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Order Optimal Bounds for One-Shot Federated
Learning over non-Convex Loss Functions

Arsalan Sharifnassab, Saber Salehkaleybar, S. Jamaloddin Golestani

Abstract—We consider the problem of federated learning in a
one-shot setting in which there are m machines, each observing n
sample functions from an unknown distribution on non-convex loss
functions. Let F : [−1, 1]d → R be the expected loss function with
respect to this unknown distribution. The goal is to find an estimate
of the minimizer of F . Based on its observations, each machine
generates a signal of bounded length B and sends it to a server.
The server collects signals of all machines and outputs an estimate
of the minimizer of F . We show that the expected loss of any
algorithm is lower bounded by max

(
1/(

√
n(mB)1/d), 1/

√
mn

)
,

up to a logarithmic factor. We then prove that this lower bound
is order optimal in m and n by presenting a distributed learning
algorithm, called Multi-Resolution Estimator for Non-Convex
loss function (MRE-NC), whose expected loss matches the lower
bound for large mn up to polylogarithmic factors.

Index Terms—Federated learning, Distributed learning, Com-
munication efficiency, non-Convex Optimization.

I. INTRODUCTION

A. General Background

CONSIDER a set of m machines where each machine has
access to n samples drawn from an unknown distribution

P . Based on its observed samples, each machine sends a
single message of bounded length B to a server. The server
then collects messages from all machines and estimates values
for model’s parameters that minimize an expected loss function
with respect to distribution P .

The above one-shot setting, in which there is a single
message transmission between machines and the server, is
one of the scenarios in a machine learning paradigm known
as “Federated Learning”. With the advances in smart phones,
these devices can collect unprecedented amount of data from
interactions between users and mobile applications. This huge
amount of data can be exploited to improve the performance of
learned models running in smart devices. Due to the sensitive
nature of the data and privacy concerns, federated learning
paradigm suggests to keep users’ data in the devices and train
the parameters of the models by passing messages between
the devices and a central server. Since mobile phones are often
off-line or their connection speeds in uplink direction might
be slow, it is desirable to train models with minimum number
of message transmissions.
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Several works have studied the problem of minimizing a
convex loss function in the context of one shot distributed
learning, and order optimal lower bounds and algorithms are
available [1]. However, error lower bounds in the more practical
case where the loss function is non-convex, have not been well-
studied.

B. Our Contributions

In this paper, we first focus on a regime where mB is
large and propose a lower bound on the performance of
all one-shot federated learning algorithms. We show that
for sufficiently large number of machines m and for any
estimator θ̂, there exists a distribution P and the corre-
sponding loss function F such that E

[
F (θ̂) − F (θ∗)

]
≥

max
(
1/(
√
n(mB)1/d lnmB), 1/

√
mn
)
, where n is number

of samples per machine, d is dimension of model’s parameters,
B is signal length in bits, and θ∗ is the global minimizer
of F . Furthermore, we show that this lower bound is order
optimal in terms of n, m, and B. In particular, we propose an
estimator, called Multi-Resolution Estimator for Non-Convex
loss function (MRE-NC), and show that for large values
of mn, the output θ̂ of the MRE-NC algorithm satisfies
E
[
F (θ̂)−F (θ∗)

]
≃
√
dmax

(
1/(
√
n(mB)1/d), 1/

√
mn
)
. We

also study error-bounds under tiny communication budget, and
show that if B is a constant and n = 1, the minimax error1

does not go to zero even if m approaches infinity and even if
d = 1.

We adopt an information-theoretic approach, focusing primar-
ily on sample complexity rather than computational complexity,
while assuming the availability of unlimited computational
resources. Our results reveal a fundamental limitation of
federated learning in the presence of a restricted communication
budget. The lower bound in Theorem 1 demonstrates a "curse of
dimensionality" for scenarios in which mB is sub-exponential
in d. Specifically, in a centralized setting where all nm data
functions are accessible on the server, a computationally
exhaustive algorithm can achieve a minimax error of 1/

√
mn,

significantly lower than our federated learning minimax lower
bound (1/

√
n)max(1/

√
m, 1/(mB)1/d) for a sub-exponential

communication budget B with respect to d. Interestingly, the
bound primarily depends on the total number of bits mB
received at the server. As a consequence, one can trade off the
number of machines m and the communication budget B to
maintain a fixed minimax error bound.

1The minimax error is defined as the smallest achievable error by an optimal
estimator, considering the worst-case scenario across all possible distributions
P .
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Another contribution of this paper is the development of
novel machinery in the proof of Theorem 1. The machinery
involves an information-theoretic lower bound for an abstract
coin-flipping system (see Section VI-B), which can be of
broader interest for the analysis of other federated learning
settings, and distributed systems in general.

C. Related Works

McMahan et al. [2] considered a decentralized setting in
which each machine has access to a local training data and
a global model is trained by aggregating local updates. They
termed this setting, “Federated Learning” and mentioned some
of its key properties such as severe communication constraints
and massively distributed data with non-i.i.d distribution. To
address some of these challenges, they proposed “FedAvg”
algorithm, which executes in several synchronous rounds. In
each round, the server randomly selects a fraction of machines
and sends them the current model. Each machine performs a
pre-determined number of training phases over its own data.
Finally, the updated model at the server is obtained by averaging
received models from the machines. The authors trained deep
neural networks for tasks of image classification and next word
prediction in a text and experimental results showed that the
proposed approach can reduce the communication rounds by
10− 100 times compared with the stochastic gradient descent
(SGD) algorithm. FedAvg is generally guaranteed to converge
to a first-order stationary point [3], [4], which differs from the
notion of convergence to global minimum considered in this
work. Moreover, the FedAvg setting is not a one-shot scenario
and involves two-way communication between the server and
the machines, resulting in sub-optimal performance in one-shot
setting.

After introducing the setting of federated learning by McMa-
han et al. [2], several research work addressed its challenges
such as communication constraints, system heterogeneity
(different computational and communication capabilities of
the machines), statistical heterogeneity (data is generated in
non-identically distributed manner), privacy concerns, and
malicious activities. For instance, different approaches have
been proposed in order to reduce the size of messages by
performing quantization techniques [5], [6], updating the
model from a restricted space [5], or utilizing compression
schemes [7]–[10]. To resolve system heterogeneity issues
such as stragglers, asynchronous communication schemes with
the assumption of bounded delay between the server and
the machines have been devised [11]–[15]. There are also
several works providing convergence guarantees for the case
of non-i.i.d. samples distributed among the machines [16]–
[25]. Moreover, some notions of privacy can be preserved by
utilizing differential privacy techniques [26]–[35] or secure
multi-party computation [36]–[39].

A similar setting to federated learning has been studied
extensively in the literature of distributed statistical optimiza-
tion/estimation with the main focus on minimizing convex
loss functions with communication constraints. In this setting,
machines mainly reside in a data center, they are much more
reliable than mobile devices, and straggle nodes are less

problematic. If there is no limit on the number of bits that can
be sent by the machines, then each machine can send its whole
data to the server. In this case, we can achieve the estimation
error of a centralized solution that has access to entire data.
The problem becomes non-trivial if each machine can only
send a limited number of bits to the server. In the one-shot
setting, where there is only a single one-directional message
transmission from each machine to the server, Zhang et al. [40]
proposed a simple averaging method, in which each machine
computes an estimate of optimal parameters that minimizes
the empirical loss function over its own data and sends them
to the server. The output of the server is the averege over the
received values. For the convex functions with some additional
assumptions, they showed that this method has expected error
O(1/

√
mn + 1/n). It can be shown that this bound can be

improved to O(1/
√
mn+ 1/n1.5) via boot-strapping [40] or

O(1/
√
mn+ 1/n9/4) by optimizing a surrogate loss function

using Taylor series expansion [41].
Recently, for the convex loss functions in the setting of

one-shot federated learning, Salehkaleybar et al. [1] proposed
a lower bound on the estimation error achievable by any
algorithm. They also proposed an order-optimal estimator
whose expected error meets the mentioned lower bound up to a
polylogarithmic factor. Our bounds have three main differences
with respect to [1]:

• Here we consider general non-convex loss functions as
opposed to the convex loss assumption in [1];

• We bound F (θ)− F (θ∗), whereas the bound in [1] is on
∥θ − θ∗∥ and translates into a much weaker bound on
F (θ)−F (θ∗) compared to the results of this paper2; and

• The proof of the present bound requires a whole new
machinery that is completely different from the proof
techniques used in [1].

Zhou et al. [42] proposed a one-shot distillation method
where each machine distills its own its data and sends the
synthetic data to the server, which then trains the model over
whole collected data. Moreover, they evaluated the proposed
method experimentally on some real data, showing remarkable
reduction in the communication costs. Later, Armacki et al. [43]
considered clustered federated learning [44] with one round of
communication between machines and the server. They showed
that for the strongly convex case, local computations at the
machines and a convex clustering based aggregation step at
the server can provide an order-optimal mean-square error rate
in terms of sample complexity.

For the case of multi-shot setting, a popular approach is
based on stochastic gradient descent (SGD) in which the server
queries the gradient of empirical loss function at a certain
point in each iteration and the gradient vectors are aggregated
by averaging to update the model’s parameters [2], [45], [46].

2Note that for a constant δ > 0 and a twice differentiable function F , a
bound of size δ on ∥θ−θ∗∥ translates into a bound of size δ2 on F (θ)−F (θ∗),
whereas in this paper we prove a much stronger (i.e., larger) lower bound of
size δ on F (θ)− F (θ∗). More concretely, letting δ = 1/n1/2(mB)1/d, for
a convex function F with bounded second derivative (as assumed in [1]), a
lower bound ∥θ−θ∗∥ = Ω(δ) can only imply F (θ)−F (θ∗) = Ω(δ2). In the
present work, we prove a much stronger lower bound F (θ)−F (θ∗) = Ω(δ).
As such, the bounds in this work and [1], despite their similarities, do not
imply each other.
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Fig. 1: The considered distributed system consists of m
identical machines, each observing n independent sample
functions from an unknown distribution P . Each machine i
sends signal Yi of length B bits to a server. The sever collects
all the signals and returns an estimate θ̂ for the optimization
problem in (3).

In fact, FedAvg algorithm [2] can be seen as an extension
of SGD algorithm where each machine perform a number of
training phases over its own data in each round. Although
these solutions can be applied to non-convex loss functions,
there is no theoretical guarantee on the quality of the output.
Moreover, in the one-shot setting, the problem becomes more
challenging since these gradient descent based methods cannot
be adopted easily to this setting.

D. Outline

The paper is organized as follows. We begin with a detailed
model and problem definition in Section II. In Section III, we
provide a lower bound on the performance of any algorithm. In
Section IV, we present the MRE-NC algorithm and an upper
bound on its expected error that matches the previous lower
bound up to polylogarithmic factors in m and n. We propose a
constant lower bound on achievable error under tiny (constant)
communication budget in Section V. The proofs of our main
results are presented in Sections VI and VII, with the details
relegated to appendices for improved readability. Afterwards,
we report some numerical experiments on small size problems
in Section VIII. Finally, in Section IX, we conclude with some
remarks and open problems.

II. PROBLEM DEFINITION

Consider a positive integer d and let F be the collection of
Lipschitz continuous functions over [−1, 1]d. More concretely,
for any f ∈ F and any θ, θ′ ∈ [−1, 1]d, we have

|f(θ)− f(θ′)| ≤ ∥θ − θ′∥. (1)

Let P be an unknown probability distribution over the functions
in F . We define the expected loss function as follows:

F (θ) = Ef∼P

[
f(θ)

]
, θ ∈ [−1, 1]d. (2)

Our goal is to estimate a parameter θ∗ that minimizes F :

θ∗ = argmin
θ∈[−1,1]d

F (θ). (3)

We assume that θ∗ lies in the interior of the cube [−1, 1]d.
The objective function is to be minimized in a distributed

manner, as follows. The distributed systems consists of m ma-
chines and a server. Each machine i observes n independently
and identically distributed samples {f i1, · · · , f in} drawn from
the probability distribution P . Based on its observed samples,
machine i sends a signal Yi of length B bits to the server.3

The server collects the signals from all machines and returns
an estimation of θ∗, which we denote by θ̂. Note that in this
model we consider one-way one-shot communication between
machines and the server, in the sense that each machine sends
a single message to the server, while receiving no message
from the server. We also assume that all machines are identical
and are not enumerated in advance. Please refer to Fig. 1 for
an illustration of the distributed system.4

III. THE LOWER BOUND

In this section, we propose our main result, that is a lower
bound on the estimation error of any algorithm. We consider
a regime where mB is large. In particular, for any constant
C ≥ 1, given B and n, we let MC be the smallest number m
that satisfies all of the following equations:

C
√

ln(mB) ≥ 15, (4)

mB ≥ 10240, (5)

23

C
√
mB

+
1

mB
≤ 1

7
, (6)

1

B log2mB

[(
313

C

)2

+
942

C
√
mB

+
192

mB

+
15

(mB)1.5
+

49 + 6B

(mB)2

]
≤ 1

10
,

(7)

mn ≥ 350000. (8)

As an example, these conditioned are satisfied for for C = 25,
n = 1, B = 64, and MC = 4 × 105. The following theorem
presents our main lower bound.

Theorem 1. For any C ≥ 1, any m ≥MC , and any estimator
with output denoted by θ̂, there exists a distribution P and
corresponding function F defined in (2), for which with
probability at least 1/2,

F
(
θ̂
)
− F (θ∗) ≥ max

(
1

C
√
n(mB)1/d lnmB

,
1

4
√
mn

)
.

The proof is given in Section VI, and involves reducing the
problem to the problem of identifying an unfair coin among
several fair coins in a specific coin-flipping system. We then

3In this context, the letter B represents the number of bits in each message
and should not be confused with communication bandwidth, which is also
commonly denoted by B in the communication literature.

4The model of the distributed system here is similar to the one in [47].
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rely on tools from information theory to derive a lower bound
on the error probability of the latter problem.

As an immediate corollary of Theorem 1, we have

Corollary 1. For m ≥MC , the expected error of any estimator
with output θ̂ is lower bounded by

E
[
F
(
θ̂
)
−F (θ∗)

]
≥ max

(
1

2C
√
n(mB)1/d lnmB

,
1

8
√
mn

)
.

For d ≥ 10, in the previous example where C = 25, B = 64,
and m ≥ 4× 105, the lower bound in Corollary 1 would be
1/(50

√
n(mB)1/d lnmB).

IV. ORDER OPTIMALITY OF THE LOWER BOUND AND THE
MRE-NC ALGORITHM

Here, we show that the lower bound in Theorem 1 is order
optimal. We do this by proposing the MRE-NC estimator and
showing that its error upper bound matches the lower bound up
to polylogarithmc factors in mn. We should however note that
despite its guaranteed order optimal worst-case error bound,
benefits of applying the MRE-NC algorithm to real world
problems are fairly limited. We refer the interested reader to
Section IX for discussions on the shortcomings and scope of
the MRE-NC algorithm. We consider general communication
budget B ≥ d log2mn.

The main idea of the MRE-NC algorithm is to find an
approximation of F over the domain and then let θ̂ be the
minimizer of this approximation. In order to approximate the
function efficiently, transmitted signals are constructed such
that the server can obtain a multi-resolution view of function
F (·) in a grid. Thus, we call the proposed algorithm “Multi-
Resolution Estimator for Non-Convex loss (MRE-NC)". The
description of MRE-NC is as follows:

Each machine i has access to n functions and sends a
signal Y i comprising ⌊B/(d log2mn)⌋ sub-signals of length
⌊d log2mn⌋. Each sub-signal has four parts of the form
(p,∆, θp, η). The four parts p, ∆, θp, η are as follows:

• Part p: Let

δ ≜ ln(mn) max

(
lnmn

(mB)1/d
,

1

m1/2

)
. (9)

Let t = log2(1/δ). Without loss of generality, assume that
t is a non-negative integer.5 Consider a sequence of t+ 1
grids on [−1, 1]d as follows. For l = 0, . . . , t, we partition
the cube [−1, 1]d into 2ld smaller equal sub-cubes with
edge size 2−l. The lth grid Gl contains the centers of
these smaller cubes. Thus, each Gl has 2ld grid points.
For any point p′ in Gl, we say that p′ is the parent of
all 2d points in Gl+1 that are in the 2−l-cube centered at
p′ (see Fig. 2). Therefore, each point Gl (l < t) has 2d

children.
In each sub-signal, to choose p, we randomly select an l
from 1, . . . , t with probability

Pr(l) =
2(d−2)l∑t
j=1 2

(d−2)j
. (10)

5If δ > 1, we reset the value of δ to δ = 1. It is not difficult to check that
the rest of the proof would not be upset in this spacial case.

𝑝′

𝑝

Fig. 2: An illustration of a p-point in [−1, 1]d for d = 2. The
point p belongs to G2 and p′ is the parent of p.

We then let p be a uniformly chosen random grid point
in Gl. Please note that the level l and point p selected in
different sub-signals of a machine are independent and
have the same distribution.

• Part ∆: We let

F i(θ) ≜
2

n

n/2∑
j=1

f ij(θ), for θ ∈ [−1, 1]d, (11)

and refer to it as the empirical function of the ith machine.
For each sub-signal, based on its selected p part we let

∆ ≜ F i(p)− F i(p′), (12)

where p′ ∈ Gl−1 is the parent of p.
• Part θp, η: In the ith machine, if the p-part of a sub-

signal lies in Gt, the machine also appends two extra
pieces of information θp, η to its sub-signal (otherwise, it
sends dummy messages for these parts). We let θp be a
minimizer of F i in the Gt-cube containing the point p,
where F i is defined in (11). We then set η = F i(θp)−
F i(p).

At the server, we obtain an approximation F̂ of the
loss function F over [−1, 1]d as follows. We first eliminate
redundant sub-signals so that no two surviving sub-signals
from a same machine have the same p-parts. Hence, for each
machine, the surviving sub-signals are distinct. We call this
process “redundancy elimination”. We set F̂ (0) = 0, and for
any l ≥ 1 and any p ∈ Gl, we let

F̂ (p) = F̂ (p′) +
1

Np

∑
Subsignals of the form

(p,∆,θp,η)
after redundancy elimination

∆, (13)

where Np is the number of signals having point p in their first
argument after redundancy elimination (with the convention
that 0/0 = 0). After that, for each cube corresponding to a
point p in Gt, we choose a single arbitrary sub-signal of the
form (p,∆, θp, η), from some machine i, and let

F̂ (θp) = F̂ (p) + η = F i(θp) + F̂ (p)− F i(p). (14)

Finally, the server outputs θp with minimum F̂ (θp).
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Algorithm 1: MRE-NC algorithm

// Constructing each sub-signal at
machine i

1 l← choose randomly from {1, · · · , t} according to
(10).

2 p← choose a point from grid Gl uniformly at random.
3 compute ∆ in (12) for the point p.
4 θp ← a minimizer of F i in the Gt-cube centered at p,

where F i is defined in (11).
5 η ← F i(θp)− F i(p).
6 prepare sub-signal (s, p, θp, η) for transmission.
// At the server

7 perform the process of “redundancy elimination”.
8 F̂ (0)← 0.
9 for l = 1, . . . , t do

10 for p ∈ Gl do
11 compute F̂ (p) according to (13).

12 for each p ∈ Gt, choose an arbitrary sub-signal of the
form (p,∆, θp, η) and compute F̂ (θp) according to
(14).

13 return a θp with minimum F̂ (θp).

The following theorem provides an upper bound on the
estimation error of MRE-NC algorithm, for a large-mn and B
regime where

m ≥ ln2mn

lnmn ≥ 8
√
d

B ≥ d log(mn).
(15)

Theorem 2. Consider a d ≥ 2 and suppose that (15) holds.
Let θ̂ be the output of the MRE-NC algorithm. Then, with
probability at least 1− exp

(
− Ω(ln2mn)

)
,

F (θ̂)−F (θ∗) ≤ 4
√
d ln2(mn)max

(
lnmn√
n (mB)1/d

,
1√
mn

)
.

(16)

The proof is given in Section VII and goes by showing
that for any l ≤ t and any p ∈ Gl, the number of received
signals corresponding to p is large enough so that the server
obtains a good approximation of F at p. Once we have a
good approximation of F over Gt, we can find an approximate
minimizer of F over all Gt-cubes. The following is a corollary
of Theorem 2.

Corollary 2. Let d ≥ 2 and assume (15). Then, for any k ≥ 1,

E
[∣∣F (θ̂)− F (θ∗)∣∣k] ≤max

(
4
√
d ln3mn√
n (mB)1/d

,
4
√
d ln2mn√
mn

)k

+ exp
(
− Ω

(
ln2mn

))
.

The above upper bound matches the lower bound of
Corollary 1 up to logarithmic factors with respect to n and m,
and is therefore order optimal. This implies the order optimality

of the MRE-NC algorithm with respect to n and m for the
large-mn regime (15).

Remark 1. Here, we carry out computations for the length
of each subsignal. For the p part, we need to represent the
level l and the point p ∈ Gl in that level, which can be done
by log2 t + log2 2

dt < d log2
√
m. The ∆ and η are scalars

in (−
√
d/2,
√
d/2) that we need to represent with precision

ϵ/4t, where ϵ is the expression in the right hand side of (16).
Therefore, log2(4t

√
d/ϵ) < log2

√
mn bits suffice to represent

each of ∆ and η. Finally, θp is a point in a 2δ-cube, with a
desired entry-wise precision of ϵ/4

√
d. Therefore, θp can be

represented by d log2(8δ
√
d/ϵ) < d log2

√
n bits. Combining

the above bounds, we obtain the following upper bound
on the length of each subsignal: d log2

√
m + 2 log2

√
mn +

d log2
√
n = (d/2 + 1) log2mn ≤ d log2mn.

V. LOWER BOUND UNDER TINY COMMUNICATION BUDGET

The upper bound in Theorem 2 necessitates B ≥ d log(mn).
In this section, we demonstrate that to make the error bound
vanish for large m, similar to Theorem 2, we need B to ap-
proach infinity as m tends to infinity. Specifically, we examine a
low-communication regime where the communication budget B
is constrained by a constant independent of m. For this regime
and assuming n = 1, we prove in the following proposition
that the minimax error is lower bounded by a constant, even
as m approaches infinity.

Proposition 1. Let n = 1 and suppose that the signal length
B is bounded by a constant independent of m. Then, for
any estimator θ̂, there is a distribution P over F such that
F (θ̂)−F (θ∗) ≥ ϵB , for all m ≥ 1, where ϵB > 0 is a constant
that depends only on B and is independent of m and d. The
above constant lower bound holds even when d = 1.

Here, we present a short proof based on Theorem 7 of [1].
Theorem 7 of [1] establishes existence of a distribution P
over strongly convex loss function with second derivatives
larger than 1 and Lipschitz constant 3, for which an analogous
constant lower bound ∥θ̂ − θ∗∥ ≥ ϵ′B holds, where ϵ′B is a
constant independent of m. Given the strong convexity of
these loss functions, it follows that F (θ̂) − F (θ∗) ≥ (ϵ′B)

2.
A normalization by the Lipschitz constant 3 then implies
Proposition 1 for ϵB = (ϵ′B)

2/3.
Proposition 1 shows that the minimax error is lower bounded

by a constant regardless of m, when n = 1 and B is a constant.
The constant ϵB in Proposition 1 is exponentially small in
B. Note however that this is inevitable, because in view of
Theorem 2, when B = logm and n = d = 1, the error
of the MRE-NC algorithm is bounded by Õ

(
m−1/d

)
, which

is exponentially small in B. Note also that the Proposition 1
relies on the one-shot communication and may not hold in other
settings for example when relaxing the assumption of symmetry
between machines (i.e. the assumption that the machines run
identical algorithms).
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VI. PROOF OF THEOREM 1

The desired lower bound is the maximum of two terms,

F (θ̂)− F (θ∗) ≥ 1/
(
C
√
n(mB)1/d lnmB

)
(17)

and
F (θ̂)− F (θ∗) ≥ 1/4

√
mn. (18)

For the more difficult bound 1/
(
C
√
n(mB)1/d lnmB

)
, we

first introduce a subclass F̂ of functions in F and a class
of probability distributions over F̂ . Under these distributions,
each function is generated via a process that involves flipping
mB coins, one of which is biased and the rest are fair. For
this class, we show that the following property holds. Once we
obtain a 1/(2C

√
n(mB)1/d lnmB)-approximate minimizer of

the expected loss function F , we can identify the underlying
biased coin. We then rely on this observation to reduce the
abstract problem of identifying a biased coin among several fair
coins via a certain coin flipping process to the problem of loss
function minimization. We then use tools from information
theory to derive a lower bound on the error probability in
the former problem and conclude that the same lower bound
applies to the latter problem as well. The second term in the
lower bound, i.e. the 1/4

√
mn barrier, is actually well-known

to hold in several centralized scenarios. Here, we present a
proof based on hypothesis testing. In the rest of this section,
we first establish the more difficult bound F (θ̂) − F (θ∗) ≥
1/
(
C
√
n(mB)1/d lnmB

)
and introduce in Subsection VI-A

the function class F̂ and the reduction to the problem of
identifying the biased coin. We then describe the coin flipping
system in more details in Subsection VI-B and present the
lower bound on the error probability in that system. Then, in
Subsection VI-C, we provide an information theoretic proof
outline for this lower bound, while leaving the details until the
appendices for improved readability. Finally, we establish the
centralized bound Pr

(
F (θ̂) − F (θ∗) ≥ 1/4

√
mn
)
≥ 1/2 in

Subsection VI-D.

A. A class of distributions

Here, we show that F (θ̂) − F (θ∗) ≥
1/
(
C
√
n(mB)1/d lnmB

)
with probability at least 1/2.

For simplicity, we assume that (mB)1/d is an integer.
Consider a function h : Rd → R as follows. For any θ ∈ Rn,

h(θ) =

{
(mB)−1/d − ∥θ∥ if ∥θ∥ ≤ (mB)−1/d,

0 otherwise.
(19)

An illustration of h(·) is shown in Fig.3 (a). It is easy to see
that h(·) is Lipschitz continuous with Lipschitz constant 1.
Consider a regular grid G with edge size 2/(mB)1/d on the
cube [−1, 1]n. We denote by {−1, 1}G the set of all functions
from G to {−1, 1}. To any σ ∈ {−1, 1}G , we associate a
function fσ : Rn → R as follows

fσ(θ) ≜
∑
p∈G

σ(p)h(θ − p), ∀θ ∈ Rn. (20)

Fig. 3 (b) illustrates an example of the shape of fσ. Let F̂
be the set of all functions fσ , for all σ ∈ {−1, 1}G . It is easy
to see that since h(·) is Lipschitz continuous with Lipschitz

(a)

(b)

Fig. 3: Illustrations of functions h and fσ for d = 2. (a) shows
the surface of h(·) defined in (19) and (b) is an example of
fσ(·) defined in (20).

constant 1, each function fσ ∈ F̂ is also Lipschitz continuous
with Lipschitz constant 1.

For any p ∈ G, we define a probability distribution Pp over
F̂ as follows. For any σ ∈ {−1, 1}G ,

Pp(fσ) = 2−mB

(
1− σ(p)

C
√
n lnmB

)
, (21)

where C is the constant in the theorem statement. Then,∑
σ∈{−1,1}G Pp(fσ) = 1, and as a result, each Pp is a

probability distribution. Intuitively, when a function fσ is
sampled from Pp, it is as if for every q ∈ G with q ̸= p,
we have Pr

(
σ(q) = 1

)
= Pr

(
σ(q) = −1

)
= 1/2, and for

q = p we have Pr
(
σ(p) = 1

)
= 1/2−1/

(
2C
√
n lnmB

)
. This

is like, the values of σ(q) for q ̸= p are chosen independently
at random according to the outcome of a fair coin flip, while
the value of σ(p) is the outcome of an unfair coin flip with
bias −1/

(
2C
√
n lnmB

)
, i.e., for q ∈ G,

Efσ∼Pp

[
σ(q)

]
=

{
−1

C
√
n lnmB

q = p,

0 q ̸= p.
(22)
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Therefore, for any p ∈ G and any θ ∈ [−1, 1]n, we have

F (θ) = Ef∼Pp

(
f(θ)

)
=

∑
σ∈{−1,1}G

Pp(fσ)
∑
q∈G

σ(q)h
(
θ − q

)
=
∑
q∈G

h
(
θ − q

) ∑
σ∈{−1,1}G

Pp(fσ)σ(q)

=
∑
q∈G

h
(
θ − q

)
Efσ∼Pp

[
σ(q)

]
=

−1
2C
√
n lnmB

h
(
θ − p

)
,

(23)

where the last equality is due to (22). Therefore, under
probability distribution Pp, θ∗ = p is the global minimizer of
F (·), and

F (p) =
−h(0)

C
√
n lnmB

=
−1

C
√
n(mB)1/d lnmB

.

Moreover, for any θ ∈ Rn with ∥θ − p∥ ≥ (mB)1/d, we have

F (θ) = 0 ≥ F (θ∗) +
1

C
√
n(mB)1/d lnmB

, (24)

where θ∗ = p.
We prove (17) by contradiction. Suppose that there exists

an estimator E , such that for any p ∈ G, when the functions
are sampled from distribution Pp, the estimator E returns an
output θ̂, for which with probability at least 1/2,

F (θ̂) < F (θ∗) +
1

C
√
n(mB)1/d lnmB

. (25)

Then, it follows from (24) that ∥θ̂ − p∥ < (mB)1/d. In this
case, p is the closest grid-point of G to θ̂. As a result, we can
recover p from θ̂, with probability at least 1/2. More concretely,
given estimator E , we can devise an estimator E ′ such that
for any p ∈ G and under distribution Pp, E ′ outputs the true p
with probability at least 1/2. This provides a solution for the
problem of identifying a biased coin among mB − 1 unbiased
coins, in a coin flipping system that we describe next.

B. Coin flipping

Here, we describe an abstract system that aims to identify a
biased coin among several fair coins, via observing the outputs
of coin flips. We then derive a bound on the error probability
of any estimator, and show that no estimator can identify the
biased coin with probability at least 1/2.

Consider k coins, one of which is biased and all others
are fair. The outcome of the biased coin has the following
distribution:

P (1) =
1

2
+

1

2C
√
n ln k

, P (0) =
1

2
− 1

2C
√
n ln k

.

(26)
We index the coins by t = 1, . . . , k. The index of the biased
coin is unknown initially. Let T denote the index of the
biased coin. We assume that T is a random variable, uniformly
distributed over 1, . . . , k. We aim to estimate T by observing
outcomes of coin flips as follows.

Our coin flipping system comprises m machines, called the
coin flippers, and a server. Each coin flipper flips each of every

coin for n times. Therefore, each coin flipper, i, makes a total
number of kn coin flips and collects the outcomes into an
n × k matrix W i with 0 and 1 entries. The ith coin flipper,
for i = 1, . . . ,m, then generates a B-bit long signal Si based
on W i, and sends it to the server. We refer to the (possibly
randomized) mapping (or coding) from W i to Si by Qi. The
server then collects the signals of all coin flippers and generates
an estimate T̂ of the true index of the biased coin T .

Let Pe = Pr
(
T̂ ̸= T

)
be the probability that the server fails

to identify the true biased coin index.

Proposition 2. Let k = mB and suppose that (4)–(7) hold.
Then, Pe > 0.5.

The proof is given in the next subsection. The proposition
asserts that no estimator can identify the biased coin with
probability at least 1/2. This contradicts the statement in last
line of the previous subsection. Hence, our initial assumption
on the existence of estimator E that satisfies (25) cannot be
the case. Equivalently, there exists no estimator E for which
with probability at least 1/2 we have

F (θ̂) ≤ F (θ∗) + 1/
(
C
√
n(mB)1/d lnmB

)
. (27)

C. Proof of Proposition 2
The proof relies on the following proposition.

Proposition 3. Suppose that k = mB is large enough so that
(4), (5), and (6) are satisfied. Then, for each coin flipper, i,
and under any coding Qi, we have

I
(
T ;Si

)
<

3B

k ln 2
+

1

k

[(
313

C

)2

+
942

C
√
k

+
192

k

+
15

k1.5
+

49 + 6B

k2

]
,

(28)

where I(T ;Si) is the mutual information between T and Si

(see [48], page 20, for the definition of mutual information).

The proof of Proposition 3 is pretty lengthy, and is given in
Appendix B.

Given the index T of the biased coin, the signals S1, . . . , Sm

will be independent. As a result,

H
(
S1, . . . , Sm | T

)
=

m∑
i=1

H
(
Si | T

)
, (29)

where H(·) is the entropy function (see [48], page 14).
Consequently,

I
(
T ; S1, . . . , Sm

)
= H

(
S1, . . . , Sm

)
−H

(
S1, . . . , Sm | T

)
= H

(
S1, . . . , Sm

)
−

m∑
i=1

H
(
Si | T

)
≤

m∑
i=1

H
(
Si
)
−

m∑
i=1

H
(
Si | T

)
=

m∑
i=1

(
H
(
Si
)
−H

(
Si | T

))
=

m∑
i=1

I
(
T ;Si

)
.

(30)
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Let

ϵ ≜

(
313

C

)2

+
942

C
√
k

+
192

k
+

15

k1.5
+

49 + 6B

k2

be the expression which is a part of the right hand side of (28).
Then, it follows from (7) and k = mB that

ϵ

B log2 k
≤ 1

10
. (31)

We employ Fano’s inequality (see [48], page 37), and write

Pe ≥
H
(
T | S1, . . . , Sm

)
− 1

log2 k

=
H(T ) − I

(
T ; S1, . . . , Sm

)
− 1

log2 k

=
log2 k − I

(
T ; S1, . . . , Sm

)
− 1

log2 k

= 1 −
I
(
T ; S1, . . . , Sm

)
log2 k

− 1

log2 k

≥ 1 −
∑m

i=1 I
(
T ;Si

)
log2 k

− 1

log2 k

> 1 −
∑m

i=1

(
3B/(k ln 2) + ϵ/k

)
log2 k

− 1

log2 k

= 1 − 3mB

k ln k
− mϵ

k log2 k
− 1

log2 k

= 1 − 3

ln k
− ϵ

B log2 k
− 1

log2 k

≥ 1 − 4

10
− ϵ

B log2 k

≥ 1 − 4

10
− 1

10

=
1

2
,

(32)

where the first inequality is by the Fano’s inequality, the first
equality follows from the definition of mutual information, the
second equality is because the biased coin index T has uniform
distribution over 1, . . . , k, the second inequality is due to (30),
the third inequality follows from Proposition 3, the last equality
is because of the assumption k = mB in the Proposition, the
fourth inequality is due to the assumption k = mB ≥ 10240
in (5), and the last inequality is due to (31). Proposition 2 then
follows from (32).

D. The centralized lower bound

We now proceed to establish

Pr
(
F (θ̂)− F (θ∗) ≥ 1/4

√
mn
)
≥ 1/2.

Consider 9 coins, one of which is biased and all others are
fair. For the biased coin, suppose that P (1) = 1/2+1/4

√
mn.

The index, T , of the biased coin is initially unknown. We toss
each of every coin for mn times, and estimate an index T̂ of
the biased coin based on the observed outcomes.

Lemma 1. Assuming (8), under any estimator T̂ , we have
Pr
(
T̂ ̸= T

)
≥ 1/2.

The proof is based on the error probability of the optimal
hypothesis test, and is given in Appendix C-A. In the rest of
the proof, similar to Subsection VI-A, we consider a collection
of functions and a probability distribution over them, such that
for the corresponding expected loss function F , finding a θ̂
with F (θ̂) < F (θ∗)+1/4

√
mn leads to the identification of a

biased coin in the setting of Lemma 1 with probability at least
1/2. This is a contradiction, and establishes the nonexistence
of such estimator. Since the argument is very similar to the
line of arguments in Subsection VI-A, here we simply state
the main result in the form of a lemma and defer the detailed
proof until Appendix C-B.

Lemma 2. Assuming (8), for any estimator T̂ , there exists a
distribution under which Pr

(
F (θ̂) − F (θ∗) ≥ 1/4

√
mn
)
≥

1/2.

Finally, Theorem 1 follows from (27) and Lemma 2.

VII. PROOF OF THEOREM 2

In this proof, we adopt several ideas from the proof of
Theorem 4 in [1]. For simplicity and without loss of generality,
throughout this proof, we assume that for any f ∈ F ,

f(0) = 0. (33)

This is without loss of generality because adding to each
function f ∈ F a constant −f(0) does not change the
estimation θ̂. We first show that for l = 1, . . . , t and for
any p ∈ Gl, the number of sub-signals corresponding to p
after redundancy elimination is large enough so that the server
obtains a good approximation of F at p. Once we have a
good approximation of F at all points of Gt, we can find an
approximate minimizer of F . Let

ϵ ≜
4δ
√
d ln(mn)√
n

= 4
√
d ln2(mn) max

(
lnmn

(mB)1/d
√
n
,

1√
mn

)
.

(34)

For any p ∈
⋃

l≤tG
l, let Np be the number of machines that

select point p in at least one of their sub-signals. Equivalently,
Np is the number of sub-signals after redundancy elimination
that have point p as their second argument. Let E be the event
that for l = 1, . . . , t and for any p ∈ Gl, we have

Np ≥
2 ln4(mn) 2−2l

nϵ2
. (35)

Then,

Lemma 3. Pr
(
E
)
≥ 1−md/2 exp

(
− ln2(mn)/32d

)
.

The proof is based on the concentration inequality in
Lemma 7 (b), and is given in Appendix D-A.

Capitalizing on Lemma 3, we now obtain a bound on the
estimation error of F over Gl. Let E ′ be the event that for
l = 1, . . . , t and any grid point p ∈ Gl, we have∣∣F̂ (p)− F (p)∣∣ < ϵ

8
. (36)
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Lemma 4. Pr
(
E ′
)
≥ 1 − md/2 exp

(
− ln2(mn)/32d

)
−

2md/2 exp
(
− ln2(mn)/128d

)
.

The proof is given in Appendix D-B and relies on Ho-
effding’s inequality and the lower bound on the number of
received signals for each grid point, driven in Lemma 3. For
each p ∈ Gt, let cellp be the small cube with edge size 2δ
that is centered at p. Let E ′′ be the event that for any machine
i, any p ∈ Gt, and any θ ∈ cellp,∣∣∣(F i(θ)− F i(p)

)
−
(
F (θ)− F (p)

)∣∣∣ < ϵ

8
. (37)

Lemma 5. Pr
(
E ′′
)
≥ 1−2nd/2m1+d/2 exp

(
−ln2(mn)/64

)
.

The proof is given in Appendix D-C. Assuming E ′′, it follows
from (14) and (37) that for any p ∈ Gt, and for the subsignal
(p,∆, θp, η) that is used in the computation of F̂ (θp) in (14),
we have ∣∣(F̂ (θp)− F̂ (p))− (F (θp)− F (p))∣∣ ≤ ϵ

8
. (38)

The following auxiliary lemma has a straightforward proof.

Lemma 6. Consider a γ > 0 and a function g over a domain
W . Let ĝ be a uniform γ-approximation of g, that is |ĝ(w)−
g(w)| ≤ γ, for all w ∈ W . Let w∗ be the minimizer of ĝ over
W . Then, g(w∗) ≤ infw∈W g(w) + 2γ.

Consider a point p ∈ Gt and the subsignal (p,∆, θp, η)
that is used in the computation of F̂ (θp) in (14). Suppose
that this subsignal has been generated in the ith machine. Let
ĝ(θ) = F i(θ)− F i(p), g(θ) = F (θ)− F (p), and W = cellp.
Assuming E ′′, ĝ is an ϵ/8-approximation of g, and Lemma
6 implies that g(θp) ≤ g(θ∗cellp) + ϵ/4, where θ∗cellp is the
minimizer of F in cellp. Therefore,

F (θp) ≤ F (θ∗cellp) +
ϵ

4
. (39)

Moreover, assuming E ′ and E ′′, we obtain

|F̂ (θp)− F (θ∗cellp)| =
∣∣(F̂ (θp)− F̂ (p))− (F (θp)− F (p))

+
(
F̂ (p)− F (p)

)
+
(
F (θp)− F (θ∗cellp)

)∣∣
≤
∣∣(F̂ (θp)− F̂ (p))− (F (θp)− F (p))∣∣
+
∣∣F̂ (p)− F (p)∣∣+ ∣∣F (θp)− F (θ∗cellp)∣∣

≤ ϵ

8
+
ϵ

8
+
ϵ

4

=
ϵ

2
(40)

where the last inequality follows from (38), (36), and (39)
By further assuming E , we know that each cell is selected
by at least one machine. Then, applying Lemma 6 on (40)
with identifications W = {θP : p ∈ Gt}, ĝ(θp) = F̂ (θp) and
g(θp) = F (θ∗cellp), we obtain

F (θ̂) ≤ min
p∈Gt

F (θ∗cellp) + ϵ = F (θ∗) + ϵ. (41)
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Fig. 4: Comparison of the performance of MRE-NC with
two naive approaches. The number of parameters (d) and the
number of samples per machine (n) are 6 and 10, respectively.

Substituting the probabilities of events E , E ′, and E ′′ from
lemmas 3, 4, and 5, respectively, it follows that F (θ̂) ≤ F (θ∗)+
ϵ with probability at least

1−
(
1− Pr(E)

)
−
(
1− Pr(E ′)

)
−
(
1− Pr(E ′′)

)
≥ 1− 2md/2

[
exp

(
− ln2mn

32d

)
+ exp

(
− ln2mn

128d

)

+ nd/2m exp

(
− ln2mn

64

)]

≥ 1−m(mn)d/2 exp

(
− ln2mn

128d

)
.

This completes the proof of Theorem 2.

VIII. EXPERIMENTS

Here we study performance of the MRE-NC algorithm on
problems of small sizes. Note that when d is large, the lower
bound 1/

√
n(mB)1/d in Theorem 1, scales poorly with respect

to mB. This eliminates the hope for efficient and guaranteed
loss minimization in large problems, and limits the applicability
of the MRE-NC algorithm to problems with large dimensions.
In this view, in this section we focus on small size problems and
demonstrate performance of MRE-NC on small toy examples.

A. Synthetic Data

We evaluated the performance of MRE-NC and compared
it with two naive approaches: 1- the averaging method from
[40]: each machine obtains empirical loss minimizer on its
own data and sends to the server. The output would be the
average of received signals at the server side. 2- Single machine
method: similar to the previous method, each machine sends
the empirical loss minimizer to the server. At the server, one
of the received signals is picked randomly and returned as the
output.
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In our experiment, each sample (x, y), x ∈ R2, and y ∈ R
is generated according to y = θT2 ReLU(θ1x) + N where
ReLU(x) = max(0, x) is the rectified linear unit, and the
entries [θ1]2×2 are drawn from a uniform distribution in the
range [−2, 2] and [θ2]2×1 = [1,−1]. Moreover, N is sampled
from Gaussian distribution N (0, 0.5). We considered the mean
square error as the loss function.

In Fig. 4, the value of F (θ) is depicted versus number of
machines for MRE-NC and two naive approaches. In this
experiment, we assumed that each machine has access to
n = 10 samples. As can be seen, the MRE-NC algorithm
outperforms the two naive methods, its performance improves
as the number of machines increases, and approaches to the
optimal value.

B. Real Data

In this part, we apply the MRE-NC algorithm to the task
of classifying images of digits in the MNIST dataset [49].
We employed an ensemble learning technique [50] to build a
model at the server side. In ensemble learning, we train a set of
models, commonly called weak learners, that perform slightly
better than random guess. Afterwards, a strong model can be
built based on the models through different techniques such as
boosting, stacking, or even picking the weak learner with the
best performance. In this experiment, we obtained a collection
of weak learners by running multiple instances of MRE-NC
algorithm in parallel and then selected the one which has the
lowest estimated empirical loss. More specifically, we assumed
that each machine has access to n = 10 random samples from
MNIST dataset. Furthermore, for each image X ∈ R28×28,
residing in each machine, that machine splits X horizontally or
vertically at pixel p ∈ {7, 14, 21} into two parts, computes the
average values of pixels in each part, and finally scales these
average values into the range [0, 100]. Let (Zh,p

1 , Zh,p
2 ) and

(Zv,p
1 , Zv,p

2 ) be the resulted values for the horizontal or vertical
split at pixel p, respectively. We considered the model h(Z) =
sigmoid(θT1 Z + θ2), where sigmoid(x) = 1/(1 + exp(−x)),
θ1 ∈ R2, θ2 ∈ R, and Z is the sample obtained after pre-
processing at the machine as described above for any horizontal
or vertical split. We considered the cross-entropy loss function
(see page 72 in [51]) and trained six models by executing MRE-
NC algorithm on the data obtained from each horizontal/vertical
split at pixel p ∈ {7, 14, 21}. At the server side, the model
with the minimum F̂ was selected. In our experiments, we
considered images of only two digits 3 and 4 and tried to
classify them6. Fig. 5, depicts the true F (θ̂) and the error in
classification averaged over 10 instances of the problem. As
can be seen, both metrics decrease as the number of machines
increases. Moreover, these metrics approach the optimal values
corresponding to the centralized solution in which the server
has access to the entire data.

6We considered a binary classification problem in our experiment, and any
pair of digits with different shapes can be chosen for the considered task.
Herein, we picked the two digits 3 and 4 that are different in shape, and the
six weak learners have a wide range of performance in terms of accuracy on
these two digits.
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Fig. 5: The performance of MRE-NC (loss and classification
error) on classifying digits in MNIST dataset against the
number of machines. The left and right y-axes correspond
to the true loss function and the classification error of the
obtained model, respectively. The number of parameters per
weak learner and the number of samples per machine (n) are
3 and 10, respectively.

IX. DISCUSSIONS

In this paper, we studied the problem of federated learn-
ing in a one-shot setting and under limited communica-
tion budget B. We presented a general lower bound and
showed that, ignoring logarithmic factors, the expected loss
E
[
F (θ̂) − F (θ∗)

]
of any estimator is lower bounded by

max
(
n−1/2 (mB)−1/d, (mn)−1/2

)
. We then proposed an

estimator called MRE-NC, whose expected loss matches
the above lower bound, and is therefore optimal. We also
established a constant lower bound on minimax error when
the communication budget is constrained by a constant. The
class of functions we considered in this paper is pretty general.
We do not assume differentiability and our class includes all
Lipschitz continuous functions over [−1, 1]d. This makes the
model suitable for use in modern machine learning settings
such as neural networks.

The MRE-NC algorithm works by finding an
O(1/

√
n(mB)1/d)-approximation of the value of the

expected loss function F over a fine grid of size mB. To do
this, the algorithm adopts a multi-resolution idea from the
MRE-C algorithm [1] which was previously proposed for
the case of convex loss functions. The overall structure and
the details of the MRE-NC algorithm are however different
from those in [1]. While our upper bound proof incorporates
several ideas from the upper bound proof in [1], the proof
of our lower bound is novel and relies on reductions from
the problem of identifying an unbiased coin in a certain coin
flipping system. The proof involves information theory, and
despite the simple appearance of the coin flipping problem, it
has not been studied previously, to the best of our knowledge.

Our lower bound implies that the worst case expected error of
no estimator can decrease faster than roughly 1/

√
n(mB)1/d.
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When d is large, the error bound scales poorly with respect to
mB. This eliminates the hope for efficient and guaranteed loss
minimization in large problems, and limits the applicability of
the MRE-NC algorithm to the problems with large dimensions.
On the positive side, as we demonstrated in the numerical
experiments, the MRE-NC algorithm can be effectively em-
ployed to solve small size problems. Moreover, for large
dimensional problems, when incorporated into an ensemble
learning system, it proves effective for training weak learners
(refer to Section VIII for further discussions).

A drawback of the MRE-NC algorithms is that each machine
requires to know m in order to set the number of levels for the
grids. This can be circumvented by considering infinite number
of levels, and letting the probability that p is chosen from level l
decrease exponentially with l. As another drawback of the MRE-
NC algorithms, note that each machine i needs to compute the
minimizer θp of its local function F i in a small cube around
the corresponding point p. Since F i is a non-convex function,
finding θp is in general computationally exhaustive. Although
this will not affect our theoretical bounds, it would further limit
the applicability of MRE-NC algorithm in practice. Moreover,
it is good to point a possible trade off between the coefficients
in the precision and probability exponent of our bounds. More
specifically, if we multiply the upper bound in Theorem 2 by
a constant, then the corresponding probability exponent will
be multiplied by the square of the same constant. In this way,
one can obtain smaller upper bounds for larger values of mn.

For future works, given the poor scaling of the lower bound
in terms of m and d, it would be important to devise scalable
heuristics that are practically efficient in one shot learning
system classes of interest, like neural networks. Moreover,
efficient accurate solutions might be possible under further
assumptions on the class of functions and distributions. On
the theory side, the bounds in this paper are minimax bounds.
From a practical perspective, it is important to develop average
case bounds under reasonable assumptions. Another interesting
direction is to relax the assumption of fixed n number of
samples per machine, and to prove lower and upper bounds if
the ith machine receives ni samples.
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APPENDIX A
CONCENTRATION INEQUALITIES

Here, we collect two well-known concentration inequalities that will be used in the proofs of our main results.

Lemma 7. (Concentration inequalities)
(a)(Hoeffding’s inequality) Let X1, · · · , Xn be independent random variables ranging over the interval [a, a+ γ]. Let X̄ =∑n

i=1Xi/n and µ = E[X̄]. Then, for any α > 0,

Pr
(
|X̄ − µ| > α

)
≤ 2 exp

(
−2nα2

γ2

)
.

(b)(Theorem 4.2 in [52]) Let X1, · · · , Xn be independent Bernoulli random variables, X =
∑n

i=1Xi, and µ = E[X]. Then,
for any α ∈ (0, 1],

Pr
(
X < (1− α)µ

)
≤ exp

(
−µα

2

2

)
.

APPENDIX B
PROOF OF PROPOSITION 3

The proof comprises a series of lemmas whose proofs are given in the form of separate subsections at the end of this
appendix, for improved readability. For simplicity of the notation, we drop the coin-flipper’s index from all equations, and will
write S, W , and Q in places of Si, W i, and Qi, respectively. Recall that for a coin flipper, W is the n× k binary matrix of
its coin flip outcomes, so that the jth column of W corresponds to the outcomes of the jth coin, for j = 1, . . . , k. We refer to
the (possibly randomized) mapping (or coding) from W to the B-bit signal S by Q. More concretely, Q

(
S |W

)
denotes the

probability that a machine outputs signal S given the coin flipping outcomes W , for all W ∈ W and all S ∈ S, where W is
the set of all n× k matrices with 0 and 1 entries, and S is the set of all B-bit signals. We begin by showing that the mutual
information I(T ;S) is maximized via a coding Q that is deterministic. We call a coding Q deterministic if Q(S |W ) is either
0 or 1, for all W ∈ W and S ∈ S.

Lemma 8. Among all randomized codings Q, there exists a deterministic coding that maximizes I(T ;S).

The proof relies on a well-known result on the convexity of mutual information with respect to Pr(S | T ), and is given in
Appendix B-A.

In light of Lemma 8, for the rest of the proof without loss of generality we assume that the coding Q is deterministic.
Equivalently, corresponding to each s ∈ S, we associate a subset of W whose elements are mapped to s. With an abuse of
notation, we denote this subset of W by s. In other words, to any s ∈ S , is associated a subset s ⊆ W containing all w ∈ W
that are mapped to s via the deterministic coding. For any w ∈ W and for t = 1, . . . , k, we denote the tth column of w by
wt. Given w ∈ W , we let P (w) be the probability that w is the outcome matrix of coin-flips when T is chosen uniformly
at random from 1, . . . , k. Moreover, given t ≤ k, we let P (w | T = t) be the probability that w is the outcome matrix of
coin-flips when T = t.

Lemma 9. There exists a subset W̄ ⊆ W with Pr(W̄) ≥ 1− 6k−3, such that for any w ∈ W̄ ,

Pr
(
Wt = wt | T = t

)
≤ 5× 2−n

3
, for t = 1, . . . , k, (42)

and
2−kn (1− δ) ≤ P (w) ≤ 2−kn (1 + δ), (43)

where
δ ≜

23

C
√
k

+
1

k
. (44)

The proof relies on concentration inequalities, and is presented in Appendix B-B. For the rest of this appendix, we fix the
constant δ and the set W̄ as defined in Lemma 9.

Recall the convention that for any s ∈ S, we denote the subset of W that is mapped to s, also by s. For the simplicity of
notation, for the rest of the proof, for any s ∈ S, we let s̄ ≜ s

⋂
W̄ and P (s̄ | T = t) ≜ P (w ∈ s̄ | T = t). We make the

convention that 0/0 = 1.

Lemma 10. a) The entropy H(S) of signal S satisfies

H(S) ≥

(∑
s∈S

P (s̄) log2
1

P (s̄)

)
− 9

k3
. (45)



ONE-SHOT FEDERATED LEARNING FOR NON-CONVEX LOSS FUNCTIONS 14

b) The mutual information I(T ;S) satisfies

I(T ;S) ≤ 1

k ln 2

∑
s∈S

P (s̄)

k∑
t=1

(
P (s̄ | T = t)

P (s̄)
− 1

)2

+
9 + 6B + 15

√
k

k3
. (46)

The proof is given in Appendix B-C. Our next lemma provides a bound on the weighted sum of a probability mass function
in terms of its entropy.

Lemma 11. Consider an integer n ≥ 1 and a set
{
αu | u ∈ {0, 1}n

}
of real numbers such that αu ∈ [−1, 1], for all

u ∈ {0, 1}n, and
∑

u∈{0,1}n αu = 0. Let U be a random variable on {0, 1}n with probability distribution P , such that for any
u ∈ {0, 1}n, we have U = u with probability P (u). Then, ∑

u∈{0,1}n

αuP (u)

2

≤ 1.5
(
n−H(U)

)
, (47)

where H(U) is the entropy of U .

The proof is presented in Appendix B-D. We now have all the required lemmas, and are ready to prove Proposition 3.
For any t ≤ k, any u ∈ {0, 1}n, and any s ∈ S, let N s̄

t (u) be the number of w ∈ s̄ such that wt = u. Also, let |s̄| be the
size of the set s̄. Then, for any u ∈ {0, 1}n,

Pr
(
Wt = u |W ∈ s̄

)
=

∑
w∈s̄
wt=u

P (w)∑
w∈s̄ P (w)

≤

∑
w∈s̄
wt=u

(1 + δ)2−kn∑
w∈s̄(1− δ)2−kn

=
1 + δ

1− δ
N s̄

t (u)

|s̄|
,

(48)

where the inequality follows from (43). In the same vein, for any u ∈ {0, 1}n,

Pr
(
Wt = u |W ∈ s̄

)
≥ 1− δ

1 + δ

N s̄
t (u)

|s̄|
. (49)

Let
U ≜

{
u ∈ {0, 1}n

∣∣∣ Pr
(
W1 = u | T = 1

)
≤ 5× 2−n

3

}
. (50)

It follows from (42) that
if w ∈ W̄, then wt ∈ U , for t = 1, . . . , k. (51)

Therefore, for any u ∈ {0, 1}n, any t ≤ k, and any s ∈ S,

if u ̸∈ U , then N s̄
t (u) = 0. (52)

Let
γ ≜

∑
u∈U

Pr
(
W1 = u | T = 1

)
. (53)

Then, for the random outcome matrix W of the coin flipping, we have

γ = Pr
(
W1 ∈ U | T = 1

)
≥ Pr

(
W ∈ W̄ | T = 1

)
= Pr

(
W ∈ W̄

)
= P (W̄) ≥ 1− 6k−3 ≥ 5

6
, (54)

where the first inequality follows from (51), the first equality is due to the symmetry and invariance of the set W̄ with respect
to permutation of different columns, the second inequality is due to Lemma 9, and the third inequality is because 6k−3 ≤ 1/6
(see (5) with identification k = mB). For any u ∈ {0, 1}n, let

αu ≜

{
2n

γ Pr
(
W1 = u | T = 1

)
− 1 if u ∈ U ,

−1 if u ̸∈ U .
(55)

It follows from (54) and the definition of U in (50) that for any u ∈ U , we have 2nP (W1 = u | T = 1)/γ ≤ 2nP (W1 = u |
T = 1)× 6/5 ≤ 2. Therefore, αu ∈ [−1, 1], for all u ∈ {0, 1}n. Moreover,∑

u∈{0,1}n

αu = −2n +
2n

γ

∑
u∈U

Pr
(
W1 = u | T = 1

)
= −2n +

2n

γ
× γ = 0,
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where the second equality is from the definition of γ in (53). Hence, the set of numbers αu, for u ∈ {0, 1}n, satisfies all of the
conditions in Lemma 11. Therefore, it follows from Lemma 11 that for any s ∈ S and any t ≤ k, ∑

u∈{0,1}n

αu Pr
(
Wt = u |W ∈ s̄

)2

≤ 1.5
(
n−H

(
Wt |W ∈ s̄

))
. (56)

In what follows, we try to derive a bound on P
(
s̄ | t

)
/P (s̄) in terms of αu. We then use (56) and Lemma 10 to obtain the

desired bound on I(T ;S). We now elaborate on P
(
s̄ | t

)
,

P
(
s̄ | T = t

)
= 2−n(k−1)

∑
w∈s̄

P
(
wt | T = t

)
= 2−n(k−1)

∑
u∈{0,1}n

Pr
(
Wt = u | T = t

)
N s̄

t (u)

= 2−nk
∑

u∈{0,1}n

(
2n Pr

(
Wt = u | T = t

))
N s̄

t (u)

= 2−nk
∑

u∈{0,1}n

(
(αu + 1)γ

)
N s̄

t (u),

(57)

where the last equality is due to (52) and the definition of αu in (55). On the other hand, since P (s̄) =
∑

w∈s̄ P (w), it follows
from (43) that

P (s̄) ≤
∑
w∈s̄

(1 + δ) 2−kn = 2−kn (1 + δ) |s̄|,

P (s̄) ≥
∑
w∈s̄

(1− δ) 2−kn = 2−kn (1− δ) |s̄|.
(58)

Combining (57) and (58), we obtain

P
(
s̄ | T = t

)
P (s̄)

≤ 1

1− δ
∑

u∈{0,1}n

(1 + αu)
N s̄

t (u)

|s|
,

P
(
s̄ | T = t

)
P (s̄)

≥ 1

1 + δ

∑
u∈{0,1}n

(1 + αu)
N s̄

t (u)

|s|
.

(59)

It then follows from (59) and (48) that

P
(
s̄ | T = t

)
P (s̄)

≥ 1

1 + δ

∑
u∈{0,1}n

(1 + αu)
N s̄

t (u)

|s|

≥ 1− δ
(1 + δ)2

∑
u∈{0,1}n

(
1 + αu

)
Pr
(
Wt = u |W ∈ s̄

)
≥
(
1− 4δ)

∑
u∈{0,1}n

(
1 + αu

)
Pr
(
Wt = u |W ∈ s̄

)
≥

∑
u∈{0,1}n

(
1 + αu

)
Pr
(
Wt = u |W ∈ s̄

)
− 4δ

∑
u∈{0,1}n

2Pr
(
Wt = u |W ∈ s̄

)
=

∑
u∈{0,1}n

(
1 + αu

)
Pr
(
Wt = u |W ∈ s̄

)
− 8δ

=
∑

u∈{0,1}n

αu Pr
(
Wt = u |W ∈ s̄

)
+ 1 − 8δ,

(60)

where the first inequality is from (59), the second inequality follows from (48), the fourth inequality is because αu ≤ 2 for all
u ∈ {0, 1}n, and the third inequality is due to the assumption that δ ≤ 1/7 (see (6)) and the following inequality (which is
easy to verify with a computer program)

1− x
(1 + x)2

≥ 1− 4x and
1 + x

(1− x)2
≤ 1 + 4x, ∀x ∈ [0, 1/7].

Following a similar line of arguments and using (49) instead of (48), we obtain

P
(
s̄ | T = t

)
P (s̄)

≤
∑

u∈{0,1}n

αu Pr
(
Wt = u |W ∈ s̄

)
+ 1 + 8δ. (61)
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Combining (60) and (61), we obtain(
P
(
s̄ | T = t

)
P (s̄)

− 1

)2

≤

∣∣∣ ∑
u∈{0,1}n

αu Pr
(
Wt = u |W ∈ s̄

)∣∣∣ + 8δ

2

≤ 2

 ∑
u∈{0,1}n

αu Pr
(
Wt = u |W ∈ s̄

)2

+ 2(8δ)2

≤ 3
(
n−H

(
Wt |W ∈ s̄

))
+ 128δ2,

(62)

where the first inequality is due to (60) and (61), the second inequality is because (a+ b)2 ≤ 2a2 + 2b2, for all a, b ∈ R, and
the last inequality follows from (56).

On the other hand,

H
(
W |W ∈ s̄

)
=
∑
w∈s̄

P
(
w | w ∈ s̄

)
log2

1

P
(
w | w ∈ s̄

)
=
∑
w∈s̄

P (w)

P (s̄)
log2

P (s̄)

P (w)

≥
∑
w∈s̄

P (w)

P (s̄)
log2

P (s̄)

(1 + δ) 2−kn

= log2
P (s̄)

(1 + δ) 2−kn

= kn + log2 P (s̄) − log2(1 + δ)

≥ kn − 1.5δ + log2 P (s̄),

(63)

where the first inequality is due to Lemma 9, and the last inequality is because log2(1 + x) ≤ 1.5x, for all x > −1. Moreover,

H
(
W |W ∈ s̄

)
= H

(
W1, . . . ,Wk |W ∈ s̄

)
≤

k∑
t=1

H
(
Wt |W ∈ s̄

)
, (64)

where the inequality is from the sub-additive property of the entropy (see [48], page 41). Plugging (63) into (64), we obtain

k∑
t=1

H
(
Wt |W ∈ s̄

)
≥ H

(
W |W ∈ s̄

)
≥ log2 P (s̄) + kn − 1.5δ. (65)

Combining everything together, we finally have

I(T ;S) ≤ 1

k ln 2

∑
s∈S

P (s̄)

k∑
t=1

(
P (s̄ | T = t)

P (s̄)
− 1

)2

+
9 + 6B + 15

√
k

k3

≤ 1

k ln 2

∑
s∈S

P (s̄)

k∑
t=1

(
3n− 3H

(
Wt |Wt ∈ s̄

)
+ 128δ2

)
+

9 + 6B + 15
√
k

k3

=
3n

k ln 2
− 3

k ln 2

∑
s∈S

P (s̄)

k∑
t=1

H
(
Wt |Wt ∈ s̄

)
+

128δ2

ln 2
+

9 + 6B + 15
√
k

k3

≤ 3n

k ln 2
− 3

k ln 2

∑
s∈S

P (s̄)
(
log2 P (s̄) + nk − 1.5δ

)
+ 185δ2 +

9 + 6B + 15
√
k

k3

=
3

k ln 2

∑
s∈S

P (s̄) log2
1

P (s̄)
+

4.5δ

k ln 2
+ 185δ2 +

9 + 6B + 15
√
k

k3

≤ 3

k ln 2
H(S) +

27

k3 ln 2
+

6.5δ

k
+ 185δ2 +

9 + 6B + 15
√
k

k3

≤ 3B

k ln 2
+

40

k3
+

6.5δ

k
+ 185δ2 +

9 + 6B + 15
√
k

k3

<
3B

k ln 2
+

1

k

[(
313

C

)2

+
942

C
√
k

+
192

k
+

15

k1.5
+

49 + 6B

k2

]
,
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where the first inequality follows from Lemma 10 (b), the second inequality is due to (62), the third inequality is from (65),
the fourth inequality results from Lemma 10 (a), the fifth inequality is because S is a B-bit signal and as a result, H(S) ≤ B,
and the last inequality is by substituting δ from (44) and simple calculations. This implies (28) and completes the proof of
Proposition 3.

A. Proof of Lemma 8

The proof relies on a known property of mutual information (see Theorem 2.7.4 of [48] on page 33), according to which

I(S;T ) is a convex function with respect to P
(
S | T

)
. (66)

Let Q be a randomized coding, under which a machine outputs signal S given the coin-flipping outcome vector W with
probability Q

(
S |W

)
. For any s ∈ S and t = 1, . . . , k, let

PQ

(
s | t

)
≜
∑
w∈W

P
(
w | t

)
Q
(
s | w

)
(67)

be the probability of signal s given the biased coin index t. Let Q be the set of all deterministic mappings (or functions) from
W to S. Corresponding to any g ∈ Q, we consider a deterministic coding Qg as follows

Qg

(
s | w

)
=

{
1 if g(w) = s,

0 otherwise.
(68)

We also let
Pg

(
s | t

)
≜
∑
w∈W

P
(
w | t

)
Qg

(
s | w

)
(69)

be the probability of signal s given the biased coin index t, under the coding Qg . We will show that for any stochastic coding
Q, PQ(·) is a convex combination of Pg(·), for g ∈ Q, in the sense that there exist non-negative coefficients αg, for g ∈ Q,
such that

∑
g∈Q αg = 1 and

PQ

(
s | t

)
=
∑
g∈Q

αg Pg

(
s | t

)
, ∀s ∈ S, t = 1, . . . , k. (70)

Once we establish (70), it follows from (66) that7

I
(
S;T

)
≤
∑
g∈Q

αgI
(
Sg;T

)
≤ max

g∈Q
I
(
Sg;T

)
, (71)

where S is a random signal generated via coding Q, and for g ∈ Q, Sg is a random signal generated under coding Qg . As a
result, there exists a g ∈ Q such that the mutual information under deterministic coding Qg is no smaller than the mutual
information under the randomized coding Q. This shows that the mutual information is maximized under a deterministic coding,
which in turn implies the lemma. In the rest of the proof, we will establish (70).

Lets fix a randomized coding Q. We enumerate the set W and let W =
{
w1, . . . , w2kn}

. For any g ∈ Q let

αg ≜
∏

w∈W
Q
(
g(w) | w

)
=

2kn∏
i=1

Q
(
g(wi) | wi

)
. (72)

Then, ∑
g∈Q

αg =
∑
g∈Q

2kn∏
i=1

Q
(
g(wi) | wi

)
=
∑
s1∈S

· · ·
∑

s
2kn∈S

2kn∏
i=1

Q
(
si | wi

)

=

(∑
s1∈S

Q
(
s1 | w1

))
× · · · ×

 ∑
s
2kn∈S

Q
(
s2kn | w2kn)

= 1× · · · × 1

= 1,

(73)

7Please note that I(S;T ) can be seen as a convex function of a vector α = (α1, · · · , α|Q|) where
∑

g∈Q αg = 1. Moreover, the value of this function at
the standard basis vector ei, 1 ≤ i ≤ |Q|, would be I

(
Sg ;T

)
. Thus, the value of I(S;T ) is less than the linear combination of values of this function at

basis vectors with weights given in α.
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where the second equality is because Q is the set of all deterministic functions from W to S and for any s1, . . . , s2kn ∈ S,
there exists a g ∈ Q such that g(wi) = si for i = 1, . . . , 2kn; and the last inequality is because for any w ∈ W , Q

(
· | w

)
is a

probability mass function over S.
On the other hand, for any s ∈ S,∑

g∈Q
αgQg

(
s | w1

)
=

∑
g∈Q

g(w1)=s

αg

=
∑
g∈Q

g(w1)=s

2kn∏
i=1

Q
(
g(wi) | wi

)

= Q
(
s | w1

) ∑
g∈Q

g(w1)=s

2kn∏
i=2

Q
(
g(wi) | wi

)

= Q
(
s | w1

) ∑
s2∈S

· · ·
∑

s
2kn∈S

2kn∏
i=2

Q
(
g(wi) | wi

)

= Q
(
s | w1

) (∑
s2∈S

Q
(
s2 | w2

))
× · · · ×

 ∑
s
2kn∈S

Q
(
s2kn | w2kn)

= Q
(
s | w1

)
× 1× · · · × 1

= Q
(
s | w1

)
,

(74)

where the first equality follows from the definition of Qg in (68), the fourth equality is because for any s1, . . . , s2kn ∈ S,
there exists a g ∈ Q such that g(wi) = si for i = 1, . . . , 2kn, and the sixth equality is because for any w ∈ W , Q

(
· | w1

)
is a

probability mass function over S. In the same vein, for any w ∈ W and any s ∈ S, we have

Q
(
s | w

)
=
∑
g∈Q

αgQg

(
s | w

)
. (75)

Therefore, for t = 1, . . . , k and for any s ∈ S,

PQ

(
s | t

)
=
∑
w∈W

P
(
w | t

)
Q
(
s | w

)
=
∑
w∈W

P
(
w | t

) ∑
g∈Q

αg Qg

(
s | w

)
=
∑
g∈Q

αg

∑
w∈W

P
(
w | t

)
Qg

(
s | w

)
=
∑
g∈Q

αgPg

(
s | t

)
,

(76)

where the first equality is from the definition of PQ(·) in (67), the second equality follows from (75), and the last equality is
due to the definition of Pg(·) in (69). This implies (70). Lemma 8 then follows from the argument following (71).

B. Proof of Lemma 9

Fix a t0 ≤ k and let ψ be a random outcome of the coin flipping matrix generated via distribution P (W | T = t0). For
t = 1, . . . , k let δt denote the number of 1s in the tth column of ψ. Therefore,

E
[
δt0
]
=
n

2
+

√
n

2C ln k
, (77)

and for any t ̸= t0,

E
[
δt
]
=
n

2
. (78)
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We now capitalizing on the Hoeffding’s inequality (see Lemma 7 (a)) to obtain

Pr
(∣∣δt0 − n

2

∣∣ ≥ 2.5
√
n ln k

)
≤ Pr

(∣∣δt0 − (n2 +

√
n

2C ln k

)∣∣ ≥ 2.5
√
n ln k −

√
n

2C ln k

)
= Pr

(∣∣δt0 − E[δt0 ]
∣∣ ≥ 2.5

√
n ln k −

√
n

2C ln k

)
≤ Pr

(∣∣δt0 − E[δt0 ]
∣∣ ≥ 2

√
n ln k

)
≤ 2 exp

(
−8n ln k

n

)
≤ 2 exp

(
− 8 ln k

)
≤ 2

k4
,

(79)

where the first equality is from (77) and the third inequality is due to the Hoeffding’s inequality. In the same vein, for any
t ̸= t0,

Pr
(∣∣δt − n

2

∣∣ ≥ 2.5
√
n ln k

)
= Pr

(∣∣δt − E[δt]
∣∣ ≥ 2.5

√
n ln k

)
≤ 2 exp

(
−12.5n ln k

n

)
≤ 2

k4
,

(80)

where the equality is due to (78) Therefore, for t = 1, . . . , k,

Pr
(∣∣δt − n

2

∣∣ ≥ 2.5
√
n ln k

)
≤ 2

k4
. (81)

It is easy to verify via a simple computer program that ex ≤ 1 + 4x/3, for all x ∈ [0, 0.5]. It then follows from (4) with
k = mB that

exp

(
15

2C
√
ln k

)
≤ 1 +

10

C
√
ln k

. (82)

Let
ϵ ≜

1

C
√
n ln k

. (83)

In the same vein, we have (1 + x)/(1− x) ≤ e3x, for all x ∈ [0, 1/3]. Therefore, in view of (4), ϵ ≤ 1/3, and hence,
1 + ϵ

1− ϵ
≤ e3ϵ. (84)

Moreover, for any x ∈ [0, 0.5], we have 1− x ≥ e−2x. Consequently,(
1− ϵ2

)n/2 ≥ ( exp(−2ϵ2))n/2 = exp
(
− nϵ2

)
= exp

(
−1

C2 ln2 k

)
. (85)

Once again, we emphasize that ψ is sampled from a distribution in which the t0th coin is biased. Then, for t = 1, . . . , k,

Pr
(
Wt = ψt | T = t

)
=

(
1

2
+
ϵ

2

)δt (1

2
− ϵ

2

)n−δt

= 2−n (1 + ϵ)
n
2 +(δt−n

2 )
(1− ϵ)

n
2 −(δt−n

2 )

= 2−n
(
1− ϵ2

)n
2

(
1 + ϵ

1− ϵ

)δt−n
2

,

(86)

where the first equality is due to (26) and the definition of ϵ in (83). Assuming |δt − n/2| ≤ 2.5
√
n ln k, (86) simplifies to

P
(
Wt = ψt | T = t

)
≤ 2−n

(
1 + ϵ

1− ϵ

)δt−n
2

≤ 2−n
(
e3ϵ
)|δt−n

2 |

≤ 2−n exp
(
7.5ϵ
√
n ln k

)
= 2−n exp

(
15

2C
√
ln k

)
≤ 2−n

(
1 +

10

C
√
ln k

)
,

(87)
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where the second inequality follows from (84), the third inequality is due to the assumption |δt − n/2| ≤ 2.5
√
n ln k, the

equality is by the definition of ϵ in (83), and the last inequality is from (82).
In the same vein, assuming |δt − n/2| ≤ 2.5

√
n ln k, (86) can be simplified as

P
(
Wt = ψt | T = t

)
= 2−n

(
1− ϵ2

)n
2

(
1 + ϵ

1− ϵ

)δt−n
2

≥ 2−n exp

(
−1

C2 ln2 k

) (
1 + ϵ

1− ϵ

)−|δt−n
2 |

≥ 2−n exp

(
−1

C2 ln2 k

)
exp (3ϵ)

−|δt−n
2 |

≥ 2−n exp

(
−1

C2 ln2 k
− 7.5ϵ

√
n ln k

)
= 2−n exp

(
−1

C2 ln2 k
− 15

2C
√
ln k

)
≥ 2−n exp

(
−8
C
√
ln k

)
≥ 2−n

(
1− 8

C
√
ln k

)
,

(88)

where the first inequality follows from (85), the second inequality is due to (84), the third inequality is from the assumption
that |δt − n/2| ≤ 2.5

√
n ln k, the second equality is from the definition of ϵ in (83), the fourth inequality is because C ln k ≥ 2

(see (4) with identification k = mB), and the last inequality is because e−x ≥ 1− x, for all x ∈ R.
Combining (81), (87), and (88), it follows that for t = 1, . . . , k, with probability at least 1− 2k−4 we have

Pr
(
Wt = ψt | T = t

)
∈ 2−n ×

(
1− 8

C
√
ln k

, 1 +
10

C
√
ln k

)
. (89)

Let W̄1 be a subset of W that contains all w ∈ W for which |δt − n/2| ≤ 2.5
√
n ln k, for t = 1, . . . , k. Then, from (87)

and (4), for any w ∈ W̄1, we obtain:

Pr
(
Wt = wt | T = t

)
≤ 2−n

(
1 +

10

15

)
=

5× 2−n

3
. (90)

Moreover, it follows from (81) and the union bound that

P
(
W̄1

)
≥ 1− 2k−3. (91)

We now proceed to prove the second part of the lemma, i.e. (43). Again, fix a t0 ≤ k and let ψ be a random matrix of
coin-flip outcomes in which the biased coin has index T = t0. In this case, the columns ψ1, . . . , ψk of ψ are independent
random vectors. For t = 1, . . . , k, let

yt = f(ψt) ≜ min

(
max

(
2n Pr

(
Wt = ψt | T = t

)
, 1− 8

C
√
ln k

)
, 1 +

10

C
√
ln k

)
. (92)

Since each yt is only a function of ψt, it follows that y1, . . . , yk are independent random variables. Moreover, every yt lies
in an interval of length 18/C

√
ln k. On the other hand, it follows from (89) that for t = 1, . . . , k, with probability at least

1− 2k−4, we have yt = 2n Pr
(
W2 = ψt | T = t

)
. The union bound then implies that with probability at least 1− 2k−3,

yt = 2n Pr
(
Wt = ψt | T = t

)
, for t = 1, . . . , k. (93)

Therefore, for the random matrix ψ sampled from a distribution with biased coin index T = t0, we have

P (ψ) = Pr(W = ψ)

=
1

k

k∑
t=1

Pr
(
W = ψ | T = t

)
=

1

k

k∑
t=1

2−(k−1)n Pr
(
Wt = ψt | T = t

)
=

2−kn

k

k∑
t=1

2n Pr
(
Wt = ψt | T = t

)
(94)
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It then follows from (93) that with probability at least 1− 2k−3,

P (ψ) =
2−kn

k

k∑
t=1

yt. (95)

Let

β ≜ E

[
2−kn

k

k∑
t=1

yt

]
. (96)

Claim 1. |β − 2−kn| ≤ 2−kn/k.

Proof. Temporarily, fix a t ̸= t0 and let

U+ ≜

{
u ∈ {0, 1}n

∣∣∣ 2n Pr
(
ψt = u | T = t

)
> 1 +

10

C
√
ln k

}
, (97)

U− ≜

{
u ∈ {0, 1}n

∣∣∣ 2n Pr
(
ψt = u | T = t

)
< 1− 8

C
√
ln k

}
. (98)

Then, it follows from (89) that

∑
u∈U+

Pr
(
ψt = u | T = t

)
≤ 2k−4. (99)

On the other hand, (88) implies that for any u ∈ U−

|δ(u)− n/2| ≥ 2.5
√
n ln k, (100)

where δ(u) is the number of 1s in the binary vector u. Let z1, . . . , zn be i.i.d. binary outcomes of a fair coin flip, and let
Z = z1 + · · ·+ zn. Then,

∑
u∈U−

1

2n
≤

∑
u∈{0,1}n

|δ(u)−n/2|≥2.5
√
n ln k

1

2n

= Pr
(∣∣Z − n

2

∣∣ ≥ 2.5
√
n ln k

)
≤ 2 exp

2×
(
2.5
√
n ln k

)2
n


≤ 2 exp

(
− 4 ln k

)
= 2k−4,

(101)

where the first inequality follows from (100), the first equality is because Z has uniform distribution over {0, 1}n, and the
second inequality is due to the Hoeffding’s inequality.
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We now expand E[yt] as follows. From (92), we have

E[yt] = E
[
f(ψt)

]
=

∑
u∈{0,1}n

Pr
(
ψt = u

)
f(u)

=
1

2n

∑
u∈{0,1}n

f(u)

=
1

2n

∑
u∈{0,1}n

min

(
max

(
2n Pr

(
ψt = u | T = t

)
, 1− 8

C
√
ln k

)
, 1 +

10

C
√
ln k

)

=
1

2n

( ∑
u∈{0,1}n

2n Pr
(
ψt = u | T = t

)
+
∑

u∈U+

[(
1 +

10

C
√
ln k

)
− 2n Pr

(
ψt = u | T = t

)]

+
∑

u∈U−

[(
1− 8

C
√
ln k

)
− 2n Pr

(
ψt = u | T = t

)])

= 1 −
∑

u∈U+

[
Pr
(
ψt = u | T = t

)
− 2−n

(
1 +

10

C
√
ln k

)]

+
1

2n

∑
u∈U−

[(
1− 8

C
√
ln k

)
− 2n Pr

(
ψt = u | T = t

)])
,

(102)

where the third equality is because t ̸= t0 and as a result Pr
(
ψt = u

)
= 2−n for all u ∈ {0, 1}n, and the fifth equality follows

from the definitions of U+ and U− in (97) and (98), respectively. From (102), we have

E[yt] ≥ 1 −
∑

u∈U+

Pr
(
ψt = u | T = t

)
≥ 1− 2k−4, (103)

where the second inequality is due to (99). Moreover, it follows from (102) that

E[yt] ≤ 1 +
1

2n

∑
u∈U−

(
1− 8

C
√
ln k

)
≤ 1 +

∑
u∈U−

1

2n
≤ 1 + 2k−4, (104)

where the first inequality is due to (102), and the last inequality is form (101). Combining (103) and (104), it follows that for
any t ̸= t0, ∣∣E[yt]− 1

∣∣ ≤ 2k−4. (105)

On the other hand, (4) implies that C
√
ln k ≥ 15. Therefore, from the definition of yt, we have yt0 ∈

(
1− 8/15, 1 + 10/15

)
.

Therefore, ∣∣E[yt0 ]− 1
∣∣ ≤ 2

3
. (106)

Combining (105) and (106), we obtain

∣∣β − 2−kn
∣∣ = 2−kn

∣∣∣1
k

k∑
t=1

E[yt] − 1
∣∣∣

≤ 2−kn

k

k∑
t=1

∣∣E[yt]− 1
∣∣

≤ 2−kn

k

[
(k − 1)× 2k−4 +

2

3

]
≤ 2−kn

k
,

(107)

where the first equality is from the definition of β in (96), the third inequality follows from (105) and (106), and the last
inequality is due to the assumption k−3 ≤ 1/6 (see (5) with identification k = mB). This completes the proof of Claim 1.
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We proceed with the proof of the lemma. Since y1, . . . , yk are independent random variables over an interval of length
18/C

√
ln k, employing the Hoeffding’s inequality we have

Pr

(∣∣P (ψ)− 2−kn
∣∣ ≥ 23 × 2−nk

C
√
k

+
2−kn

k

)
≤ Pr

(∣∣P (ψ)− β∣∣ ≥ 23 × 2−nk

C
√
k

)
≤ Pr

(∣∣P (ψ)− β∣∣ ≥ 23 × 2−nk

C
√
k

∣∣∣∣ P (ψ) = 2−kn

k

k∑
t=1

yt

)

+ Pr

(
P (ψ) ̸= 2−kn

k

k∑
t=1

yt

)

≤ Pr

(∣∣∣1
k

k∑
t=1

yt − 2knβ
∣∣∣ ≥ 23

C
√
k

)
+ 2k−3

≤ 2 exp

(
−2k

(
23/C

√
k
)2(

18/C
√
ln k
)2
)

+ 2k−3

= 2 exp

(
−2× 232

182
ln k

)
+ 2k−3

≤ 2 exp
(
− 3 ln k

)
+ 2k−3

≤ 4k−3,

(108)

where the first inequality follows from Claim 1, the third inequality is due to (95) and the fourth inequality follows from the
Hoeffding’s inequality (see Lemma 7 (a)) and the definition of β in (96).

Since t0 was chosen arbitrarily, (108) holds when the biased coin has any index in 1, . . . , k, and as a result it also holds
when the biased coin is chosen uniformly at random from 1, . . . , k. Finally, we define a subset W̄2 ⊂ W as

W̄2 ≜

{
w ∈ W :

∣∣P (ψ)− 2−kn
∣∣ ≤ 23 × 2−nk

C
√
k

+
2−kn

k

}
, (109)

and let W̄ = W̄1

⋂
W̄2. Employing a union bound on (91) and (108), it follows that P

(
W̄
)
≥ 1− 6k−3. Moreover, Equations

(42) and (43) in the lemma statement follow from (90) and (109), respectively. This completes the proof of Lemma 9.

C. Proof of Lemma 10

In this appendix, we present the proof of Lemma 10. For Part (a), let f(x) = x log2(1/x). Then f ′(x) = log2(1/x)− log2 e,
where e ≃ 2.718 is the basis of the natural logarithm. As a result, f ′(x) ≥ −1.5, for all x ∈ (0, 1]. Consequently, for any
s ∈ S,

f
(
P (s)

)
≥ f

(
P (s̄)

)
− 1.5

(
P (s)− P (s̄)

)
(110)

Then,

H(S) =
∑
s∈S

P (s) log2
1

P (s)

=
∑
s∈S

f
(
P (s)

)
≥
∑
s∈S

(
f
(
P (s̄)

)
− 1.5

(
P (s)− P (s̄)

))
=

(∑
s∈S

f
(
P (s̄)

))
− 1.5

(∑
s∈S

P (s) −
∑
s∈S

P (s̄)

)

=

(∑
s∈S

P (s̄) log2
1

P (s̄)

)
− 1.5

(
1− P (W̄)

)
≥

(∑
s∈S

P (s̄) log2
1

P (s̄)

)
− 9k−3,

where the first equality is from the definition of entropy (see [48], page 14), and the inequalities are due to (110) and Lemma 9,
respectively. This completes the proof of Part (a) of the lemma.
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We now proceed to the proof of Part (b). Following similar steps as in the proof of Part (a), it can be shown than for
t = 1, . . . , k,

H
(
S | T = t

)
≜
∑
s∈S

P
(
s | T = t

)
log2

1

P
(
s | T = t

)
≥

(∑
s∈S

P
(
s̄ | T = t

)
log2

1

P
(
s̄ | T = t

)) − 9

k3
.

(111)

Let W̄c be the complement of the set W̄ , and for any s ∈ S, let s̃ ≜ s
⋂
W̄c. Then, from Lemma 9, we have

∑
s∈S

P (s̃) = P
(
W̄c
)
≤ 6k−3. (112)

It is easy to verify that x log2(1/x) ≤ 3.2x5/6, for all x ≥ 0. Then,

6k−3 log2
k3

6
≤ 3.2

(
6k−3

)5/6 ≤ 15k−2.5 (113)

Let |S| be the number of elements in S . Since S comprises the set of all B-bit signals, we have |S| = 2B . It follows from
the Jensen’s inequality (see [48], page 25) that for fixed

∑
s∈S P (s̃), the value of

∑
s∈S P (s̃) log2

(
1/P (s̃)

)
is maximized

when all P (s̃), for s ∈ S, have equal probability. Therefore,

∑
s∈S

P (s̃) log2
1

P (s̃)
≤
∑
s∈S

∑
s∈S P (s̃)

|S|
log2

|S|∑
s∈S P (s̃)

= P
(
W̄c
)
log2

|S|
P
(
W̄c
)

= P
(
W̄c
)
B + P

(
W̄c
)
log2

1

P
(
W̄c
)

≤ 6B

k3
+ P

(
W̄c
)
log2

1

P
(
W̄c
)

≤ 6B

k3
+ 6k−3 log2

k3

6

≤ 6B

k3
+

15

k2.5

=
6B + 15

√
k

k3
,

(114)

where the first equality follows from (112), the second equality is because |S| = 2B , the second inequality is due to (112), the
third inequality is again because of (112) and the fact that x log2(1/x) is an increasing function for x ∈ [0, 1/e], and the last
inequality follows from (113). Consequently,

H(S) =
∑
s∈S

P (s) log2
1

P (s)

=
∑
s∈S

(
P (s̄) + P (s̃)

)
log2

1

P (s̄) + P (s̃)

≤
∑
s∈S

P (s̄) log2
1

P (s̄)
+
∑
s∈S

P (s̃) log2
1

P (s̃)

≤
∑
s∈S

P (s̄) log2
1

P (s̄)
+

6B + 15
√
k

k3
,

(115)

where the last inequality is due to (114).
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On the other hand, for any x, y > 0, we have

y log2 y − x log2 x = (y − x) log2 x + y
(
log2 y − log2 x

)
= (y − x) log2 x + y log2

y

x

≤ (y − x) log2 x +
y

ln 2

(y
x
− 1
)

= (y − x) log2 x +
1

ln 2

[
y2 − yx

x
+
x2 − yx

x
− x2 − yx

x

]
= (y − x) log2 x +

1

ln 2

[
x2 + y2 − 2yx

x
− (x− y)

]
= (y − x) log2(xe) +

(x− y)2

x ln 2
,

(116)

where the inequality is because log2 α ≤ (α− 1)/ ln 2, for all α > 0. Combining (111), (115), and (116), we obtain

I(T ;S) = H(S) −
k∑

t=1

P
(
T = t

)
H
(
S | T = t

)
= H(S) − 1

k

k∑
t=1

H
(
S | T = t

)
≤ H(S) − 1

k

k∑
t=1

(∑
s∈S

P
(
s̄ | t

)
log2

1

P
(
s̄ | t

) − 9

k3

)

≤
∑
s∈S

P (s̄) log2
1

P (s̄)
+

6B + 15
√
k

k3

− 1

k

k∑
t=1

(∑
s∈S

P
(
s̄ | t

)
log2

1

P
(
s̄ | t

) − 9

k3

)

=
1

k

k∑
t=1

∑
s∈S

(
P
(
s̄ | t

)
log2 P

(
s̄ | t

)
− P (s̄) log2 P (s̄)

)
+

9 + 6B + 15
√
k

k3

≤ 1

k

k∑
t=1

∑
s∈S

[(
P
(
s̄ | t

)
− P (s̄)

)
log2

(
P (s̄)e

)
+

(
P (s̄)− P (s̄ | t)

)2
P (s̄) ln 2

]

+
9 + 6B + 15

√
k

k3

=
∑
s∈S

log2
(
P (s̄)e

) [(1

k

k∑
t=1

P
(
s̄ | t

))
− P (s̄)

]

+
1

k ln 2

∑
s∈S

P (s̄)

k∑
t=1

(
P (s̄)− P (s̄ | t)

P (s̄)

)2

+
9 + 6B + 15

√
k

k3

=
∑
s∈S

log2
(
P (s̄)e

)
× 0

+
1

k ln 2

∑
s∈S

P (s̄)

k∑
t=1

(
P (s̄ | t)
P (s̄)

− 1

)2

+
9 + 6B + 15

√
k

k3

=
1

k ln 2

∑
s∈S

P (s̄)

k∑
t=1

(
P (s̄ | T = t)

P (s̄)
− 1

)2

+
9 + 6B + 15

√
k

k3
,

where the first equality is from the definition of mutual information (see [48], page 20), the first inequality is due to (111), the
second inequality is from (115), and the third inequality follows from (116). This completes the proof of Lemma 10.

D. Proof of Lemma 11

Let U+ be a subset of {0, 1}n that contains the 2n−1 elements u ∈ {0, 1}n with largest values of P (u). Also let U− be a
subset of {0, 1}n that contains the 2n−1 elements u ∈ {0, 1}n with smallest values of P (u). Then U+ and U− are disjoint sets
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with U+
⋃
U− = {0, 1}n. Moreover, for any u ∈ U+ and any v ∈ U−, we have P (u) ≥ P (v). Let θ ≜ P (U+) =

∑
u∈U+ P (u).

Then, P (U−) = 1− θ. Since
∑

u∈{0,1}n αu = 0 and αu ∈ [−1, 1], for all u ∈ {0, 1}n, it is easy to see that
∑

u∈{0,1}n αuP (u)
is maximized for the following choice of alpha:

αu =

{
1, u ∈ U+

−1, u ∈ U−.
(117)

Therefore, for any choice of αu, u ∈ {0, 1}n, that satisfy the conditions in the lemma statement, we have ∑
u∈{0,1}n

αuP (u)

2

≤

( ∑
u∈U+

P (u)−
∑

u∈U−

P (u)

)2

=
(
P (U+)− P (U−)

)2
=
(
2θ − 1

)2
.

(118)

Since each of U+ and U− has 2n−1 elements, it follows that

H
(
U | U ∈ U+

)
≤ n− 1 and H

(
U | U ∈ U−) ≤ n− 1. (119)

It then follows from the grouping axiom (see [53], page 8) that

H(U) = h(θ) + θH
(
U | U ∈ U+

)
+ (1− θ)H

(
U | U ∈ U−)

≤ h(θ) + θ(n− 1) + (1− θ) (n− 1)

= h(θ) + n− 1,

(120)

where h(θ) = θ log2(1/θ) + (1− θ) log2
(
1/(1− θ)

)
is the entropy of a binary random variable that equals 1 if U ∈ U+ and

equals 0 otherwise.
Consider the function f(x) = (2x− 1)2 + 1.5h(x), defined for x ∈ [0, 1]. Then, for any x ∈ (0, 1),

f ′′(x) = 8− 1.5

x ln 2
− 1.5

(1− x) ln 2
≤ 8− 2

(
1

x
+

1

1− x

)
≤ 0. (121)

Hence, f is a concave function and is symmetric over [0, 1]. Therefore, f(x) takes its maximum at x = 1/2. As a result, for
any x ∈ [0, 1], (

2x− 1
)2

+ 1.5h(x) = f(x) ≤ f(1/2) = 1.5. (122)

Combining (118), (120), and (122), we obtain ∑
u∈{0,1}n

αuP (u)

2

+ 1.5H(U) ≤
(
2θ − 1

)2
+ 1.5H(U)

≤
(
2θ − 1

)2
+ 1.5h(θ) + 1.5(n− 1)

≤ 1.5 + 1.5(n− 1)

= 1.5n,

(123)

where the inequalities are respectively due to (118), (120), and (122). This implies (47) and completes the proof of Lemma 11.

APPENDIX C
PROOFS OF LEMMAS FOR THE CENTRALIZED LOWER BOUND PROOF IN SECTION VI-D

A. Proof of Lemma 1

For i = 1, . . . , 9 and j = 1, . . . ,mn, let xij ∈ {−1, 1} be the outcome of jth flip of the ith coin. For i = 1, . . . , 9, let
N i = (xi1 + 1)/2 + · · ·+ (ximn + 1)/2 be the total number of observed 1s for the ith coin. We assume that the index of the
biased coin is unknown and has a uniform prior. According to the Neyman-Pearson lemma (see page 59 in [54]), the most
powerful test is the the likelihood ratio test that outputs a coin index T̂ = i with the maximum value of N i. Below, we derive
a lower bound on the error probability of the above test, i.e., Pr

(
T̂ ̸= T

)
.

Without loss of generality assume that T = 1. Then, E[x11] = 1/2
√
mn, var(x11) = 1 − 1/4mn, and E

[
x11 − E[x11]

]3
=

1− 1/16m2n2. Let

Y 1 =

∑mn
j=1

(
x1j − E[x1j ]

)√
mn var(x11)

, (124)
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and for i = 2, . . . , 9 let Y i = xi1 + . . .+ ximn. Then,

N1 =
mn

2
+

√
mn
√

1− 1/4mnY 1 +
√
mn/2

2
, (125)

and for i = 2, . . . , 9,

N i =
mn

2
+

√
mnY i

2
. (126)

It then follows from the Berry-Esseen theorem (see [55], page 33) that for any i ≤ 9 and any t ∈ R,

∣∣Pr (Y i > t
)
−Q(t)

∣∣ ≤ 33

4

E
[
xi1 − E[xi1]

]3
var(xi1)

1.5
√
mn

, (127)

where Q(·) is the Q-function of the standard normal distribution. Therefore, ,

Pr
(
N1 >

mn

2
+ 0.4

√
mn
)

= Pr

(√
mn
√

1− 1/4mnY 1 +
√
mn/2

2
> 0.4

√
mn

)

= Pr

(
Y 1 >

0.3√
1− 1/4mn

)

≤ Q

(
0.3√

1− 1/4mn

)
+

33

4

1 + 1/4mn

(1− 1/4mn)1.5
√
mn

≤ 0.3961,

(128)

where the first equality is due to (125), the first inequality follows from (127), and the last inequality is from the assumption
mn ≥ 350000 in (8). In the same vein, for i = 2, . . . , 9,

Pr
(
N i ≤ mn

2
+ 0.4

√
mn
)

= Pr

(√
mnY i

2
≤ 0.4

√
mn

)
= Pr

(
Y i ≤ 0.8

)
≤ 1−Q (0.8) +

33

4
√
mn

≤ 0.8021,

(129)

where the first equality is due to (126), the first inequality follows from (127), and the last inequality is from the assumption
mn ≥ 350000 in (8). Consequently,

Pr
(
max

(
N2, . . . , N9

)
>
mn

2
+ 0.4

√
mn
)

= 1− Pr
(
N2 ≤ mn

2
+ 0.4

√
mn
)8
≥ 1− 0.80218 > 0.8286. (130)

Finally, for the error probability of the aforementioned maximum likelihood test, we have

Pr
(
T̂ ̸= T

)
= Pr

(
max

(
N2, . . . , N9

)
> N1

)
≥ Pr

(
max

(
N2, . . . , N9

)
>
mn

2
+ 0.4

√
mn and N1 ≤ mn

2
+ 0.4

√
mn
)

= Pr
(
max

(
N2, . . . , N9

)
>
mn

2
+ 0.4

√
mn
)
× Pr

(
N1 ≤ mn

2
+ 0.4

√
mn
)

≥ 0.8286 × Pr
(
N1 ≤ mn

2
+ 0.4

√
mn
)

≥ 0.8286 × (1− 0.3961)

>
1

2
,

(131)

where the second equality is due to the independence of different coins, the second inequality follows from (130), and the third
inequality is from (128). This completes the proof of Lemma 1.

B. Proof of Lemma 2

Consider a function h̃ : Rd → R as follows. For any θ ∈ Rn,

h(θ) =

{
1/2− ∥θ∥ if ∥θ∥ ≤ 1/2,

0 otherwise.
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Let G̃ = {−1, 0, 1}2 be the integer grid with 9 points inside [−1, 1]2. To any function σ : G̃ → {−1, 1}, we associate a function
f̃σ(θ) ≜

∑
p∈G̃ σ(p) h̃(θ − p) for all θ ∈ Rn.

For any p ∈ G̃, we define a probability distribution P̃p over functions f̃σ as follows. For any σ : G̃ → {−1, 1},

P̃p(f̃σ) = 2−9

(
1− σ(p)

2
√
mn

)
.

Intuitively, when a function f̃σ is sampled from P̃p, it is as if for every q ∈ G̃ with q ̸= p, we have Pr
(
σ(q) = 1

)
=

Pr
(
σ(q) = −1

)
= 1/2, and for q = p we have Pr

(
σ(p) = 1

)
= 1/2− 1/

(
4
√
mn
)
. This is like, the values of σ(q) for q ̸= p

are chosen independently at random according to the outcome of a fair coin flip, while the value of σ(p) is the outcome
of an unfair coin flip with bias −1/

(
4
√
mn
)
. Similar to (23), it is easy to show that F (θ) = h

(
θ − p

)
/2
√
mn. Therefore,

under probability distribution Pp, θ∗ = p is the global minimizer of F (·), and for any θ ∈ Rn with ∥θ − p∥ ≥ 1/2, we have
F (θ) ≥ F (θ∗) + 1/4

√
mn. Therefore, if there exists an estimator under which F (θ̂) < F (θ∗) + 1/4

√
mn, with probability

at least 1/2, then we have ∥θ̂ − p∥ < 1/2 with probability at least 1/2. In this case, p is the closest grid-point of G to θ̂, and
we can recover p from θ̂, with probability at least 1/2. This contradict Lemma 1. Consequently, under any estimator, we have
F (θ̂) ≥ F (θ∗) + 1/4

√
mn, with probability at least 1/2. This completes the proof of Lemma 2.

APPENDIX D
PROOF OF LEMMAS FOR THE UPPER BOUND PROOF IN SECTION VII

A. Proof of Lemma 3

We begin with a simple inequality: for any x ∈ [0, 1] and any k > 0,

1− (1− x)k ≥ 1− e−kx ≥ 1

2
min

(
kx, 1

)
. (132)

Let Qp be the probability that p appears in the p-component of at least one of the sub-signals of machine i. Then, for p ∈ Gl,

Qp = 1−

(
1− 2−dl × 2(d−2)l∑t

j=1 2
(d−2)j

)⌊B/d log2 mn⌋

≥ 1

2
min

(
2−2l

⌊
B/(d log2mn)

⌋∑t
j=1 2

(d−2)j
, 1

)

≥ 1

2
min

(
2−2lB

2d ln(mn)
∑t

j=1 2
(d−2)j

, 1

)
,

where the equality is due to the probability of a point p in Gl (see (10)) and the number ⌊B/(d log2mn)⌋ of sub-signals per
machine, and the first inequality is due to (132). Then,

E
[
Np

]
= Qpm ≥ min

(
2−2lmB

4d ln(mn)
∑t

j=1 2
(d−2)j

,
m

2

)
. (133)

We now bound the two terms on the right hand side of (133). For the second term on the right hand side of (133), we have

m

2
=

mϵ2

2ϵ2

≥ 16md ln4mn

2mnϵ2

=
8d ln4mn

nϵ2
,

(134)

where the first inequality is from the definition of ϵ in (34). For the first term at the right hand side of (133), note that

t = log2(1/δ) ≤ log2

( √
m

lnmn

)
< lnm. (135)
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It follows that for any d ≥ 1,

t∑
j=1

2(d−2)j ≤ t2t(d−2)

≤ ln(mn) 2t(d−2)

= ln(mn)

(
1

δ

)(d−2)

= ln(mn) δ2
(
1

δ

)d

≤ ln(mn) δ2
mB

ln2dmn

= ln(mn)× nϵ2

16d ln2mn
× mB

ln2dmn

≤ nmBϵ2

16d ln5mn
,

where the second inequality is due to (135), the third inequality follows from the definition of δ, the third equality is from the
definition of ϵ in (34), and the last inequality is because of the assumption d ≥ 2. Then,

2−2lmB

4d ln(mn)
∑t

j=1 2
(d−2)j

≥ 2−2lmB

4d ln(mn)
× 16d ln5mn

nmBϵ2

=
4 ln4(mn) 2−2l

nϵ2
.

(136)

Consequently,

2−2lmB

4d ln(mn)
∑t

j=1 2
(d−2)j

≥ 4 ln4(mn) 2−2l

nϵ2

≥ 4 ln4(mn) 2−2t

nϵ2

=
4 ln4(mn) δ2

nϵ2

=
4 ln4(mn) δ2

16dδ2 ln2mn

=
ln2(mn)

4d
,

(137)

where the first equality is due to the definition of t = ln2(1/δ), and the second equality is from the definition of ϵ. Plugging
(134) and (136) into (133), it follows that for l = 1, . . . , t and for any p ∈ Gl,

E
[
Np

]
≥ 4 ln4(mn) 2−2l

nϵ2
. (138)

Moreover, plugging (137) into (133), we obtain

1

8
E
[
Np

]
≥ 1

8
min

(
ln2(mn)

4d
,
m

2

)
≥ 1

8
min

(
ln2(mn)

4d
,
ln2mn

2

)
≥ ln2(mn)

32d
,

(139)

where the second inequality is because of the assumption m ≥ ln2mn in (15). Then, for l ∈ 1, . . . , t and any p ∈ G̃l
s∗ ,

Pr

(
Np ≤

2 ln4(mn) 2−2l

nϵ2

)
≤ Pr

(
Np ≤

E[Np]

2

)
≤ exp

(
−(1/2)2E[Np]/2

)
≤ exp

(
− ln2(mn)/32d

)
,

(140)
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where the inequalities are due to (138), Lemma 7 (b), and (139), respectively. Then,

Pr
(
E
)
= Pr

(
Np ≥

2 ln4(mn) 2−2l

nϵ2
, ∀p ∈ Gl and for l = 1, . . . , t

)
≥ 1−

t∑
l=1

∑
p∈Gl

Pr

(
Np <

2 ln4(mn) 2−2l

nϵ2

)
≥ 1− t2dt exp

(
− ln2(mn)/(32d)

)
= 1− ln(1/δ)

(
1

δ

)d

exp
(
− ln2(mn)/(32d)

)
≥ 1− ln(mn)

md/2

lndmn
exp

(
− ln2(mn)/32d

)
≥ 1−md/2 exp

(
− ln2(mn)/32d

)
,

where the first equality is by the definition of E , the first inequality is from union bound, the second inequality is due to (140),
and the third inequality follows from (135) and the definition of δ in (9). This completes the proof of Lemma 3.

B. Proof of Lemma 4

For any l ≤ t and any p ∈ Gl, let

∆̂(p) =
1

Np

∑
Subsignals of the form

(p,∆,·,·)
after redundancy elimination

∆,

and let ∆∗(p) = E[∆̂(p)].
For l ≥ 1, consider a grid point p ∈ Gl and let p′ be the parent of p. Then, ∥p− p′∥ =

√
d 2−l. Furthermore, by definition,

for any function f ∈ F , we have |f(p)− f(p′)| ≤ ∥p− p′∥. Therefore, ∆̂(p) is the average of Np × n/2 independent variables
with absolute values no larger than

√
d 2−l. Given event E , it then follows from the Hoeffding’s inequality that

Pr

(∣∣∆̂(p)−∆∗(p)
∣∣ ≥ ϵ

8 ln(mn)

)
≤ 2 exp

(
−nNp ×

1

(2
√
d 2−l)2

×
( ϵ

8 lnmn

)2)
≤ 2 exp

(
−n× 2 ln4(mn) 2−2l

nϵ2
× 1

4d 2−2l
× ϵ2

64 ln2mn

)
= 2 exp

(
− ln2(mn)/128d

)
,

Recall from (13) that for l = 1, . . . , t and any p ∈ Gl with parent p′,

F̂ (p)− F (p) = F̂ (p′)− F (p′) + ∆̂(p)−∆∗(p).

Then,

Pr

(
|F̂ (p)− F (p)| > lϵ

8 lnmn

)
≤ Pr

(
|F̂ (p′)− F (p′)| > (l − 1)ϵ

8 lnmn

)
+ Pr

(
|∆̂(p)−∆∗(p)| > ϵ

8 lnmn

)
≤ Pr

(
|F̂ (p′)− F (p′)| > (l − 1)ϵ

8 lnmn

)
+ 2 exp

(
− ln2(mn)/128d

)
.

Employing an induction on l, we obtain for any l ≤ t and any p ∈ Gl,

Pr

(
|F̂ (p)− F (p)| > lϵ

8 lnmn

)
≤ 2l exp

(
− ln2(mn)/128d

)
.

Therefore,

Pr
(
|F̂ (p)− F (p)| > ϵ

8

)
≤ Pr

(
|F̂ (p)− F (p)| > lϵ

8 lnmn

)
≤ 2 ln(m) exp

(
− ln2(mn)/128d

)
,

(141)
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where the inequalities are due to (135). It then follows from the union bound that

Pr
(
E ′ | E

)
≥ 1−

t∑
l=1

∑
p∈Gl

Pr
(
|F̂ (p)− F (p)| > ϵ

8

)
≥ 1− t2dt × 2 ln(m) exp

(
− ln2(mn)/128d

)
≥ 1− ln(m)×

(
1

δ

)d

× 2 ln(m) exp
(
− ln2(mn)/128d

)
≥ 1− ln(m)× md/2

lndmn
× 2 ln(m) exp

(
− ln2(mn)/128d

)
≥ 1− 2md/2 exp

(
− ln2(mn)/128d

)
,

(142)

where the second inequality is due to (141), the third inequality follows from (135), and the fourth inequality is from
the definition of δ. On the other hand, we have from Lemma 3 that Pr

(
E
)
= 1 − md/2 exp

(
− ln2(mn)/8d

)
. Then,

Pr
(
E ′
)
≥ 1−md/2 exp

(
− ln2(mn)/32d

)
− 2md/2 exp

(
− ln2(mn)/128d

)
and Lemma 4 follows.

C. Proof of Lemma 5

Fix a machine i and let g(θ) = (F i(θ)−F i(p))− (F (θ)−F (p)), for all θ ∈ [−1, 1]d. Note that for any function f ∈ F , any
p ∈ Gt and any θ ∈ cellp, we have |f(θ)− f(p)| ≤ ∥θ − p∥ ≤

√
dδ. Then, F i(θ)− F i(p) is the average over n/2 randomly

chosen such functions f(θ)− f(p) with the expected value F (θ)− F (p). It follows from Hoeffding’s inequality (Lemma 7)
that:

Pr
(∣∣g(θ)∣∣ > ϵ

16

)
= Pr

(∣∣(F i(θ)− F i(p))− (F (θ)− F (p))
∣∣ > ϵ

16

)
≤ 2 exp

(
− 2× n/2× (ϵ/16)2

(2
√
dδ)2

)

= 2 exp

(
− n

(
4δ
√
d ln(mn)

16
√
n× 2

√
dδ

)2)

= 2 exp

(
− ln2(mn)

64

)
,

(143)

where the first equality is due to the definition of ϵ = δ
√
d ln(mn)/

√
2n.

Consider a regular grid D with edge size ϵ/16
√
d over cellp. Then,

|D| =
(

2δ

ϵ/16
√
d

)d

=

(
32δ
√
d
√
n

4δ
√
d lnmn

)d

=

(
8
√
n

lnmn

)d

≤ nd/2,

where the second inequality is due to the definition of ϵ, and the last inequality is due to the assumption lnmn ≥ 8
√
d in (15)

It then follows from (143) and the union bound that with probability at least 1− 2nd/2 exp
(
− ln2(mn)/64

)
, we have

|g(θ)| ≤ ϵ

16
, ∀θ ∈ D. (144)

On the other hand the function g(θ) = (F i(θ)− F i(p))− (F (θ)− F (p)) is the sum of two Lipschitz continuous functions,
and is therefore Lipschitz continuous with constant 2. Consider an arbitrary θ ∈ cellp and let θ′ be the closest grid point in D
to θ. Then, ∥θ − θ′∥ ≤ ϵ/32. Then, assuming (144), we have

|g(θ)| ≤ |g(θ)|+
∣∣g(θ′)− g(θ)∣∣

≤ ϵ

16
+
∣∣g(θ′)− g(θ)∣∣

≤ ϵ

16
+ 2
∥∥θ′ − θ∥∥

≤ ϵ

16
+

2ϵ

32

=
ϵ

8
,

(145)

where the second inequality is due to (144) and the third inequality follows from the Lipschitz continuity of g with constant 2.
Employing union bound over all machines i and all cells cellp for p ∈ Gt, it follows from (144) and (145) that E ′′ holds true
with probability at least 1− 2nd/2m1+d/2 exp

(
− ln2(mn)/64

)
. This completes the proof of Lemma 5.
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