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A Quantum Algorithm Framework for Discrete
Probability Distributions with Applications to
Rény1 Entropy Estimation

Xinzhao Wang, Shengyu Zhang, Tongyang Li

Abstract—Estimating statistical properties is fundamen-
tal in statistics and computer science. In this paper,
we propose a unified quantum algorithm framework for
estimating properties of discrete probability distributions,
with estimating Rényi entropies as specific examples. In
particular, given a quantum oracle that prepares an n-
dimensional quantum state ", \/p;|i), for « > 1 and
0 < a < 1, our algorithm framework estimates «-
Rényi entropy H.(p) to within additive error e with
probability at least 2/3 using O(n'~2a /e + \/n/e'T2a)
and O(nﬁ / e”i) queries, respectively. This improves the
best known dependence in ¢ as well as the joint dependence
between n and 1/e. Technically, our quantum algorithms
combine quantum singular value transformation, quantum
annealing, and variable-time amplitude estimation. We
believe that our algorithm framework is of general interest
and has wide applications.

Index Terms—Entropy estimation, Rényi entropy, quan-
tum algorithms, quantum query complexity.

I. INTRODUCTION

Motivations. For many problems, quantum algorithms
can dramatically outperform their classical counterparts.
Among those, an important category is quantum algo-
rithms for linear algebraic problems. Recently, Gilyén,
Low, Su, and Wiebe [1] proposed a powerful framework
for quantum matrix arithmetics, namely quantum singu-
lar value transformation (QSVT). QSVT encompasses
quantum algorithms for various problems (see also [2]),
and can recover the best-known or even optimal quantum
algorithms for fixed-point amplitude amplification [3-
6], solving linear systems [7H10], Hamiltonian simula-
tion [11} [12], etc.

In this paper, we study a fundamental problem in
statistics, theoretical computer science, and machine
learning: estimating statistical properties, which aims to
estimate properties of probability distributions using the
least number of independent samples. On the one hand,
statistical properties such as entropies, divergences, etc.,
characterize some key measures of randomness. On the
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other hand, relevant theoretical tools are rapidly devel-
oping in topics such as property testing [[13]], statistical
learning [14]], etc. Among statistical properties, the most
basic one is the Shannon entropy [15]. For a discrete
distribution p = (p;)?_; supported on [n], it is defined
as

H(p) := — Y pilogp:. (1)
=1

A natural generalization of the Shannon entropy is the
family of Rényi entropies [16]. Specifically, the a-Rényi
entropy is defined as

Ha(p) = I—a

1 n
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For our convenience, the power sum in the logarithm is
denoted by P, (p), i.e., Po(p) := > i, p¥. When @ —
1, limy—1 Hy(p) = H(p). Classically, references [17,
18] proved the tight classical sample complexity bound
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for estimating Shannon entropy within precision € with
success probability at least 2/3. For «-Rényi entropy
estimation, reference [19] proved that when a > 1
and 0 < a < 1 respectively, it takes O(n/logn)
and O(n'/®/logn) independent samples from p respec-
tively to estimate H, (p) within constant additive error
with probability at least 2/3. In addition, for any constant
n > 0, the paper also established sample complexity
lower bounds Q(n'~") and Q(n'/*~") when & > 1 and
0 < a < 1, respectively.

There has also been literature on quantum algorithms
for entropy estimation (see the paragraph on related
works for more details). Among those, the state-of-the-
art result on estimating Shannon entropy was given by
Gilyén and Li [20], which applies QSVT to estimate the
Shannon entropy within additive error ¢ with success
probability at least 2/3 using O(y/n/e!®) quantum
queries. For a-Rényi entropy, Li and Wu [21]] gave algo-
rithms with quantum query complexities O(n'—1/2% /?)




and O(n*/*1/2/2) when o > 1 and 0 < o < 1, re-
spectively. Both papers used a common model proposed
by Bravyi et al. [22] which encodes p as frequencies of n
symbols in a given input string and quantum algorithms
can access the input string in superposition (Defini-|
tion 2, whereas [20] also adopted oracles preparing a
superposed quantum state whose amplitude in the i
term is p; (Definition I| and [Definition 3).

Nevertheless, it can be observed that although quan-
tum algorithms for learning statistical properties have
applied advanced algorithmic tools including quantum
singular value transformation [1], and have achieved
speedup in the cardinality n and precision e separately,
the combined dependence on n and € is not yet as well
understood as the classical counterparts, for instance
the sample complexity of Shannon entropy in Eq. (3).
From a high-level perspective, even though quantum
algorithms for linear algebraic problems have been sys-
tematically developed, we shall still endeavor to quantum
algorithms with optimal or near-optimal dependence on
all parameters. In this paper, we shed light on this
question for estimating statistical properties.

Contributions. In this paper, we introduce a unified
quantum algorithm framework for estimating proper-
ties of discrete distributions. Our algorithm is stemmed
from quantum singular value transformation [1]], but we
enhance the framework with quantum annealing and
variable-time amplitude amplification and estimation.
Specifically, we propose algorithms for estimating Rényi
entropies of discrete probability distributions with re-
fined dependence on n and €, assuming access to quan-
tum oracle Upure Which maps [0) to >0, \/pi|i) (see
the later “related work™ paragraph for more discussions
and comparisons of different oracles)]]

Theorem 1 (Main theorem). There are quantum algo-
rithms that approximate the Rényi entropy H,(p) in
Eq. ) within an additive error ¢ > 0 with success
probability at least 2/3 using

quantum queries to Upyre and Ul in

pure
Definition 1| when 0 < o < 1 (Theorent §).

Compared to the state-of-the-art result for estimat-
ing Rényi entropies by Li and Wu [21] which uses
O(nlia’l/z/GQ) quantum queries when 0 < a < 1
and O(n'~1/2%/¢2) quantum queries when a > 1 and
«a is not an integer, our result achieves a systematic

'In fact, our quantum algorithm also applies to the purified quantum

query-access in Please see [Section III| and [Section VT] for
more details.

improvement in both n and e. This can be illustrated
by

The e dependence of our algorithm seems to be worse
than that of Li and Wu [21]] when o € (0, ). We suspect
this is due to an error of the analysis of their Theorem
9 and we have fixed it in The analysis of
Theorem 14 in the arXiv version of [19]] also seems to
have an error, which analyzed the classical sample com-
plexity of estimating Rényi entropy for o € (0,1). We
note that Jiao et at. [[17] gave a Rényi entropy estimation
algorithm with different classical sample complexity for
a € (0,1), so we only compare our algorithms with
that of Jiao et at. [17]. We discuss these points also in
Section V-C|

Here we list current query complexity lower bounds

to estimate Rényi entropy with U and Ugure.

nl/2a-1/2

o Fora € (0,1), we proved that Q ( YT queries

to Upure and Ugure are necessary to estimate H, (p)
to error € in This almost matches our
upper bound when « tends to 0.

o Fora € [2,3] and € € [1,1], Li and Wu [21] proved
that Q(nﬁ/e%) queries are necessary. For a = 1,
Bun et al. [23]] improved the lower bound to Q(1/n).

e For @ € [3,00), Li and Wu [21] proved that

Q né_i :
- — queries are necessary, SO our upper

bound has an O(n2~ 3« + (2)3+) overhead. How-
ever, as mentioned in footnote [2] estimating Rényi
entropy for integral and non-integral o have funda-
mental differences in the classical case, and the lower
bound in [21] holds for all o > 3, suggesting that it
may not be tight for o ¢ N.

We also applied our algorithms to sparse or low-
rank distributions. If a classical probability distribution
p has at most r elements ¢ such that p; > 0 and we
know the value of r in advance, we give an algorithm
rlfﬁ \/;

L
€ e

estimate H,(p) to within additive error ¢ when o > 1,

calls to Upyre and U to

pure

using 4]

1
r2a
1
52a+1

and an algorithm using 0] calls to Upyre and

Ul 1re to estimate H,,(p) to within additive error ¢ when

0 < a < 1. In addition, we also give a quantum

algorithm in for & > 1 when we do not

know the value of r.

The integral « cases are excluded in the figure because computing
H (p) for integral @ seems fundamentally easier. Classically, the best-
known upper bound for integral o > 2 is ©(n!~ & ), smaller than that
of Q(nl_"(l)) for non-integral cases [[19]]. For quantum algorithms,
Li and Wu [21] made special designs for integer « cases, with query
cost better than their non-integral o cases (and also ours), albeit using

a stronger input oracle (Definition 2).
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Fig. 1: Comparison between our algorithms and the algorithm in Li and Wu [21].

Our quantum algorithms can be applied to estimate
the Rényi entropy

Ha(p) = 1 !

—

log(Tr(p™)).

of a quantum density matrix p.

“4)

Corollary 1. There are quantum algorithms that approx-
imate the Rényi entropy of a density operator H,(p)
in Eq. #) within an additive error ¢ > 0 with success
probability at least 2/3 using

3 1
: n2 2a n n .
. O(mln( — + T l+1)) quantum queries

to U, andUg inwhena>1

quantum queries to U, and U; in

Definition 3| when 0 < a < 1 (Corollary 3).

Wang et al. [24] studied estimating Rényi entropy
of density operators in low-rank cases, we show in

that our techniques can improve their algo-

rithms. Subramanian and Hsieh [25]] consider the same
task as in Their algorithm used sampling
methods instead of Amplitude Estimation, so it has
worse asymptotic query complexity bound but requires
less stringent quantum resources.

In addition, our quantum algorithms can also be ex-
tended to estimate quantum Rényi divergence of density
matrices. Please find details in [Section VIl

Techniques. Our quantum algorithm follows the one in
Gilyén and Li [20]] for Shannon entropy estimation. In
we first construct a unitary operator, which
has a matrix block encoding of the square root of the
probability distribution we want to study. We then use
quantum singular value transformation [1]] to compute a
polynomial approximation of the function that we want
to estimate, which is then encoded into an amplitude.
Finally, we apply amplitude estimation to obtain the
estimate as a classical output.

However, this algorithm is sub-optimal in many cases
because of the following two reasons.

o If we need an estimate to within a given multiplica-
tive error, the query complexity of the amplitude
estimation process is inversely proportional to the
square root of the quantity that we want to estimate,
so it has poor dependence if the quantity is too small.
Quantum singular value transformation leverages the
computation of the same function of all singular
values in parallel, but this brings restrictions that
the polynomial should well-approximate the function
within the entire interval [0, 1], where the singular
values may range over.

For the first issue, we design an annealing process in
to obtain an estimate of the quantity to
within constant multiplicative error in advance. With this
rough estimate, we can amplify the quantity with smaller
overhead in each step. For the second issue, we ex-
ploit variable-time amplitude estimation in
by designing a variable-stopping-time algorithm which
applies different transformation polynomials to singular
values in different intervals. This give us more flexibility
to construct polynomials for different singular values and
the final complexity is related to the average degree of
all polynomials.

As a technical contribution, we also improve the
bounded polynomial approximation of z for a > 1
(Cemma 6)), which may be of independent interest. Our
approximation polynomial is bounded by 2% when x is
smaller than a threshold while the bounded polynomial
approximation constructed in [1]] is only guaranteed to
be bounded by 1.

We summarize and compare the techniques in pre-
vious literature on quantum algorithms for estimating
entropies of discrete probability distributions in

We give a brief explanation of the comparisons in the
table here. Compared with quantum algorithms without
using QSVT to estimate entropy, they first sample ¢
according to p;, then estimate p; using amplitude estima-
tion and compute the entropy accordingly, while using
QSVT we can directly compute any polynomial function
value of p; for all 7 simultaneously in the block encoding.



Reference Oracle Quantum SVT  Annealing VTAE
[22] Discrete query-access dDeﬁnition 2 X X X
[21] Discrete query-access (IDeﬁnition 2 X v X
[20] Purified query-access (IDeﬁnition 3 v X X
[26] Purified query-access (IDeﬁnition 3 v X X

this paper Pure.:-state preparation Deﬁn.it‘ion 1 4 4 4

Purified query-access (Definition 3

TABLE I: Summary of quantum algorithms for estimating entropies of classical discrete distributions.

On the other hand, VTAE is an accelerated version of
amplitude estimation that takes problem instances into
account. In our problem, VTAE allows us to apply QSVT
with different polynomials to p; in different intervals,
which makes our quantum algorithm more flexible.
Moreover, annealing is applied to handle the issue that
that the estimated quantity is too small and makes the
amplitude estimation costly. By using annealing, we can
obtain a rough estimate of the estimated quantity, which
enlarges the estimated quantity when using QSVT.

Related work. Previous literature investigated quantum
algorithms for estimating statistical properties using dif-
ferent input models (see also the survey paper [27]).
First, if we want to utilize quantum algorithms to accel-
erate the solving of problems related to classical distribu-
tions, we need coherent access to classical distributions
via quantum oracle. It is thus natural to consider a
unitary oracle which can prepare a pure state encoding
a classical distribution as follows:

Definition 1 (Pure-state preparation access to classical
distribution). A classical distribution p = (p;)}_, is
accessible via pure-state preparation access if we have
access to a unitary oracle Upyre and its inverse, which
satisfies

Upure|0) = > v/mili). 5)
=1

This oracle can be traced back to the quantum example
oracle proposed by [28].

Another common model, originally proposed by
Bravyi et al. [22]], encodes the classical probability
distribution as frequencies of n symbols in a given input
string, and quantum algorithms can query the input string
in superposition. Note that amplitude estimation in [29]
can be regarded as estimating the mean of a random
variable encoded in this way.

Definition 2 (Discrete quantum query-access to classical
distribution). A classical distribution p = (p;)}_, is
accessible via discrete quantum query-access if we have
quantum access to a function f: S — [n] such that for
all i € [n], pi = |{s € S| f(s) = i}|/|S|, which means

we have access to a unitary oracle O and its inverse
acting on C!S| @ C™ such that

O|s)|0) = |s)|f(s)) for all s € S. (6)

In this model, Bravyi et al. [22] gave a quantum
algorithm to estimate the ¢;-norm distance of two distri-
butions p and ¢ with support cardinality n and with con-
stant precision using O(y/n) queries, and gave quantum
algorithms for testing uniformity and orthogonality with
query complexity O(nl/ 3). This was later generalized
to identity testing, i.e., testing whether a distribution is
idenlical or e-far in ¢1-norm from a given distribution,
in O(n'/3) queries by [30]. Li and Wu [21]] gave a
quantum algorithm for estimating the Shannon entropy
within additive error e with high success probability
using O(n'/?/€e?) queries, and this paper also studied
the query complexity of Rényi entropy estimation (see
the paragraph of ‘“contributions”). To complement the
algorithm results, Bun et al. [23] proved that Shannon
entropy estimation with a certain constant €_requires
Q(4/n) quantum queries to the oracle in Eq. (EI)

Beyond classical distributions, it is natural to extend
to statistical problems of genuine quantum systems. The
quantum counterpart of a classical discrete distribution
is a density matrix. Density matrices can be regarded as
the (possibly random) outcome of some physical process,
and if we can access this physical process by calling
it as a black box, we can generate quantum samples
ourselves. If the physical process is reversible, which is
common in a quantum scenario, we can also access the
inverse process of it. For example, if a quantum computer
produces the state p without measurements, we can
easily reverse this process. We can define the following
input model to characterize the situations mentioned
above.

Definition 3 (Purified quantum query-access). A density
operators p € C"*" has purified quantum query-access
if we have access to a unitary oracle U, and its inverse,
which satisfies

n

U,l0)4l0)5 = [t,) = > VBild)ali)s (D)

i=1



such that Tea(l0),) = po where (3i]o;) =
Wily) = di If i) = i), p = 3y pili)(i] is
a diagonal density operator which can be seen as a
classical distribution p = (p;)i_,, and we write U, in
this case instead of U,,.

We note that for encoding classical distributions,
[nition 3|is weaker than [Definition 2|since we can apply O
to a uniform superposition over S in Eq. (6), and this is
equivalent to applying a purified quantum query-access
encoding a classical distribution to |0). (Furthermore,
essentially assumes that all probabilities p;
are rational, whereas does not have this
requirement.) In addition, is also weaker

than since we can use one query to Upyre
to prepare ».. , \/P;|i), and then apply CNOT gates

to produce the state >, \/p;|i)|i), which satisfies the
condition in Our results are established with

being the input oracle.
For classical distributions encoded by

Gilyén and Li [20] systematically studied different oracle
access of distributional property testing, and proved that
it takes O(n'/2 /e'-®) queries to the purified query access
for estimating Shannon entropy to within additive error
e with high success probability. This work also studied
closeness testing, where we are given purified query ac-
cess to distributions p and q and the goal is to distinguish
between p = q and ||p — q|| > €. For ¢;-norm and
£3-norm distances, [20] proved that the quantum query
complexities are O(y/n/e) and ©(1/e), respectively.
Belovs [31] proved that distinguishing between p and
q takes ©(1/du(p,q)) queries (see also [Section V-B),
where dy(p,q) is the Hellinger distance between p
and q, and this tight bound applies to all oracles in
[Definition 1} [Definition 2| and [Definition 3|

For quantum density matrix, Watrous [32] used this
oracle to access a mixed state implicitly.
is also widely used among quantum algorithms for
estimating properties of quantum density operators. The
results in [20]] about Shannon entropy estimation and ¢;-
norm and ¢>-norm closeness testing can be generalized to
those of quantum density matrices with purification with
an overhead of y/n. Chowdhury et al. [33] estimates the
von Neumann entropy of quantum density matrices to
within an additive error. Gur et al. [26] estimates the
von Neumann entropy of quantum density matrices to
within a certain multiplicative error, and under appropri-
ate choices of parameters the query complexity to the
purified query access can be sublinear in n. Regarding
the estimation of quantum Rényi entropy in general,
Subramanian and Hsieh [25] used O(kn™ax{2*2}/c2)
queries to estimate the «-Rényi entropy of a density
matrix p satisfying I/k < p < I to within additive
error €. When p has rank at most r, Wang et al. [24]

gave quantum algorithms taking poly(r,1/€) queries
for estimating von Neumann entropy, quantum Rényi
entropy, and trace distance and fidelity between two
density matrices. Fidelity estimation [34} 35], trace dis-
tance estimation [36], and quantum state tomography
[37] using are also studied.

Finally, since classical algorithms for estimating distri-
bution properties takes independent samples, it is natural
to consider quantum samples of density operators defined
as follows.

Definition 4 (Quantum sampling). A quantum distribu-
tion p € C™*" is accessible via quantum sampling if we
can request independent copies of the state p.

Childs et al. [38] studied sample complexity of the
quantum collision problem in this model and proved
weak Fourier-Schur sampling fails to identify the hid-
den subgroup in HSP problem. A series of papers by
O’Donnell and Wright [39-41]] (see also their survey pa-
per [42]) studied the sample complexity of various prob-
lems, including quantum state tomography, maximally
mixedness testing, rankness testing, spectrum estimation,
learning eigenvalues, learning top-k eigenvalues, and
learning optimal rank-k£ approximation. Subsequently,
Badescu, O’Donnell, and Wright [43]] studied the sample
complexity of testing whether p is equal to some known
density matrix or e-far from it, which is O(n/e) with
respect to fidelity and O(n/e?) with respect to trace
distance; both results are optimal up to constant factors.
Regarding von Neumann and quantum Rényi entropies,
Acharya et al. [44] proved that estimation with additive
error € of von Neumann entropy, quantum Rényi entropy
with @« > 1, and quantum Rényi entropy with 0 <
a < 1 have sample complexity bounds O(n?/€?) and
Q(n?/e), O(n?/e?) and Q(n?/e), and O(n?//e?/*)
and Q(n'*t1//e'/®), respectively. Given an additional
assumption that all nonzero eigenvalues of p are at least
1/k, Wang et al. [45] gave a quantum algorithm for
estimating its von Neumann entropy using O(k?/ed)
samples, and bounds under the same assumption were
also proved for estimating quantum Rényi entropy.

Open questions. Our work raises several natural ques-
tions for future investigation:

e When o > 1, can we achieve quadratic quan-
tum speedup in n compared to the classical algo-
rithm in [19] for estimating «-Rényi entropy with
O(n/logn) queries? A natural goal is to give a
quantum algorithm with query complexity O(/n)
for constant e, but our current bound in [Theorem 7
has complexity O(n'~2). This may be related to
our estimation paradigm. A classical analogy to our
algorithm is to draw samples independently from the
probability distribution p on [n], estimate (p;)*~!



for each sample ¢, and output the mean value of
all estimates. Such algorithms are called empirical
estimators, but they can be sub-optimal classically.

e Can we apply our quantum algorithm framework to
other statistical problems? One possibility is the es-
timation of partition functions — it is another promi-
nent type of statistical properties, and many previous
quantum algorithms including [46H50] had applied
annealing on the system’s temperature to estimating
partition functions. It would be of general interest to
achieve further quantum speedup by our algorithm
framework.

o For other quantum linear algebraic problems, can
we elaborate on the dependence on all parameters?
Decent efforts had been conducted for Hamiltonian
simulation [} [11, [12]] and linear system solving [7-
10], and this work investigates the estimation of
statistical properties. It would be natural to leverage
refined analyses for more problems, for instance the
applications in quantum machine learning.

Organization. The rest of the paper is organized as fol-

lows. We review necessary background in|[Section II} We
introduce our main technical contribution, our quantum

algorithm framework, in[Section I, We prove our results
about the quantum query complexity of a-Rényi entropy
estimation with @ > 1 and 0 < a < 1 in
and respectively. In we describe
further applications of our quantum algorithm framework
in estimating statistical properties.

Notation. Throughout the paper, o omits _ poly-
logarithmic factors in the big-O notation, i.e., O(g) =
gpoly(log g). Unless otherwise stated, all vector norms
| - || in this paper are ¢2-norm. We use log to represent
log, and In to represent log,. We use A" to represent
the set of all probability distributions on [n]. For a set
A, we use |A| to represent the size of A. In description
of quantum algorithms, the corresponding Hilbert space
of a quantum register X is denoted by Hx. We write
operator A acting on Hilbert space Hx as Ax. We use
I to represent the identity oprator and |0) to represent
the all-0 state.

II. PRELIMINARIES

We summarize necessary tools used in our quantum
algorithm framework as follows.

A. Amplitude amplification and estimation

Fixed-point amplitude amplification. Classically, for
a Bernoulli random variable X with E[X] = p, we
need O(1/p) i.i.d. samples in expectation to observe
the first 1. In the quantum case, this can be improved
by amplitude amplification [29], a quantum algorithm

in which the number of iterations depends on p. This
was later strengthened to a fixed-point version, where
the algorithm only needs to know a lower bound of p.
There are a number of implementations [3H6} |51], and
here we use a version given in [1]. Let |0) denote the
all-0 initial state. Consider a unitary U such that

U10)]0) = v/p[1)[¢) + /1 = pl0)[4). ®

The following theorem says that we can obtain an
approximation of |¢) using @(%) calls to U and UT,
achieving a quadratic quantum speedup over its classical
counterpart.

Theorem 2 (Fixed-point amplitude amplification [}
Theorem 27]). Let A be a quantum algorithm on space
Ha=Hr @ Hw such that

-A|0>7—LA :\/psucc|1>’HF‘¢>Hw
+ V 1 _psucc|0>’HF|w>Hwa (9)

where [||¢)|| = 1.

For any 0 < 6 < 1,0 < € < 1, there is a
quantum algorithm A’ using a single ancilla qubit and
O(%) calls to A and AT, such that | A’|0)3,, —
|1) 20 |0) 2w || < € as long as \/Dsuce > 0.

Amplitude estimation. Classically, if we like to estimate
the expectation of the Bernoulli random variable X to
within additive error €, we need ©(1/€?) i.i.d. samples
of X. Given access to U in Eq. , we can also estimate
p with a quadratic quantum speedup:

Theorem 3 (Amplitude estimation [29, Theorem 12]).
Let A be a quantum algorithm on space Ho = Hrp ®
Hw such that

AJ0)21 . =v/Dsuce| ) [0) 20w
+ /1 = Pouce|0) 205 [} 2040

where |||¢)|| = 1, the amplitude estimation algorithm
outputs a psuce € [0, 1] satisfying

2w V psucc(1 - psucc) LQ

|ﬁsucc _psucc| S M + M2

(10)

(1)

with success probability at least 8/7%, using M calls to

A and AT.

In application, we often need to estimate Pgyc tO
within multiplicative error €. Then we can set

Y —" (12)

€ V psucc

in such that

_ 2 1
|psucc_psucc‘ < gfpsucc V 1- psucc+§€2psucc < €Psuce-
(13)



B. Projected unitary encoding

To manipulate general matrices A by quantum circuits,
we need a tool called projected unitary encoding intro-
duced by [l]]. We say that a unitary U and two orthogonal
projections II, IT form a projected unitary encoding of a
matrix A if A =TIIUIL

An important special projected unitary encoding is the
block-encoding where II = II = |0%)(0*| ® I. In this
case, all nonzero entries of A only appears in the 2% x
2% top-left corner of U. Sometimes the convention also
refers to this corner as A, and call a unitary U a block-
encoding of A if

A
U:

)

denoted by A = ((0| ® I)U(|0) ® I).

Here we list some useful projected unitary encoding
and block-encoding from previous work and used in
ours.

o For Upye in take IT = Y7 i) (i| ®

[i)(i|, IT = |0){(0| @ I, and U = Upyye ® I, then we
have

MUTL =3 VAol @ il (14

e For U, in , take IT = S0 T ®|i)(i|®
i) (i|, IT = |0)(0] ® |0)(0| ® I, and U = U, ® I,
then we have

VT =3~ v/pil6:) (0] @ [i)(0] © [i){il.
i=1

o Let U, be the oracle in which sat-
isfies Up|O>A|0>B = Z?:l \/]Tz|¢z>A|1/)z>B ,Lf,:t
W be a unitary that maps |0)[0) to 327, %
and [¢}) be the conjugate of [¢;). Take I =
I'®0)(0] ®]0){0], II = [0)(0] ® |0)(0| ® I, and

U= (I®Uf) (W ®I), then we have

5)

- - Di *
IESY . 190) (0] ®]0){0] ® [0) (5]
i=1
(16)
o Let A, B, C be three [log n]-qubit registers. For U,
in let S be the swap operator, and
U = (U; ® Ic)(Ia ® Sp,c)(U, ® Ic), then we
have

((0]a,5 ® Ic)U(|0) 4,5 @ Ic) = ZPH%HWC

=p- A7)

The first three projected unitary encodings are pro-
posed by [20] and the last one is proposed by [12]] in its
Lemma 7.

C. Quantum singular value transformation

In [[1], a general quantum algorithm framework called
quantum singular value transformation (QSVT) is pro-
posed, which is useful in many computational tasks
including property estimation. Before introducing this
framework, we first give the definition of singular value
transformation.

Definition 5 (Singular value transformation [1, Defini-
tion 16]). Let f: R — C be an even or odd function.
Suppose that A € C¥? has the following singular value
decomposition

dmin

A= Z ailts) (Wil

=1

(18)

where dpi, == min(d, d). For the function f we define

the singular value transform of A as
dnnn

f(SV)(A) — Z =1 (Ul) W > <wl|

Zi:l f (Uz) |¢1> <'(/)1‘

if fis odd, and
if f is even,

19)
where for i € [d]\ [dmin] we define o; := 0.

Given a matrix A block-encoded in a unitary, polyno-
mial singular value transformation of A can be efficiently
implemented as follows:

Theorem 4 ([1, Corollary 18]). Let Hy be a finite-

dimensional Hilbert space and let U,11,11 € End (Hy)

be linear operators on Hy such that U is a unitary,

and 11,11 are orthogonal projectors. Suppose that P =

Yo arz® € R[] is a degree-n polynomial such that
ar # 0 only if k = n mod 2, and

forall x € [-1,1] : |P(x)] < 1. (20)

Then there exists a vector ® = (¢1,da,...,0n) € R™,

such that
PUEY)(TIUT)
{<<+| @mMUE" (|+) ®10)
(Hemup™ (+) o 1)

if n is odd,

21
if n is even, @

SV) |

where U( =10)(0)| ® Up + |1){1] @ U_g with

eml(znfin ngl)m(eimj(znq)UT
2541 I=D) 1y if n is odd,
Hw/21( id2j—1 (2I-D)rt

=
€192 2T=D )

Up =

if n is even.
(22)

Note that P(SV) (IIUTI) acts on the same space as

IIUTL, while U I(DSV) acts on an enlarged space with one
ancillary qubit added. This theorem tells us that for a



iolinomial P of degree d which satisfies Eq. in

Theorem 4} we can implement P(SV) (IIUTI) with ©(d)
uses of U, UT and controlled reflections I — 211, T — 2I1.

D. Variable-stopping-time algorithms

Variable-stopping-time quantum algorithm. In [§],
variable-stopping-time quantum algorithms are proposed
to characterize those having different branches of com-
putations stopping at different time. We follow the
definition in [9]] and [10].

Definition 6 (Variable-stopping-time quantum algorithm
[10, Definition 13]). We say that A = A,,--- A1 is a
variable-stopping-time quantum algorithm if A acts on
H = Hc ® Ha, where He = @2 He, with He, =
Span(|0), [1)), and each unitary A; acts on Ho, @ Ha
controlled on the first j — 1 qubits being [0)*U~1 €
@2 He,

The algorithm A is divided into m stages A, ..., A,
according to the m possible stopping times %1, ..., %.
In property estimation problem, we focus more on query
complexity, so the ¢; we refer to is the query complexity
of Aj---Aj.

In any stage j, the unitary .A; can set the state in H¢;,
to |1). This indicates that the computation has stopped
on this branch, since any Ay, k > j is controlled on the
state in @ 'H ¢, being all-0 state and does not alter the
state on this branch since the state in H¢, is set to [1).

In order to analyze A, we give the definition of the
probability of the algorithm stopping by time t; as
follows:

Definition 7 (Probability of stopping by time ¢; [10}
Definition 14]). We define the orthogonal projector

Hstopgt = Z ‘1><1|C’J ®I’HA7

it <t

(23)

where by |1)(1|c, we denote the orthogonal projector
on Hc which projects onto the state

|0>7-lc1 - |O>ch_1 ® |1>7‘lcj ® |0>7‘lcj+1

@ @[0nue,,- (24)

Then we define pstop<t = ||Ustop<tA|0)||% and simi-

larly Pstop>t and Pstop=t,-

It is also worth mentioning that in our applications,
it always holds that psiop<i,, = 1. Let psiop=¢; =
Dstop<t; — Pstop<t,_,- We define the average complexity
of A in a way similar to that in [8] by

m

2
Z tj * Pstop=t,; »

j=1

(25)

and the maximum complexity of A

Tax = tm. (26)
Variable-time amplitude amplification and estima-
tion. Suppose we have access to a variable-stopping-time
quantum algorithm A acting on H = Ho ®H 4 such that

A|O> :\/psucc|1>7'l1r|¢>7'lw,7'lc
+ v 1- psucc|0>HF|w>HW77'lcﬂ

where [[[9)] = [[[¥)| = 1, Ha = Hp @ Hw,
and Hp = Span(]0),|1)) indicates “good” and “bad”
outcomes. If we want to obtain the “good” outcome

¢), we can use amplitude amplification algorithm in
with 6(\/;7) calls to A and AT, so the
total complexity is jﬁ. However, we can do better for
variable-stopping-time algorithm. In [8], the following

variable-time amplitude amplification algorithm is pro-
posed with lower complexity:

27)

Theorem 5 (Variable-time amplitude amplification
(VTAA) [8, Theorem 1]). Given a variable-stopping-
time quantum algorithm A acting on H = He Q@ Hoa
such that

.A|0> =\/psucc|1>7-tp ‘¢>HW7HC
+ mm>ﬂp |w>7{w7ﬂcv

where |[|¢)]| = 1, Ha = Hr ® Hw and Hp =
Span(|0), |1)). Let Tayg and Twmax be the parameters
defined in Eq. (23) and Eq. (26). We can construct a
quantum algorithm A’ invoking A several times, for total
time

The .

that  produces a state  o|Yy |0V He T

Bl0) 1 [V 2y e With probability |a?> > 1/2 as
the output.

(28)

In [10], standard amplitude estimation algorithm in

was also generalized to variable-time sce-

narios. Our algorithms only need the following VTAE
algorithm, but we include VTAA for completeness since
VTAE is built upon VTAA (just similar to that Ampli-
tude Estimation is built upon Amplitude Amplification).

Theorem 6 (Variable-time amplitude estimation (VTAE)
[10, Theorem 23]). Let A be a variable-stopping-time
quantum algorithm acting on H = Hco @ H.a such that

A|O> :\/m|1>7'117 ‘¢>'HW,HC
+ V1 = Poucel0) 2, [¥) 300 2100

where |||¢)|| = 1, Ha = Hp @ Hw, and Hp =
Span(|0), |1)). Let Tavg, Tmax be the parameters defined

(30)



in Eq. (23) and Eq. (26). respectively, T} ... := 2T max/t1
and

Tan IOg (Tr/nax)
VDsuce

Suppose that we know a lower bound pl,.. of Psucc- Then
for any ¢,6 € (0,1), we can estimate pgyc. to within
multiplicative error € and success probability at least
1 — & with complexity

o <Q 10g? (Tyax) log <log( 5“‘”‘) )

T/
+Qlog(Ty,0y) log(5 log (p“”")))

Note that the total complexity of estimating pgsycc to
within multiplicative error € using the standard amplitude
estimation algorithm is M Ty, = O( 65%) where M
is determined in Eq. @) Therefore, if T, is much
smaller than 7T;,,, we can achieve a great acceleration
by replacing the standard amplitude estimation algorithm

with variable-time amplitude estimation.

Q = Tmax log (T/

max)

€1V

=0(Q/e).

III. MAIN ALGORITHM

A. Estimating properties of probability distributions by
osvT

In this section, we introduce a quantum algorithm for
estimating properties of a probability distribution p =
(pi)?_, on [n] to within a certain error. Our algorithm
is based on QSVT and amplitude estimation, which is
similar to the entropy estimation algorithm in [20]. In
this paper, we mostly focus on the pure state preparation
oracle in and we will show in
that our algorithm also works well with purified quantum
query-access oracle in Here we give a
brief explanation. Compared to the pure-state preparation
oracle, the purified quantum query-access oracle just
adds an unknown state in the right-hand side of Eq. (7).
However, in our algorithm, we produce a quantum state
|t)) such that the module square of the amplitude of
the projection of |)) onto a subspace, ||IT|¢))||?, encodes
the quantity we want to estimate, where the projector II
acts as an identity in the added space. As a result, the
module square ||TI]1)||? is independent of the unknown
added state.

In this section, we use the block-encoding in Eq. (T4)
to encode the probability distribution p = (p;)?_; on [n]
and denote it by

E:=TUT =Y /pili)(0| @ [i)(i],  (33)
i=1

which has singular values ,/p1, ...

»\/Pn-

Suppose S is a polynomial satisfying Eq. 0) in
We propose an algorithm to estimate
> piS(y/pi)? to within a certain multiplicative error.

Before describe out main algorithm, we first give
a rough version of the amplitude estimation algorithm
and it only needs a lower bound of the module of the
amplitude.

Lemma 1. Let A be a quantum algorithm on space
H =Hr ® Hw such that

‘A|O> = vpsucc|1>'HF|¢>HW + 1 7pSUCC|O>HF|,l/)>/HW7
where |||¢)|| = 1. Given L such that L <

Psuce, there exists an algorithm which outputs an
estimate p € [0,1] satisfying p/psucc € [3,2]
with success probability at least 1 — 6, using

log(£) _
(9(\/mlog(\/7)log( 5 >) =
calls to A and AT.

The proof of is deferred to

With this estimate at hand, we now describe our main

algorithm in and prove its correctness in
ILemma 2|

0 (=)

Lemma 2. Suppose S is a polynomial satisfying Eq. (20)
in p = (pi), is a probability distri-
bution on [n| and we know a lower bound L <
S 1 piS(\/pi)*. Then for any € € (0,1),
with parameters L := L,S := S and input € outputs
an estimate of >\ | p;S(\/pi)? to within multiplica-

tive error € with success probability at least % using

~( 1 deg(S)

@ (EZ?fiiS(\/E:P) calls 10 Upure and U .
Proof. We first analyze the error of Let the
state in registers (A, B, Q) after [Line 2| of [Algorithm 1

be |®,). Assuming S is an odd function for the moment
for simplicity, the output |®,,) satisfies that

(I (+lo)|2y)
=& (+l)Us™(10)a1¥p) 5l +)e)
=@ (+le)(10)(0e ® Uas + [1)(1lQ ® U-vs)
)

(10)1¥p)51+)0)
=((T® (+1g)(10){0lq ® Uss + [1)(1lq ® U—sy)
(M@ |+)q))(10) 4|¥p) )

—5V)([U) (Zx/pT\O alivz)
(Z S(v/Pi)]i) (04 ® [i)( ) (i )
:Z\/ES(\/E) i) ali) B

(34)



Algorithm 1: Estimate the value Y- | p;S(,/p;)? for p = (p;)7;.
Input: Multiplicative error ¢, and quantum registers (A, B, Q, F) initialized to |0).
Output: p, an estimation of the value >\ | p;S (\/pj) .
Parameter: (L, S), where L is a lower bound of ) ., p;S(,/p;)% and S is an odd or even polynomial.
Notation:
o A, B are two [logn]-qubit input registers;
e (Q is a single-qubit register, to be used as an ancilla register for QSVT;

o F is a single-qubit flag reglster indicating “good” components whose amplitude we estimate;
e USY) s the unitary UI(D V) in When the transformation polynomial P := S, and U, II, IT in
aresettoUH IT in Eq. (14), Eq. ( anqu .

Regard the following subroutine as A:

1 Apply Upure to register B and Hadamard gate H to register @ ;

2 Apply unitary Uésv) to registers (A, B, Q) using @ as the ancilla register ;

3 if S is an odd function then

4 L Apply unitary C ,y  NOT = M|+ (4o @ Xr + (I - ® [4+)(+]g) @ Ir to registers
(A,B,Q, F);

else

6 L Apply unitary Crig|4)(+NOT =11 ® |[+)(+]q @ Xp + (I — 11 ® |+)(+|q) ® IF to registers

(A7 B7 Q7 F);

7 Run the algorithm in with § = % and lower bound L to obtain a rough estimate of
|(I ®|1)(1]|#)|-A|0)]]*. Denote this estimate by P;

8 Use the amplitude estimation algorithm in with M = [f] to estimate ||({ ® |1)(1]r)|.4]0)|
and denote the result by p. Output p;

where the third equation comes from A, the success probability is
(M@ [+)Q)(10)a[¥p)B) = [0)4|¥p) 5]+)q 1 ® (1)1 2, 2
F
Let the state in registers (A, B, @, F) after be :

|Wp,). Then we have =1 vBiS (vp0) i) ald) B+l r
=3 nS(
[9,) = Ciigyy (1 [NOT|®,)[0) =

_ (ﬁ © [H) (+Hlo ® Xr)|®,)|0) 5 the quantity we would like to estimate.
- p

~ From [Lemma 1| we can infer that the output P

+ (I -1 @ [+)(+]Q) ® Ir)|®)|0) F in d satisfies P/ >0, piS(y/pi)2 € [3,2] with

v o probability at least %, so according to with

= Z\/ES(\/E) (D) ald) BlH) QI P + [Wgarbage) 0) Byceess probability at least 5% > the output p

2 8 - 3a
(35) satisfies

p— sz VD)l < \Fe sz + Pe

where the third equation comes from Eq. and

2
|tgarbage) is an unnormalized state which we do not < (T + %)62 piS(V/Pi )2
care about. =
Although we suppose S to be an odd function, it is < 62171'5(\/]?7)2, (36)
easily verified that Eq. (34) and Eq. (33) hold for all im1

even functions S as well, if we replace I with II. . . .
where the second inequality is because P <

Note that if we measure register F after the subroutine 2> | p;S(y/pi)>.



Fig. 2: Circuit of Cqg) ) NOT = I ® [+){+|q ® Xr +
(I —II® |+){(+|g) ® Ir if n is a power of 2.
na,np,nc,nr are the sizes of the registers A, B,C, F,
respectively. The CNOT gate between two registers with the
same size is an abbreviation of a sequence of CNOT gates
between qubits in different registers with the same index and
the CNOT gate targeting a qubit conditional on a register will
flip the qubit when the regisiter is an all-0/all-1 state.

We now calculate the complexity of the algorithm.
In A, we call Upyre and U, O(deg(S)) times. In the
main algorithm, the step using|{Lemma [] calls subroutine
A OQ/\/>;piS(\/pi)?) times, and the step using
calls subroutine A M times. Overall, the

query complexity of is

oM+ deg(9)
>y piS(/pi)?
=0 deg(S) : (37)
€ Z?:l pzs(\/pTP
as claimed. O

This algorithm is also gate efficient. If n is a power
of 2, Cq NOT can be efficiently implemented fol-
lowing and it can be easily generalized to any
integer n > 0 using additional quantum circuit which can
determine whether i) € H, dim(H) = 2/1°8"] satisfies
1 <n.

B. Improvements based on annealing

In [Section III-Al we have shown how to estimate the
quantity Y7 ; p;S(y/pi)? to within a certain multiplica-
tive error, where S is a polynomial satisfying Eq. @)
in However, in many cases the quantity we
want to estimate cannot be written in this form. Here we
consider a more general quantity of discrete distributions
P = (pi)i=y on [n]:

n

f) = pig(pi), (38)

i=1
where g(x) is a monotonically increasing function on
[0,1] such that g(0) = 0, g(1) = 1 and zg(z) is a
convex function.

An observation is that for any probability distribution
p on [n], given a lower bound L of f(p), if we can find

a polynomial S satisfying Eq. (20) in and
> aS(va) - fla)| < ef(@)
i=1

for any distribution q € A™, then by
can estimate f(p) to within multiplicative error

€ using
~ 1Y deg(S
5((1) )
€/ Vf(p)
calls to Upure and Ugure for any distribution p.
However, this algorithm can be sub-optimal in many
cases. To give an intuitive explanation, we compare this
algorithm with the one in [52]]. In [52], they develop
a quantum algorithm which can estimate the mean of
a random variable X to within multiplicative error €

using o ( 255?12]

somewhat similar to this algorithm, and it can alSo be
seen as estimating the mean of a random variable X
with Pr[X = g(p;)] = p;. Note a catch that the value
of X in our problem is not given, and we need to

estimate it ourselves. In we takes one

sample from p = (p;)7 in and estimate the
value of this sample by QSVT in Therefore, for

a fair comparison, we remove the cost of estimating the

(39)

(40)

quantum samples. |Algorithm 1| is

value of the sample in [Algorithm 1} and the remaining

tis O —4 = O —1—). This i

query cost is <fm) (€m> is is

higher than the cost of 10) VSJIEE[[;(? in [52]] because
E[X?] < E[X] due to X = g(p;) < g(1) = 1.

Nevertheless, we can improve if

we are given an estimate of f(p) to within con-
stant multiplicative error. The idea is that we can
estimate Y., ®p;g(p;) for an amplification fac-
tor ® > 1 instead using for
which we need to find a polynomial S such that
S DS (yP)? (0, ®pig(pi)) € [1—€,1+¢]. This
brings the benefit that the quantity we estimate is much
bigger, so the query complexity becomes smaller since it
is inversely proportional to the square root of the quantity
we estimate. Nevertheless, the amplification factor ®
should not be too large, since we need to guarantee the
existence of the polynomial S(z) which satisfies Eq. (20)
in [Theorem 4|and is also an approximation to 1/ ®g(z2)
when = = /p;. [Theorem 4| requires |S(x)| < 1 for
all x € [-1,1], and this requires |®g(z?)| < 1 for
z = /p;. Since g(z?) is a monotonically increasing
function, we only need to ensure that q)g(maxie{n] pi) <
1. Estimating the maximum p; is not simple, and an
alternative method is to obtain an upper bound of p;




from a rough estimate of f(p). This is possible because
g(x) is monotonically increasing and positive, so we
have pig(p;) < f(p) and then p; < (zg(x))~"(f(p))
for all i € [n], where (xg(x))~! is the inverse function
of zg(x) on [0, 1]. Detailed analysis is conducted in the
following lemma.

Lemma 3. For any convex and monotonically increasing
Sfunction g(x) on [0,1] such that g(0) = 0 and g(1) =1
and probability distribution p = (p;)7-, on [n], let
f(p) Z?:1 p:g(p;). Suppose that we are given
constants a,b and P such that af(p) < P < bf(p)
and let p* € [0,1] be such that p*g(p*) = min(1P,1).
For any € € (0,1), let eg = 5. Then if we can construct

a polynomial S satisfying Eq. (20) in and
n
‘ > as(
i=1

for all q satisfying Vi € [n],q; < p*, where ¢ > 0 is an
arbitrary positive constant, [Algorithm I|with parameters
to be P := P ,95:=5, and mput €9 outputs D satisfying

Dt (@41

1
2 _ 67 ‘ <
g(p*) 2b

that %;)p is an estimate of f(p) to within multiplicative

uses O (de\g}g)> calls

error €. This call to |Algorithm 1

to Upure and Ugure in Qeﬁnition Il

Proof. From |Lemma 2| p 1is an estimate of
S piS(y/pi)? to within multiplicative error €,

1 deg(S)
€0 \/piS(v/Pi)?
From Eq. 1} we have

and this call to |Algorithm 1| uses O

calls to Upyre and Ul

pure*

" 1 ca
§ ) 2 > _ *
< pzS(\/ pz) 7Cg D f(p) pr €0

ca

e P~ g
ca ca a

> pfeg > —cpt 42

2P TP 0 = 5P (42)

where the first equation comes from p*g(p*) =
min(% P, 1) and the second inequality comes from P <

bf(p).Then by [Lemma 2| the query complexity is

1_des®) ) _ 5 (1 deg(S))
piS(y/Pi)? e vp* )’
Let f(p) := 225 We can infer that f(p) is an

approximation of £ (}Z ) St piS(y/pi)? within g mul-
tiplicative error. We now prove that f (p) is an estimate
of f(p) to within multiplicative error 2¢.

For any i € [n], we have p;ig(p;) < f(p) < 1P
and p;g(p;) < 1, which implies that p;g(p;) < p*g(p*)
for any ¢ € [n]. Since zg(x) is a monotonically in-
creasing function on [0,1], we have p; < p* for all
i € [n]. Therefore, from Eq. @1), Y piS(y/pi)? is
an approximation of ¢c—+ ( 5/ (p) within §7¢*¢o additive

error. Since ﬁf(p) = min(gpyl)f( p) = §p". we

can infer that > | p; (\/pT)2 is an approximation of

ca . *

pr €0 2P €0 __ € s
g(p*) f(p) within o {0 < e = 3 multi
plicative error, and because f(p) is an approximation of

9(p") > iy iS(y/pi)? within o multiplicative error, we

can infer that f(p) is an approximation of f(p) within

(1+e€0)(1+ %) —1 < 2¢ = e multiplicative error. [

We now show that with the additional information
P,a,b in L | the new query complexity bound

deg(S) 1 .
of O ( i improves the TR term in the bound
in [Lemma 2| to \/]éE[[;(]Z].

Since zg(x) is a convex function, from Jensen’s
inequality, we have f(p) = Y1 pig(ps) > g(L).
and because xg(x) is a monotonically increasing
function, we have p* > (zg(z))~'(2g(L)). There-
fore, the complexity bound in becomes

deg(S)
ey/(zg(@)~1(2g(3))
that this bound is equivalent to the aforementioned

3 ( des(9)V/EX7]

eE[X]
whose proof is deferred to

Lemma 4. Let p = (p;)_, be a probability distri-
bution on [n], and g(x) be a monotonically increas-
ing function on [0,1] such that g(0) = 1,9(1) =
1 and xg(x) is a convex function. Then we have
> pig(pi)? 1
B D ST R WV F e T EPTED)

n — oo, where a > 0 is a constant satisfying the

conditions in

The remained problem is to get an estimate of f(p)
to within constant multiplicative error. We propose a
framework based on annealing as follows to solve it.

in the worst case and we prove

bound in the following lemma,

Proposition 1. Let f(q) be any positive function
on A". Suppose there exists a sequence of functions

fi(a), ..., fila) = f(a) satisfying
MaXqeA™, £y (r)/ fp (@ Ell—ey, 1+¢,] Frr1(Q)
maXpeAn minquTbYf:(r)/f:(q)e[l—e:,l+6:] fev1(q) sc
fork=1,...,1—1,
maxgean f1(q)
mingean fi(q) — 7
(43)

for some constant c. If for any k = 1,... 1, there exists
a quantum algorithm Ay, which can estimate f(q) to
within multiplicative error €, with success probability at
least 1 — % using Qy, calls to Upyre and Ugure given two
constants a,b, and P satisfying afi(q) < P < bfx(q),
then there exists a quantum algorithm which can esti-
mate f(p) to within multiplicative error € with success

probabiliz‘y at least 1 — § using 22:1 Q. calls to Upyre

and Upure in |\Definition 1



Intuitively, this is a framework based on annealing due
to Eq. (@3). The first condition in Eq. (3) ensures that
we can get an estimate of f;41(q) to within constant
multiplicative error given a good estimate of fi(q) to
within multiplicative error €. This rough estimate of
fr+1(q) is used to construct the parameters of the next-
stage algorithm estimating fi4+2(q). A common con-
struction to meet this condition is to choose fj_1 close to
fx. To meet the second condition we need f; to be nearly
a constant. If we consider f; as energy functions, this
function sequence from f; to f; resembles an annealing
process which slowly lowers the temperature.

Proof of From Eq. @#3), we have
maxgean f1(q) < cmingean fi(ad) < cfi(p), so
P := maxqear fi(q), a := 1, and b := c are valid
parameters for algorithm A;. By our assumption, we
can get an estimate of fi(p), denoted by fi(p), to
within multiplicative error €; with success probability at
least 1 — 2 using A; with Q1 calls to Upyye and Ul ire-
For each k from 2 to [, we let

P, = max

Q€A™ fro—1(P)/ fre—1(Q)E[L1—ex—1,14€x_1]

fr(@), (44)

set the parameters of Ay, as P := Py,a:=1,b:= ¢, run
Ay to estimate f(p), and denote the output by fx(p).

We prove that the output f;,(p) is an estimate of fj(p)
to within multiplicative error €; with success probability
at least 1 — ‘sTk by induction. The statement is true for k =
1 by our assumption. If the statement is true for k — 1,
which means f,_1(p)/fi—1(pP) € [1 — €x—1,1 4 €x_1]
with probability at least 1 — %, from Eq. |i we
can infer that

fr(p) < ~ max fr(a) = P (45)
qGA",?IZ:iEz;G[lfek,l,lJrek,l}
. Py
fe(p) > . min fe(q) > - (40
qun’J;z:iEz;6[176""—1’1+6’“—1}

where the last inequality comes from Eq. (@3). Therefore,
(Pk,1,c) are valid parameters for Ay, and the output

fr(p) is an estimate of fi(p) to within multiplicative
error €}, with success probability at least (1— 5(}‘}771))(17
%) >1-— %, which completes the induction proof.

In conclusion, f;(p) is an estimate of f;(p) = f(p)
to within multiplicative error ¢, = €, and the query

complexity of the whole algorithm is 22:1 Q. O

Our framework generalizes the annealing technique
used in [21] to a family of functions and make it
compatible with [Algorithm 1| based on QSVT. Although
our annealing scheme is similar to [21]], we use quite
different estimation algorithms, so the way we combine
it with the annealing scheme is also different. In fact,
the main reason why [21] needs annealing is that their

algorithm used an estimation subroutine in [52], which
requires a rough estimate of the mean by the annealing.
However, in a follow-up work [53]], this requirement is
removed, so the annealing becomes unnecessary for the
algorithm in [21]].

C. Improvements based on variable-time amplitude es-
timation

In we apply QSVT to all singular values
of E with the same transformation polynomial S. For
functions which is not smooth at 0 such as % or z¢
for irrational o > 0, the complexity of applying them
to singular values is proportional to the ratio of the
largest possible singular value to the smallest possible
singular value Z=2x. Improvements in this section can
be summarized a{gmdividing the algorithm into multiple
phases and applying QSVT to a narrower range of
singular values in each phase.

This idea comes from [8] and [9] which improved
the complexity of Quantum Linear System Solver from
O(x?) to O(k) by VTAA. Although they do not use
QSVT, solving a linear system is equivalent to applying
the function % to eigenvalues of the matrix, and hence
similar ideas still work in our setting.

Basically, we replace the QSVT subroutine 4 in
with a variable-stopping-time quantum al-
gorithm and replace the standard amplitude estimation
with variable-time amplitude estimation. In the variable-
stopping-time algorithm, we only apply singular value
transformation to the singular values in a small pre-
defined interval in each stage. In this way, those branches
stopping in an early stage make T}, smaller than T},.y.

Before describing the improved main algorithm, we
give an algorithm to separate singular values.

Singular values separation. In order to transform dif-
ferent singular values in different stages of A, we need
to decompose a state into several components and each
of them is a linear combination of singular vectors of E
whose singular values fall into a small interval.

In [9]], they use a gapped phase estimation algorithm
and Hamiltonian simulation algorithm to separate eigen-
values in different intervals. We extend their algorithm
to the following one which can deal with singular values.

Lemma 5. Let U be a unitary, and ﬁ,H orthogonal
projectors with the same rank d acting on Hj. Suppose
A = NUII has a singular value decomposition A =
Z?:l 0i| i) (i|1. Let ¢ € (0,1] and € > 0. Then there
is a unitary W (¢, €) using O (% log %) calls to U and
U such that

W(p,€)|0)c|0)plvi)1

=06ol0)c ) pr + Lill)c|+) pli) s 47)



where |Bo|? + |B1]? = 1, such that

e if0<0; < then |B1| < € and

o if 20 < o; <1 then |Bo| <e
Here C' and P are two single-qubit registers, and I is
the register that A acts on.

The proof of is deferred to

Variable-stopping-time subroutine 4. We now de-
scribe the m-stage variable-stopping-time quantum al-
gorithm A= A4,, ---- - A;.

To construct 4, we suppose that we are given [ €
(0,1] such that \/p; € [0,5) forall i =1,...,n and a
lower bound L > 0 such that Y7 | p;S(,/pi)* > L.

Let ¢; = p277 for j = 0,...,m — 1 and
©m = 0. We first divide [0,3) into m inter-
vals [©m, ©m—1), [Pm—1, ©m—2),- -, [¢1, Po). Then we
transform singular values in these intervals in different
stages of A. Specifically,

o for j = 2,...,m, we transform singular values in
(3277, 27972) in A;, and

o for j =1, we transform singular values in [%ﬂ, B)

in .Al.

Then we construct the j-th stage of A. First, we need
to determine the transformation polynomial, S; in this
stage. Since we like S; to perform a transformation
similar to .S, we need to construct polynomials S;
for j = 1,...,m such that S; satisfies Eq. 20) in
[Theorem 4 and

|S1(z) — S(z)| < Le for all z € [3/2, ),
|S;(x) — S(z)| < Le for all x € [3277, 327712),

and j =2,...,m. 48)

Note that for any S;, we only require it to be a
good approximation of S(z) in a small interval, so
we may construct such polynomial with lower degree
than S. Since the complexity of variable-time amplitude
estimation is proportional to the average time of all
stages, which is the average degree of all transformation
polynomial S}, this variable-stopping-time algorithm can
improve our vanilla algorithm in

Assuming that we have constructed such S; satisfying
Eq. {@8), we give a detailed description of A in [Algo-

in Suppose that we are given 3, L > 0
such that Y.} | p;S(/pi)? > L and a sequence of
polynomials {S; | j =1,...,m} which satisfy Eq.
in[Theorem 4| and Eq. (#3). with input (e, )
and parameters (S,3,L,m,{S; | j € [m]}) outputs
an estimate of Y., p;S(y/Di)? to within multiplicative
error € with success probability at least 1 — 6.

Let t; = %log(%) + Y7 _, deg(Sk) for all j =
1,....m and t,4+1 = t,,, the query complexity of

Algorithm 3| is

~ m Zm:1 Z B O pit2'+1
o tm+ﬁth+\/ s Lt
>im1 piS(y/pi)?

j=1
(49)

where ©; = 2798 for j = 1,....,m — 1 and ¢, = 0.
We omit polylog terms of L, § and t,, in this bound.

The proof of is deferred to

Remark 1. The \ﬁzgn:l tj term in query complexity
can be eliminated by a more detailed analysis mentioned
in [|9], but it does not improve the complexity bounds in
our applications.

IV. RENYI ENTROPY ESTIMATION (o > 1)

In this section, we propose a quantum algorithm to
estimate H,(p) = 2= > i, p¢ for a > 1 to within
additive error €. This is equivalent to estimating P, (p) =
>, p$ to within multiplicative error O(e).

Let g(z) := 2!, and then we have P,(p) =
S pig(pi). Since g(z) = 27! for a > 1 is
monotonically increasing function on [0,1] such that
g(0) = 0,9(1) = 1 and zg(x) = =z is a convex
function, we can use the framework in to

construct our algorithm.

A. Estimate P,(p) given a rough bound

We first construct a quantum algorithm which can esti-
mate P,(p) to within multiplicative error given P, a,b
such that aP,(p) < P < bP,(p) following [Lemma 3
Let p* = (xg(m))*l(min(%P, 1)) = (min(;P,1))=.

Like [Lemma 3} we need to construct a polynomial S(z)

rithm 2|

Final algorithm. We now describe our final algorithm
in

We prove the output of is an estimate
of Y 1 piS(/pi)? to within multiplicative error € with
high probability in the following proposition:

Proposition 2. Let €,6,5 € (0,1), p = (p;)I, be a

probability distribution such that \/p; < 8 for all i =
1,...,n and S be a polynomial which satisfies Eq. (20)

which satisfies Eq. 20) in and Eq. @I),

which means

> astya? -
i=1

1 ca
f@| < Gre 60
9(p*) @] = 5
for all q such that ¢; < p* for all i € [n], where ¢ > 0
is an arbitrary constant.
Before constructing such a polynomial, we first con-
struct a class of polynomials which satisfies Eq. (20)

in [T’heorem 4| and is also a good approximation to



Algorithm 2: A variable-stopping-time subroutine when estimating Y. ; p;S(,/p:)%.

Input: Multiplicative error ¢, and quantum registers (F,C, A, B, Q, P, I) initialized to |0).

Output: Quantum state in registers (F,C, A, B,Q, P,I)

Parameter: (S, 3, L,m,{S; | j € [m]}), where S is the transform polynomial we want to approximate, (3
is an upper bound of /p; for all i € [n], L is a lower bound of "7 | p;S(y/pi)%, m is the
number of stages of A, and S; is the transformation polynomial in .4;, which satisfies Eq.

in and Eq. ().
Notation:

o F is a single-qubit flag register indicating “good” components whose amplitude we estimate;

e C=(C4,...,Cy) is an m-qubit clock register determining the interval which the singular value belongs to;

o A, B are two [log n]-qubit input registers;

e () is a single-qubit register used as ancilla register for QSVT;

o« P=(P,P,...,Py)and I = (I1,1Io,...,I,,) are two registers used as ancilla registers in Each I;

is a 2[log n]-qubit register and each P; is a single-qubit register; and
o U é‘?v) is the unitary U I(DSV) in when the transformation polynomial P := S; and U, IL II in
are set to U, ﬁ,H in Eq. (14), Eq. and Eq. .

1 Set ;=277 for j=0,...,m—1, and p,, :=0;

Regard the following subroutine as A;:
2 Conditional on first j — 1 qubits in register C' being |0), apply CNOT gates controlled by qubits in
register B to flip the last [logn] qubits in register I;;
3 Conditional on first j — 1 qubits in register C' being |0), if j < m, apply W (p;, Le/m) in
with ﬁ, II, U defined in to the state in register I; using C; as the output register C' and
P; as the ancilla register P, else apply X gate to register Cy,;

4 Conditional on C; being |1)¢;, apply unitary Cig|4y(+NOT - Uéfv) or Cryg|+)(+/NOT - Ué‘jv) in the

same way as in lLine 2| to |Line 6| of IAlgorithm 1| to the state in (A, B, @, F);

5 Apply Upure to register B, Hadamard gate H to Q;
6 Apply A:= A, - A to registers (F,C, A, B,Q, P,I);

Algorithm 3: Improved algorithm for estimating >\ | p;S(\/p;)? of p = (pi)l-;.

Input: (e,0), where € is the multiplicative error, and ¢ is the failure probability; quantum registers
(F,C, A, B,Q, P, I) initialized to |0).
Output: p.
Notation: Notations is the same as that of
Parameter: (S, 3, L,m,{S; | j € [m]}).
1 Use variable-time amplitude estimation algorithm in with the parameters (e, d) to be
2

€ :=¢,0 := ¢ and registers W := (A, B,Q, P,I),C := C, F := F to estimate [|(|1)(1|r ® 1)A(|0)
where A is |Algorithm 2| with the same parameters (S, 5, L, m,{S; | j € [m]}) and input . Denote the

output of variable-time amplitude estimation algorithm by p. Output p;

27¢7137¢2¢ in [, 8] for any B € (0,1], v € (0,8), of degree O (glog(ﬁ—}m)> such that
and ¢ > 0.
Vo e [0,v] : |S(z)] < 2f(x)
Vo €[y, f]: [f(x) = S(x)| <7
Ve e [-1,1]: |S(x)| < 1 (51)

Proof. Let d = [c] — c. We first introduce a lemma to

construct polynomial approximation of kz~% where k is
Lemma 6. For any ¢ > 0, § € (0,1], v € (0,83), 4 constant.
and n € (0,3), let f(x) = 27°7137x®, there is an
efficiently computable even or odd polynomial S € R[z] Lemma 7 ([, Corollary 67, Polynomial approximations



of negative power functions]). Let d,& € (O, %] ,c >0,
and let f(x) := %Cx_c, then there exist even/odd
polynomials P,P" € Rlx] such that |P — f|l;51]

. Pl < 1 and similarly ||P' — f||[51] <
g, ||P l(=1,1) < 1. In addition, the degree of the poly-

nomials are O (%[16] log (g))

Setting the parameters (€,d,c) in to § ==

de = & 5—, we can construct an even

P in with deg(Q) =

)) such that

v,c = }
polynomlal Q =
1 log(
Vo e [-1,1]:|Q(z)] < 1

v

Vo e 1] 10() - 2o~ < 220

Then we need to construct a polynomial approxima-
tion to the rectangle function according to the following
lemma:

(52)

Lemma 8 (Polynomial approximations of the rectangle

function [1, Lemma 29]). Let &'.¢" € (0,%) and t

satisfying 6’ < t < 1. There exists an even polyno-
mial P' € Rlz] of degree O (log(2)/d), such that
|P'(x)] <1 for all x € [-1,1], and

{P’(x) € [0,¢] Vo e [—1,—t— & Ut+6,1],
Pl(z)ye[l—¢€,1] Vxe|-t+d,t-7].

(53)

Setting ¢ = g,t = %,e’ = %d" in

we can construct an even polynomial P with deg(P) =

@] (%log(ﬁ—l77 ) such that

Ve e [-1,1]: |P(z)| < 1

()] < 2

Vo € [26,1]:|P 5
Bevin
2

Vze[-B,8:1—
Let Q() = Q(x)P(x),
Vr € [v, 8] :|Q(z) —

<P@)<l. (54

we have
d

‘ <

d
(@) +1Q) - Za™

@l[\g

<|Q(z) -
<G - P+ 22

c,,d
P(z)| + % < Bvin

<p-

Ve e [-1,1]:

Vo € [3,20] :

Q(z)| <1
1Q(z)| < |Q(z)| <

Q)| < |P(z)] <

pidp—d N Bevin
2 2

5°Vd77
2

Vz € [28,1] : (55)

Then, let S(z) = 27°gv~42l¢IQ(x), which is an
even or odd polynomial since Q(z) = Q(z)P(x) and

Q(z), P(x) are even polynomials. We can infer that
Ve e [0,v] : S(z) <2 ¢p vzl
-9~ ('/6 cy —d d c
<27°B7 " = 2f(),
where the first inequality comes from |Q(z)| < 1, and
Vo € [v, 8] 15(x) — £()
=15(r) 2o e
=275~ v |Q(x) —
SQ*Cﬂfcyfdx(c] (chdn)
<27n <,

(56)

(57)

where the first inequality comes from Eq. (33).

To prove that S(z) is bounded by 1 on [—1, 1], since
S(x) is even or odd, we only need to prove Vz € [0,1] :
|S(z)| < 1. For z € [0,208], we have
19(z)] < 2f(x) <1

1
Vo € [v,B] : |S(x)] <2718+ < 3 +n<1,
(58)

where the first inequality comes from Eq. (56) and the
third inequality comes from Eq. (57), and

Vz € [8,25] :|S()]
SQ—(:—lﬂ—cV—dx[c'\ (
pat+n

2
2°+n
2

Vr € [0,v]:

pip—d 4 ﬁcydn>
2

<91

<7t <1, (59)

where the first inequality comes from Eq. (33).
For = € [203, 1], we have

Ve € [28,1] 1 |S(z)] =271 vzl Q(x)
Schflﬂfcyfd(»BcT’ﬂﬂ)
<n<1, (60)
where the first inequality comes from Eq. (53). There-
fore, we can conclude that Vo € [—1,1] : |S(z)| < 1.

Together with Eq. (56), Eq. and that S(z) is even
or odd polynomial, we have that S(z) with deg(S) =

[c] + deg(Q) + deg P = O (f log(ﬁ))
conditions in this lemma.

satisfies the

By carefully choosing the parameters in [Lemma 6]
we can construct a polynomial which is similar to the
polynomial S in Eq. @#T) as follows.



Lemma 9. For any probability distribution p on [n],
suppose that we are given P, a,b such that aP,(p) <
P < bP,(p). Let p* = min(%Rl)é. Then for any

€ (0,1), @ > 1 and constants d,d’ > 0, the polynomial

S in with parameters (c, 5, v,m) to be ¢ :=

a—1,8:=p v:= (da(gbzl ) 0 i=d'272¢p*e
~ T

has deg(S) = O((%) 2 \/?), and satisfies Eq. (@) in

Lheorem 4| and

2 272a (p*)lfapa(p)

<(2d' 4 d)272~ gp*e.

b (61)

Proof. Cthat deg(S) =
(’)(ﬁlog Tllm = (5((%)H \/;7), S is an even
or odd polynomial, and |S(x)| < 1 for all z € [—1,1].

Therefore, S satisfies Eq. (20) in
We now prove that S satisfies Eq. (6I). From the
definition of P, (p), we can infer that

L 1
ins (Sonr) < (L)
i=1

and p; < 1, so p; < min((1P)x,1) = p* = 52,
From we can infer that S satisfies

implies

(62)

Vo € [0,v] : |S(x)] < 2t-optragat
Vo € [v, B8] |27 2>t — S(x)| <.

(63)
(64)

For ¢ such that ,/p; < v, we have

D IpiS(V/pi)? — 2727
VPi<v
< > IpeS(
VPi<v

—2a+2 —2a+2 o— 1 —2a 2a+2 o

< > op2 g +277°87

VPi<v
< Z 2—2aﬁ—2a+25p;1

VPi<v
S Z 272(1B72a+25y2a

VPi<v
<n272a572a+25y2a

— 2—2(1 *\1—a a(p*)oz
n (p) 5(d T

p1 |+|2 2aﬂ 2a+2 |

a
=d272%—p*e,

b (65)

where the second inequality comes from Eq. (63).

For ¢ such that ,/p; > v, we have

> piS(vp)?

— 9~ 2ozﬁ 2a+2pl|

N

— Z pi|S(\/E)2_27204B72a+2(\/17i)20‘
VDi>v

= > pilSG/m) - 278 (V)]
VDi>v

NS(VBD) + 278 ()]
<2 3 pIS(vE) — 278 (V)|

VDi>V
<m Y pi<m=2025p (66)
V/Di>V

where the first inequality comes from Eq. (62) and

Eq. (64).

From Eq. (65) and Eq. (66), we can infer that

> pS
i=1

2 2—2a(p*)1—apa(p)

<(2d + )2~ %p*e, (67)
which completes the proof. O

Therefore, from there exists an algo-
rithm which can estimate P,(p) to within multiplica-

1
tive error O(e) using O (dcf/;(ﬁ> =0 (8122131)* =

~ 1
(@] (H"Z“P) given P, a,b such that aP,(p) < P <
2a a

bP (D).

Then we use to replace in
and apply to achieve a better
query complexity upper bound.

Lemma 10. For any o > 1, there exists an algorithm A
such that for any § € (0,1), € € (0,1) and probability
distribution p on [n], given P,a,b such that aP,(p) <
P < bP,(p) where a,b are two constants, A can esti-
mate P, (p) to within multiplicative error € with success

probability at least 1 — § using O
calls to Upyre and Upure in

Proof. We will first construct such an algorithm A using
IProposition 2} prove its correctness, and then compute
its query complexity.

Construction and correctness. Let p* := min(L P, 1)=
and By = 1/p*, and we have

L 1
) n N « 1 -
=1

and p; < 1, s0 p; < min((1P)%, 1)

€ 1+2u

(68)



Let vy = %a(§;%ae> ** Before constructing S and
S, in [Proposition 2] we first define the number of stages
of our variable-stopping-time quantum algorithm mg :=
[log(f—g)] +1,and v; =2798 for j =1,...,mg—1,
Vmo = Vmg—1 = 27m0+150.

Let L := %2_2‘3“_1])*, and we will prove that L is an
lower bound of "7 | p;So(/p:)? later.

Let Sy be the polynomial S in with param-

eters (¢, 5,v,n) tobe c:=a—1, B := fo, V := Vp,,

0= ge
= je
Let S; for j = 1,...,mp be the polynomial S in

with parameters (c, 3, V,ii tobe c:=a—1,

B =P, v:i=vjn= %e. From [Lemma 6, we have
—a a— L
1S;(z) — 2795, g 1| < Zé V€ [vj, Bo]. (69)

Now we set the parameters (S,5,L,m,{S; | j €
[m]}) of |Algorithm 3|to be S := Sy, § := Sy, L := L,
m = mg, S; = S; for j = 1,...,mp, and then
prove that these parameters satisfy the conditions in

Proposition

« For fy, we have shown that it is an upper bound of

N/

o For L, we need to prove it is a lower bound of
Z?leiso(\/E)Q. Note that vy,, = 27013, =

1
2_“0g(€7g)150 S vy = (lM) 2a. Let d =

4  5bn
V2 (“(g;)je), and d' = %£¢/(272%%p*e), and
then we have d < (%“(’5’;7{%) / (“(g;):e) =1,
d = é. Therefore, the parameters (¢ = « —

1,8 = Bo,V = Umy,n = Le€) of Sy satisfy the
conditions in with constants d and d'.

From [Lemma 9] we have

> piSo(Vpi)* =272 (p")' " Pa(p)
1=1

1
<(@2d + d)r%%p*e < 52*26*%;0*6 — Le. (70)

From Eq. (70), we have

n
> piSo(v/pi)? = 272 (p*)' " Pa(p) — Le
i=1

p

32—204(]7*)1—04 — Le

Y9204+ e =9I — Le> L.

b
(71)

v

v

Therefore, L is a lower bound of """ | p;:So(y/pi)?.
« For S}, they are constructed by applying
so they satisfy Eq. (20) in Note that the
parameters of Sy in is the same as the

parameters of S,,,, so we have Sy = Sp,,. Then
we can infer that for any z € [v}, B,

|55 () — So(x)]
=[8;(x) = Sy (2)]
<|8j(z) — 27 * a7
+ Sy (2) — 2785 a7

1 1
<-Le+ ZLe < Le, (72)

4
where the second inequality comes from Eq. (69)
and v,,, < v; for j < mg. From Eg. , we
can infer that for any z € [5p277, Bo] : |S;(x) —
So(z)] < Le, which meets the requirements of
Eq. (@3).

Therefore, the parameters we set are valid for
[sition 2| so |Algorithm 3| with the same parameters and
input (€,8) can estimate ., p;So(y/p:;)? to within
multiplicative error € within success probability at least
1 — 4. Denote the estimate by p.

Note that
272 () " Pa(p) 2272 (57)
22—2a(p*)1—a a(pb*)a
e A ()

and because .. ;p;So(/p;)® is an approxima-
tion of 272%(p*)1=*P,(p) within additive error Le
from Eq. (70), it is also an approximation of
2722 (p*)1=*P, (p) within multiplicative error LL/€2 =
2e. Therefore, 22*(p*)*~ 13" | p;So(y/pi)? is a 2¢
multiplicative approximation of P,(p). Therefore,
22%(p*)2~1pis an (1+2€)(1+¢€)—1 < 5¢ multiplicative
approximation of P,(p). We can rescale € to %e o)
that we can obtain an e-multiplicative approximation of

Pu(p)-

Complexity. Now we compute the query complexity of
the above algorithm. First let us compute ¢; defined in

For ;, we have

o L/ =

~ (2 .2k ~ (2

=0 = Z)l=0(= 74
(5-x%)-0() o

where the second equation comes from deg(S;)

o (Ui) given in [Lemma 6

Let ; =279 for j=1,...,mo— 1 and ¢, =0
following the definition in Then from



the complexity of the algorithm we con-
struct is

~/1 mo
0(6 <tm0+ﬁ2tj

\/ZJ 2 VD€l pi— ) pit J+1>)
\/ZZ 1pzSO \/E)

(75)

Let Q; = {i: 2776y < \/pi = 277T15,}, then we

have

\/Z Z it/Pi€lps 05— l)pltﬂ+1
@?lez-so(\/@)?

1 mo—1
Sﬁ Z |Qj _]+160 Ze%ﬂ Pi—— mo
(/3

Subtitute it into Eq. (73), we get the total query com-
plexity of the algorithm

=)

Lf n= v
€ \/ng \/}?

nia Vvn
=0 1 T T ) 77
((Pa(p))w“h i (Pa(p))%€> 7

where the first equation comes from

(O}

(O}

Vo :27m0+1I80 [log( )[_30 ( )

:@((22%’*)%) 21&) - @(\/ﬁf%
571 n2za
and L = O(p*), and the fourth equation comes from

p* =min(1P 1)~ and P = ©(P,(p)).
In the worst case that P, (p) = n'~%, the complexity

) as)

”12‘*+\f. O

bound becomes O g
2a

Remark 2. Note that Eq. (77) above established a case-
dependent bound of estimating H,(p) given a rough
estimation in advance. The requirement of the rough
estimation can be removed during the analysis in the
next subsection.

B. Estimate H,(p) by annealing

We now apply the annealing method in to
remove the requirement of P, a,b in

Theorem 7. For any o > 1, there exists an algorithm A
such that for any § € (0,1), € € (0,1) and probability
distribution p on [n], A can estimate H,(p) to within
additive error e with success probability at least 1 — §

using O [ 2= n'“2 + f calls to U, and Ul
8 JEERe- pure pure !
W

Proof. Let the parameters [ and function sequence {g }

be such that [ := [ﬁw and gk( ) =
) T for = .,1. Note that gp(z)

is monotonically increasing on [0,1], zgi(z)
2" s convex, gx(0) = 0, and gx(1) = 1
for k=1,...,1.

We now prove that Eq. (43) hold for fx(p) =
2 i1 Pigk(Pi) = Paig s ys—t (P)-

First, we introduce the following lemma to connect
the value of fi(p) to fr+1(P).

Lemma 11 (|21, Lemma 5.3]). For any distribution p =
(pi)i_y and 0 < oy < aw, we have

aq g
@2 @2

< Yot [ Yo
i€[n]

1€[n]

>

1€[n]

(79)

Specifically, for fk+1 = P,,(p) and fr = P,, (p),

we have &L = , and

az 1+ Wy

S %
karm(n) < fk <n1+1n(n)f 1n(n) < fk+ln(n) . (80)

In(
) r1n(1+t;/alzl(n>)]

Slnce a(l+ ln(n)) ol + ln(l )
1+ ln(n), we have fl( ) = Pa(1+m#))4(p>
n' o)™ > pl=(+1/In() = 1 Then we have

<
>

maxgear f1(q)

- <
mingean f1(q)

1
e e (81)

For any distributions g, r on [n], and k € [l — 1] such

that fi(r)/fr(q) € [2, 2], from Eq. , we have
1+ 1+
fin@= (pa@) = (F3a0m) T
(82)

141/ In(n)
Frer1(a) < fi(q)tH/ 0 < ( fr(r )) .
(83)



Therefore, we have

A MaXgean fi(r)/ fr(@)€[$,5]  fr1(@)
r€A" Milgenn g, () fu(a)el2,5) S1(a)
4 r 14+1/1In(n)
< max (ﬁfﬁ) (84)
reAn ggfk(r)
141/ In(n)
:(%) < 4¢? (85)
3
for all k € [I —1].
Setting €, = % for all k£ € , € =
min(3, (04—21)6)’ and ¢ := 4e? in [Proposition 1|

Eq. (81) and Eq. (84), we can infer that Eq.
satisfied.
For all k e [, settlng a = a(l + ln(ln )kt

ILemma 10| from [Lemma 10} there exists an algorlthm

A, Wthh can estimate fk( ) to within multiplicative
error €, with success probability at least 1 — é using

QkZ@(”l % v

1+
€ 204

These Ay, satisfy the conditions in SO we

can construct an algorithm to estimate P, (p) to within
multiplicative error ¢, = ©(¢) using

l
> Qk
k=1
_ 1
20(14 21— )k—1

! I T gy =
~/n nn
:ZO( + 07
k=1

in

calls to Upyre and Ut

pure*

€k 20(1+
k

~ nl=2a vn nl=2a NLD
=0((l-1 i 1
(-n (5 + <;1>1+2a)+ =)
~(nl7 2 Vn
=0 86
(2 ) (56)
where tlhe second  equation comes  from
SRR < plodk and 6, = 1 for all
k€ [l — 1], and the third equation comes from

! = O(In(a)) and can be omitted in O(-).

Denote the estimate of P,(p) by P.(p), we have
Pal®) ¢ [1— 1,1 +er). Let Ha(p) = ﬁlog(Pa(p)),
then we have

[fa(p) ~ Ha(p) =% og((Pu(p)) — log(Pa(p)|

:a— 1 ’10g(§ Eg;)’
2

a—1

<

€l <€, (87)
where the first inequality comes from |log(1l+ z)| <
2|z| for all x > —3, so H,(p) is an estimate of H,(p)
within additive error €. O

20

V. RENYI ENTROPY ESTIMATION (0 < o < 1)

A. Upper bound

In order to approximate H,(p) within a given additive
error €, we need to approximate P, (p) within multi-
plicative error O(e). Note that P,(p) = Y ., pf =
S pips T and @ — 1 < 1 for @ < 1, so we first
construct a series of polynomials .S, such that for any
constant d > 0, there exists polynomial S such that
> piS(\/ﬁli)2 is an O(¢) multiplicative approxima-
1
W) — Py (p).

Lemma 12. Foranye € (0,1), a €
d,d > 0, the odd polynomial P’ in with

parameters (3,¢,c) to be § := (4 )aos,ci=1 — ¢ :

d'e6%¢ has deg(S) = O [ nz= ), and satisfies Eq.
€2a
in [Theorem 4| and
5 ’ 2c
< (Fd+2d ) ™. (88)

tion of

(0, 1), and constants

n

D

i=1

2c

)
pis(\/ﬁi)2 - TP?

Proof. [Cemma 7)implies that S is an odd polynomial and
|S(x)| <1 forall x € [—1,1], so S satisfies Eq. in
From S satisfies that

Vo e [5,1] : ’S(z) - fxa%] <des*.  (89)

From [Lemma 7 the degree of S is deg(S) =

O(max[l ,c] log( )) 6<€2a

For ¢ such that \/p; < 6, we have

>

VPi<d

<Z(

N

(X n+pot)

VPi<8

<> (62+T>

VPi<d

E 5 2a 52
_ _ C<7
- 5 5 dE

VPi<d

L
n2o
T

2c

1)
PiS(\/ZTi)2 - TP?

)

N/ \+’4pz

(@21

52, (90)

where the second inequality comes from |S(x)| < 1 for
all z € [—1,1], the third inequality comes from ,/p; <
0 and ¢ = 1 — «, and the last inequality comes from
nd2® = de.

For 4 such that \/p; > §, we have



2c
> |nstvm? - 2o
N
= Y nfstvm - e
JPi>0

5
Jstvm) + 5 (v
<od'ed?¢ Z pi < 2d/652c,
VP8
where the first 1nequa11ty comes from Eq. 89), |S(z)| <
1forallz € [-1,1],and & (\/p;)* ! < 1f0rallz € [n].
Combining Eq. (V-A) and Eq. (V-A), we have

oD

n
52%¢ 5
> IpiS(vpi)® - TP S+ 2d')ed%,  (92)
i=1
which completes the proof. O

As a result, we can give an algorithm for estimating
H,(p) to within a given additive error ¢ with high
probability as follows.

Theorem 8. For any o € (0,1), there exists an algo-
rithm A such that for any 6 € (0,1), e € (0,1) and
probability distribution p on [n], A can estimate H, (p)
to within additive error € with success probability at least

1
n22a

1 — 6 using O g calls to Upure and Upurc
Definition |

Proof. We will first construct such an algorithm A using
prove its correctness, and then compute
its query complexity.

Construction and correctness. Let ¢ =
min(g, (1747606) 8" = (42)2=. Before constructing S

and S; in we first define the number

of stages of our variable-stopping-time quantum
algorithm mo = [log(+)] + 1, and §; = 277 for
-] - 1 1 6m0 - dmo 1 — 2—’!?’7.0—‘,-1.

Let SO be the polynomial S in with param-
eters (8,€,¢) to be 6 := §ppy,c:= 1 — € := €gd"*C.

Let L := %5,2,50, and we will prove that L is an lower
bound of >, p;So(,/pi)? later.

Let P; for j = 1,...,mq be the odd polynomial P’

inwith parameters ié,a, ci to be § :=6;,c:=

l—a,e:= 614 5,27;30 . From [Lemma 7| we have
5JC a—1 2c
|P(@) = Faot| < 6745,,1060\7:5 €61, ©3)

and deg(P;) = O <max[1 <] log (4 )) = O(29).
Now we set the parameters (S,5,L,m,{S; | j €

[m]}) of |Algorithm 3|to be S := Sy, f:=1, L := L,
m = mo, S = 5;;;0) P for j = 1,...,mo, and

21

then prove that these parameters satisfy the conditions

in [Proposition

o For 3, we have \/p; <1 =3 for all i € [n].

e For L, we need to prove that is is a lower bound
of 31 piSo(y/Pi)%. Note that §,,, = 27™0F! =
9-Toe(F1)1 < § < (450071)% Let the constants d, d’

inbe such that d = oo & < 15 d’ = &
then the parameters (5 = Oy = dnﬂ) ,C =
1 — e = G602, = d'egd)) of Sy satisfy the

conditions in ILemma 12l From [Lemma 12| we have

Z PiSo(v/pi)? — 401?? JZd +2d")eodry
i=1
1 1
<—¢p0%¢ = Z L.
_16605 5 Lco
%4)
From Eq. (94), we have
- 2 6727?0 1 2c
1
26 2c
> *5 ~ 1g%mo
> gaggo =17, (95)

where the second inequality comes from P%(p) > 1
for o € (0,1), and ¢ € (0,1).

o For S, they are odd polynomial and satisfy |.S;(z)| <
1 for all = € [—1, 1], which meet the requirements in

Note that the parameters of Sy in[Cemma 7]

is the same as the parameters of S,,, so we have
So = Spm,- For any x € [4;,1], S; satisfies

15 (x) — ( )|
=[55(2) = Smo ()]

</ gj) Py(a) — ey
<(5) [P -
<(1+ (65J >C)(6453"00

where the third inequality comes from Eq. (93) and
Om, < 05 for j < mg. From Eq. , we can infer
that for any € [277,1] : |S;(z) — So(z)] < Leo,
which meets the requirements of Eq. #8).

Therefore, the parameters we set are valid for

[sition 2| so |Algorithm 3| with the same parameters and
input (g, d) can estimate y_. , p;So(,/p;)? to within

56
a_l‘ + ‘Pmo(m) — Moy

2

a—l‘

0§ Oy,
ool e

0) < Leo, (96)




multiplicative error €y within success probability at least
1 — 4. Denote the estimate by p, we have

46,,2p — Pa(p)|

<[40,25 — 40,23 piSo(v/pi)?]
2> " piSo(vpi)? —
=1

§45;1§C(sz‘50(\/]7i)2)60 + 26,2
i1
2c

1) 1
ZLD P,(p)eo + iLEg) +

+ |46, Py (p)|

CLEO

iy 1
§45m3 ( 1 €0

1
=Pa(p)eo + (€5 + €0) < 2Pa(P)eo,  (97)

with success probability at least 1 — &, where the second
inequality and the third inequality come from Eq. (94),
and the last inequality comes from P, > 1 for any o c

(0,1). Let P, (p) := 44, m2ep, and then we have Palp) ¢

Pa(p)
[1— 260,14 2¢]. Let H,(p) = ﬁlog( P,(p )), then
we have

(98)

where the first inequality comes from |log(1l + z)| <
2|z| for all z > —1.

Complexity. Now we compute the query complexity of
the above algorithm. First, let us compute ¢; defined in

Proposition 2| For t;, we have

t; =27 log( ) +Zdeg Sk)
=0 (23' + 22’“) =0 (2
k=1

99)

where the second equation comes from deg(S;) =
deg(P;) = O (27).
Let ¢; = 277 for j =1,...,mo — 1 and ,,, = 0

following the definition in From
the query complexity of the above algorithm

22

is
mo

~(1
O(e<tm° +ﬁj§::1tj

+ \/Z;nzol Zi:\/ﬁ‘e[%@j’@rl) pit?+l >>
2?21 PiS(\/ﬁiP
\/n + n))

1
~ nzo n
=0 T + = =
€2at €3atz

where the first equation can be derived in a similar way

to Eq. (76). O

B. Lower bound

The Hellinger distance between two discrete probabil-
ity distributions p and ¢ is defined as du(p,q) :=

\/Z?:l(\/p?—\/@)Q/Q. In [31], they give a lower
bound for the query complexity of distinguishing two
distributions as follows.

Lemma 13 ([31, Claim 5]). Quantum query complex-
ity of distinguishing probability distributions p and q
with pure-state preparation oracle in |Definition 1| is

Then we can the give the following lower bound
for estimating H, (p) with pure-state preparation oracle
Upure and Ut

pure*
Theorem 9. For any constant o € (0,1), n > 1+
21/0=9) and e € (0,3), any algorithm that can esti-
mate H,(p) to within additive error € needs at least
Q (”1/2()(71/2) calls to Upyre and Ul . in|Definition 1

el/2a pure
Proof. For any € € (0,

%) n>1+2Y0=9) and o €

_ 4e
(0,1), let § = (7(7%1)1_&)
Consider p = (1 -4
(1,0,...,

Q=

<1
) )

Yp—10""" n—1

0). The Hellinger distance of p and q is

and q =

du(p, q) :\/; Om_ D+ (n - 1)< ni 1>2>
_ %(@(52)%) = 0(V0)

as 6 — 0, where the second equation comes from

(101)

Vi—z = 1—-06(z) as + — 0. By Lemma |13] we
need (2 (%) calls to Upure and Upurc to distinguish p
and q.



Then we have

|Ha(q) - Ha(p)|
1 «@ (6% -
zl_alog((l—é) +6%mn —1)* )—O‘
1
> log(1 — o nt-e
> | log(l—0+0%(n—1)"77)
— | tog (1 - 5 4 4e)
i €
1
> log (1 + 2¢)
—a
2¢
> >2 102
“0=a)” €, (102)

where the first inequality is because (1 —x)* > 1—x as
for z € (0,1) for any o € (0,1), the second inequality
is because § < ﬁ < 2¢, and the third inequality
is because log(1 + z) > x for z € (0,1).

If we can estimate Rényi entropy of p and q to
within additive error €, we can distinguish distributions

p and q, which needs €2(1/+/§) queries as proven above.
) =0 ( 1/za71/2) queries

c1/2a

Therefore, it requires {2 ( 7
to Upure and Ut

pure*

We note that Acharya et al. [19, 44] used the same
distribution to prove lower bound of Rényi entropy
estimation in classical sampling model and quantum
sampling model in [Definition 4]} This is because clas-
sically one need G(W) samples to distinguish p
and q, so the hard instances in the quantum query model
and the sampling model are the same.

C. More discussions about € dependence

¢ dependence of estimating H,(p) for o € (0,1)
in [21]. Note that Belovs [31] proved that the lower
bound in of distinguishing probability distri-
butions also holds with the oracle in [Definifion 21 As

1/2a—1/2 N
a result, our lower bound €2 "ew) in [Theorem 9

also holds with this oracle. However, a contradiction can
be observed between the e dependency of this lower
bound and that of the upper bound in_[21] which uses
6 ( nt /(:2—1 /2
outputs an estimate of H,(p) for p € A™ to within
additive error €.

We suspect that there is an issue with Eq. (V.46) in
the journal version of [21]]. It follows the same proof as
in Lemma 2, but in the proof of Lemma 2, the Taylor
approximation of (sin ((6; + &) W))Q(a_l) in Eq. (V.8)
is not precise for « < 1 when 6; + 2% is close to 0
since 22(*~1) diverges at 0. Here we give a corrected
analysis of the bias of the a-Rényi entropy estimator
in [21] when « € (0, ) Following the notation in [21]],
for o € (0, 2) and each i € Sj41, in order to bound

calls to the oracles in |Definition 2| and

23

the Taylor approximation error, we need to treat [ €
(2m=10;,2™;) specially. Here we take 6; = 27 /2™ for
simplicity, but the following equations hold for general
0; when i € Sj+11

E (|5t —pi7!]

27 \2 27! 2
o) ( X +3¥)
l=—(2m—27),l1#0 1=27-1

2 G0~ 5)m) )~ (sin(orm) e

29—1

2. 2 2Ii|1 ( m”)his

( I=—(2m —27) 10

))

2791

ﬁw)Ql_;lg—zj(sin((ei_;n)w))m_z)

200—2
(2a-1) "
_O<22am2 “ ]+222m(2m) )

_ 2a—1 m
_O<22am2( ) + 22am>’

where the second equation comes from

<c—( ;

(103)

r)2e? (104)

for —9 <4 5, and we replace 27— W1th r in the third
equation. Note that the first term of Eq. (T03)) is the same
as equation Eq. (V.46) in the journal version of [21], but
it is smaller than the second term, so we only need to
set m = [ log(<£log(£))] so that

Zm 77 =] = 0 (g

is bounded by e. Therefore, the overall complexity of
the algorithm in [21] used to estimate a-Rényi entropy
when a € (0, 3) is

5( "j_l (Z)) ~0 (”‘1“_§> O 106)

which has the same dependence on e as that in
~ 1

2a
O(eﬁﬁ
n than that in our algorithm).

(105)

) in our algorithm (and worse dependence in

¢ dependence of estimating H,(p) for o € (0,1)
classically. We also find that there might be an issue
with the e dependency of the classical upper bound
O( nl/a

T/aTogn ) ON estimating Rényi entropy when o < 1
in [19]. Specifically, we suspect that the last two o(1)



terms in Eq. (15) and Eq. (18) of the arXiv version
of [19]] are omitted, but according to Lemma 8, these
two terms cannot be omitted unless they are o(d). This
might increase the order of e in the current classical
upper bound.

Jiao et al. [17] also gave a minimax rate-optimal
estimator for a-power sum P, when oo < 1 in classical
sampling model, since P,(p) > 1 this is also an
estimator for a-Rényi entropy. The sample complexity

of their estimator is (’)( no 1) for « € (0 1] and

. log ne o "2
1 ”
0(1 e i = ) for o € (3,1). The query com-
ognea

plexity of our algorithm in for o € (0,1) is
~ 1

(’)( ”1711) which is better with respect to both n and e.

€2a

2a

VI. APPLICATIONS

A. Extension to quantum entropies

For the diagonal case of purified quantum query-access

U, in|Definition 3} we use the block-encoding in Eq. (T3)

and denote it by

A=TIUTL =Y " /piléi) (0] @ [i)(0] @ li) (il (107)

i=1

The only difference this new oracle brings is that the
state we obtain may have some garbage states added,
so we need some ancilla registers to store them. For
example, following the process in with
purified quantum query-access oracle, we can get a
quantum state |¥,) such that

100 =3 V/BiS (Vi) 1) ali) 51+ Q10 page) 1) F
=1

+ ‘wgarbage>|O>F7 (108)
where |¢é;)rbage) = |¢;)|¢:) is brought by the new
oracle. Therefore, we can still use the amplitude estimate
algorithm to estimate the amplitude of |1) , which gives
us an estimate of > ." ; p;S(y/p;)?. The framework in
[Section III-Bl and [Section III-(] also works well with
purified quantum query-access oracle for the same rea-
son.

For the non-diagonal case of purified quantum query-
access U, in there are two ways to encode
information of p by a unitary operator. The first way is to
use the projected unitary encoding in Eq. (I6) proposed
by [20]

HUTT =" /2 161) (0] @ 10)(0] @ [0) (], (109)

i=1
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and the second is to use the block-encoding in Eq. (I7)

({045 @ I)U(|0) a5 @ Ic) = Y _ pilthi)(thile
i=1

=p. (110)

The second unitary block-encodes p while the first uni-
tary encodes the eigenvalues of \/p/n. Algorithms using
different encoding have different query complexities,
and we can choose the encoding with a better query
complexity.

We prove the following theorems which give an algo-
rithm to estimate the quantum Rényi entropy of density
operators

1
Ha(p) = 17— log(Tr(p%)),
with the purified quantum query-access oracle in

lition 3|

Corollary 2. For any o > 1, there exists an algorithm
A such that for any 6 € (0,1), € € (0,1) and density
operator p € C"*" | A can estimate H,(p) to within
additive error € with success probability at least 1 — §

~ 3_1
using O min( 222 + ) fﬂ)> calls to U, and
elT3a e
Ug in |Definition 3

Proof. We shall present two algorithms using differ-
ent block-encodings. Taking the algorithm with smaller
query complexity gives the claimed statement.

Using the encoding in Eq. (109). Let p; be the
eigenvalues of p. We use the projected unitary encoding
in Eq. which encodes the eigenvalues of /p/n and

follow the same process in to estimate Tr(p®)
by QSVT and VTAE. The only difference is that we

need to replace the polynomials S;(x) in with
S%(x) defined below. Note that S; for all i = 0,...,mq

in [Cemma 10| is constructed using so let
(¢,vj,B;,m) be the parameters of S; in Let
; - . .
S} be the polynomial constructed in “,Ijlth
the parameters (c,5,v,m) to be ¢ := ¢, v = T

B = %, 1 := n. Then we can infer that SJ/(‘/\/E)

(111)

n

has the same behavior as S;(,/p;) for all p; with \/n
times larger degree, so > ; 22S)(,/E5)? is also an
estimate of P,(p)/n to within multiplicative error e.
Therefore, we can obtain an estimate of H, (p) to within
additive error e¢ by rescaling the multiplicative error €
to ce for some constant c. Following the same proof
in [Lemma 10| and [Theorem 7| with v}, = vy, /1
and S, Z-Sh(/E)7 = O(L 10, piSo(y/m)?)s the

query complexity becomes

(b YA
O(n +\/ﬁ\/ﬁ>=o<n+nl>.

1
€ 61+ﬁ € 61+%

(112)



Using the block-encoding of p in Eq. (T10). This
is a special case of for r = n, so its query
complexity is o (Eftl ! O
Corollary 3. For any o € (0,1), there exists an
algorithm A such that for any § € (0,1), € € (0,1)
and density operator p € C"*", A can estimate H,(p)
to within additive error € with success probability at

calls to U, and U; in

n20¢+2

least 1 — 0 using O <

Definition 3|

Proof. Let p; be the eigenvalues of p. The proof is
essentially the same as that of We can
construct S’ (x) with \/n times larger degree than .S; in

such that S}(y/%%) has the same behavior as

7 (v/pi) for all p;. With the block encoding in Eq. -
we can follow the process in [Theorem §| to give an
algorithm estimating H,(p) to within additive error ¢
with success probability at least 1—8 using O (”2" s )

621 +1
calls to U, and U}.

O

B. Low-rank cases

For low-rank quantum distributions (density matrices)
or classical distributions with at most r elements with
positive probability, we can adapt our algorithm to obtain
better query complexity upper bound.
Quantum distributions. If the rank of the density
operator p € C"*" is guaranteed to be r = o(n), we
can apply our framework to estimate the Rényi entropy
of p with poly(r) = o(n) calls to U, and U}.

We will use the block-encoding in Eq. (I7), which
constructing a unitary operator U such that

((0la,8 @ Ic)U(|0) 4, © Ic) szlib (Yile

=, (113)

with one call to U, and U ;f respectively.

For any polynomial S satisfying Eq. 0) in
rem 4] we can apply the singular value transformed uni-

tary of U to 31" | \/Di|0) a,B|%i) ¢|#:) p Which outputs

> VDiSE)|0)aslviclé)p + b)), (114)

i=1
where [|((0[4,5 ® Ic,p)[¢1)[ = 0.
Note that this process is similar to our application of
QSVT in [Section TII-A] except that we have S(p;) now
rather than S(,/p;) in [Section III-Al Therefore, we can

use the techniques in our framework to estimate Rényi
entropy with some minor changes to the transformation
polynomials.
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Corollary 4. For any « € (0,1), there exists an
algorithm A such that for any § € (0,1), € € (0,1),
and rank-r density operator p € C"*", A can estimate
H,(p) to within additive error € with success probability

at least 1 — § using O < ro > calls to U, and U;f in

T
Definition 3|

Proof. For any 0 < o < 1, we need to change all n with
r and the parameters (J,¢) of S; for j = 0,...,mq in
Theorem 8to &' = 62, ¢/ = § so that the new polynomial
S;(pi) has the same behavior as 5; (y/pi) for all p;. Then
following the proof of we obtain an upper
bound on the quantum query complexity of estimating

H,(p) to within additive error ¢ with purified quantum
query-access to a rank-r density operator p as follows.

Corollary 5. For any o > 1, there exists an algorithm
A such that for any 6 € (0,1), € € (0,1), and rank-r
density operator p € C"*", A can estimate H,(p) to
within additive error € with success probability at least

1—0 using O (ﬁ) calls to U, and U;f in|Definition 3

Proof. For any o > 1, we need to change all n to r
and the parameters (v, c7 ﬁ) of S for j=0,...,mp in
Lemma 10[to v/ =12, ¢/ = §, ﬁ’ B2 so that the new
polynomial S%(p:) has the same behavior as 22 5;(,/p;)
for all p;. The constant 23 can be omitted in complex1ty
analysis. Following the same proof in | 0] and
we can infer that the upper bound is

ot (4 +47)

VL

~ _ 1 ~
which becomes (9( rogr 2“) = (9( T;) in

the worst case. O

Classical distributions. For classical distributions, an
analogy of low rank density operators is probability



distributions p on [n] such that there are at most r ele-
ments ¢ whose probability p; > 0. For such probability
distributions, if we know 7 in advance, we can directly
obtain the upper bound in [Theorem 7] and [Theorem 8]
replacing n with 7, since the proofs of these two theorem
still hold if we replace all n with 7.

If we do not know r, we can also use the algorithm in
the following corollary to estimate H,, (p) for any o > 1.

Corollary 6. For any a > 1, there exists an algorithm A
such that for any § € (0,1), € € (0,1) and probability
distribution p on [n] with at most r elements having
pi > 0, A can estimate H,(p) to within additive
error € with success probability at least 1 — 0 using

~ 1
r 2a \/’T“
O (2 + L
€ a—2
Definition 1

Proof. Changing the parameter v to v = @((eP)ﬁ)
in we can replace Eq. (63) with

> IpiS(vpi)? — 272 B
\/p7<z/

< > ISV

VPi<v
S Z pi2—2a+26—2a+2p?71+2—2aﬁ—2a+2p?
VPi<v

< Z 27204B72a+25p?
VPisv

1
—2a n—2a+2 2a
<27°°p 5(-5v™)
§2—2a5—20z+25pe
=0((p")' (")) = Op"e),
SO still holds with this v. Then the allgorithm
in setting v therein to be ©((eP)2+-2) can
also estimate P, (p) within multiplicative error O(e)

given a rough bound of P, (p), and the query complexity
becomes

(5(1<m0+\f2t

\/Z 1 2ieyreles ) Pit J+1>>

\/21 1 PiSo(y/Pi)?

)

calls to Upyre and Upure in

pz |_|_|2 2046 2a+2 |

(117)

26

where the v, in the second line is bounded by Eq. (78).
Then following the proof in [Theorem 7| we can remove
the requirement for P, a,b with an O(In(c)) overhead
in query complexity which can be absorbed into the O
notation. In the worst case when P,(p) = =2, the
+ =5 ) m

1
toa—

~ _ 1
query complexity becomes O s

C. Quantum Rényi divergence

For any rank-r density operators p, o, Miiller-Lennert

et al. [54] defined a generalization of the a-Rényi
divergence:
sty (1 (5 )]
Da(pllo) == if Tr(po) #0
00 else
(119)

for @ € (0, 1) and prove that it has some good properties.
This quantum Rényi entropy is also a generalization of
fidelity since D1 (p||o) = —2log(F(p,0)).

Given oracles U,,U, to prepare purification of the
mixed states o and p, the techniques used to estimate
Tr(p®) in low-rank cases can be directly applied to
estimate Tr(c”po”) for any B > 0. In fact, we can
implement a unitary U preparing the purification of
oPpcP with U, and U, within 6” + € additive error in
spectral norm using O (§log(2)) calls to U, and two
calls to U, by choosing the transformation polynomial
of U, to be the one in with parameters
¢ = B, := 1,v := §,n := e Using amplitude
amplification, we can then implement a unitary U’
preparing the purification of ’po” _ within e error

using O(W 10g(%>)

Therefore, we can apply our results to estimating
quantum Rényi divergence in the following two steps:

Tr(oP poh)
calls to U.

1) Construct a unitar¥ U’ which is a block-encoding

o 2a po 20¢
of A= T+L7F+
Tr(o 2a po 2a )

transformed U, .
2) Estimate D, (pllo) =

L log((Tr(UlgTapalgTa))a Tr(AO‘)> with
U’ using our techniques to estimate quantum
«a-Rényi entropy in

Corollary 7. For any € € (0,1),a € (0,1) and two
density operators p,c with rank at most r, there is an
algorithm A using

_ 1 =
0 o
Tr(oPpof) elta

by U, and singular value

(120)



calls to U, in and

o 1 1 ri+ds
(Tr((07po)2)) 77 /Tx(0Ppo?) +a+as

calls to Uy, in to estimate D, (pl||o) to error
€ with high probability, where $ = (1 — a)/2a.

Proof. The error analysis is similar to that in Section 4.2

of [24]. According to Eq. (115, we need o

ra
1
€1+ @

calls to U’ to obtain an estimate of Tr(A%) within e

multiplicative error. With this estimate, we can then

calculate an estimate of D, (p||o’) within e additive error.

1

(\/Tr(aﬁpaﬁ)

it amplifies o po? to o po? | Tr(o? pa?).

Each call to U uses two calls to U,, so the query
number of U, is

Each call to U’ uses U O times since

- 1 =
O ).
VTr(cPpof) el Ta
To compute the number of queries to U,, we need to
analyze the error induced by U. Using O (% log< ))

(122)

1
€1
calls to U,, the error of U in spectral norm can be

bounded by 67 + ¢;. Using the following [Lemma 14]

we can bound the additivg error of our estimate of
Tr((0®po?)®) induced by U by

564-61

00(ﬁw%ﬁoaﬁw%ﬁw>zomw+qu

(123)

Lemma 14 ([24, Lemma 4.6]). Suppose that A and B
are two positive semidefinite operators of rank < r, and
0 <a <1 Then

[tr (A%) —tr (B)| < 5rllA— BI®,  (124)

where ||A — B|| is the spectral norm of A — B.

Therefore, the final error induced by error of U is

o (07 +e)e
Tr((oPpaf)*) )’
so we need to set § := (f)%’* (T‘r((aﬁpaﬁ)a))fa and
e1:= (€)™ (Tr((0Ppo?)™))= so that the final error is

r

bounded by e.
The query number of U, in the final algorithm is

(125)

oll (1) 1 ra
o = .
] & €1/ /Tr(cPpolf) el ta

1 1
ratas

-0 1 1
(Te((0PpoP)@)) 57 \/Tr(07poP) e *a+as
(126)
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O

This application is inspired by [24] in which the
author has also studied the estimation of quantum Rényi
divergence, but they consider the problem of estimating

exp((a — 1)Dq(p|lo)) within
certain additive error and we use different polynomial
approximations and also techniques beyond QSVT.

1—a 1—a\ ¢
Tr (g Za PO 2a ) =
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APPENDIX
PROOF OF[PROPOSITION

Proof. In the following proof, we use Ay to denote a
m-bit Ol-string A := 0¥7110™~* and when we say
|¢) is an approximation of |¢) up to error O(Le) or

¢) = [¢) + O(Le). we mean ||[¢)) — |¢)[| = O(Le).
Let A be |[Algorithm 2/and A = A, - ... Ay be the
unitary operation A in

We first calculate the output of

meaa§j¢@mmem»mnwwmmaa

127)

Since A is a linear operator, we only need to calculate

A(|0)£10)c[0) ali) B|+)[0) p.1)- (128)

We now describe the state in different stages of A
when it is initialized to |0)#[0)c|0)ali)5|+)0|0)p1
before A.

Let j € {1,...,m} be such that \/p; € [¢;,p;—1).
We divide the m stages of A into three parts: A; to
A;_q, Aj to Ajyq, and Ao to A, if exists.

State after A; for £k = 1,...,j — 1. The performance
of Ay forallk =1,...,7—1on |O>F|O>c‘0>A|i>B‘+>Q
is similar. Since .4; only change the first k£ registers of
I and P, the state before A;, can be written as

al"™M10) £|0)c|0) 4li) 5| +)@lM) Pty

ik
T |7k*1>Pk—17Ik—l |0>Pk,1k’m,Pme + aI(L )|wstopped>’
(129)

where [|(|0)(0]|c®1)|Ystopped) || = 0 and |7); is the state
V) pr in produced by W (e, Le/m) in A;.
State in registers F, A, Q is |0) #|0) 4|+) o when state in
register C' is |0) since the step 3 of 4; is conditional
on Cj being |1) for all = 1,...,k — 1 and only these
operations can change the state in registers F, A, Q.
Note that the last m — k4 1 qubits of C register must
be |0), since A; for [ = 1,...,k — 1 do not change



them. Then, we can infer that |t¢)siopped) has no overlap
with [0)c, ..., since |[(10)(0]c & I)ltstoppea)] = 0
Therefore, Aj, will not change |¢stopped), and we only
need to consider the first component in Eq. (129)

After step 1 of Ay, the the component in Eq. (T29)
becomes

i,k .
a$10) £10)¢10) ali) B +) 0|1 Prry

e |7k—1>Pk—1yIk—1 |0>Pk(|0>|i>)[k|0>Pka1k7~--apm7lm'

(130)

After step 2 of Ay, the first component in Eq.
becomes

al ) 857910) £10)¢0) alé) Bl +H) @M ) Py,

B |7k*1>Pk—l;Ik—1 ‘7k>Pk,Ik |0>Pk+1:Ik+17~~~;Pm.7I'nL
(131)

i,k i,k .
+al 85810y e AR)e[0) ali) B +H) @) Py

o |7’€—1>Pk7171k71 ‘+>Pk (|O> ‘i>)1k ‘0>P}c+17Ik+17~--7PnL7I'ln7

where Ay, is a m-bit 0l-string Ay := 0F~110™~*,
Since the corresponding singular value of (|0)|¢))r,

is \/p; and \/p; < @;_1 < @y, from |Lemma 5 we can
infer that |8""| < Le and 185M) = /1 —1"P)2 >

. 2
Afteg the step 3 of Ay, the state in Eq. (I31)) does not
change.
Notice that the component in Eq. (I31) is the com-
ponent in Eq. (129) for k£ + 1. Since the aé) =1,
we can infer that the amplitude of Eq. (I31) satisfies

that [l 85| > /(1

V= () = VI TP by
1nduct1on on k.

Therefore, when k£ = j —
A;_1, the state becomes

1, we can infer that after

0)r10)c|0) alé) Bl +)@In) Pi.ry

-1 1 1 0) Py 1 P (132)

up to error O(Le).

Before continuing to the next part, we first consider a
special case when j = m. In A,,, step 1 and step 2 will
map the state in Eq. (I32) to

0)£|Am)c10) ali) Bl +)Ql71) Py 1,
“|VYm=1) P11 10) 2, (10)[8)) 1, -
After step 3 of A,,, the state in Eq. (I132) will be
S (VD) 1) F|Am) i) ald) Bl +H) | v) pun
“|Vm=1) P 1,11 10) P, (10)[9)) 1,

+ /1= S (VBD210) £l Am) [ o) 4 B0, T
(135)

(133)

(134)
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Since /p; € [©ms ©m—2) and S, satisfies the condi-
tion in Eq. (@8), we can infer that

(11)(1r @ I).A(|0) £|0)c[0) ali) B|+)@[0) P,1)
=Sm (vPi)I1) rlAm)cli) alt) Bl ) Q|v1) Py
N Ym=1) P11 10) P, (10)]8) 1,,,
~S (\/197)|1>F|A )eli)aliysl+)oln)pn
N Ym=1) P In—110) P, (|0)]0)) 1,
= (ﬁ)l‘f’m%

where the approximation error of the second equation is
O(Le).

In the following part, we assume j < m.

State after A;.
applying A; to

Since A; is linear, we only consider

0)Pl0)c|0) ali) Bl+) @) Prty

) B0 1 |0) Py Py T (136)

and the result is also an O(Le)-approximation of the
state after A;.

After step 1 and step 2 of 4;, we will have

85710} £10)0[0) ali) 5+ 1)y,

o "Yj71>Pj—17[j—1 "Yj>Pjalj |O>Pj+17[j+1 ----- P I

(137)
+B710) £lAs)cl0) ali) 51+) @) pyn
."fYJ‘*1>Pj71Jj71‘+>Pj(‘ )i >)I |0)p Pii1Ijt1se s Pyl

(138)

Since step 3 of \A; is conditional on register C; being
|0}, so the component in Eq. (137) does not change, and
the component in Eq. (I38) becomes

5 SR EA)Clasl e,
-0 p R R (0D 100 P 1P T

+ BT = Si(VP)2I0) R A ) A P
(139)

Since S; satisfies the condition in Eq. (@#8) and \/p; €
[¢;,@j—2), we can infer that the component in Eq. (139)
is an approximation of

18PN pIAs)eli) ali) s+l ey

-0 P )P (10)]0))1,10) Py 1y P T
(140)

up to error O(Le).



Therefore, the state after A; is

B5°710) l0)c|0) ali) 51+ o) Ay i,
) P 10) Py Ty P T
+/sf’”S<\/zTi>|1>F|A->c|'>A|'>B|+>Qm>p1,h
8, 10V 1,10) 1,

+IBY’J) 1-— Sj(\/>) |O>F|A >C|wgdrbage>A B,Q,pI
(141)

P’nlaIWL

up to error O(Le).

State after A; ;. Since the first two steps of A;;
are conditional on the first j qubits of register C' being
|0) and the third step is conditional on the (j + 1)-th
qubit of register C' being |1), A; 1 will only change the
component in Eq. (I41)). Therefore, we only consider the
result applying A;1 to the component Eq. (T4T).
After step 1 and step 2 of 4;,, the component in

Eq. (I41) becomes
BS 85D10Y [0) o 0) ali) B +H) @l ) 1,1

o |FYj>Pj=Ij ‘7j+1>Pj+1,Ij+1 |O>Pj+27]j+2;<~~7P7n;17n
(142)

+859 8EID10) | A1) [0) ali) Bl+) ol ) Pyt

"|fYJ>P 1; ‘+> g+1(|0>|i>)1j+1|0>Pj+27[j+27-“7p7n71m,'
(143)

Since \/p; > ¢; = 241, from we have
|ﬂ(()m +1)| < Le. Then, we can infer that the component
in Eq. (T41) after step 1 and step 2 of Aj;; is an
approximation of

B510) Az 1) 10) ali) 5| H)ql) oty

o |IYJ'>P]‘,I]‘ |+>PJ+1(‘0>|7’>) Ij4a |O> Pji2,ljt2,...,Pm Im

up to error O(Le).
Then, after step 3 of A;; 1, the component in Eq. (T4T)
becomes

B3 811 (VB #l A1) el ali) B H)o 1)
..|’7j>P];Ij‘+>Pj+l(|O>|i>) j+1|0> Pjia,0li12,....Pn,Im
+ ﬁéiaj)
(145)

up to error O(Le).

Since Sj41 satisfies the condition in Eq. and
VPi € [@j41,9j—1), we can infer that the component
in Eq. (I43) is an approximation of

86 S (VB g aa)eli) alidsl+) el pr,

"|7J>P I |+> J+1(‘0>|i>>1j+1|O>Pj+271j+2)~~'7P77L)I'rn
(146)

up to error O(Le).

G+1)
— 81 (VPR10) A ) el ) 4 m.. P

29

In conclusion, the state after 4,4 is
’])5(\/2?7)\1>F\A]+1>c\Z’>A\Z’>BI+>Q|71>P1,11
|7]>P] IJ|+>PJ (‘0>|Z>) j+1|0> Pjia,dj12,....Pn,In
’])S(f)\UF\A eli)ali)sl+)eln)en
) p; (10)[4))1,10)

+ﬁ(”) = S(V/Bi)?10) PIAj 1) o) A.B,Q.P,1

+A0 1= S(Vp)210)pIA ) o) ) aB.0.P1
(147)

Pjt1,0i41,., Py

up to error O(Le).

State after A. Since the state in Eq. has no
overlap with |0)c, .. ¢, .., A forall k= j+2,...,m
do not change it.

Therefore, we can infer that state
A(10) £10)c[0) ali) 5 1+)10) 1), satisfics

(11)Alr © DA(0)£[0)c|0) alid 51 +)010) 1)
~5é”>5<m>|1>pmm>c|'>A|z'>B|+>Qm>pl,h

after A,

‘7J>P I; |+> J+1(|0>| >) 7+1|0> Pjyo,lj12,....Pm,Im
+ﬂ§”)5<ﬁ>|1>F|A >c| ) ali) B+ L
)2, 10V ) 1,100 Py 41 P

=: (\/E-)|1>F|<I>l>, (148)

where the approximation error of the first equation is
O(Le) and |®;) is a normalized state.

Correctness. From Eq. (148) and Eq. (I36), we can
infer that
(I1)(1r ® DA VPil0)r|0)c|0) ali) Bl+) 0|0} p,r)

i=1

~ > VBB r|®:), (149)

where the approximation error is O(Le).
Using variable-time amplitude estimation, we can es-
timate

H(I1><1IF®I) (10)710)c]0) altrp) 51+)010) P.0) 1

—sz
sz

within multiplicative error € with success probability at
least 1 — 4.

Since L < YU piS(ypi)® we have
YimpiS(V/pi)® + O(Le) = i piS(/pi)°(1 +
O(e)). Therefore, the output of |Algorithm 3| is an

24 O(Le)

*(140(e)) (150)



estimate of >, p;S(y/p;)? within multiplicative error
Ofe).

By rescaling € to ce with a small constant ¢, we can
estimate Y, ; p;S(y/p;)? to within multiplicative error
€ with the same query complexity.

Complexity. Our[Algorithm J]is a direct use of variable-
time amplitude estimation in so in order

to get its query complexity, we only need to calculate
t, Pstop=t, » Lavg»> and psucc of A. We will calculate these
parameters for A for simplicity since A only use U, one
more time than A.

Calculate pgy... In the previous paragraph, we have
proved that puce = .1y piS(y/Pi)*(1 + O(e)).

Calculate t;. The query complexity of A; for j < m
is the sum of query complexity of W(y;, Le/m) and
Uéfv), which is O (%] log (%) + deg(Sj)) for j <m
while the query complexity of A,, is O(deg(Sy,)).

Then the sum of the query complexity of the first j
stages of A for j < m is

and t,, = O (7 log( ) + Zk 1 deg(Sk))

Calculate pgiop—¢;- Note that

Pstop=t; =[[(|1A;){Ajlc ® I)A

<X VPil0)£10)c[0) ali) 5I+)]0) p.1)

=> " pill(|A)(Ajle ® DA

(10) 10} [0) ali) 5 Hal0) p )2 (152)

To simplify the writting of formulas, we define Q; =
{i:y/pi €, pj—1)} forj=1,...,m,and Qy = @
in the following proof.

Then from Eq. (T47), we can infer that for ¢ such that
Vi & [, pj—2), they contribute at most O((Le)?) to
Pstop=t;» SO we only need to consider contribute of ¢
such that \/p; € [p;,¢;j—2). Therefore, we can infer
that psiop=t, equals

STulB P+ Y plsd TV + 0Le), (153)
1€Q; 1€Q -1
where B(l 0 (()l ™) .= 0 and [3(1 ™.
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Calculate T,,,. Let ¢,,11 = t,,. Then we have

2
Tavg
= Z pstop:tj t?
j=1
Z(zplwl D4 3 pils IR+ oL )2
Jj=1 i€Q; 1€EQ -1
Z(me P+ Y pilalORe)
j=1 i€eQ; 1€Q; -1
m
—s—(’)(LeZt?)
j=1
fz P18y + 1867 1P 1+ OLe Y )
Jj=1 EQJ J=1
DI MLNPICES 3 54
j=1 eQ]

From [T . we can infer the query complexity
of |A is

A T'av
© (tm - vV psugcc>

~ \/Zj:l Zier pit?+1 + VLe Z;nﬂ t
=0 [ tm +
> iz1 PiS(V/pi)?
~ P 122 o, bit +1
-0 tm—i-\[zt + \/ j= cQj J
j=1 > i PiS(y/pi)?
(155)
where the second inequality comes from L <
Z?:lpiS(\/E)Q. O

OTHER PROOFS

A. Proof of
Proof. Let I = |0)(0|3,., IT = [1)(1|3, ® I3, then
ITAII has only one singular value ,/Psucc. Then using

Lemma 5] we can determine whether ,/Pgycc is larger

than 2¢ or smaller than ¢ for a given ¢ € (0,1) with
success probability at least 1 — ¢ using log(%)é calls to
A and A

Then setting ¢ = 1 L I sequentially,

1
12 2rlog(%
we can determine whether /psucc > 2¢ with success

g( ) using O (log( 8(z )>;) calls

to A and Af, if so, stop and output 2.
Then with success probability at least 1 — §, the algo-
rithm will stop at ¢ = {mg (
2

fﬂﬂ = O(y/Psucc), $0

probability 1 —

VPsucc



the output is in [%‘/psucc, 2./Psucc), and the total calls
to A and Af is

1
(’)(log(loggL)>log( pl ) pl ) (156)

O

B. Proof of
Proof. Let 7y, := (zg(x))~*(1g(%)). For any probabil-
ity distribution p = (p;)i_,, let pas = max;¢[,) p; and
M= argmax;e | Pi-

Since zg(x) is a convex function, we have

> pig(pi)?
Z?:l pig(pi)

9(par)
>y pig(pi)
Y& PM

\/ng(pM D istin Pi9(Pi)

VvV 3 M

IN
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(n) (n) _

If we choose p;’ = 7, and p, 171__’71" for ¢ =
2,...,n, we have
Vo )2
lim | /7 —
n—oo Zz 1]95”) (p E"))
, \/%g )2 A (1 — ) g (12 )2
= lim |7 =
n—reo Yng(¥n) + (1 = m)g( n—1 )
) \/%g(%)2 +9(3)?
= lim | /7
n—oo g(m) +9()
) V93 +g(h)?
= lim [/
n—r00 " 39(%)
1
== 160
3’ (160)

where the fourth equation comes from lim,,_, o v, = 0.
From Eq. and Eq. (T60), we can infer that

\/ng(pM) +(n
1

1- P]\/I)

(
\/pM + (1 7pM)gg(;DM)

(157)

where the second inequality comes from zg(z) is a
convex function on [0, 1] and Jensen’s inequality.

Since g(x) and (zg(x))~' are monotonically func-
tions on [0, 1] and ¢(0) = (xg(z )) 1(0) = 0, we have
lim, 0 g(x) = limg_,o(zg(x))~* = 0. Thus we have
limy, s 00 Y = limy, o0 (2g()) ™ 1( (7)> =0.

If ppy > ~yn from Eq. @, we have
>oiey pig(pi)? < 1
Sorapig(pi) = nC
If prpr < yn, we have

. 1 g(2)
lim | — ( par + (1 — par) =212
n—00 \ Vn g(pM)
1=7n 1
> lim (1 — %)M ~ i 2y (1s8)
n—00 Yng(Yn) =0 g(Yn)Vn

where the first equation comes from convex function
is continuous and lim, ,. 7, = 0, and the second
equation comes from v, 9(y,) = 2g(2). Then we can
infer that for sufficiently large n,

2 Pig(Pi)® _ 1 U1
> pig(pi)

1*I'M)

\/pM (=)

(159)
Therefore, we can infer that Vi pie)?

S pigp)
O (#) as n — 0o
\/ /77% .

1) 1np g(1 p11” Jmax

Ners

2 pig(Pi)? 1
p=(pi)ie TS pig(p) | S} (ﬁ) as n — 0o,

which completes the proof. O

C. Proof of

Proof. We first apply Hadamard gate H to register P

and obtain
|0)c|+) plwi)r- (161)

Settlng the parameters (6',€,t) in[Lemma 8| to &' :=

2.t := 3¢, € := S, we can construct an even polyno-
mial S := P’ 1nwith deg(S) = O (log(L) /)
such that
2
Vo € [—1,—2¢] U 20, 1] :S(2) € [0, =], and
, (162)
€

Vo € [—p, ] :S(x) € [1 — 5,1].

Apply SSV)(IIUTI) to register I using register P
as ancilla register. Then we will have the state |®) in
register (P, I) such that

((+]p ® I)|®) =S V) (TIUTI)|4);) 1

d
Z(Z S(o)|va) (il)bi)r = S(od)|¥a) 1,
- (163)

where the first equation comes from II|e);) = |1);).
Therefore, we can infer that the state |®) satisfies

@) = S(oa)[+)plvir + V1= S(@:)* ) pr, (164)

where ((+|p ® II)|y) p,c = 0, since II is an orthogonal
projection.



Next, we apply C|4)(4+onNOT = |[+)(+|®II® X +
(I —|4)(+|®1I) ® I to register (P, I,C) and obtain
C4)(+1enNOT|®) p1]0)c
=([+N+ @I ® X)S(0:)|+) p|i) 1|0)c+
(I =)+ @I)yv1=5:)? v prile
=S(oi)|+)plYi)rll)c + /1 - S(Ui)2\7>P,I|0>(cl765)

where the first equation comes from ((+|p®II)|y) p.c =
0 and |+)(+| ® IT is an orthogonal projector.
From Eq. (162), we can infer that

2
<V1-(1-€*)=¢
(166)
2
Voi € [26,1]: S(o:) € 5 < (167)
which completes the proof. O
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