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Codes Over Absorption Channels
Zuo Ye and Ohad Elishco

Abstract

In this paper, we present a novel communication channel, called the absorption channel, inspired by information transmission
in neurons. Our motivation comes from in-vivo nano-machines, emerging medical applications, and brain-machine interfaces that
communicate over the nervous system. Another motivation comes from viewing our model as a specific deletion channel, which
may provide a new perspective and ideas to study the general deletion channel.

For any given finite alphabet, we give codes that can correct absorption errors. For the binary alphabet, the problem is relatively
trivial and we can apply binary (multiple-) deletion correcting codes. For single-absorption error, we prove that the Varshamov-
Tenengolts codes can provide a near-optimal code in our setting. When the alphabet size q is at least 3, we first construct a
single-absorption correcting code whose redundancy is at most 3 logq(n) +O(1). Then, based on this code and ideas introduced
in [1], we give a second construction of single-absorption correcting codes with redundancy logq(n) + 12 logq logq(n) + O(1),
which is optimal up to an O

(
logq logq(n)

)
.

Finally, we apply the syndrome compression technique with pre-coding to obtain a subcode of the single-absorption correcting
code. This subcode can combat multiple-absorption errors and has low redundancy. For each setup, efficient encoders and decoders
are provided.

I. INTRODUCTION

The field of molecular or chemical communication, which involves the use of chemical signals for communication, has
gained popularity in recent years due to advances in nano-technology and the development of nano-machines. These small
devices can perform various tasks such as computing, storing data, transmitting information, and measuring physical quantities,
and can be connected together to form a nano-network. Nano-networks are expected to have significant potential in future
medical technologies, such as being used as an effective drug delivery system [2], [3] or for detecting infections through
monitoring the values of different molecules [4]–[6], [15].

However, the small size of nano-machines presents challenges for traditional forms of communication [7], leading to the
development of chemical communication as an alternative [8], [9]. This allows nano-machines to directly communicate with and
across the human nervous system using chemical signals [10]–[12]. There have been several communication models proposed
and studied in this field [12]–[15], and in one practical application, researchers transferred information through an in-vivo
nervous system and observed the response of nerves to different voltages and frequencies [16].

In this paper, we propose a new type of transmission channel called absorption channels, which are inspired by neural and
chemical communication systems. Our goal is to model a communication channel between nano-machines located within a living
organism that utilize the organism’s nervous system for communication and data collection. While chemical communication
systems have been analyzed from an information-theoretic perspective, no coding-theoretic framework has been proposed.
Therefore, the models we present in this paper are adapted to a coding-theoretic framework and are analyzed from a coding-
theoretic perspective.

An absorption error can be defined as follows: given a finite alphabet Σq = {0, 1, . . . , q − 1} and an n-length sequence
x = x1x2 . . . xn ∈ Σnq , the transmission of x through a single-absorption channel (which results in a single absorption
error) produces an (n − 1)-length sequence x1 . . . xi−1(xi ⊕ xi+1)xi+2 . . . xn ∈ Σn−1

q for some 1 6 i 6 n − 1, where
a⊕ b , min {a+ b, q − 1}.

To better demonstrate the connection between absorption channels and neural communication channels, we provide a brief
explanation of neuron activity (for a more detailed explanation of neurons, see [17, Ch. 8-11]). Every cell, including nerve
cells, consists of a fluid and particles encased in a membrane that allows certain materials and particles to pass through for
communication with the surrounding environment. Neurons, or nerve cells, have several parts: dendrites, cell body, axon, and
axon terminals (as shown in Figure 1). The dendrites are thin, branching extensions of the cell body that receive signals from
other cells, the cell body contains the nucleus and other organelles, the axon is a long, thin projection that carries signals away
from the cell body, and the axon terminals are the ending points of the axon that transmit signals to other cells.

Neurons are specialized cells that transmit electrical and chemical signals within the nervous system (see Figure 1 for an
illustration). To transmit a signal, a neuron generates an electrical charge, known as an action potential, which travels along
the surface of the cell. Action potentials typically begin at the dendrites of a neuron. When a neuron receives input from
another neuron, it may trigger an action potential, which is generated by the movement of ions across the cell membrane.
Once triggered, the action potential travels down the length of the neuron, passing through the cell body and axon, to the
axon terminal. In response, the axon terminal releases chemical signals, called neurotransmitters, which bind to receptors on
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Figure 1. An illustration of a neuron (nerve cell) with its different parts: the dendrites, the cell body which contains the nucleus), the axon, and the axon
terminals (downloaded from Vecteezy.com).

the dendrites of neighboring neurons. This transmission of the action potential from one neuron to another allows for the
communication of information within the nervous system.

However, in some cases, an action potential may not be reached even if the neuron is depolarized by neurotransmitters. For
example, if the neurotransmitters do not bind to enough receptors, the potential of the cell may increase, but not to the level
required to trigger an action potential. This phenomenon is known as subthreshold stimulus1.

In order for nano-machines to use nerve cells as communication channels, one machine should release neurotransmitters
at the dendrites of a nerve cell, and another machine should detect the release of neurotransmitters from the nerve cell. The
amount of neurotransmitters released can be used to represent symbols, such as small, medium, and large amounts representing
0, 1, and 2, respectively2.

Neurotransmitters are chemical messengers that are produced within the cell body and then transported (by motor proteins)
to the axon terminals, where they are stored until they are released in response to an action potential. However, there may be a
shortage of neurotransmitters at the axon terminals due to their transport from the cell body, which can lead to a deficiency in
the amount of neurotransmitters released when a neuron repeatedly fires [?]. This deficiency can result in the transmission of
a different (”lower valued”) symbol. Additionally, the production rate and quantity of neurotransmitters is influenced, among
other things, by the depolarization of the cell, and an excess of neurotransmitters at the axon terminals may lead to the release
of an excess amount and the transmission of a different (”higher”) symbol.

The errors discussed above can occur in the context of communication between nano-machines using the nervous system as
a transmission channel. If a symbol is to be transmitted while there is a deficiency of neurotransmitters, less neurotransmitters
will be emitted and a ”lower valued” symbol will be read. As a response to the deficiency, the neuron manufactures additional
neurotransmitters. Thus, for the next transmission, an excess amount of neurotransmitters will be emitted and a ”higher
valued” symbol will be read. Similarly, if a transmission attempt depolarized the cell but not enough to reach an action
potential, no neurotransmitters will be emitted (this corresponds to a deletion of the transmitted symbol). As a response to the
depolarization, an additional amount of neurotransmitters is manufactured. Thus, in the next transmission attempt, an excess
amount of neurotransmitters will be emitted and a ”higher valued” symbol will be read. In this paper, we chose to focus only
on the second error, in which a symbol is deleted and its value is added to the next transmission.

Mathematically, these observations give rise to a family of communication channels. Let us consider the transmission of a
string x ∈ Σnq and the received string y. An error in the ith position can be described as follows: if the value of yi is smaller
(yi < xi), then the missing value is added to the next symbol, meaning yi+1 = min (q − 1, xi+1 + (yi − xi)). Alternatively,
the ith symbol may be deleted completely (y ∈ Σn−1

q ) and its value added to the next symbol, so yi = min (q − 1, xi + xi+1).
In this work, we focus on the simplified case in which only the second error may occur, namely, the symbol is deleted and its
entire value is added to the next symbol.

In addition to being motivated by neural communication systems, a single-absorption error can also be viewed as a deletion
error followed by at most one substitution error. The study of codes that correct single-deletion and single-substitution errors
was first introduced in the context of DNA-based data storage in [18] and further developed in [19]. More recently, codes
that correct multiple-deletion and multiple-substitution errors were proposed in [20]. These results apply to our error model

1In most mammals, the resting potential of a neuron is -70mV. This refers to the electrical potential across the cell membrane of the neuron when it is
not actively transmitting an action potential. In order to fire, or transmit an action potential, a neuron must reach a potential of -50 mV. If this threshold is
reached, the neuron will undergo a series of changes in ion concentrations that result in the rapid depolarization of the cell membrane. During this process,
the potential of the cell increases to +30 mV before returning to the resting potential of -70 mV. This rapid change in potential, known as the action potential
(or firing), allows for the transmission of information within the nervous system. If a neuron does not reach a potential of -50 mV, it will not fire an action
potential. In this case, the neuron may be more excitable for a period of time after the failed attempt. This phenomenon is known as post-inhibitory rebound
(see [?], [17]).

2Neurons are not found individually, but rather as a group or tissue. In order to utilize the communication capabilities of a neuron, it is necessary to isolate
a single neuron from the tissue and use it as a standalone communication channel. If an entire (healthy) tissue is activated, it can result in unintended changes
or effects on the body.
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as well, but in this paper we demonstrate that it is possible to use specific absorption properties to achieve higher rates in our
codes.

We also consider a variant of absorption errors called contraction errors, which we show are equivalent to deletion errors.
The problem of constructing deletion-correcting codes dates back at least to the 1960s [21]. Recently, there has been renewed
interest in this problem due to its potential applications in DNA-based data storage [22], [23] and document exchange [24],
[25]. Despite significant progress, constructing deletion-correcting codes remains a challenging problem with no complete
solution. Our new findings may provide new insights into this problem.

The paper is organized as follows: in Section II, we introduce the notation and definitions that will be used throughout the
paper. In Section III, we present codes over the binary alphabet. Section IV contains the main results of this paper, which is
the construction of absorption error-correcting codes for general alphabets. In Section V, we show that our single-absorption
codes are asymptotically optimal in terms of redundancy. In Section VI, we study contraction errors as a variant of absorption
errors and show that they are equivalent to deletion errors. Finally, in Section VII, we conclude the paper.

II. PRELIMINARY

For positive integers m 6 n, let [m,n] denote the set {m,m + 1, . . . , n} and [n] = {1, . . . , n}. For an integer q > 2, let
Σq denote the q-ary alphabet {0, 1, . . . , q − 1} and Σnq denote the set consisting of all length-n sequences over Σq . For any
sequence x ∈ Σnq , unless otherwise stated, we let xi be the ith component of x. In other words, x = x1 · · ·xn. Suppose that
two positive integers n and n′ satisfy n > n′. Let x ∈ Σnq and y ∈ Σn

′

q . If there are integers 1 6 i1 < i2 < · · · < in′ 6 n
such that yj = xij for each 1 6 j 6 n′, we say that y is a subsequence of x. If I = {i1, i2, . . . , in′} (keep the order of
i1, i2, . . . , in′ ), we also denote this subsequence by xI . Furthermore, if ij+1 = ij + 1 for all 1 6 j < n′, we call y a substring
of x. A run of x is a maximal substring consisting of identical symbols from Σq . If a run consists of symbol a, we say it is
an a-run. In this paper, the length of a sequence x is denoted by |x|.
Example II.1 Let x = 001112 ∈ Σ6

3, y = 012 and z = 0111. Then y is a subsequence of x and z is a substring of x.
Specifically, we have y = xI and z = xJ , where I = {1, 3, 6} and J = {1, 3, 4, 5}. There are exactly three runs in x: 00,
111 and 2. They are 0-run, 1-run and 2-run, respectively.

For a, b ∈ Σq , we define a ⊕ b = min{a + b, q − 1}. Notice that ⊕ is an associative operation thus the order in which
it is performed does not affect the result. Suppose x ∈ Σnq . We say that the sequence y ∈ Σn−1

q is obtained from x by an
absorption if y is either one of the following two cases:
(1) y = x1 · · ·xi−1(xi ⊕ xi+1)xi+2 · · ·xn for some 1 6 i 6 n− 1;
(2) y = x1 · · ·xn−1.
When the second case happens, we say that xn is missing. Otherwise, we say that xn is not missing.

For multiple absorptions, the situation becomes a little more complicated. For example, let x ∈ Σnq , then y1 = x1 · · ·xi−1(xi⊕
xi+1)xi+2 · · ·xj−1(xj⊕xj+1)xj+2 · · ·xn where i+2 6 j < n, and y2 = x1 · · ·xi−1(xi⊕xi+1)xi+2 · · ·xn−1 where i < n−1
are both obtained from x by two absorptions. Now let y3 = x1 · · ·xi−1(xi ⊕ xi+1 ⊕ xi+2)xi+3 · · ·xn where i < n− 1. It is
clear that y3 can be obtained from x by first absorbing xi and xi+1, and then absorbing (xi ⊕ xi+1) and xi+2.3 Therefore,
the sequence y3 is also obtained from x by two absorptions. In general, we have the following definition.

Definition II.2 Let x ∈ Σnq and y ∈ Σn−tq where n > t > 1. We say that y is obtained from x by t absorptions, if there is
an integer t′ ∈ [0, t] and positive integers k, sl (1 6 l 6 k) and il (1 6 l 6 k) satisfying il+1 − il > sl for all 1 6 l < k such
that

∑k
l=1 sl = t− t′, ik + sk 6 n− t′ and

yi =



xi, if i < i1,

xi+
∑l
j=1 sj

,
if il −

∑l−1
j=1 sj < i < il+1 −

∑l
j=1 sj

for 1 6 l < k,

xi+
∑k
j=1 sj

, if i > ik −
∑k−1

j=1 sj ,
il+sl⊕
j=il

xj , if i = il −
∑l−1

j=1 sj for 1 6 l 6 k.

Here, the substring x[n−t′+1,n] is deleted.

In Definition II.2, the starting positions of the absorptions are denoted by the ils, while the number of symbols absorbed
with xil is denoted by sl.

Example II.3 Let Σ3 be the ternary alphabet and let x = 011011111. Assume there are t = 3 absorptions, with t′ = 0,
k = 2, s1 = 2, s2 = 1 and i1 = 2, i2 = 6. The resulting sequence is y1 = 021211.

Now assume t′ = 1, k = 1, s1 = 2, and i1 = 2, then y2 = 021111 with xn missing.

3or by first absorbing xi+1 and xi+2, and then absorbing xi and (xi+1 ⊕ xi+2).
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For a sequence x ∈ Σnq and a positive integer t satisfying t < n, we define the set

Babt (x) ,
{
y ∈ Σn−tq : y is obtained from x by t absorptions

}
(1)

and call it the t-absorption ball centered at x. Note that Babt (x) depends on the alphabet Σq . We omit q in this notation since
the alphabet will be clear from the context.

Definition II.4 Let t be a positive integer. Let C be a nonempty subset of Σnq . If Babt (x)∩Babt (y) = ∅ for any distinct x,y ∈ C,
we call it a t-absorption correcting code. The redundancy of C is defined to be n− logq (|C|). In other words, the redundancy
is measured in q-ary symbols.

In this paper, we aim to construct t-absorption correcting codes with low redundancy, for any t. Throughout this paper, the
number of errors t and the alphabet size q are assumed to be fixed constants.

III. CODES OVER BINARY ALPHABET

In this section we present a construction of a binary code that can repair multiple absorptions. The construction relies on
the following simple observation.

Observation III.1 Suppose that y is obtained from x ∈ Σn2 by absorbing xi and xi+1. If xixi+1 ∈ {00, 01, 10}, then y is
obtained from x by deleting one 0. If xixi+1 = 11, then y is obtained from x by deleting one 1. Therefore, no matter whether
the last symbol xn is lost or not, y is obtained from x by deleting one symbol.

Notice that when at most one absorption occurs, an isolated 1 cannot be deleted, i.e., any 1 that both of its neighbors are 0,
will not be deleted.

From Observation III.1, we have that every binary single-deletion correcting code is a binary single-absorption correcting
code. The opposite, however, is not necessarily true, as shown in the next example.

Example III.2 We give an example to show that a single-absorption correcting code is not necessarily a single-deletion
correcting code. Consider the code {011000, 011010}. A single absorption on 011000 yields 3 possible outputs as before:
11000, 01000, 01100. A single absorption on 011010 yields also 3 possible outputs: 11010, 01010, 01110. However, the sequence
01100 can be obtained from both codewords by deleting the one-before-last symbol. Thus, the code cannot correct a single
deletion.

To construct a single-absorption correcting code, we can use Observation III.1 and apply single-deletion correcting codes.
The best-known class of binary single-deletion correcting codes are the famous Varshamov-Tenengolts (VT) codes [26], which
are defined as

VTa(n) = {c ∈ Σn2 : Syn (c) ≡ a (mod n+ 1)} , (2)

where a is an integer between 0 and n, and Syn (c) ,
∑n
i=1 ici is the VT syndrome of c. The smallest redundancy of

log2(n+ 1) is attained when a = 0 [27, Corollary 2.3]. A linear-time decoding algorithm of the VT codes to correct a single
deletion was provided in [21]. In [28] the authors gave a linear-time systematic encoder with redundancy dlog2(n+ 1)e.
Remark III.3 By Example III.2, one can deem that there might be a single-absorption correcting code of length n with a
larger size than that of the VT code VT0(n). In Section V, we will show that for single-absorption, the redundancy of the
code VT0(n) is optimal up to a constant.

By Definition II.2, it is not difficult to see that Observation III.1 can be generalized to the case when multiple absorptions
happen. To be specific, if y is obtained from x by t absorptions, then it is obtained from x by t deletions. So we can
apply multiple-deletion correcting codes for our setting. There are already a myriad of works on binary multiple-deletion
correcting codes (see, for example, [20], [22], [23], [29]–[31]). For t = 2, the best known result was given in [23], where an
explicit binary 2-deletion correcting code of length n with redundancy at most 4 log2(n) + O(log2 log2(n)) was constructed.
This code is polynomial-time encodable and decodable. For general t > 3, the best known result was contributed in [20],
where the authors proved that there is a binary systematic t-deletion correcting code of length n with redundancy at most
(4t− 1) log2(n) + o(log2(n)). The encoding and decoding complexities are O

(
n2t+1

)
and O

(
nt+1

)
respectively.

IV. CODES OVER NON-BINARY ALPHABETS

In Section III, we showed that a single-absorption error is a special case of single-deletion error. The situation is different
when the alphabet size is at least 3. Throughout this section, we always assume that the alphabet is Σq , where q > 3. This
section contains three parts. At first, we present a basic code construction that can correct a single absorption. In the second
part, we improve upon the basic construction and present a construction with smaller redundancy that can correct a single
absorption error. In the last part, we study codes that can correct multiple absorptions.
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A. A basic construction

We begin with a construction of a single absorption correcting code.
For a sequence x ∈ Σnq and a symbol a ∈ Σq , we let Na(x) to be the number of a appearing in x, that is,

Na(x) , |{i : xi = a}| .

Let y = x1 · · ·xi−1(xi ⊕ xi+1)xi+2 · · ·xn be the received sequence, where 1 6 i 6 n− 14.

Observation IV.1 Let a, b ∈ Σq and 0 < a, b < q − 1.
• If xixi+1 ∈ {0a, a0, 00}, then N0(x) = N0(y) + 1 and Nd(x) = Nd(y) for all d 6= 0. In other words, y is obtained

from x by deleting one 0.
• If xi = xi+1 = q−1, then Nq−1(x) = Nq−1(y) + 1 and Nd(x) = Nd(y) for all d 6= q−1. In other words, y is obtained

from x by deleting one q − 1.
• If xixi+1 ∈ {(q − 1)a, a(q − 1)}, then Na(x) = Na(y) + 1 and Nd(x) = Nd(y) for all d 6= a. In other words, y is

obtained from x by deleting one a.
• If xixi+1 = ab and c = a⊕ b, then Na(x) = Na(y) + 1, Nb(x) = Nb(y) + 1, Nc(x) = Nc(y)− 1 and Nd(x) = Nd(y)

for all d 6= a, b, c (if a = b then Na(x) = Na(y) + 2).

From Observation IV.1, we can see that if 0 < xi, xi+1 < q − 1, a single-absorption error is a single-deletion together
with a single-substitution, which is different from the binary case. In general, a single-absorption error is a single-deletion
together with at most a single-substitution (no matter whether the last symbol is missing or not). Therefore, if a code can
combat a single-deletion together with at most a single-substitution, it can also correct a single-absorption error. In [19], the
study of single-deletion single-substitution codes was initiated, and the authors gave a q-ary single-deletion single-substitution
correcting code of redundancy at most 10 log2(n) + O(1) (measured in bits) [19, Corollary 17]. For more details about this
kind of codes, we refer the interested readers to [19] and [20].

At this point, one may wonder if a single-absorption error correcting code is also a single-deletion single-substitution error
correcting code. To answer this, we first notice that the substitution caused by an absorption is specific and depends on the
absorbed symbol. Thus, it is reasonable to assume that a single-absorption error is a specific case of a single-deletion single-
substitution error. Indeed, as shown in the next example, a single-absorption correcting code is not necessarily a single-deletion
single-substitution correcting code.

Example IV.2 Let q = 3 and consider the code {110110, 011010}. A single absorption error on 110110 yields one of
the following words: 20110, 11110, 11020, 11011; a single absorption error on 011010 yields one of the following words:
11010, 02010, 01110, 01101. Therefore, this code can correct a single-absorption error. On the other hand, the sequence
11010 can be obtained from 110110 and from 011010 by a single deletion. So this code cannot correct a single-deletion and
at most a single-substitution error.

Thus, one may infer that there might be codes with lower redundancy for absorption channels. In this section, we show that
indeed it is possible to obtain codes with less redundancy.

We begin with constructing a set of n-length words over Σq , which is defined by a vector s of length (q − 1) over Z4.
Given s = (sa)a∈[0,q−2] ∈ Zq−1

4 , we define

C1(n; s) ,
{
x ∈ Σnq : Na(x) ≡ sa (mod 4) for each a ∈ [0, q − 2]

}
.

Since Nq−1(x) = n−
∑q−2
a=0Na(x), we can obtain Nq−1(x) (mod 4) when given all Na(x) (mod 4) where a ∈ [0, q − 2].

Assume a single absorption channel, and suppose that a transmitted sequence x is in C1(n; s). Denote the obtained sequence
(the channel output) by y. Since y is obtained from x by a single absorption, this absorption must be one of the four cases
described in Observation IV.1. By calculating Na(y) − sa (mod 4) for all a ∈ Σq ,5 it is possible to know which one of the
cases happened (without knowing the position in which the absorption happened). The details are shown in Table I. Hereafter,
let {{·}} denote a multiset.

Thus, if a sequence x ∈ C1(n; s) is transmitted through a single absorption channel and y is the output of the channel, it
is possible to distinguish which one of the four absorption cases described in Observation IV.1 has occurred. However, more
information is needed in order to recover x from y. For example, the order of the absorbed symbols (if a ⊕ b = c then also
b ⊕ a = c), or the exact position of the absorption. Therefore, we need to add additional redundancy layers to C1(n; s) as
explained next.

To account for the order of the absorbed symbols, let us first consider the case xixi+1 ∈ {{ab, ba}} where 0 < a, b < q− 1
and a, b are not necessarily distinct. As mentioned above, by calculating Nd(y)− sd (mod 4) for all d ∈ Σq , one can deduce

4As will be clear later, our code can correct a single deletion. So we do not need to discuss the case y = x[1,n−1]
5where sq−1 ∈ {0, 1, 2, 3} and satisfies sq−1 ≡ n−

∑q−2
a=0 sa (mod 4)
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TABLE I
THE RELATION BETWEEN Na(y)− sa (a ∈ Σq ) AND THE VALUES OF xi AND xi+1

Cases The values of xi and xi+1

N0(y)− s0 ≡ 3 (mod 4) and
Na(y)− sa ≡ 0 (mod 4) for all a 6= 0

0 ∈ {{xi, xi+1}}
Na(y)− sa ≡ 3 (mod 4) for some a 6= 0 and
Nb(y)− sb ≡ 0 (mod 4) for all b 6= a

{{xi, xi+1}} = {{a, q − 1}}
Na(y)− sa ≡ 2 (mod 4),
Nc(y)− sc ≡ 1 (mod 4) for some a, c, and
Nb(y)− sb ≡ 0 (mod 4) for all b 6= a, c

xi = xi+1 = a
0 < a < q − 1

Na(y)− sa ≡ 3 (mod 4),
Nb(y)− sb ≡ 3 (mod 4),
Nc(y)− sc ≡ 1 (mod 4) for some a, b, c, and
Nd(y)− sd ≡ 0 (mod 4) for all d 6= a, b, c

{xi, xi+1} = {a, b}
0 < a, b < q − 1

a 6= b

the values of a, b and c = a⊕ b, but cannot necessarily deduce their order (ab or ba). In order to distinguish between the two
cases xixi+1 = ab or xixi+1 = ba, we need the following notation: for any z ∈ Σnq , let

Inv (z) , |{(i, j) : 1 6 i < j 6 n, zi > zj}| .

Let x′ and x′′ be the sequences obtained from y by replacing a specific c with ab and ba, respectively. Then Inv (x′)−Inv (x′′) =
±1. Therefore, if we fix Inv (x) (mod 2) and this value is known, we obtain that at most one of x′ and x′′ equals x.

Now, consider the case when 0 ∈ {{xi, xi+1}} or q − 1 ∈ {{xi, xi+1}}. In this case, y is obtained from x by a single
deletion. In order to correct such an error, we need a q-ary code that can correct a single deletion.

For each z ∈ Σnq , let α(z) ∈ Σn−1
2 , where α(z)i = 1 if zi+1 > zi, and 0 otherwise for each i ∈ [n− 1]. For given t1 ∈ Zn

and t′1 ∈ Zq , it was shown in [32] that the following q-ary code can correct a single deletion:

Tt1,t′1(n; q) ,

{
z ∈ Σnq : Syn (α(z)) ≡ t1 (mod n),

n∑
i=1

zi ≡ t′1 (mod q)

}
.

However, the only role of the constraint
n∑
i=1

zi ≡ t′1 (mod q) is to determine the deleted symbol. In our setting, the deleted

symbol is known by calculating Na(y) − sa (mod 4), so we do not need this constraint (in fact, in our case this constraint
is replaced with the constraint Na(x) ≡ sa (mod 4)).

Putting what we have so far together, we construct the following code. For a given s = (sa)a∈[0,q−2] ∈ Zq−1
4 and t =

(t1, t2) ∈ Zn × Z2, let

C2(n; s, t) , {x ∈ C1(n; s) : Syn (α(z)) ≡ t1 (mod n), Inv (x) ≡ t2 (mod 2)} .

Let x ∈ C2(n; s, t) and let y be the sequence received after transmitting x through a single-absorption channel. By the
discussions above, if 0 ∈ {{xi, xi+1}} or q − 1 ∈ {{xi, xi+1}}, we can recover x from y by the decoder of Tt1,t′1(n; q). If
xixi+1 ∈ {{ab, ba}} where 0 < a, b < q − 1, we can find the values of a and b using s and Table I, and for the specific
c = a ⊕ b in y that was obtained by the absorption, we can determine whether xixi+1 = ab or xixi+1 = ba using Inv (x).
What we are still missing in order to be able to recover x is the exact absorption position, i.e., the position of that c = a⊕ b.

Our next aim is to add another layer of redundancy that determines the position of absorption in the case that xixi+1 ∈
{{ab, ba}} with 0 < a, b < q − 1. We will divide our discuss into two cases. Different methods will be applied to locate the
error position.
(1) The Case a+ b 6 q − 1

Let x′ be the sequence obtained from y by replacing the c located at position i with one of ab and ba, x′′ be the sequence
obtained from y by replacing the c located at position j with one of ab and ba, where 1 6 i < j 6 n − 1. Recall that
Syn (z) =

∑|z|
i=1 izi for any sequence z.

Lemma IV.3 Syn (x′) 6≡ Syn (x′′) (mod qn).

Proof: Since a+ b 6 q − 1, we have a⊕ b = a+ b. Then it is easy to see that

Syn (x′)− Syn (y) = α+

n−1∑
k=i+1

yk,

Syn (x′′)− Syn (y) = β +

n−1∑
k=j+1

yk,
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where α, β ∈ {{a, b}}. These two equations imply that

Syn (x′)− Syn (x′′) = α− β +

j∑
k=i+1

yk =

{
yj +

∑j−1
k=i+1 yk, if α = β,

2α+
∑j−1
k=i+1 yk, if α 6= β.

Noticing that yj = a+ b and a, b > 0, we have

0 < Syn (x′)− Syn (x′′) < qn.

Now the proof is completed. 2

By Lemma IV.3, if we fix Syn (x) (mod qn), where x ∈ C2(n; s, t), then we can find a unique c in y such that x is obtained
from y by replacing this c with ab or ba. Details will be shown in the proof of Theorem IV.5 below.
(2) The Case a+ b > q

In this case, we have a⊕ b = q− 1. We want to locate in y the position of the symbol q− 1 which is obtained by a single
absorption. To this end, we define the location sequence of a sequence x ∈ Σnq to be P (x) ∈ Σn2 , where

P (x)i =

{
0, if xi 6= q − 1,

1, if xi = q − 1.

Suppose y is obtained from x by absorbing xi and xi+1, where 0 < xi, xi+1 < q− 1 and xi +xi+1 > q. It is easy to see that
P (y) is obtained from P (x) by replacing two adjacent 0s with a single 1. We call this error type 00→ 1. Now locating the
error position in x is reduced to locating the error position in P (x). For this, we have the following code.

For any n > 3 and any d ∈ Z2n−3, define

C3 (n; d) , {z ∈ Σn2 : Syn (z) ≡ d (mod 2n− 3)} .

Lemma IV.4 The binary code C3 (n; d) can correct the error type 00→ 1 and locate the error position.

Proof: Suppose that z′ is obtained from a codeword z ∈ VTd(2n − 3) by the error 00 → 1. Let the two sequences
u and v be obtained from z′ by replacing z′i = 1 and z′j = 1 with 00, respectively, where 1 6 i < j 6 n − 1. Then
Syn (u)− Syn (v) = j − i+

∑j
k=i+1 z

′
k. So we have

0 < j − i 6 Syn (u)− Syn (v) 6 2(j − i) 6 2n− 4 < 2n− 3. (3)

Now we can recover z from z′ by the following procedure. Scan the symbols from the beginning of z′ to its end. If the symbol
1 is encountered, conduct the following steps.
Step 1 Replace this 1 with 00 and denote the resulting sequence by u. If Syn (u) ≡ d (mod 2n − 3), let z and output z.

Otherwise, go to Step 2.
Step 2 Move to the next 1 and go to Step 1.
Since z′ is obtained from z by the error type 00→ 1, this u does exist. On the other hand, Equation (3) ensures that such u
is unique and the error position can be uniquely determined. 2

Now we are ready to give a code that can correct a single-absorption error. Given n > 3, s = (sa)a∈[0,q−2] ∈ Zq−1
4 ,

t = (t1, t2) ∈ Zn × Z2 and d = (d1, d2) ∈ Zqn × Z2n−3, let

C(n; s, t,d) , {x ∈ C2(n; s, t) : Syn (x) ≡ d1 (mod qn), P (x) ∈ C3 (n; d2)} .

Theorem IV.5 The code C (n; s, t,d) can correct a single-absorption error.

Proof: Let x ∈ C (n; s, t,d) be the transmitted sequence and y ∈ Σn−1
q be the received sequence. Suppose that y is

obtained from x by replacing xixi+1 with c = xi ⊕ xi+1. Since x ∈ C1(n; s), we know if 0 ∈ {{xi, xi+1}} or q − 1 ∈
{{xi, xi+1}} or neither of the cases. If 0 ∈ {{xi, xi+1}} or q − 1 ∈ {{xi, xi+1}}, y is obtained from x by a single-deletion,
which can be recovered since x ∈ C2(n; s, t).

If 0, q − 1 /∈ {{xi, xi+1}}, we can determine the multiset {{xi, xi+1}} and thus know whether xi + xi+1 < q or not. We
have two cases:

1) If xi +xi+1 < q, the following algorithm can be used to recover x. Scan the symbols from the beginning of y to its end.
If the symbol c is encountered, conduct the following steps.
Step 1 If xixi+1 = aa for some a, replace this c with aa. Denote the resulting sequence by x′ and go to Step 4.

If xi 6= xi+1, we must have xixi+1 ∈ {ab, ba} for some a 6= b. Go to Step 2.
Step 2 Replace this c with ab and denote the resulting sequence by x′. If Inv (x′) ≡ t2 (mod 2), go to Step 4. Otherwise,

keep this c unchanged and go to Step 3.
Step 3 Replace this c with ba. Denote the resulting sequence by x′ and go to Step 4. Otherwise, keep this c unchanged

and go to Step 5.
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Step 4 If Syn (x′) ≡ d1 (mod qn), let x = x′ and output x. Otherwise, keep this c unchanged and go to Step 5.
Step 5 Move to the next c and go to Step 1.
Since y is obtained from x by replacing an xixi+1 with c, this x′ does exist. On the other hand, Lemma IV.3 ensures
that such x′ is unique.

2) If xi + xi+1 > q, we can recover x by the following procedure. First, since P (x) ∈ C3(n; d1), we can determine the
error position i from P (y) by the algorithm given in the proof of Lemma IV.4. If xixi+1 = aa for some a, then replace
yi (= q − 1) with aa and output the resulting sequence. If xixi+1 ∈ {ab, ba} for some a 6= b, we can know whether
xixi+1 = ab or xixi+1 = ba by Inv (x) (mod 2). Once xixi+1 is determined, replace yi with xixi+1 and output the
resulting sequence. Lemma IV.4 ensures that the sequence x can be uniquely recovered.

2

By the pigeonhole principle, there are some s, t and d such that

|C(n; s, t,u)| > qn

4q−1 · n · 2 · (qn) · (2n− 3)
. (4)

This lower bound means that the redundancy of C(n; s, t,u) is at most 3 logq(n) + O(1) for some choice of s, t and d. If
measured in binary bits, this redundancy is at most 3 log2(n) + O(1). Recall that in [19, Corollary 17], the authors gave a
q-ary single-deletion single-substitution correcting code of redundancy at most 10 log2(n) + O(1). So the code C(n; s, t,d)
performs better than the existing one in [19]. One may ask if 3 logq(n) + O(1) is the best redundancy that can be achieved.
Based on C (n; s, t,d) and new ideas, we will show in next subsection that the redundancy can be further reduced to at most
logq(n) +O(logq logq(n)).

B. An improved construction

In this subsection, we use Theorem IV.5 together with ideas from [1] and provide a code with redundancy logq(n) +
O(logq logq(n)). We first outline the basic idea.

We begin with constructing a code with redundancy logq(n) + O(1). This code has the property that when receiving a
sequence which is a corrupted version of a codeword x, it is possible to locate a window of length L = Θ

(
log2

q(n)
)

that
contains the erroneous position. That is to say, we only need to correct the absorption error within a shorter substring of x.
To this end, we should partition x into consecutive disjoint intervals of length 2L+ 1 and then apply Theorem IV.5 to each of
these intervals. As we will show next, this will only increase the redundancy by O(logq logq(n)) and so the overall redundancy
of the resulted code is logq(n) +O(logq logq(n)). The details will be clear from the subsequent analysis.

For each x ∈ Σnq , which ends with 0011, we can segment x and get a string zx = zx1 · · · zxlx , where 1 6 lx 6 n/4, and
each substring zxi ends with 0011, and 0011 appears exactly once in zxi . For example, let q = 3 and x = 00111230320011.
Then lx = 2 and zx1 = 0011, zx2 = 1230320011.

Let δ = c1 + c2
⌈
logq(n)

⌉
, where constants c1 and c2 are both multiples of 4 and satisfy(

q4

q4 − 1

) c1
4 −1

>
q

q − 1
, and

(
q4

q4 − 1

) c2
4

> q.

Since q4

q4−1 > 1, the desired constants c1 and c2 do exist. For example, if q = 3, the smallest c1 is 136, while the smallest c2
is 356.

Lemma IV.6 Suppose that X is chosen uniformly at random from Σnq . Then

Pr
(∣∣zXi ∣∣ 6 δ, i = 1, . . . , lx

)
>

1

q
.

Proof: The probability that a fixed length-4 substring of X equals 0011 is 1
q4 . Then for any i, the probability that

∣∣zXi ∣∣ > δ
is at most (

q4 − 1

q4

) δ−4
4

6
q − 1

qn
,

where the inequality follows from the choices of c1 and c2. Now the conclusion follows from the union bound. 2

Let Rq,n be the set of all strings x ∈ Σnq which ends with 0011 and satisfies the condition that
∣∣zXi ∣∣ 6 δ for all i = 1, . . . , lx.

Then Lemma IV.6 implies |Rq,n| > qn−5. Next, we briefly explain how to construct Rq,n. Let

Z =
{
z ∈ Σ6δ

q : z ends with 0011 and 0011 does not appear elsewhere in z
}
.

Since δ = c1 + c2
⌈
logq(n)

⌉
, the size of Σ6δ

q is bounded above by O(nc2)6. This implies that Z can be constructed by brute
force searching. We can construct Rq,n by concatenating sequences in Z . This process can be somewhat involved, but this

6More accurately, the capacity of the set of strings of length n that do not contain 0011, which can be calculated using constrained systems techniques, is
logq(1.839) which is roughly 0.87 in the binary case.
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is a one-time pre-processing task. When (c1 − 4) logq(e)/(4q
4) > 5 and c2 logq(e)/(4q

4) > 1, we present an algorithm for
encoding(and decoding) an arbitrary sequence of length n into a sequence in Rq,n+5 (see Appendix A).

Observation IV.7 Let x ∈ Σnq be a string, ending with 0011. If the last 0011 is destroyed due to an absorption error, it is
easy to detect and correct that error. If the absorption error does not change the last 0011 and the received sequence is y,
we have |y| = |x| − 1 and ly − lx ∈ {0,−1, 1} where lx, ly denote the number of substrings that end with 0011 in x,y,
respectively.

For any n ∈ N and any x ∈ Σnq , define

f(x) =
lx∑
j=1

j
∣∣zxj ∣∣ (mod 2n),

g(x) = lx (mod 3).

If y is obtained from x by an absorption, the function g(x) can help us to determine the exact value of ly − lx. For a given
r = (r1, r2) ∈ Z2n × Z3, we define the code D1(n; r) ⊆ Σnq as

D1(n; r) = {x ∈ Rq,n : f(x) = r1, g(x) = r2} .

With suitable parameters, this code has redundancy at most logq(n) +O(1).

Theorem IV.8 Let x ∈ D1(n; r) be a sequence and let y be the sequence obtained from x after a single absorption. Then
there is a constant c3, which is a function of c1 and c2, such that a window W ⊆ [1, n − 1] of size c3 log2

q(n) that contains
the position where the absorption error has occurred in y, can be detected. Furthermore, the window can be found in O(n)
time.

The proof of Theorem IV.8 is similar to the proof of [1, Theorem 4] and is deferred to Appendix B.
Let L = c3 log2

q(n). For simplicity, we assume (2L + 1) | n and let t = n/(2L + 1). All the following arguments can
be generalized to the case (2L + 1) - n in a straightforward way (see Remark IV.10 below). We partition {1, . . . , n} into
consecutive disjoint intervals I(1)

1 , . . . , I
(1)
t of length 2L+ 1. In other words,

I
(1)
i = [1 + (i− 1)(2L+ 1), i(2L+ 1)] (5)

for all 1 6 i 6 t. Furthermore, we define a family of shifted intervals I(2)
1 , . . . , I

(2)
t−1, where I(2)

i = I
(1)
i + L.7 For given

x ∈ Σnq , let x(1,i) = x
I
(1)
i

and x(2,i) = x
I
(2)
i

. In other words, x(1,i) is the substring corresponding to I
(1)
i and x(2,i) is the

substring corresponding to I(2)
i .

For a given sequence z ∈ Σ2L+1
q , we define

f̂(z) = (Na(z))a∈[0,q−2] × (Syn (α(z)) , Inv (z) ,Syn (z) ,Syn (P (z))) .

The values of f̂(z) are taken from Zq−1
4 × Z2L+1 × Z2 × Zq(2L+1) × Z4L−1. With the function f̂(·) in hand, we define the

functions:
ĝ1(x) =

t∑
i=1

f̂
(
x(1,i)

)
,

ĝ2(x) =
t−1∑
i=1

f̂
(
x(2,i)

)
,

where the sums are performed position-wise over Zq−1
4 ×Z2L+1×Z2×Zq(2L+1)×Z4L−1. Now we can give the desired code.

For given α, β ∈ Zq−1
4 × Z2L+1 × Z2 × Zq(2L+1) × Z4L−1 and r = (r1, r2) ∈ Z2n × Z3, let

D(n; r,α,β) = D1(n; r)
⋂
{x ∈ Rq,n : ĝ1(x) = α, ĝ2(x) = β} .

Similar to Equation (4), there exists a choice of r, α and β, such that

|D(n; r,α,β)| > |Rq,n|
2n · 3 · [4q−1 · (2L+ 1) · 2 · (q(2L+ 1)) · (4L− 1)]

2 .

Therefore, the redundancy of D(n; r,α,β) is at most logq(n) + 12 logq logq(n) +O(1) (recall that we require that c1, c2 and
c3 are constants and n is large compared to these constants).

Theorem IV.9 The code D(n; r,α,β) can correct a single absorption error.

Proof: Let x be the transmitted codeword and y be the received sequence. The proof of Theorem IV.8 gives a method to
locate the error position within a window W = [i1, i1 + L− 1] ⊆ [n−1]. By the constructions of I(1)

i ’s and I(2)
i ’s, there exists

7For a set A of integers and an integer m, we define A + m = {a + m : a ∈ A}.
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some i such that W is contained in I(1)
i or I(2)

i . The value of i can be determined in the following way (recall Equation (5)
for the definitions of I(1)

i ’s and I(2)
i ’s).

Step 1 Find the largest k > 0 such that k(2L+ 1) < i1 and W ⊆ [k(2L+ 1) + 1, k(2L+ 1) + 2L]. Then i = k + 1. If such
a k does not exist, go to Step 2.

Step 2 Find the largest k > 0 such that k(2L+ 1) +L < i1 and W ⊆ [k(2L+ 1) + L+ 1, k(2L+ 1) + 3L]. Then i = k+ 1.
Since any window of length L must be contained in some I(1)

i or I(2)
i , the above two steps can successfully find such an i.

Now we can recover x from y by the following procedure.
Case (1) The value of i is found in Step 1. In this case, we have xj = yj for all j 6 (i− 1)(2L+ 1) and xj = yj−1 for all

j > i(2L + 1). In other words, we can recover x(1,j) for all j 6= i directly. Therefore, we can compute f̂(x(1,j))
for all j 6= i. Then comparing α and

∑
j 6=i

f̂
(
x(1,j)

)
, we can know f̂

(
x(1,i)

)
. Let y(i) = y[(i−1)(2L+1)+1,i(2L+1)−1].

Then y(i) is the corrupted version of x(1,i). Theorem IV.5 ensures that we can recover x(1,i) from y(i) with the help
of f̂

(
x(1,i)

)
. Now the transmitted sequence x is recovered.

Case (2) The value of i is found in Step 2. In this case, we have xj = yj for all j 6 (i−1)(2L+1)+L and xj = yj−1 for all
j > i(2L+ 1) +L. In other words, we can recover xj for all j /∈ [(i− 1)(2L+ 1) + L+ 1, i(2L+ 1) + L] directly.
Therefore, we can compute f̂(x(2,j)) for all j 6= i. Then comparing β and

∑
j 6=i

f̂
(
x(2,j)

)
, we can know f̂

(
x(2,i)

)
.

Let y(i) = y[(i−1)(2L+1)+L+1,i(2L+1)+L−1]. Then y(i) is the corrupted version of x(2,i). Theorem IV.5 ensures that
we can recover x(2,i) from y(i) with the help of f̂

(
x(2,i)

)
. Now the transmitted sequence x is recovered.

2

Remark IV.10 If 2L + 1 - n, let t = bn/(2L+ 1)c and L′ = n − t(2L + 1). Then 0 < L′ 6 2L. The 2t − 1 intervals I(1)
i

(1 6 i 6 t) and I(2)
i (1 6 i 6 t− 1) are defined as above. There are two cases.

• When L′ 6 L, let I(2)
t = [(t− 1)(2L+ 1) + L+ 1, n]. Then L+ 2 6

∣∣∣I(2)
t

∣∣∣ 6 2L+ 1. So we define ĝ1(x) as above and

ĝ2(x) =
t∑
i=1

f̂
(
x(2,i)

)
.

• When L < L′ 6 2L, let I(1)
t+1 = [t(2L+ 1) + 1, n] and I

(2)
t = [(t− 1)(2L+ 1) + L+ 1, t(2L+ 1) + L]. Then L <∣∣∣I(1)

t+1

∣∣∣ 6 2L and
∣∣∣I(2)
t

∣∣∣ = 2L+ 1. So we define ĝ1(x) =
t+1∑
i=1

f̂
(
x(1,i)

)
and ĝ2(x) =

t∑
i=1

f̂
(
x(2,i)

)
.

C. Codes correcting multiple errors
In this subsection, we study codes that can correct multiple absorption errors. Recall that the alphabet size q is at least

3, unless otherwise stated. We first claim that t-absorption is a special case of t-deletion-t-substitution and give two known
results. After that, we explain the difference between t-absorption and t-deletion-t-substitution, which justifies our searching
for better codes for our setting. Our construction is based on the single-absorption correcting code given in Theorem IV.9 and
the syndrome compression technique with precoding developed recently [20].

In Observation IV.1, we have shown that a single-absorption error corresponds to a single-deletion together with at most a
single-substitution. By Definition II.2, it is not difficult to see that this conclusion holds for multiple absorptions as well. In
other words, a t-absorption error is the combination of t deletions and at most t substitutions. To see that, it suffices to notice

that the absorption error
(
il+sl
⊕
j=il

xj

)
can be interpreted as firstly deleting sl symbols xj (i1 6 j < il+sl) and then substituting

xil+sl by
(
il+sl
⊕
j=il

xj

)
. If

(
il+sl
⊕
j=il

xj

)
6= xil+sl , the second step is a substitution error. In other words, the absorption error(

il+sl
⊕
j=il

xj

)
of sl + 1 consecutive symbols can be interpreted as sl deletions and at most one substitution.

Therefore, a t-deletion-t-substitution correcting code is naturally a t-absorption correcting code. We first introduce two classes
of t-deletion-t-substitution correcting codes given in the literature. They will be used as a bulding block in our construction
of t-absorption correcting codes.

By carefully checking the proof of [20, Lemma 9], we draw the following conclusion.

Lemma IV.11 Suppose that q > 3 and t are fixed positive integers. There exists a q-ary systematic8 t-deletion t-substitution
correcting code Eq ⊆ ΣNq whose redundancy is at most 22t

logq(2) logq(N)+o
(
logq(N)

)
. The encoding and decoding complexities9

are O
(
N6t+1

)
and O

(
N3t+1

)
, respectively.

When q is a prime power10, the authors of [20] obtained a better result.

8In the proof of [20, Lemma 9], an systematic encoder was defined.
9These two complexities follow from the construction of Eq and [20, Theorem 1].
10When constructing the code in [20, Theorem 3], the authors used a BCH code over the finite field Fq . This is the reason why we require that q is a

prime power.
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Lemma IV.12 [20, Theorem 3] Let q > 3 be a prime power. There exists a q-ary systematic t-deletion t-substitution correcting
code Eq ⊆ ΣNq with redundancy at most

(
8t− 1−

⌊
2t−1
q

⌋)
logq(N) + o

(
logq(N)

)
. The encoding and decoding complexities

are O
(
N4t+1

)
and O

(
N2t+1

)
, respectively.

Furthermore, the codes Eq in [20, Lemma 9] and [20, Theorem 3] can be expressed as

Eq =
{

(u,Redq,n (u)) : u ∈ Σnq
}

(6)

where u is the information sequence and Redq,n (u) is the sequence of redundancy symbols. Note that N = n+ |Redq,n (u)|.
Let

Rq,n =


(

8t− 1−
⌊

2t−1
q

⌋)
logq(N) + o

(
logq(N)

)
if q is a prime power,

22t
logq(2) logq(N) + o

(
logq(N)

)
, if q is arbitrary.

Since n
N >

1
2 when n is sufficiently large, we have

Rq,n =


(

8t− 1−
⌊

2t−1
q

⌋)
logq(n) + o

(
logq(n)

)
if q is a prime power,

22t
logq(2) logq(n) + o

(
logq(n)

)
, otherwise.

(7)

In the following, whenever Rq,n is mentioned, we always refer to Equation (7).
From Lemma IV.11 and Lemma IV.12 we can see that Redq,n (u) ∈ Σ

Rq,n
q . For our purpose, we can also view Redq,n as a

function Redq,n : Σnq →
[
0, qRq,n − 1

]
. Let BDSt (u) be the t-deletion-t-substitution ball centered at u, i.e.,

BDSt (u) =

{
z ∈ Σn−tq :

z is obtained from u by t deletions
and at most t substitutions

}
. (8)

Then Lemma IV.11, Lemma IV.12 and Equation (6) imply the following corollary.

Corollary IV.13 If BDSt (u) ∩ BDSt (u′) 6= ∅ and u 6= u′, then Redq,n (u) 6= Redq,n (u′).

As discussed above, Lemma IV.11 and Lemma IV.12 provide us with two class of t-absorption correcting codes with low
redundancy. However, the two kinds of error models differ in the following two aspects.
• In the t-deletion-t-substitution setup, the error positions are assumed to be arbitrary. But for the t-absorption channel,

the deletion-positions and the substitution-positions are “close”. For example, the absorption error
(
il+sl
⊕
j=il

xj

)
leads to

deletions in positions j (i1 6 j < il + sl) and a (possible) substitution in position il + sl. Therefore, the deletions and
substitution are constrained to within a window of length sl + 1.

• In the t-deletion-t-substitution setup, a symbol a ∈ Σq can be substituted by an arbitrary symbol b ∈ Σq \ {a}. However,
for absorption channels, a symbol a ∈ Σq can only be substituted by some b > a and b ∈ Σq .

Therefore, it is reasonable to deem that there are better codes for absorption channels, which is the main goal of this
subsection. In the rest of this subsection, we will apply the syndrome compression technique with precoding to show that
for our setting, there are codes with even lower redundancy. The syndrome compression technique was first established in
[22], [34] for designing t-deletion correcting codes, and then was further developed in [35] to a general method for obtaining
low-redundancy error correcting codes. More recently, [20] further improved the syndrome compression technique by applying
a precoding process.

To describe the syndrome compression technique, we need to introduce some notations. Let B (u) be a general error
ball centered at the sequence u ∈ Σnq . The definition of such error balls is determined by the specific problem under
consideration. For example, if we are studying t-deletion-t-substitution error correcting codes, then the error ball B (u) is
defined as Equation (8). Consider some fixed error and its corresponding error ball B(u). For a given code E ⊆ Σnq and u ∈ E ,
we define

NE (u) = {u′ ∈ E : u′ 6= u and B (u′) ∩ B (u) 6= ∅} .

The following lemma, which is a variant of [34, Lemma 1] and [20, Lemma 3], is key to our purpose. We include its proof
here because the proof reveals how the syndrome compression technique works.

Lemma IV.14 Let E ⊆ Σnq be a code and N > max {|NE (u)| : u ∈ E}. Suppose that the function f : Σnq →
[
0, qR(n) − 1

]
(where R(n) is a function of n and R(n) > 2) satisfies the following property:
(P1) if u ∈ Σnq and u′ ∈ NΣnq

(u), then f (u) 6= f (u′).

Then there exists a function f̄ : E →
[
0, q

2 logq(N)+O
(

R(n)
logq(R(n))

)
− 1

]
such that f̄ (u) 6= f̄ (u′) for any u ∈ E and u′ ∈ NE (u).

Proof: For any u ∈ E and u′ ∈ NE (u), we have 1 6 |f (u)− f (u′)| < qR(n) due to (P1). For any u ∈ E , let

D (u) = {p : p is a positive divisor of |f (u)− f (u′)| for some u′ ∈ NE (u)} .
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By [35, Lemma 3], the number of positive divisors of |f (u)− f (u′)| is upper bounded by

q
O
(

R(n)
logq(R(n))

)
,

for each u′ ∈ NE (u). So we have

|D (u)| 6 |NE (u)| qO
(

R(n)
logq(R(n))

)
< Nq

O
(

R(n)
logq(R(n))

)
= q

logq(N)+O
(

R(n)
logq(R(n))

)
.

This implies that there is an integer P (u) ∈
[
1, q

logq(N)+O
(

R(n)
logq(R(n))

)]
such that f (u) 6≡ f (u′) (mod P (u)) for all

u′ ∈ NE(u). Now for each u ∈ E , we define

f̄ (u) =
(
Expanq (f (u) (mod P (u))) ,Expanq (P (u))

)
,

where Expanq (m) is the q-ary expansion of the integer m. Clearly, f̄ (u) is a q-ary vector of length 2 logq(N)+O
(

R(n)
logq(R(n))

)
and thus we can view f̄ as a function f̄ : E →

[
0, q

2 logq(N)+O
(

R(n)
logq(R(n))

)
− 1

]
. By construction, it holds that f̄ (u) 6= f̄ (u′)

for any u ∈ E and u′ ∈ NE (u). 2

Remark IV.15 In most cases, the number N is a polynomial in n. So if it holds that O
(

R(n)
logq(R(n))

)
= O

(
logq(n)

)
, the

function f̄ can be computed in polynomial time.

Before moving on, we explain how Lemma IV.14 helps to compress the code redundancy. We follow the notations in
Lemma IV.14. For a given a1 ∈

[
0, qR(n) − 1

]
, the function f can be used to define a code

E ′ (a1) =
{
u ∈ Σnq : f (u) = a1

}
,

where there exists some a1 such that the redundancy of E ′ (a1) is at most R(n). If the conditions in Lemma IV.14 are satisfied,
then the function f̄ can be used to define another code

E ′′ (a2) =
{
u ∈ E : f̄ (u) = a2

}
where a2 ∈

[
0, q

2 logq(N)+O
(

R(n)
logq(R(n))

)
− 1

]
, and there exists some a2 such that the redundancy of E ′′ (a2) is at most r (E) +

2 logq(N) +O
(

R(n)
logq(R(n))

)
, where r (E) is the redundancy of E . If r (E) + 2 logq(N) +O

(
R(n)

logq(R(n))

)
is much smaller than

R(n), then the code redundancy is successfully compressed. If E = Σnq , we obtain the original syndrome compression technique
in [35]. If E is chosen to be a proper subset of Σnq , then we obtain the syndrome compression technique with precoding in
[20].

Now we are ready to derive the main result of this subsection, that is, t-absorption correcting codes (t > 2). In this case,
the error ball B (u) is defined to be the t-absorption ball (see Equation (1)), i.e.,

B (u) = Babt (u) =
{
z ∈ Σn−tq : z is obtained from u by t absorption errors

}
.

We choose E to be the code D (n; r,α,β) in Theorem IV.9, and f to be the function Redq,n (see Equation (6)). From
Corollary IV.13, f satisfies the property (P1) in Lemma IV.14 with R(n) = Rq,n, which is defined as in Equation (7). So we
have O

(
R(n)

logq(R(n))

)
= o

(
logq(n)

)
.

Firstly, we need to estimate an upper bound of |NE (u)| for any u ∈ E . For a given sequence z, if we insert a symbol at
the end of z, or replace some zi with ab such that zi = a⊕ b, then we say we perform a splitting operation on z.

Claim IV.16 Let t > 2. Then for any u ∈ E , we have |NE (u)| < q2t−2n2t−1.

Proof: We should estimate the number of u′ ∈ E such that u′ 6= u and Bt (u′)∩Bt (u) 6= ∅. Each such u′ can be obtained
through the following steps.
Step 1 Obtain a sequence u(1) from u by sequentially performing t absorptions, which has at most n(n−1) · · · (n−t+1) < nt

possibilities.
Step 2 For each u(1), we perform a splitting operation on u(1) to get a sequence z(1). Then we perform a splitting operation

on z(1) to get a sequence z(2). Repeat this process. after t − 1 steps, we will get a sequence z(t−1). For each u(1),
there are at most q2t−2(n− t+ 1)(n− t+ 2) · · · (n− 1) < q2t−2nt−1 such z(t−1) ’s.

Step 3 For each z(t−1), we perform a splitting operation on z(t−1) to get a sequence u′ ∈ E . Since E is a single-absorption
correcting code, there is at most one u′ for each z(t−1).

Overall, the number of u′ is strictly less than q2t−2n2t−1 and thus |NE (u)| < q2t−2n2t−1. 2

Now we choose N = q2t−2n2t−1. Then by Lemma IV.14, we have a function f̄ : E →
[
0, q(4t−2) logq(n)+o(logq(n)) − 1

]
such that f̄ (u) 6= f̄ (u′) for any u ∈ E and u′ ∈ NE (u). Combining the above discussions, we obtain the main result of this
subsection.
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Theorem IV.17 Let q > 3 and t > 2 be fixed integers. For given α, β ∈ Zq−1
4 ×Z2L×Z2×Zq(2L+1)×Z4L−1, r = (r1, r2) ∈

Z2n × Z3 and 0 6 a < q(4t−2) logq(n)+o(logq(n)), let

E (n; r,α,β, a) =
{
c ∈ D (n; r,α,β) : f̄ (c) = a

}
.

Then E (n; r,α,β, a) is a t-absorption correcting code. Furthermore, there is a choice of α,β, r and a, such that the
redundancy of E (n; r,α,β, a) is at most

(4t− 1) logq(n) + o(logq(n)).

Let c ∈ E (n; r,α,β, a) and ĉ ∈ Babt (c). By applying splitting operations on ĉ, we can find at most q2t−2nt−1 sequences
in D (n; r,α,β) (see the proof of Theorem IV.9 and Steps 2–3 in the proof of Claim IV.16). Among these sequences, there is
a unique sequence c̃ such that f̄ (c̃) = a, and thus c = c̃. Since finding the sequences D (n; r,α,β) takes polynomial time,
together with Remark IV.15 we obtain that the function f̄ can be computed in polynomial time. Therefore, we can recover c
from ĉ in polynomial time.

Remark IV.18 We do not know if there exists an efficient encoder that can encode an arbitrary sequence into D(n; r,α,β)
(or E (n; r,α,β, a)). Based on the results in this section, we can provide two, polynomial-time encodable and decodable,
codes E1 and E2, which can combat single-absorption and multiple-absorption errors, respectively. Details are deferred to
Appendix C. Recall that the code D (n; r,α,β) is defined with four functions f , g, ĝ1 and ĝ2. For any two codewords c and
c′ in D (n; r,α,β), we have

(f(c), g(c), ĝ1(c), ĝ2(c)) = (f(c′), g(c′), ĝ1(c′), ĝ2(c′)) .

However, for two codewords in E1, the above equation is not necessarily true. The same phenomenon holds for E2.

V. OPTIMALITY OF THE CODES

In this section, we always assume q > 2. Let Cmax ⊆ Σnq be a code of maximum size that can correct a single absorption
error. Let Bn denote the set of all n-length sequences over Σq \ {0}, i.e., the sequences that do not contain the symbol 0.
From Observation III.1 and Observation IV.1, we know that the code Cmax \ Bn can correct a single deletion of zero. So
|Cmax| 6 Aq,n+ |Bn| = Aq,n+ (q−1)n, where Aq,n denotes the maximum size of a code in Σnq \Bn that can correct a single
deletion of zero. In this section, we will prove an upper bound of Aq,n, which implies that the codes given in the last two
sections are optimal or near optimal in terms of redundancy. To that end, we follow the method proposed in [36], of which
the authors proved a nonasymptotic upper bound of the size of a deletion correcting code (rather than zero-deletion correcting
codes which we are interested in). The basic idea is to interpret our problem of upper bounding the size of codes as a linear
programming problem. Inspired by [36], several researchers further developed this method and obtained many important results
(see, for example, [37], [38]).

We need to introduce some terminologies first. A hypergraph H is a tuple (V, E), where V is a finite nonempty set and E
is a collection of nonempty subsets of V . The set V is the vertex set of H and the elements in V are called vertices. The
elements in E are called hyperedges. A matching of H is defined to be a collection of pairwise disjoint hyperedges of H. The
matching number, denoted by ν (H), is the maximum size of a matching.

For our purpose, we define a hypergraph Hq,n =
(
Σn−1
q , Eq,n

)
, where Eq,n =

{
D

(0)
1 (x) : x ∈ Σnq \ Bn

}
. Here D(0)

1 (x) ⊆
Σn−1
q is the set of sequences obtained by deleting exactly one zero from x. For example, if x = 0110010111, then

D
(0)
1 (x) = {110010111, 011010111, 011001111}. Obviously, a set C ⊆ Σnq \ Bn is a zero-deletion correcting code if and

only if
{
D

(0)
1 (x) : x ∈ C

}
is a matching of Hq,n, and hence Aq,n = ν (Hq,n). Therefore, the problem boils down to

estimating ν (Hq,n).
Suppose that H = (V, E) is a hypergraph with V = {v1, . . . , vn} and E = {E1, . . . , Em}. Then the incidence matrix A of

H is of size n×m and is defined as follows:

Ai,j =

{
1, if vi ∈ Ej ,
0, otherwise.

Here Ai,j is the element in the ith row and jth column of A.
The following lemma gives an upper bound of ν (H).

Lemma V.1 [36, Lemma 2.4] Let notations be as above. Then ν (H) 6 τ∗ (H), where

τ∗ (H) = min

{
n∑
i=1

wi : ATw > 1,w > 0

}
.

Here AT denotes the transpose of the matrix A, w = (w1, . . . , wn)T is a column vector whose components are all nonnegative
reals, 1 denotes the column vector whose components are all 1, 0 denotes the column vector whose components are all 0, and
the inequalities are defined component-wise.
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According to Lemma V.1, we have Aq,n = ν (Hq,n) 6 τ∗ (Hq,n). By definition,

τ∗ (Hq,n) = min

{ ∑
y∈Σn−1

q

w(y) :
∑

y∈D(0)
1 (x)

w(y) > 1,∀x ∈ Σnq \ Bn,

and w(y) > 0,∀y ∈ Σn−1
q

}
.

For a sequence z ∈
⋃∞
i=1 Σiq of finite length, we let r0(z) be the number of runs of zeros in z. For example, if z =

0110010111, then r0(z) = 3. It is clear that r0(y) 6 r0(x) if y ∈ D(0)
1 (x). If y ∈ Bn−1, we let w(y) = 1; otherwise, let

w(y) = 1
r0(y) . Then w(y) > 0 and

∑
y∈D(0)

1 (x)

w(y) >
∑

y∈D(0)
1 (x)

1

r0(x)
=

∣∣∣D(0)
1 (x)

∣∣∣
r0(x)

= 1

for any x ∈ Σnq \ Bn. The last equality follows from the fact
∣∣∣D(0)

1 (x)
∣∣∣ = r0 (x). Let S = Σn−1

q \ Bn−1. Since∑
y∈Σn−1

q

w(y) = (q − 1)n−1 +
∑
y∈S

1

r0(y)
, (9)

it remains to calculate
∑

y∈S
1

r0(y) . Note that 1 6 r0(y) 6
⌈
n−1

2

⌉
=
⌊
n
2

⌋
for any y ∈ S. However, these bounds are too loose

and will only lead to Aq,n 6 qn−1. Thus, a better bound is needed.

Lemma V.2 For a given positive integer N , the number of integer solutions to the following equation

a1 + · · ·+ at = N

under the condition that ai > 0 for all i = 1, . . . , t, is
(
N+t−1
N

)
. More generally, the number of integer solutions to the above

equation under the condition that ai > pi for all i = 1, . . . , t, is
(
N+t−(

∑t
i=1 pi)−1

t−1

)
, where p1, . . . , pt are nonnegative integers.

Proof: The first conclusion is [39, Proposition 1.5]. To prove the general conclusion, let a′i = ai − pi for each 1 6 i 6 t.
Then each a′i is a nonnegative integer. The proof follows from the first conclusion. 2

Lemma V.3 Let n > 2 be a positive integer. For any 1 6 k 6
⌊
n
2

⌋
, the number of sequences y in S with the property

r0(y) = k is
(
n−2
2k

)
(q − 1)k+1 + 2

(
n−2
2k−1

)
(q − 1)k +

(
n−2
2k−2

)
(q − 1)k−1.

Proof: For y ∈ S with r0(y) = k, we can write y in the form

y = am0
0 0l1am1

1 · · · 0lkamkk ,

where a0, a1, . . . , ak ∈ Σq \ {0}, m0,mk > 0, li,mj > 1 for all 1 6 i 6 k and 1 6 j 6 k − 1. Let Sn be the number of
solutions to the equation

∑k
i=1 li +

∑k
j=0mj = n− 1. The following conclusions are clear from Lemma V.2:

• if m0,mk > 1, Sn =
(
n−2
2k

)
;

• if m0 = 0,mk = 1 or m0 = 1,mk = 0, Sn =
(
n−2
2k−1

)
;

• if m0 = mk = 0, Sn =
(
n−2
2k−2

)
.

Therefore, the number of sequences is |S| =
(
n−2
2k

)
(q − 1)k+1 + 2

(
n−2
2k−1

)
(q − 1)k +

(
n−2
2k−2

)
(q − 1)k−1. 2

From Lemma V.3 and Equation (9), we have∑
y∈Σn−1

q

w(y) = (q − 1)n−1 +
∑
y∈S

1

r0(y)

= (q − 1)n−1 +

bn2 c∑
k=1

1

k

(
n− 2

2k

)
(q − 1)k+1 (10)

+ 2

bn2 c∑
k=1

1

k

(
n− 2

2k − 1

)
(q − 1)k +

bn2 c∑
k=1

1

k

(
n− 2

2k − 2

)
(q − 1)k−1

To derive our desired result, we need the following lemma.

Lemma V.4 [19, Claim 2] For integers q > 2, n > 5 and n > q, it holds that
n∑
k=1

1

k

(
n

k

)
(q − 1)k 6

qn+1

(q − 1)(n− 2)
.
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Putting everything together, we can now present the main theorem of this section.

Theorem V.5 Let notations be as above. For integers q > 2, n > 12 and n > q, it holds that Aq,n 6 (q−1)n−1+1+ 8qn−1

(q−1)(n−4) .
In particular, the redundancy of Cmax is at least logq(n)− logq(Cq), where Cq is a constant dependent on q and independent
of n.

Proof: For any k > 1, we have k + 1 6 2k. Therefore,

bn2 c∑
k=1

1

k

(
n− 2

2k

)
(q − 1)k+1 6 2

bn2 c∑
k=1

1

2k

(
n− 2

2k

)
(q − 1)2k 6 2

n−2∑
k=1

1

k

(
n− 2

k

)
(q − 1)k. (11)

Since 1/k 6 2/(2k − 1) and k 6 2k − 1, we have

2

bn2 c∑
k=1

1

k

(
n− 2

2k − 1

)
(q − 1)k 6 4

bn2 c∑
k=1

1

2k − 1

(
n− 2

2k − 1

)
(q − 1)2k−1 6 4

n−2∑
k=1

1

k

(
n− 2

k

)
(q − 1)k. (12)

By Equation (11), we have

bn2 c∑
k=1

1

k

(
n− 2

2k − 2

)
(q − 1)k−1 = 1 +

bn2 c∑
k=2

1

k

(
n− 2

2k − 2

)
(q − 1)k−1

6 1 +

bn2 c∑
k=2

1

k − 1

(
n− 2

2k − 2

)
(q − 1)k−1

= 1 +

bn2 c−1∑
k=1

1

k

(
n− 2

2k

)
(q − 1)k

6 1 + 2

n−2∑
k=1

1

k

(
n− 2

k

)
(q − 1)k. (13)

Now combining Equation (10), Lemma V.4 and Equations (11) to (13), we obtain

∑
y∈Σn−1

q

w(y) = (q − 1)n−1 +

bn2 c∑
k=1

1

k

(
n− 2

2k

)
(q − 1)k+1

+ 2

bn2 c∑
k=1

1

k

(
n− 2

2k − 1

)
(q − 1)k +

bn2 c∑
k=1

1

k

(
n− 2

2k − 2

)
(q − 1)k−1

6 (q − 1)n−1 + 1 + 2

n−2∑
k=1

1

k

(
n− 2

k

)
(q − 1)k

+ 4

n−2∑
k=1

1

k

(
n− 2

k

)
(q − 1)k + 2

n−2∑
k=1

1

k

(
n− 2

k

)
(q − 1)k

6 (q − 1)n−1 + 1 +
8qn−1

(q − 1)(n− 4)
.

By our discussion at the beginning of this section, we have |Cmax| 6 (q − 1)n−1 + 1 + 8qn−1

(q−1)(n−4) + (q − 1)n. When n is
large enough, this implies |Cmax| 6 Cq

qn

n , where Cq is a constant that depends on q and independent of n. Therefore, the
redundancy of Cmax is at least logq(n)− logq(Cq). 2

Corollary V.6 The code in Equation (2) (when a = 0) is optimal up to a constant and the code in Theorem IV.9 is optimal
up to an O(logq logq(n)), in terms of redundancy.

VI. A VARIANT OF THE ABSORPTION CHANNEL AND ITS CONNECTION WITH DELETION CHANNELS

In this section, we briefly discuss a variant of the absorption channel, which we call the contraction channel. Interestingly,
we find that it is equivalent to the deletion channel, which has been extensively studied in recent years. Throughout this section,
we assume that q is a fixed positive integer great than 2.

Definition VI.1 Suppose that x ∈ Σnq is the transmitted sequence and y ∈ Σn−1
q is the received sequence, where
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• y = x1 · · ·xi−1 (xi � xi+1)xi+2 · · ·xn for some 1 6 i 6 n− 1, or
• y = x1 · · ·xn−1.

Here xi � xi+1 is defined to be xi + xi+1 (mod q). For simplicity, in the rest of this section we will say that y is obtained
from x by a contraction if y is obtained from x in this way.

With Definition VI.1 in hand, multiple contractions can be defined in a similar way that we defined multiple absorptions (see
Definition II.2).

For any x ∈ Σnq and any integer t ∈ [1, n− 1], we define

Dt (x) =
{
z ∈ Σn−tq : z is a subsequence of x

}
.

Let C be a nonempty subset of Σnq . If Dt (c) ∩ Dt (c′) = ∅ for any two distinct sequences c, c′ ∈ C, we say C is a q-ary
t-deletion correcting code. There are some known results on nonbinary t-deletion correcting codes with low redundancy [20],
[40].

Next, We construct a bijection that connects between contractions and deletions. To that end, we use the following notation.
For any t > 0 and n > t+ 1, let

Aq (n, t) =
{
x ∈ Σnq : xi = 0 for all 1 6 i 6 t

}
and

Bq (n, t) =
{
y ∈ Σn+1

q : yi = 0 for all 1 6 i 6 t+ 1
}
.

We define a mapping Φn,t from Aq (n, t) to Bq (n, t) as following:

Φn,t : Aq (n, t)→ Bq (n, t)
x 7→ y

where y1 = 0 and yi =
i−1

�
j=1

xj for each i > 2. Clearly, the mapping Φn,t is a bijection. Indeed, for any y ∈ Bq (n, t), we have

Φ−1
n,t(y) = x1 · · ·xn, where xi = yi+1 − yi (mod q) for each 1 6 i 6 n.

Lemma VI.2 Let x ∈ Aq (n, t) and y = Φn,t(x), where t is a positive integer and n > t+ 1 is an integer.
(1) t contractions in x corresponds t deletions in y.
(2) t deletions in y corresponds t contractions in x.

Before proving the lemma, we give a simple example to demonstrate the idea.

Example VI.3 Let n = 7, t = 1 and consider the sequence x = 0121201 over the ternary alphabet Σ3 = {0, 1, 2}. Applying
the bijection, we obtain Φ7,1(x) = y = 00101001. Now assume a contraction occurred in x in position i = 2, i.e., we obtain
x′ = x1(x2 � x3)x4 . . . x7 = 001201. The corresponding y′ = Φ(x′) = 0001001 can be obtained from y by deleting y3.

Considering 2 consecutive contractions, let x′′ = 01201 be obtained by contracting x2 � x3 � x4. The corresponding y′ is
Φ(x′′) = 001001 which can also be obtained by deleting y3 and y4 from y.

We now prove the lemma.
Proof: (1). Suppose that x′ is obtained from x by t contractions. Then

x′i =



xi, if i < i1,

xi+
∑l
j=1 sj

,
if il −

∑l−1
j=1 sj < i < il+1 −

∑l
j=1 sj

for some 1 6 l < k,

xi+
∑k
j=1 sj

, if i > ik −
∑k−1
j=1 sj ,

il+sl
�
j=il

xj , if i = il −
∑l−1
j=1 sj for some 1 6 l 6 k.

(14)

Here sl > 1 for each 1 6 l 6 k, the sum
∑k
l=1 sl = t− t′, i1 > 1, ik + sk 6 n− t′ and il+1 − il > sl for each 1 6 l < k.

Let y′ = Φn−t,0 (x′). Then y′ is obtained from y by deleting yil+r (1 6 l 6 k, 1 6 r 6 sl) and y[n−t′+2,n+1]. Therefore, y′

is obtained from y by t deletions.
(2). Suppose that y′ is obtained from y by t deletions. Then there exist integers il, sl (1 6 l 6 k) satisfying i1 > 0, sl > 1

for all l > 1, il+1 − il > sl for all 1 6 l < k and ik + sk 6 n− t′, such that y′ is obtained from y by deleting yil+r for all
1 6 l 6 k and 1 6 r 6 sl (where

∑k
l=1 sl = t− t′) and y[n−t′+2,n+1]. Notice that y1 = · · · = yt+1 = 0. So we can assume

i1 > 1 and hence y′1 = 0. Let x′ = Φ−1
n−t,0 (y′). By construction, we can see that x′ is as in Equation (14). Therefore, x′ is

obtained from x by t contractions. 2

Lemma VI.2 suggests that a t-contraction error in sequences in Aq(n, t) is equivalent to a t-deletion error in sequences in
Bq(n, t). Therefore, a t-contraction correcting code in Aq(n, t) is equivalent to a t-deletion correcting code in Bq(n, t).

Observation VI.4 Let a, b ∈ Σq , a 6= b, and 0 < a, b 6 q − 1.
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• If xixi+1 ∈ {0a, a0, 00}, then N0(x) = N0(y) + 1 and Nd(x) = Nd(y) for all d 6= 0. In other words, y is obtained
from x by deleting one 0.

• If xixi+1 = aa and c = a� a, then Na(x) = Na(y) + 2, Nc(x) = Nc(y)− 1 and Nd(x) = Nd(y) for all d 6= a, c.
• If xixi+1 = ab and c = a� b, then Na(x) = Na(y) + 1, Nb(x) = Nb(y) + 1, Nc(x) = Nc(y)− 1 and Nd(x) = Nd(y)

for all d 6= a, b, c.

With Observation VI.4 in hand, it is easy to construct codes correcting contraction errors, as we did in Theorem IV.5,
Theorem IV.9 and Theorem IV.17. On the other hand, we can also construct codes via deletion correcting codes. Since these
two kinds of constructions are straightforward, we omit the details.

VII. CONCLUSION

In this paper, we introduced and studied absorption channels, which are closely related to neural communication systems.
We constructed codes with near-optimal redundancy for single-absorption errors and codes with logarithmic redundancy for
multiple-absorption errors. We also explored a variant of the absorption channels called contraction channels and showed that
they are equivalent to deletion channels, which have numerous practical applications. We hope that this new finding will inspire
new approaches to the construction of deletion-correcting codes.

In Section V, we derived an upper bound on the size of single-absorption-correcting codes based on the fact that such codes
must be able to correct the deletion of zeros. This bound implies that the redundancy of our single-absorption codes is optimal
up to a constant or a term of O(logq logq(n)). However, this upper bound is not tight because a code that can correct a deletion
of zeros is not necessarily a single-absorption-correcting code. Improving this upper bound would require a better estimate of
the size of the 1-absorption ball Bab1 (x) (see Equation (1)) for each x, which appears to be a difficult task because

∣∣Bab1 (x)
∣∣

depends on the structure of x. This problem is left for future research. There are other interesting future research directions,
which include
• deriving an upper bound on the size of multiple-absorption codes;
• finding new constructions of multiple-absorption codes;
• finding efficient encoders for D (n; r,α,β) and E (n; r,α,β, a);
• exploring the general error model, in which a symbol’s value may be decreased and the next symbol’s value increased.

APPENDIX A
ENCODING AND DECODING ALGORITHMS FOR THE SET Rq,n+5

In this section, we will give an algorithm that encodes an arbitrary sequence x ∈ Σnq into Rq,n+5. Since the encoding process
is reversible, a decoding algorithm arises naturally. Throughout this section, it is assumed that (c1− 4) logq(e)/(4q

4) > 5 and
c2 logq(e)/(4q

4) > 1. For two finite sets A and B, let f : A → B be an injective mapping (A, B and f will be clear from
the context). Then f induces a bijection fA from A to its image f (A). By abuse of notations, we denote the inverse of fA
by f−1.

The basic idea of the encoding algorithm can be outlined as follows.
1) Find two consecutive patterns 0011 of distance larger than δ.
2) Delete a substring of length δ − 4 between these two patterns. This process aims to decrease the distance between these

two patterns.
3) Encode the position of this deleted substring and a compressed version of this substring into a block.
4) Insert this block into another position to make sure that this insertion does not introduce two consecutive patterns of

distance larger than δ.
5) Continue this process until there are no two consecutive patterns 0011 of distance larger than δ.
First, we present a method to compress a length δ − 4 sequence that does not contain 0011, into a shorter sequence. The

following lemma follows similar ideas in [?, Observation 1] and [?, Proposition 1].

Lemma A.1 Let S be the set of all sequences of length δ − 4 that do not contain 0011 as a substring. Then there exists an

injective mapping g : S → Σ
δ−dlogq(n)e−9
q . Furthermore, the two mappings g and g−1 can be computed in O (n) time.

Proof: Divide each s ∈ S into (δ− 4)/4 segments, each of length 4. In other words, represent s as s = s1s2 · · · s(δ−4)/4,
where si ∈ Σ4

q for each 1 6 i 6 (δ − 4)/4. Since si 6= 0011, there are at most q4 − 1 choices of si. This implies that each si

can be represented by a symbol from the alphabet Σq4−1, and a sequence s can be represented by a sequence u ∈ Σ
(δ−4)/4
q4−1 .

Let nu be the number of q-ary symbols to represent u. Then

nu 6

⌈
logq

(
q4 − 1

) δ−4
4

⌉
=

⌈
δ − 4 +

δ − 4

4q4
logq

(
1− 1

q4

)q4⌉
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6

⌈
δ − 4− δ − 4

4q4
logq (e)

⌉
.

The last inequality follows from the fact that the function (1− 1/x)
x is increasing in x when x > 1 and limx→∞(1−1/x)x =

1/e. Since (c1 − 4) logq(e)/(4q
4) > 5 and c2 logq(e)/(4q

4) > 1, we have (δ − 4) logq (e) /(4q4) >
⌈
logq(n)

⌉
+ 5. So

nu 6 δ −
⌈
logq(n)

⌉
− 9. Recall that c1 and c2 are integers. Thus, the sequence u (and s) can be represented by a q-ary

sequence of length δ −
⌈
logq(n)

⌉
− 9.

The construction of g (and g−1) is straightforward. Since each si corresponds to a symbol from Σq4−1, we can obtain u
from s by replacing each si by the symbol from Σq4−1 that corresponds to the value of its base-q representation. We then
transform u to a q-ary sequence v of length δ−

⌈
logq(n)

⌉
− 9. This can be done, for example, using a lookup table. Overall,

transforming s ∈ S ⊆ Σδ−4
q into v ∈ Σ

δ−dlogq(n)e−9
q can be done in O (n) time. This process is reversible and g−1 can be

computed in O (n) time.
2

With this lemma, we describe our encoding algorithm in Algorithm 1. We note that since qdlogq(n)e > n, there is an injective

mapping from [2, n+ 1] to Σ
dlogq(n)e
q . Let b be such a mapping. By building a lookup table, the two mappings b and b−1 can

be computed in O(n) time.
Algorithm 1 works as follows. We scan the sequence for 0011 starting from the end of the sequence and going backward.

If there is a block between two consecutive appearances of 0011 which is longer than δ − 4, the length-(δ − 4) suffix of that
block is removed, compressed, and placed at the beginning of the sequences together with a pointer to its position and with
0011 appended to it.

Algorithm 1: Encoding an arbitrary sequence of length n into Rq,n+5

Input: x ∈ Σnq
Output: c = Enc (x) ∈ Rq,n+5

1 Initialization
2 c← 1x0011, i← n+ 5, d← 1
3 while i > d+ δ do
4 if there is no j ∈ [d+ 3, i− 4] such that c[j−3,j] = 0011 then
5 j ← d− 1
6 else
7 find the largest j ∈ [d+ 3, i− 4] such that c[j−3,j] = 0011
8 end
9 if i− j 6 δ then

10 i← j
11 else
12 c← 0b (i− 4) g

(
c[i−δ+1,i−4]

)
0011c[1,i−δ]c[i−3,n+5]

13 d← d+ δ − 4
14 end
15 end
16 return c

Algorithm 2: Decoding Enc (x) ∈ Rq,n+5 into x

Input: Enc (x) ∈ Rq,n+5

Output: x
1 Initialization
2 x̂← Enc (x)
3 while x̂1 = 0 do
4 ind← b−1

(
x̂[2,dlogq(n)e+1]

)
5 x̂← x̂[δ−3,ind]g

−1
(
x̂[dlogq(n)e+2,δ−8]

)
x̂[ind+1,n+5]

6 end
7 x̂← x̂[2,n+1]

8 return x̂

Theorem A.2 Given any sequence x ∈ Σnq , Algorithm 1 outputs a sequence Enc (x) ∈ Rq,n+5.
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Proof: We start with a detailed explanation of the idea behind Algorithm 1. In the Initialization step, a pattern 0011
is appended to the end of the input sequence x since each sequence in Rq,n+5 ends with 0011, and 1 is appended to the
beginning of x. This appended 1 serves as a marker for the beginning of the information sequence (or, alternatively, when to
finish the decoding process). The variable d is a pointer to the position of this symbol. The index i is initialized to be n+ 5,
which is the position of the last pattern 0011 in c. The condition for continuing the while loop is i > d+ δ. This is because
we want to find two consecutive patterns 0011 of distance larger than δ.

The idea for the while loop is to search patterns 0011 in the sequence, starting from the end of the sequence and going
backward. Once the pattern 0011 is encountered at position i (i.e., the position of the last symbol in 0011 is i), we search for
the next pattern 0011 that is closest to the one at position i. Assume there is a 0011 pattern in position j < i (the position of
the last symbol is j). If the distance between these two patterns is at most δ, we set j → i and repeat the process. Otherwise,
we delete the substring c[i−δ+1,i−4] of length δ − 4 and then insert a block 0b (i− 4) g

(
c[i−δ+1,i−4]

)
0011 at the beginning.

This block contains the position b(i− 4) of the deleted substring and the compressed version g
(
c[i−δ+1,i−4]

)
of the deleted

substring. Notice that the length of the block 0b (i− 4) g
(
c[i−δ+1,i−4]

)
0011 is δ − 4. So the deletion-insertion process does

not change the length of the input sequence.
Recall that in the Initialization step, a symbol 1 was inserted at the beginning of the sequence and the variable d denotes the

position of this symbol. Since the inserted block is on the left of cd and the deleted substring is on the right of cd, the value of
d should increase by δ−4 in step 13. In steps 9–14, either i decreases to j or d increases by δ−4. So the while loop will end
after a finite number of cycles. In other words, the algorithm will terminate after finite steps. In each loop, if two consecutive
patterns of distance larger than δ are encountered, then the distance between them will decrease since a length δ− 4 substring
between them is deleted. The distance of two existing consecutive patterns does not increase after the insertion of a block
0b (i− 4) g

(
c[i−δ+1,i−4]

)
0011. Besides, the insertion of a block will not introduce two consecutive patterns of distance larger

than δ since the length of each block is δ− 4 and each block ends with 0011. So in the output sequence Enc (x), the distance
between two consecutive patterns is at most δ and thus Enc (x) ∈ Rq,n+5. 2

The time for searching i and j are both O(n). The time for computing g and b are both O(n). For each pair (i, j), there are at
most O

(
n/ logq(n)

)
substrings of length δ−4 to be deleted. Therefore, the time complexity of Algorithm 1 is O

(
n4/ logq(n)

)
.

It is easy to see that the encoding process of Algorithm 1 is reversible. The decoding algorithm is presented in Algorithm 2.
We give a brief explanation of the correctness of Algorithm 2. In the Initialization step of Algorithm 1, a symbol 1 was inserted
at the beginning. This 1 was not destroyed during the encoding process. Each inserted block 0b (i− 4) g

(
c[i−δ+1,i−4]

)
0011

begins with 0. So in Algorithm 2, the condition x̂1 = 0 implies that x̂ should be decoded. If x̂1 = 1 (this is exactly the inserted
1), we just need to delete the first and the last four symbols in x̂. The remaining substring x̂[2,n+1] is the original sequence
x. The time complexity of Algorithm 2 is O

(
n2
)
.

APPENDIX B
PROOF OF THEOREM IV.8

If the pattern 0011 in the end of zxlx was destroyed, then this error is easy to detect and correct, since each codeword x ∈ D1

ends with 0011. Therefore, we always assume that the absorption error does not destroy the pattern 0011 in the end of zxlx .
If |y| = n, then y is error-free. If |y| = n − 1, then a single absorption happened. Notice that by calculating g(y) − r2

(mod 3), we can find ly − lx (see Observation IV.7).

Case (1): g(y)− r2 ≡ 0 (mod 3). In this case, we have ly = lx and so we can assume zy =
(
zx1 , . . . , z

x
i−1, z

′
i, z

x
i+1, . . . , z

x
lx

)
for some i 6 lx, where z′i is obtained from zxi by an absorption error and so |z′i| = |zxi | − 1. Therefore, we have

f(x)− f(y) ≡
lx∑
j=1

j
∣∣zxj ∣∣− ly∑

j=1

j
∣∣zyj ∣∣ ≡ i (|zxi | − |z′i|) ≡ i (mod 2n).

Since 1 6 i 6 lx 6 n/4 and i ≡ f(x)−f(y) ≡ r1−f(y) (mod 2n), we can find the value of i from (r1 − f(y)) (mod 2n).
This gives a window W of length at most δ = O(logq(n)) in which the absorption error has occurred. Furthermore, since
(r1 − f(y)) (mod 2n) can be computed in O(n) time, this window can be found in O(n) time.

Case (2): g(y)−r2 ≡ 2 (mod 3). In this case, we have ly = lx−1 and so we can assume zy =
(
zx1 , . . . , z

x
i−1, z

′
i, z

x
i+2, . . . , z

x
lx

)
for some i < lx, where z′i is obtained from zxi and zxi+1 by an absorption error which destroyed the 0011 in zxi and so
|z′i| = |zxi |+

∣∣zxi+1

∣∣− 1. Therefore, we have

f(x)− f(y) =

lx∑
j=1

j
∣∣zxj ∣∣− ly∑

j=1

j
∣∣zyj ∣∣ (mod 2n)

= i |zxi |+ (i+ 1)
∣∣zxi+1

∣∣− i |z′i|+ lx∑
j=i+2

∣∣zxj ∣∣ (mod 2n)
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= i+
∣∣zxi+1

∣∣+

lx∑
j=i+2

∣∣zxj ∣∣ (mod 2n).

Since 0 < i +
∣∣zxi+1

∣∣ +
lx∑

j=i+2

∣∣zxj ∣∣ < lx∑
j=1

∣∣zxj ∣∣ = n, we can obtain the value of i +
∣∣zxi+1

∣∣ +
lx∑

j=i+2

∣∣zxj ∣∣ from (r1 − f(y))

(mod 2n).
For each i 6 i′ 6 ly, we define

Φ(i′) =

ly∑
j=i′+1

∣∣zyj ∣∣+ i′ =

lx∑
j=i′+2

∣∣zxj ∣∣+ i′.

Then we have

|Φ(i)− (f(x)− f(y))| =
∣∣zxi+1

∣∣ 6 δ. (15)

Besides, since
∣∣zxj ∣∣ > 4 for all j, it holds that

Φ(i′ − 1)− Φ(i′) =
∣∣zxi′+1

∣∣− 1 > 3, (16)

whenever i′ − 1 > i, which in turn, implies that for k ∈ N such that i′ − k > i,

Φ(i′ − k)− Φ(i′) =

i′+1∑
j=i′−k+2

∣∣zxj ∣∣− k > 3k. (17)

Now we can recover the desired window W in the following way. Sequentially compute Φ(i′) for i′ starting at ly until we
find an i0 > i such that |Φ(i0)− (f(x)− f(y))| 6 δ. This i0 does exist due to Equation (15). We claim that i0 − i 6 2

3δ.
Otherwise, Equation (17) implies that

|Φ(i)− (f(x)− f(y))| = |Φ(i)− Φ(i0) + Φ(i0)− (f(x)− f(y))|
> |Φ(i0)− Φ(i)| − |Φ(i0)− (f(x)− f(y))|

> 3
2

3
δ − δ = δ,

which contradicts Equation (15). Since |zyi | 6 2δ − 1,
∣∣zyj ∣∣ 6 δ for each j 6= i and i0 − i 6 2

3δ, obtaining i0 gives a window
W of length |W | 6 (i0 − i+ 1) δ + δ − 1 6 2

3δ
2 + 2δ − 1 6 c4 log2

q(n) for some constant c4 depending on c1 and c2. This
window contains the position where the absorption error happened.

Case (3): g(y)− r2 ≡ 1 (mod 3). In this case, ly = lx + 1 and so we can assume zy =
(
zx1 , . . . , z

x
i−1, z

′
i, z
′′
i , z

x
i+1, . . . , z

x
lx

)
for some i 6 lx, where z′i and z′′i are obtained from zxi by an absorption error which created a new 0011 in zxi and so
|z′i|+ |z′′i | = |zxi | − 1. Therefore, we have

f(x)− f(y) =

lx∑
j=1

j
∣∣zxj ∣∣− ly∑

j=1

j
∣∣zyj ∣∣ (mod 2n)

= i |zxi | − i |z′i| − (i+ 1) |z′′i | −
lx∑

j=i+1

∣∣zxj ∣∣ (mod 2n)

= i− |z′′i | −
lx∑

j=i+1

∣∣zxj ∣∣ (mod 2n).

Since 1 6 i 6 lx 6 n/4, 4 6 |z′′i | 6 |zxi | − 5 and 4 6
∣∣zxj ∣∣, we have

−(n− 6) 6 i− |z′′i | −
lx∑

j=i+1

∣∣zxj ∣∣ 6 n/4− 4.

Here, f(x)− f(y) is chosen to be the unique integer −n+ 6 6 a 6 n/4− 4 such that f(x)− f(y) ≡ a (mod 2n). In fact,

we have a = i− |z′′i | −
lx∑

j=i+1

∣∣zxj ∣∣.
Similar to Case (2), for each i 6 i′ < ly, we define

Φ(i′) = −
ly∑

j=i′+2

∣∣zyj ∣∣+ i′ = −
lx∑

j=i′+1

∣∣zxj ∣∣+ i′.
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Then we have

|Φ(i)− (f(x)− f(y))| = |z′′i | = |zxi | − 1− |z′i| 6 δ − 5. (18)

Besides, since
∣∣zxj ∣∣ > 4 for all j, it holds that

Φ(i′)− Φ(i′ − 1) = |zxi′ |+ 1 > 5. (19)

whenever i′ − 1 > i,
Now we can recover the desired window W in the following way. Sequentially compute Φ(i′) for i′ starting at ly − 1

until we find an i0 > i such that |Φ(i0)− (f(x)− f(y))| 6 δ − 5. This i0 does exist due to Equation (18). We claim that
i0 − i 6 2

5δ. Otherwise, Equation (19) implies that

|Φ(i)− (f(x)− f(y))| = |Φ(i)− Φ(i0) + Φ(i0)− (f(x)− f(y))|
> |Φ(i0)− Φ(i)| − |Φ(i0)− (f(x)− f(y))|
> 2δ − δ = δ,

which contradicts Equation (18). Since
∣∣zxj ∣∣ 6 δ for each j and i0 − i 6 2

5δ, obtaining i0 gives a window W of length
|W | 6 (i0 − i+ 1) δ 6 2

5δ
2 + δ 6 c5 log2

q(n) for some constant c5 depending on c1 and c2. This window contains the position
where the absorption error happened.

In Case (2) and Case (3), f(x) − f(y) can be computed in linear time as the process for searching an i0. Therefore, the
window W can be found in O(n) time. Now let c3 = max {c4, c5} and the proof is completed.

APPENDIX C
NON-BINARY ABSORPTION-CORRECTING CODES WITH EFFICIENT ENCODERS AND DECODERS

In this section, by applying the results in Section IV-B and Section IV-C, we give two new absorption-correcting codes that
are polynomial-time encodable and decodable.

For a set A of size m, there exists an injection Q from A to Σ
dlogq(m)e
q . Under this mapping, each element a in A can

be represented as a q-ary sequence Q (a) of length
⌈
logq(m)

⌉
. By building a lookup table, Q and Q−1 can be cumputed in

O(m) time.

A. Single-absorption correcting codes

Let f , g, ĝ1 and ĝ2 be as in Section IV-B. A message x ∈ Σnq is encoded into

E1 (x) = Enc (x) 010f (Enc (x)) g (Enc (x)) ĝ1 (Enc (x)) ĝ2 (Enc (x)) ,

where Enc (·) is the encoder in Algorithm 1. Here the sequence f (Enc (x)) g (Enc (x)) ĝ1 (Enc (x)) ĝ2 (Enc (x)) is defined to
be the sequence

Q ((f (Enc (x)) , g (Enc (x)) , ĝ1 (Enc (x)) , ĝ2 (Enc (x)))) .

Therefore, f (Enc (x)) g (Enc (x)) ĝ1 (Enc (x)) ĝ2 (Enc (x)) is a sequence of length logq(n) + 12 logq logq(n) +O(1).

Proposition C.1 The code
{
E1 (x) : x ∈ Σnq

}
is a single-absorption correcting code with redundancy logq(n)+12 logq logq(n)

+O(1).

Proof: The redundancy is clear from construction. Denote the length of the code by N . Suppose that c = E1 (x) is
the transmitted codeword and ĉ is obtained from c by a single-absorption. Recall that the length of Enc (x) is n + 5. So
c[n+6,n+8] = 010. A single-absorption can not affect c[1,n+7] and c[n+8,N ] simultaneously. Therefore, the decoder can recover
x by the following procedure.
• If ĉn+6 = 0, no error occurred in c[1,n+7] and so Enc (x) = ĉ[1,n+5]. Then the message x can be decoded from Enc (x)

by applying Algorithm 2.
• If ĉn+6 = 1, an absorption occurred in c[1,n+7]. If ĉn+5 6= 0, no error occurred in c[1,n+5] and so Enc (x) = ĉ[1,n+5]. If
ĉn+5 = 0, then ĉn+5 is obtained from Enc (x) by an absorption. Notice that no error occurred in c[n+8,N ]. So we have
ĉ[n+8,N−1] = f (Enc (x)) g (Enc (x)) ĝ1 (Enc (x)) ĝ2 (Enc (x)). By Theorem IV.9, we can recover Enc (x) from ĉ[1,n+4]

when given f (Enc (x)) g (Enc (x)) ĝ1 (Enc (x)) ĝ2 (Enc (x)). Again, the message x can be decoded from Enc (x) by
applying Algorithm 2.

2

Since Enc (·) is a polynomial-time encoder and the four functions f , g, ĝ1 and ĝ2 can be computed in polynomial time,
the code in Proposition C.1 provides a polynomial-time encoder. By Algorithm 2 and the proofs of Proposition C.1 and
Theorem IV.9, we can see that this code can also be decoded in polynomial time.
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B. Multiple-absorption correcting codes

The construction of multiple-absorption correcting codes is more complicated. We first need the following trivial observation.
Recall that Babt (x) denotes the t-absorption ball centered at x.

Observation C.2 Let c = c1c2 be a sequence. We assume that c1 = c′10t and c2 = 0tc′2, where c′1 and c′2 are substrings of
length at least t+ 1. Suppose c1 = c[n0+1,n1] and c2 = c[n1+1,n2], where 0 = n0 < n1 < n2 = |c|. Then for any ĉ ∈ Babt (c),
we have ĉ[ni−1+1,ni−t] ∈ Babt (ci) for each i = 1, 2.

Let E1(·) be the encoder given in Proposition C.1. Define

E =
{
E1 (x) 0t : x ∈ Σnq

}
.

Then Proposition C.1 ensures that E is a single-absorption correcting code. Denote the length of this code by n1. Then
n1 = n+ logq(n) + o

(
logq(n)

)
. Claim IV.16 and the proof of Lemma IV.14 (here R(n1) = Rq,n1

as defined in Equation (7))

imply that there is a mapping f̄ from E to Σ
(4t−2) logq(n)+o(logq(n))
q , such that f̄(u) 6= f̄ (u′) for any u 6= u′ ∈ E and

Babt (u) ∩ Babt (u′) 6= ∅. Furthermore, Remark IV.15 asserts that f̄ can be computed in polynomial time.
Now we are ready to give our construction. In this construction, a message x ∈ Σnq is encoded into

E2 (x) = E1 (x) 0t0th (x) Redq,m
(
0th(x)

)
where h (x) = f̄ (E1 (x) 0t), m is the length of 0th(x) and Redq,m (·) is defined as in Equation (6).

Proposition C.3 Let t > 2 be fixed. The code
{
E2 (x) : x ∈ Σnq

}
is a t-absorption correcting code with redundancy (4t −

1) logq(n) + o
(
logq(n)

)
.

Proof: The redundancy is clear from construction. Denote the length of this code by n2. Suppose that c = E2 (x) is the
transmitted codeword and ĉ is obtained from c by a t absorptions. By Observation C.2, we have ĉ[1,n1−t] ∈ Babt (E1(x)0t) and
ĉ[n1+1,n2−t] ∈ Babt (0th(x)Redq,m (0th(x))). According to Lemma IV.11 and Lemma IV.12, we can first recover h(x) from
ĉ[n1+1,n2−t]. Then Claim IV.16 (this claim holds for any single-absorption code) and the property of f̄ ensures that we can
recover E1(x) and thus x in polynomial time by brute force searching.. 2

Recall that E1(x) and h(x) can be computed in polynomial time. From Lemma IV.11 and Lemma IV.12, we know that
Redq,m (0th(x)) can be computed in polynomial time. Therefore, the code in Proposition C.3 provides a polynomial-time
encoder. From the proof of Proposition C.3, we can see that this code can also be decoded in polynomial time.
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