorem 1 also has implications

for constructing good additive codes via the symplectic multi-

generator quasi-cyclic codes.

Example 5: Let q = 2, n = 47. Selecting g1(x) =
x23 + x19 + x18 + x14 + x13 + x12 + x10 + x9 + x7 + x6 +
x5 + x3 + x2 + x+1 and g2(x) = x+ 1, which can generate

two optimal binary cyclic codes with parameters [47, 24, 11]2
and [47, 46, 2]2, respectively; By computer search, we find

f(x) = x45+x44+x43+x42+x41+x39+x38+x37+x33+
x32+x15+x14+x10+x9+x8+x6+x5+x4+x3+x2 such

that the parameters of the 2-generator quasi-cyclic code with

([g1(x)f(x), g1(x)]) and ([g2(x), g2(x)f(x)]) as generators

are (47, 35, 7)4. This result surpasses best-known quaternary

linear code [47, 35, 6]4 in Grassl’s code table [1].

Example 6: Let q = 2, n = 55. Selecting g1(x) = x35 +
x34 + x32 + x31 + x30 + x28 + x27 + x26 + x24 + x23 +
x20 + x18 + x14 + x13 + x11 + x10 + x8 + x7 + x6 + x5 +
x4 + x3 + x2 +1 and g2(x) =

xn
−1

x+1 , which can generate two

optimal binary cyclic codes with parameters [55, 20, 16]2 and

[55, 1, 55]2, respectively. By computer search, we find f0(x) =
x50 + x49 +x47 + x43 + x42 + x41 + x39 +x38 + x37 + x36 +
x35 + x34 + x33 + x31 + x29 + x25 + x24 + x21 + x20 +
x16+x15+x13+x12+x10+x9+x8+x5+x2+x; f1(x) =
x53+x52+x51+x50+x49+x47+x46+x45+x44+x40+x39+
x37+x36+x33+x30+x29+x27+x26+x25+x24+x22+x21+
x20+x18+x17+x16+x15+x14+x13+x9+x7+x5+x4; such

that the parameters of the 2-generator quasi-cyclic code with

([g1(x)f0(x), g1(x)f1(x)]) and ([g2(x)f1(x), g2(x)f0(x)]) as

generators are (55, 10.5, 29)4.

Extending (55, 10.5, 29)4, we can get (56, 10.5, 30)4, which

fill the gap of [56, 10, 32]4 and [56, 11, 29]4. In addition,

augmenting (56, 10.5, 30)4, one can get an additive code have

parameters (56, 11, 30)4. This result is surpassing best-known

quaternary linear code [56, 11, 29]4 in Grassl’s code table [1].

Remark 2: According to Lemma 5, by augment-

ing the additive codes (31, 2.5, 24)4 and (127, 3.5, 96)4
in Example 1 and Example 2 twice, we can ob-

tain (31, 3.5, 23)4 and (127, 4.5, 95)4. Further, extend-

ing (31, 3.5, 23)4 and (127, 4.5, 95)4, we can also get

(32, 3.5, 24)4 and (128, 4.5, 96)4. In particular, (31, 3.5, 23)4,

(32, 3.5, 24)4, (127, 4.5, 95)4 and (128, 4.5, 96)4 all perform

better than the best linear codes [31, 3, 23]4, [32, 3, 24]4,

[127, 4, 95]4 and [128, 4, 96]4 in [1].

In addition, due to the extension of additive codes

obeying even-like principle, so there exists (32, 1, 32)4 ⊂
(32, 3.5, 24)4, selecting (11, 2.5, 8)4 as auxiliary code Caux.

Generator matrix Caux is given here.

Gaux =













1 0 w 1 1 w 0 w 1 w 0
w 0 w 1 w 0 w 1 w 0 w
0 1 0 1 w2 0 w2 1 w2w2 1
0 w w 0 1 w2w2 1 0 w w
0 0 w2w 1 1 w 0 w w w2













.

Then, with Lemma 6, we can get an additive

(43, 3.5, 32)4 code. Similarly, there also has (128, 1, 128)4⊂
(128, 4.5, 96)4, so separately selecting additive codes

(32, 3.5, 24)4, (35, 3.5, 26)4, (40, 3.5, 30)4 and (43, 3.5, 32)4
as auxiliary codes C ′

aux; then, with Lemma 6, we can get

optimal additive codes with parameters (160, 4.5, 120)4,

(163, 4.5, 122)4, (168, 4.5, 126)4, (171, 4.5, 128)4. By virtue

of Lemma 3, (43, 3.5, 32)4, (160, 4.5, 120)4, (163, 4.5, 122)4,

(168, 4.5, 126)4, (171, 4.5, 128)4 are all optimal additive

codes and have better performance than optimal linear codes

in [1].

Remark 3: We would like to thank the reviewer for the

professional reminder that the extremal code [85, 4, 64]4 in

PG(3, 4) reveals the existence of (85, 3.5, 64)4.

A combination method can obtain more optimal 3.5-

dimensional additive codes ranging from 28 to 254, as shown

in Table 1. For clarity of presentation, we make Ct denote

quaternary additive (n, 3.5, n− t)4 code. (Ct1 | Ct2) denotes

the juxtaposition code of Ct1 and Ct2 . Moreover, when Ct1

and Ct2 are combined, we default them both to the maximum

length. The fourth column of Table I shows the range of the

optimal additive codes derived with Lemma 3. In addition,

most perform better than the optimal 3-dimensional linear

codes in [1], but we will not list them here due to space

limitations.

Furthermore, we also construct a number of good additive

codes, all of which are better than their linear counterparts

in [1]. We give their specific constructions in Table V in

Appendix and compare their parameters with best-known

linear codes in [1] in Tables II and III to illustrate the

effectiveness of the methods in this paper. In particular, Table

II is a comparison done for the same length n and dimension

k. Our additive codes have a greater distance. Table III lists

additive codes with higher information rates that are compared

with best-known linear codes, i.e., they have twice as many

codewords as the corresponding linear codes for the same code

length n and distance d.

V. SOME QUATERNARY ACD CODES HAVE LARGER

DISTANCE THAN LCD CODES

This section focuses on constructing good ACD codes with

greater distance than best-known quaternary LCD codes in

[30], [31], [32], [33].
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TABLE I
OPTIMAL QUATERNARY ADDITIVE 3.5-DIMENSIONAL CODES OF LENGTHS

FORM 28 TO 254

No. Ct Parameters Range Constructions

1 C8 (n, 3.5, n− 8)4 28 ≤ n ≤ 32 Remark 2
2 C9 (n, 3.5, n− 9)4 33 ≤ n ≤ 35 Example 4
3 C10 (n, 3.5, n− 10)4 36 ≤ n ≤ 40 Example 4
4 C11 (n, 3.5, n− 11)4 41 ≤ n ≤ 43 Remark 2
5 C16 (n, 3.5, n− 16)4 60 ≤ n ≤ 64 (C8 | C8)
6 C17 (n, 3.5, n− 17)4 65 ≤ n ≤ 67 (C8 | C9)
7 C18 (n, 3.5, n− 18)4 68 ≤ n ≤ 72 (C8 | C10)
8 C19 (n, 3.5, n− 19)4 73 ≤ n ≤ 75 (C9 | C10)
9 C20 (n, 3.5, n− 20)4 76 ≤ n ≤ 80 (C10 | C10)
10 C21 (n, 3.5, n− 21)4 81 ≤ n ≤ 85 Remark 3
11 C22 (n, 3.5, n− 22)4 86 ≤ n ≤ 86 (C11 | C11)
12 C24 (n, 3.5, n− 24)4 92 ≤ n ≤ 96 (C8 | C16)
13 C25 (n, 3.5, n− 25)4 97 ≤ n ≤ 99 (C9 | C16)
14 C26 (n, 3.5, n− 26)4 102 ≤ n ≤ 104 (C10 | C16)
15 C27 (n, 3.5, n− 27)4 107 ≤ n ≤ 107 (C8 | C19)
16 C28 (n, 3.5, n− 28)4 108 ≤ n ≤ 112 (C8 | C20)
17 C29 (n, 3.5, n− 29)4 113 ≤ n ≤ 115 (C9 | C20)
18 C30 (n, 3.5, n− 30)4 118 ≤ n ≤ 120 (C10 | C20)
19 C31 (n, 3.5, n− 31)4 123 ≤ n ≤ 127 Example 2
20 C32 (n, 3.5, n− 32)4 128 ≤ n ≤ 128 Extend C31

21 C34 (n, 3.5, n− 34)4 134 ≤ n ≤ 136 (C10 | C24)
22 C39 (n, 3.5, n− 39)4 155 ≤ n ≤ 159 (C8 | C31)
23 C40 (n, 3.5, n− 40)4 160 ≤ n ≤ 162 (C9 | C31)
24 C41 (n, 3.5, n− 41)4 163 ≤ n ≤ 167 (C10 | C31)
25 C42 (n, 3.5, n− 42)4 168 ≤ n ≤ 170 (C11 | C31)
26 C47 (n, 3.5, n− 47)4 187 ≤ n ≤ 191 (C16 | C31)
27 C48 (n, 3.5, n− 48)4 192 ≤ n ≤ 194 (C17 | C31)
28 C49 (n, 3.5, n− 49)4 195 ≤ n ≤ 199 (C18 | C31)
29 C50 (n, 3.5, n− 50)4 200 ≤ n ≤ 202 (C19 | C31)
30 C51 (n, 3.5, n− 51)4 203 ≤ n ≤ 207 (C20 | C31)
31 C52 (n, 3.5, n− 52)4 208 ≤ n ≤ 212 (C21 | C31)
32 C53 (n, 3.5, n− 53)4 213 ≤ n ≤ 213 (C22 | C31)
33 C55 (n, 3.5, n− 55)4 219 ≤ n ≤ 223 (C24 | C31)
34 C56 (n, 3.5, n− 56)4 224 ≤ n ≤ 226 (C25 | C31)
35 C57 (n, 3.5, n− 57)4 229 ≤ n ≤ 231 (C26 | C31)
36 C58 (n, 3.5, n− 58)4 234 ≤ n ≤ 234 (C27 | C31)
37 C59 (n, 3.5, n− 59)4 235 ≤ n ≤ 239 (C28 | C31)
38 C60 (n, 3.5, n− 60)4 240 ≤ n ≤ 242 (C29 | C31)
39 C61 (n, 3.5, n− 61)4 245 ≤ n ≤ 247 (C30 | C31)
40 C62 (n, 3.5, n− 62)4 250 ≤ n ≤ 254 (C31 | C31)

TABLE II
QUATERNARY ADDITIVE CODES OUTPERFORM LINEAR COUNTERPARTS

No. Our Additive Codes Linear Counterparts in [1]

1 (47, 35, 7)4 [47, 35, 6]4
2 (56, 11, 30) [56, 11, 29]4
3 (64, 5, 46)4 [64, 5, 45]4
4 (92, 7, 64)4 [92, 7, 62]4
5 (128, 11, 80)4 [128, 11, 79]4
6 (196, 7, 140)4 [196, 7, 139]4

In [29], the authors identify sufficient and necessary con-

ditions for the quasi-cyclic codes to be symplectic LCD, as

shown in Lemma 7.

Lemma 7: ([29]) Let C be a 1-generator quasi-cyclic code

in Definition 1 of index ℓ. Taking Λ =
m−1
∑

j=0

(fj(x)f̄m+j(x)−

fm+j(x)f̄j(x)), then C is symplectic LCD code if and only

if the following equations hold.

g(x) = g̃(x),

gcd(Λ, xn
−1

g(x) ) = 1.
(7)

TABLE III
QUATERNARY ADDITIVE CODES HAVE HIGHER INFORMATION RATES

THAN LINEAR COUNTERPARTS

No. (n, k, d)4 [n, ⌊k⌋, d]4 [n, ⌈k⌉, d]4

1 (21, 10.5, 8)4 [21, 10, 8]4 [21, 11, 7]4
2 (22, 12.5, 7)4 [22, 12, 7]4 [22, 13, 6]4
3 (22, 15.5, 5)4 [22, 15, 5]4 [22, 16, 4]4
4 (30, 6.5, 18)4 [30, 6, 18]4 [30, 7, 17]4
5 (35, 9.5, 18)4 [35, 9, 18]4 [35, 10, 17]4
6 (42, 24.5, 10)4 [42, 24, 10]4 [42, 25, 9]4
7 (45, 14.5, 19)4 [45, 14, 19]4 [45, 15, 18]4
8 (44, 13.5, 19)4 [44, 13, 19]4 [44, 14, 18]4
9 (45, 15.5, 18)4 [45, 15, 18]4 [45, 16, 17]4
10 (45, 16.5, 17)4 [45, 16, 17]4 [45, 17, 16]4
11 (47, 11.5, 24)4 [47, 11, 24]4 [47, 12, 23]4
12 (63, 5.5, 45)4 [63, 5, 44]4 [63, 6, 44]4
13 (64, 5.5, 46)4 [64, 5, 45]4 [64, 6, 44]4
14 (71, 17.5, 32)4 [71, 17, 32]4 [71, 18, 31]4
15 (73, 13.5, 38)4 [73, 13, 38]4 [73, 14, 37]4
16 (124, 4.5, 92)⋆

4
[124, 4, 92]4 [124, 5, 90]4

17 (127, 4.5, 95)⋆
4

[127, 4, 95]4 [127, 5, 92]4
18 (128, 4.5, 96)⋆

4
[128, 4, 96]4 [128, 5, 93]4

19 (155, 4.5, 116)⋆
4

[155, 4, 116]4 [155, 5, 114]4
20 (160, 4.5, 120)⋆

4
[160, 4, 120]4 [160, 5, 118]4

21 (163, 4.5, 122)⋆
4

[163, 4, 122]4 [163, 5, 120]4
22 (166, 4.5, 124)⋆

4
[166, 4, 124]4 [166, 5, 122]4

23 (168, 4.5, 126)⋆
4

[168, 4, 126]4 [168, 5, 124]4
24 (171, 4.5, 128)⋆

4
[171, 4.5, 128]4 [171, 5, 127]4

⋆ According to Lemma 3, corresponding additive codes are
optimal.

Corollary 2: Let C be a 1-generator quasi-cyclic code in

Definition 1 of index ℓ. If generator of C satisfying Theorem

1 and Lemma 7, then there exists a symplectic LCD code with

the following parameters:
[

ℓn, n− deg(g(x)),≥ m ·

⌈

q + 1

q
d(g(x))

⌉]s

q

.

Remark 4: Since binary symplectic LCD codes are equiva-

lent to quaternary ACD codes, so corollary 2 also reveals the

existence of ACD codes with parameters:
(

mn, (n−Degree(g(x)))/2,≥ m ·

⌈

q + 1

q
d(g(x))

⌉)

q2

.

Example 7: Let q = 2, n = 13. Taking g(x) = x+1, which

can generate an optimal binary LCD code with parameters

[13, 12, 2]2. Selecting f1(x) = x12 + x9 + x8 + x7 + x6 +
x5 + x4 + x3, f2(x) = x12 + x9 + x8 + x6 + x, and

f3(x) = x10 + x9 + x8 + x7 + x6 + x3 + x2 + x + 1; Then,

([g(x)], [g(x)f1(x)], [g(x)f2(x)], [g(x)f3(x)]) will generate a

symplectic [52, 12,≥ 6]s2 LCD code. Using Magma [34], one

can compute the real symplectic distance of this code as 15.

Therefore, we can get an ACD code of parameters (26, 6, 15)4,

which have a larger minimum distance compared with best-

known LCD code [26, 6, 14]4 in [33].

The following lemma will be helpful in constructing new

ACD codes by combining trace Hermitian self-orthogonal

codes and ACD codes.

Lemma 8: If there exist (n1, k, d1)q2 ACD code Ca1 and

(n2, k, d2)q2 additive trace Hermitian self-orthogonal code

Ca2, respectively. Then, there also exists (n1+n2, k,≥ (d1+
d2))q2 ACD code.
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Proof: Denote the generator matrices of Ca1 and Ca2 as

Ga1 and Ga2, respectively. Then, let Φ−1(Ga1) = (A | B),
Φ−1(Ga2) = (C | D), and Ga = (A,C,B,D), then there the

following equation holds.

Ga

(

0 In1+n2

−In1+n2
0

)

GT
a =

(

−B,−D,A,C
)









AT

BT

CT

DT









= (−BAT +ABT ) + (−DCT + CDT ).
Since, Ca1 is ACD code and Ca2 is trace Hermitian self-

orthogonal code, there are Rank(−BAT + ABT ) = 2k and

−DCT +CDT = 0. Therefore, Φ(Ga) can generate an ACD

code with parameters (n1 + n2, k,≥ (d1 + d2))q2 . �

Example 8: Let q = 2, n1 = 12, n2 = 17. Taking

g1(x) = x4 + 1, f1,0(x) = x11 + x8 + x6 + x5 + x4 + 1 ,

f1,1(x) = x11+x8+x4 and g2(x) = x9+x8+x6+x3+x+1,

f2,0(x) = x16 + x14+ x13 + x12+ x10+ x8 + x7+ x5+ x4 +
x3 + x2 + x, f2,1(x) = x16 + x12 + x5 + x4 + x3 + x2 + x.

Then, ([g1(x)f1,0], [g1(x)f1,1]) and ([g2(x)f2,0], [g2(x)f2,1])
will generate [24, 8, 7]s2 symplectic LCD code Cs1 and sym-

plectic self-orthogonal [34, 8, 12]s2 code Cs2, respectively.

Therefore, Φ(Cs1) is (12, 4, 7)4 ACD code and Φ(Cs2) is

additive (17, 4, 12)4 trace Hermitian self-orthogonal code. In

accordance with Lemma 8, (Φ(Cs1) | Φ(Cs2)) is an ACD code

with parameters (29, 4,≥ 19)4, which outperforms [29, 4, 18]4
LCD code in [33].

Further, choosing g3(x) = x2 + 1, f3,0(x) = x7 +
x6 + x5 + x2, and f3,1 = x9 + x6 + x5 + x3 + 1; then,

([g3(x)f3,0], [g3(x)f3,1]) can also generate an symplectic LCD

[20, 8, 6]s2 code Cs3. By Lemma 8, (Φ(Cs2) | Φ(Cs3)) is an

(27, 4,≥ 18)4 ACD code, which is also performing better than

LCD code [27, 4, 17]4 in the literature [33].

Lemma 9: (Construction X of ACD code) If there are two

ACD codes Ca2 ⊂ Ca1, with parameters (n, k2, d2)q2 ⊂
(n, k1, d1)q2 , where d2 > d1. Let Ca3 be an additive trace Her-

mitian self-orthogonal code have parameters (l, k1 − k2, δ)q2 ,

then there exists (n+ l, k1,min{δ + d1, d2})q2 ACD code.

Proof: First, denote the generator matrices of Ca1, Ca2 and

Ca3 as Ga1, Ga2 and Ga3, respectively. Since, Ca2 ⊂ Ca1,

there is Ga1 =

(

Ga2

Gax

)

. Then, construct Gx =

(

Gax Ga3

Ga2 0

)

.

By Lemma 8, Gx can generate an additive code with param-

eters (n+ l, k1,min{δ + d1, d2})q2 . �

Example 9: Let q = 2, n = 12. Taking g(x) = x4 + 1,
and select f1(x) = x7 + x6 + x5 + x4 + x3 + x2 + x + 1,
f2(x) = x9+x8+x5, f3(x) = x10+x9+x6+x5+x4+x3+x2.
Then, ([g(x)], [g(x)f1(x)], [g(x)f2(x)], [g(x)f3(x)]) will gen-
erate a symplectic LCD [42, 8, 16]s2 code, which corresponds to
an ACD code of parameters (24, 4, 16)4. Using Magma [34],
one can easily get a subcode with parameter (24, 1, 22)4 by
taking out two codewords of weight 22 from (24, 4, 16)4. The
generator matrix of additive code (24, 1, 22)4 is as follows.

Gsub =

(

1ww2w w 0 1ww2w w 0w2w2 1 1 www2w2 1 1 ww

w0 1 ww2ww0 1 ww2w w w w2w2 1 1 w w w2w2 1 1

)

.

According to Lemma 9, selecting trace Hermitian self-dual

(6, 3, 4)4
3 as auxiliary code leads to an ACD code with

parameters (30, 4, 20)4, which has a larger minimum distance

than (30, 4, 19)4 in [33].

3This code can be derived from quantum [[6, 0, 4]]2 code in [1].

Lemma 10: If Ca is an ACD code of parameters (n, k, d)q2 ,

then the following ACD codes also exist:

(1) For i ≥ 1, (n+ i, k,≥ d)q2 (ACD Extend);

(2) For i ≤ k, (n− i, k − i,≥ d)q2 (ACD Shorten);

(3) For i ≤ d, (n− i, k,≥ d− i)q2 (ACD Puncture).

Proof: For (1), it is sufficient to directly juxtapose the all-zero

column with Ca, or an additive self-orthogonal code. For (2),

let Ga denote generator matrix of Ca. Deleting the first row

and column of Ga yields G′
a. Since the dimensions of ACD

codes must be of integer dimensions, the generator matrix of

all ACD codes is of even rows. Therefore, G′
a will generate an

additive code C ′
a with 0.5-dimension hull H. Then, removing

H from C ′
a and noting the resulting ACD code as C ′′

a . As the

two-step operation from Ca to C ′′
a is equivalent to shorten, the

parameter of C ′′
a is (n−1, k−1,≥ d)q2 . Repeating this process

will yield ACD codes with parameters (n − i, k − i,≥ d)q2 .

Finally, since shorten for Ca is equivalent to puncture for C⊥
a ,

(3) also holds. �

With a computer-aided search method, we also construct

some good ACD codes of lengths ranging from 22 to 30.

We give their generators in Table VI in Appendix. Further,

we compare them with the best quaternary LCD codes in

[30], [31], [32], [33] in Table IV. The results show that our

ACD codes have greater distances for the same length and

dimension. Specifically, in Table IV, “S” represents the shorten

code.

TABLE IV
QUATERNARY ACD CODES OUTPERFORM LINEAR COUNTERPARTS

No. Our ACD Codes Best LCD Codes in [30], [31], [32], [33]

1 (22, 10, 9)4 [22, 10, 8]4
2 (25, 13, 8)4 [25, 13, 7]4
3 (26, 6, 15)4 [26, 6, 14]4
4 (26, 14, 8)4 [26, 14, 7]4
5 (27, 10, 12)4 [27, 10, 11]4
6 (26, 9, 12)4(S) [26, 9, 10]4
7 (27, 12, 10)4 [27, 12, 9]4
8 (26, 11, 10)4(S) [26, 11, 9]4
9 (27, 15, 8)4 [27, 15, 7]4

10 (28, 12, 11)4 [28, 12, 9]4
11 (29, 14, 10)4 [29, 14, 9]4
12 (28, 13, 10)4(S) [28, 13, 9]4
13 (27, 4, 18)4 [27, 4, 17]4
14 (29, 4, 19)4 [29, 4, 18]4
15 (30, 14, 10)4 [30, 14, 9]4
16 (29, 13, 10)4(S) [29, 13, 9]4
17 (30, 4, 20)4 [30, 4, 19]4

VI. CONCLUSION

In this work, we propose a lower bound on the symplectic

distance of 1-generator quasi-cyclic codes with index even and

give several combinations and derivations of additive codes.

To verify the applicability of our methods, we construct many

good additive codes and ACD codes that are better than the

best-known linear codes in [1] and the best-known LCD codes

in [30], [31], [32], [33], respectively. Our results show that in

the optimal case, additive codes can have higher code rates

than linear codes; in the non-optimal case, additive codes can

have larger distances than linear codes of the same lengths and

dimensions. However, it remains an open problem whether the
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distance of optimal additive codes can be greater than that of

optimal linear counterparts. In addition, it is notable that most

of the additive codes in this paper can also be considered

additive cyclic codes. Therefore, it will be an interesting

problem to study the construction of additive cyclic codes in

the future.

APPENDIX

In order to save space, we give generators of quasi-cyclic

codes in abbreviated form in Table V and VI, presenting the

coefficient polynomials in ascending order, with the indexes

of the elements representing successive elements of the same

number. For example, polynomial 1 + x2 + x3 + x4 over F2

is denoted as 1013. Some of the additive codes in Tables V

and VI are derived codes and are marked with abbreviations

to save space, as follows.

• D: Dual Code;

• Au: Augment Code (Add 1n);

• DoubleAu: Augment Twice Code (Add 1n and wn);

• X: Additive Construction X.
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TABLE V
QUATERNARY ADDITIVE CODES FROM SYMPLECTIC 1-GENERATOR QUASI-CYCLIC CODES

No. Ca g(x), f0(x), f1(x) Derived Codes

1 (21, 10, 8)4 12,01010210102120212031,130516021301 (21, 10.5, 8)4 (Au)

2 (21, 8.5, 9)4 1301,0120415021021201, 01201402140314 (22, 12.5, 7)4(ExD)

3 (21, 5.5, 12)4 10212010101,15010214014012 ,0210170101 (22, 15.5, 5)4(ExD)

4 (30, 6.5, 18)4 10101401012041,102101202170315013 ,021012021031051401501 -

5 (35, 9.5, 18)4
101010216031,101203130130130190120212,

10101310120102140120101
-

6 (42, 17.5, 14)4
1021013, 10120120120120710210210210130101021,

01010120130101502120102130210410212
(42, 24.5, 10)4(D)

7 (45, 14.5, 19)4
1302130415, 02103140102120101202102120120120210120312,

010120150310101010120712041016
-

8 (45, 15.5, 18)4
160613, 021703101021061702140314,

0510104120210101021401201021202101021
-

9 (45, 16.5, 17)4
1081021, 101201201010102130120120214021031031013 ,

1302101201021010212021012010101013021201012
-

10 (47, 11.5, 24)4

103120212012021021010212,

012013031010410120310412010120130120101,

13041204101031302120512021012010212
-

11 (71, 17.5, 32)4

1010101201031202120510410314,

021604112010210101010140102140120310130104101201,

10130130312021301405120106120120140102102130217021
-

12 (73, 13.5, 38)4

120216041302101302103101010120310312,

012021201021010410120313021201302103102103101031303130101021,

1401014031304101021302101301021013012013021013031201302101
-

13 (91, 6.5, 63)4

12010312012021041010101201013021021012012021305102120312021401010101,

12021201303120120313010310120214010210210101602120210120150101031202130312,

01203120310410120313021301302102120103103101021010413013013013091201

(91, 7, 63)4(Au)
(92, 7, 64)4(ExAu)

14 (124, 4.5, 92)4

101501402101201602120313021031504102120101010410103101204

1301010212021021021301201012010312,0120101301301801402130101205

1202120120310101010410210310215010130103120104103160313010215,

13010101201201012014061012012010712010150210213012

021021202140212012021401013031031010101202120212012

-

15 (155, 4.5, 116)44

1301031201010120102120212031012021021012012010150101021021503

130410314021010310212017021301204120510130130210410101,

01201061031010213021012041201702101304101010314051202120312

031202130213031021051016010170102120313010413,

012021051031010101401010101301702120101204130210210103120120130
10210313021201021201021031010210101201021021202101021031301031

(166, 4.5, 124)4(X)

16 (195, 6.5, 139)4

102101201031012021201203101015031301051301013021071071301305102101
0170612021021503120150102102101021401021013051501203120120101201,

04150212071302130210102101204120210104120213012021031031031204120
101301021031021012021201110108120410210120212051018010414012014021202101021,

021302103101301010213041301010210210510312021061204101301021303130414

031201021041401405101401301021201201010101041014012010130214071201016021

(196, 6.5, 140)4(Ex)
(195, 7, 139)4(Au)

(196, 7, 140)4(ExAu)

4 By taking out the code with the weight 124 from (155, 4.5, 116)4 , an additive code with parameter (155, 2, 124)4 can be generated. Therefore, with
(155, 2, 124)4 ⊂ (155, 4.5, 116)4 , we can obtain (166, 4.5, 124)4 by choosing (11, 2.5, 8)4 as auxiliary code.
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TABLE VI
QUATERNARY ACD CODES FROM SYMPLECTIC 1-GENERATOR QUASI-CYCLIC CODES

No. Ca g(x), f0(x), f1(x) Derived Codes

1 (22, 10, 9)4 101, 1010712021041, 1041031203101401 -

2 (25, 12, 9)4 12, 01201010410103120313, 140103140102102101101 (25, 13, 8)4(D)

3 (26, 12, 8)4 101, 1031303130102101012012, 10213010101204120512 (26, 14, 8)4(D)

4 (27, 10, 12)4 12012012 , 04103130130120712, 02102101021201206101021 -

5 (27, 12, 10)4 1021, 0410120415010101301, 0612010101201051021 -

6 (27, 15, 8)4 1021, 1, 01015031201 -

7 (28, 12, 11)4 1031, 1601203120210212013021, 021201501010108101 -

8 (29, 14, 10)4 12, 101051021302103102101, 1051301301201601031 -

9 (30, 14, 10)4 101, 1204103101203101503101, 1302101201021601012051 -
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