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Abstract— A macroscopic model-based approach for estima-
tion of the traffic state, specifically of the (total) density and
flow of vehicles, is developed for the case of “mixed” traffic,
i.e., traffic comprising both ordinary and connected vehicles.
The development relies on the following realistic assumptions:
(i) The density and flow of connected vehicles are known
at the (local or central) traffic monitoring and control unit
on the basis of their regularly reported positions; and (ii)
the average speed of conventional vehicles is roughly equal
to the average speed of connected vehicles. Thus, complete
traffic state estimation (for arbitrarily selected segments in the
network) may be achieved by merely estimating the percentage
of connected vehicles with respect to the total number of
vehicles. A model is derived, which describes the dynamics of
the percentage of connected vehicles, utilizing only well-known
conservation law equations that describe the dynamics of the
density of connected vehicles and of the total density of all
vehicles. Based on this model, which is a linear time-varying
system, an estimation algorithm for the percentage of connected
vehicles is developed employing a Kalman filter. The estimation
methodology is validated through simulations using a second-
order macroscopic traffic flow model as ground truth for the
traffic state. The approach calls for a minimum of spot sensor-
based total flow measurements according to a variety of possible
location configurations.

I. INTRODUCTION

A number of novel Vehicle Automation and Communi-
cation Systems (VACS) have already been introduced, and
many more are expected to be introduced in the next years.
These systems are mainly aimed to improve driving safety
and convenience, but are also believed to have great potential
in mitigating traffic congestion, if appropriately exploited
for innovative traffic management and control [9]. To attain
related traffic flow efficiency improvements on highways, it
is of paramount importance to develop novel methodologies
for modeling, estimation and control of traffic in presence of
VACS. Several papers are providing useful results related to
modeling and control of traffic flow in presence of VACS,
employing either microscopic or macroscopic approaches,
see, for example, [4], [5], [6], [10], [14], [17], [21], [22],
[23], [24], [25], [27], [29], [30], [31], [35].

The availability of reliable real-time measurements or
estimates of the traffic state is a prerequisite for successful
highway traffic control. In conventional traffic, the necessary
measurements are provided by spot sensors (based on a
variety of possible technologies), which are placed at specific
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highway locations. If the sensor density is sufficiently high
(e.g., every 500 m), then the collected measurements are
usually sufficient for traffic surveillance and control; else,
appropriate estimation schemes need to be employed in order
to produce traffic state estimates at the required space resolu-
tion (typically 500 m); see, for instance, [1], [13], [15], [16],
[33], among many other works addressing highway traffic
estimation by use of conventional detector data. However, the
implementation and maintenance of road-side detectors entail
considerable cost; hence various research works attempt to
exploit different, less costly data sources, such as mobile
phone, or GPS (Global Positioning System), or even vehicle
speed data for travel time or highway state estimation; see,
e.g., [3], [7], [8], [11], [12], [18], [20], [26], [28], [34], [36];
employing various kinds of traffic or statistic models.

In fact, with the introduction of VACS of various kinds,
an increasing number of vehicles become “connected”, i.e.,
enabled to send (and receive) real-time information to a
local or central monitoring and control unit (MCU). Thus,
connected vehicles may communicate their position, speed
and other relevant information, i.e., they can act as mobile
sensors. This will potentially allow for a sensible reduction
(and, potentially, elimination) of the necessary number of
spot sensors, which would lead to sensible reduction of
the purchase, installation, and maintenance cost for traffic
monitoring. This paper concerns the development of reliable
and robust traffic state estimation methods and tools, which
exploit information provided by connected vehicles and
reduces the need for spot sensor measurements under all
penetration rates of connected vehicles, i.e., for a mixed
traffic flow that includes both conventional and connected
vehicles.

Specifically, we address the problem of estimating the
(total) density and flow of vehicles in highway segments
of arbitrary length (typically around 500 m) in presence of
connected vehicles. The developments rely on the following
realistic assumptions:

• The density and flow of connected vehicles may be
readily obtained at the local or central MCU on the
basis of their regularly reported positions.

• The average speed of conventional vehicles is roughly
equal to the average speed of connected vehicles. This
assumption relies on the fact that, even at very low
densities, there is no reason for connected vehicles
to feature a systematically different mean speed than
conventional vehicles; while at higher densities, the
assumption is further reinforced due to increasing dif-
ficulty of overtaking.
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As a consequence of these assumptions, complete traffic state
estimation (of the total density and flow in arbitrarily se-
lected segments in the highway) may be achieved by merely
estimating the percentage of connected vehicles with respect
to the total number of vehicles. For the latter, a minimum
amount of conventional measurements of traffic volumes,
e.g., at all highway entries and exits, is also required. Thus,
the problem of traffic estimation is recast in the problem
of estimating the percentage of connected vehicles at the
selected highway segments.

In more technical terms, we derive a linear time-varying
model, which describes the dynamics of the percentage,
utilizing merely the (time-discrete) conservation law equa-
tions for the density of connected vehicles and for the total
density of vehicles (no traffic modelling of speed, such as the
fundamental diagram, is required). We show that the system
is observable and employ a Kalman filter for the estimation
of the percentage of connected vehicles. We demonstrate our
estimation design with a numerical example employing a
second-order macroscopic traffic flow model as ground truth
for the traffic state dynamics.

Section II derives a linear time-varying system that de-
scribes the dynamics of the percentage of connected vehicles
at each segment of a highway. Section III-A studies the
observability properties of the system; while Section III-
B employs a Kalman filter for the estimation of the per-
centage of connected vehicles on the highway. Section III-
C demonstrates the estimation design with a second-order
macroscopic model as ground truth. Section III-D extends
the approach to the case of unmeasured total flow at off-
ramps. Section IV summarizes the conclusions and outlines
related ongoing and future work.

II. MODEL DERIVATION FOR THE PERCENTAGE OF
CONNECTED VEHICLES

We consider the following discrete-time equations that
describe the dynamics of the total density ρ of the vehicles
on a highway and the density ρa of the connected vehicles
(see, for example, [19]; see also the upper part of Fig. 1)

ρi(k + 1) = ρi(k) +
T

∆i
(qi−1(k)− qi(k) + ri(k)

−si(k)) (1)

ρa
i (k + 1) = ρa

i (k) +
T

∆i

(
qa
i−1(k)− qa

i (k) + ra
i (k)

−sa
i (k)) , (2)

where i = 1, . . . , N is the index of the specific segment
at the highway, N being the number of discrete cells on
the highway; for all traffic variables, we denote by index
sub-i its value at the segment i of the highway; qi and qa

i

are the total flow and the flow of the connected vehicles,
respectively, at segment i; T is the time-discretization step,
∆i is the length of the discrete segments of the highway, and
k = 0, 1, . . . is the discrete time index. The variables ri and
si denote the inflow and outflow of vehicles at on-ramps and
off-ramps, respectively, at segment i, whereas ra

i and sa
i are

the corresponding inflow and outflow of connected vehicles.

Define the inverse of the percentage of the connected vehicles
at segment i of the highway as p̄i, i.e.,

p̄i =
ρi
ρa
i

. (3)

Assuming that the average speed of conventional vehicles at
a segment i equals the average speed of connected vehicles
in the same segment, namely vi, one can conclude that the
following holds

p̄i =
ρi
ρa
i

=
qi
qa
i

, (4)

where we used the known relations

qi = ρivi (5)
qa
i = ρa

i vi. (6)

Using (1), (2), and (4) we get from (3) that

p̄i(k + 1)=

(
ρa
i (k)− T

∆i
qa
i (k)

)
p̄i(k) + T

∆i
qa
i−1(k)p̄i−1(k)

ga
i (k)

+
T

∆i

(ri(k)− si(k))

ga
i (k)

(7)

ga
i (k)=ρa

i (k) +
T

∆i

(
qa
i−1(k)− qa

i (k) + ra
i (k)

−sa
i (k)) , (8)

i = 1, . . . , N . Defining the state

x = (p̄1, . . . , p̄N )
T
, (9)

we re-write (7) as

x(k + 1) = A(k)x(k) +B(k)u(k) (10)
y(k) = Cx(k), (11)

where

A(k) =


aij = T

∆i

qa
i−1(k)

ga
i (k) , if i− j = 1

and i ≥ 2

aij =
ρa
i (k)− T

∆i
qa
i (k)

ga
i (k) , if i = j

aij = 0, otherwise

(12)

B(k) =


bij = T

∆i

1
ga
1(k) , if i = 1

and j = 1, 2
bij = T

∆i

1
ga
i (k) , if j − i = 1

bij = 0, otherwise

 (13)

u(k) =


q0(k)

r1(k)− s1(k)
...

rN (k)− sN (k)

 (14)

C =
[

0 . . . 0 1
]
, (15)

ga
i , i = 1, . . . , N , is defined in (8), A ∈ RN×N , B ∈
RN×(N+1), and q0 denotes the total flow of vehicles at the
entry of the highway and acts as an input to system (10),
along with the variables ri and si; while ra

i , sa
i , ρa

i , and
qa
i are viewed as time-varying parameters of system (10).



Finally, the variable p̄N at the exit of the highway is viewed
as the output of the system and may be obtained via

p̄N =
qN
qa
N

, (16)

using total flow measurements qN at the highway exit.
Before studying the observability of system (10)–(15), we

summarize the assumptions that guarantee that the matrix A
is known, and that the input u and output y are measured.

• The average speed of the connected vehicles at a
segment of the highway equals the average speed of
all vehicles at the same segment, i.e., va

i = vi.
• The segment flows and densities of connected vehicles,
qa
i , i = 0, . . . , N , and ρa

i , i = 1, . . . , N , respectively,
as well as the flows of connected vehicles at on-ramps
and off-ramps, ra

i and sa
i , i = 1, . . . , N , respectively,

may be obtained from regularly received messages by
the connected vehicles.

• The total flow of vehicles at the entry and exit of the
highway, q0 and qN , respectively, are measured via
conventional detectors.

• The total flow of vehicles at on-ramps and off-ramps,
ri and si, i = 1, . . . , N , respectively, are measured via
conventional detectors.

The above formulation may be modified in a couple of
respects:

• Different total flow measurement configurations may
be employed; for example, additional mainstream total
flow measurements (using conventional detectors) may
be considered to replace a corresponding number of
total flows at on-ramps or off-ramps, without affecting
the observability of the system.

• In case more mainstream total flow measurements are
actually employed (in place of total flow measurements
at on- and off-ramps), they may also be considered as
output variables in (11) to potentially increase the filters
responsiveness.

These issues are currently in the course of investigation.
Note that later on, in Section III-D, we remove, under

certain conditions, the assumption that the total off-ramp
flows si, i = 1, . . . , N are measurable.

III. PERCENTAGE ESTIMATION USING A KALMAN
FILTER

A. Observability of the System
System (10) is viewed as a linear time-varying system. As

it is stated in Section II, it is assumed that the quantities q0,
p̄N , qa

i , ρa
i , ra

i , sa
i , ri, and si, for all i, are available, which

implies that the matrices A and B, as well as the input u
in (10) may be calculated in real time. We show next that
system (10)–(15) is observable at k = k0 + N − 1, for any
initial time k0 ≥ 0. We construct the observability matrix

O(k0, k0 +N) =


C

CA(k0)
CA(k0 + 1)A(k0)

...
CA(k0 +N − 2) · · ·A(k0)

 . (17)

Kalman filter for the estimation of qa
i
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Fig. 1. The traffic system under consideration and the Kalman filter
implemented at the MCU. The data used to operate the Kalman filter are
either coming from connected vehicles (solid lines) or fixed sensors (dashed
lines). The variable mwi denotes the measurement of quantity w at segment
i, which might be different than the actual quantity w, due to, for example,
the presence of measurement noise.

Since O is square, the system is observable at k = k0+N−1
if det(O) 6= 0. Since from (12) it is evident that A is a lower
triangular matrix, it follows from (15) that O is an anti-lower
triangular matrix, namely, a matrix with zero elements above
the anti-diagonal. Therefore, relation det(O) 6= 0 holds if the
anti-diagonal elements of O are non-zero. The anti-diagonal
elements of O are given by 1, aNN−1(k0), aNN−1(k0 +
1)aN−1N−2(k0), . . . , aNN−1(k0 +N −2) · · · a21(k0). Since
qa
i , ρa

i , i = 1, . . . , N , are lower and upper bounded (and
positive), it follows from (12) that aij(k), for all k =
k0, . . . , k0 + N − 2 and any k0 ≥ 0, and for all i, j such
that i − j = 1 and i ≥ 2, are lower and upper bounded
(and positive). Therefore, the matrix O is invertible, and
hence, system (10)–(15) is observable at k = k0 + N − 1.
Note that the measurement of p̄N (or, equivalently, of qN ),
rather than any other intermediate percentage, is necessary
for system (10)–(15) to be observable. To see this note that if

C =

{
cij = 1, if i = 1 and j = J
cij = 0, otherwise

}
with J < N , then

the J + 1, . . . , N columns of O(k0, k0 + N̄) are zero for all
k0≥0 and N̄≥N . Thus, the system cannot be observable. In
other words, a fixed flow sensor should necessarily be placed
at the last segment of the highway in order to guarantee
percentage observability based on model (10)–(15).

B. Kalman Filter

We implement a Kalman filter for the estimation of the
percentage of connected vehicles on a highway (see Fig. 1).
Defining x̂ =

(
ˆ̄p1, . . . , ˆ̄pN

)T
, the equations for the Kalman

filter are given by (see, for example, [2])

x̂(k + 1) = A(k)x̂(k) +B(k)u(k)

+A(k)K(k) (z(k)− Cx̂(k)) (18)

K(k) = P (k)CT
(
CP (k)CT +R

)−1
(19)

P (k + 1) = A(k) (I −K(k)C)P (k)A(k)T +Q,(20)



where z is a noisy version of the measurement y, R > 0
and Q = QT > 0 are tuning parameters. Note that, in the
ideal case in which there is additive, zero-mean Gaussian
white noise in the output and state equation (10) and (11),
respectively, these matrices represent the (ideally known)
covariance matrices of the measurement and process noise,
respectively. Since the system equations here are relatively
complex, some tuning of the matrices may be necessary for
best estimation results. The initial conditions of the estimator
(18)–(20) are given by

x̂(k0) = µ (21)
P (k0) = H, (22)

where µ and H = HT > 0 are the initial conditions of the
estimator (18)–(20), which, in the ideal case in which x(k0)
is a Gaussian random variable, represent the mean and auto
covariance matrix of x(k0), respectively.

The Kalman filter (18)–(22) delivers estimates of the
inverse percentages ˆ̄pi; using (4) and the available data for
qa
i , ρa

i , we can obtain estimates for all segment (total) flows
and densities q̂i, ρ̂i as indicated at the output of the Kalman
filter in Fig. 1.

C. Evaluation of the Performance of the Estimator Based on
a METANET Model as Ground Truth

For preliminary assessment of the developed estimation
scheme, we test in this section the performance of the
Kalman filter employing the second-order METANET model
[19] (i.e., a model in which the average speed of the vehicles
at the highway has its own dynamics) as ground truth. We
employ equations (1) and (2) for the total density of the
vehicles and the density of connected vehicles, respectively,
together with relations (5) and (6) for the total flow and the
flow of connected vehicles, respectively. The equation for the
average speed at segment i is given by

vi(k + 1)=vi(k) +
T

τ
(V (ρi(k))− vi(k)) +

T

∆i
vi(k)

× (vi−1(k)− vi(k))− νT

τ∆i

ρi+1(k)− ρi(k)

ρi(k) + κ

−δT
∆i

ri(k)vi(k)

ρi(k) + κ
, i = 1, . . . , N, (23)

with v0 = v1 and ρN = ρN+1, where the nominal average
speed V is given by

V (ρ) = vfe
− 1
α ( ρ

ρcr
)
α

, (24)

and τ , ν, κ, δ, vf , ρcr, and α are positive model parameters.
In particular, vf denotes the free speed, ρcr the critical
density, and α the exponent of the stationary speed equation
(24). The model parameters, which are taken from [32], are
shown in Table I.

From the model parameters (12)–(15) and the Kalman
filter (18)–(20) it is evident that the estimator utilizes
measurements stemming from connected vehicles reports,
namely, qa

i , ρa
i , ra

i , sa
i , for all i. Although the calculation

of these variables from connected vehicle data is likely

TABLE I
PARAMETERS OF THE MODEL (1), (2), (5), (6), (23), AND (24).

Model parameter Value
T 10

3600
(h)

∆i
500
1000

(km)

τ 20
3600

(h)

ν 35
(

km2

h

)
κ 13

(
veh
km

)
δ 1.4

vf 120
(

km
h

)
ρcr 33.5

(
veh
km

)
α 1.4324

N 20

TABLE II
THE MEASUREMENT NOISE γwi AND THE PROCESS NOISE ξwi ,
i = 0, . . . , N AFFECTING THE w VARIABLE AT SEGMENT i. THE

VARIABLE w CAN REPRESENT A FLOW (I.E., w = q, w = r, OR w = s)
OR SPEED (I.E., w = v).

Noise Standard deviation
γq0 Dq = 25 veh

h

γqN Dq = 25 veh
h

γri Dr = 10 veh
h

γsi Ds = 5 veh
h

ξvi Dv = 5 km
h

ξqi Dq = 25 veh
h

ξq
a

i Dqa = 15 veh
h

to be associated with error or noise, we assume, for this
preliminary assessment, that they are accurate measurements.
In contrast, the measurements of the total flow of the
vehicles at the entry and exit of the highway are subject to
additive measurement noise, say, γq0 ∼ N(0, D2

q) and γqN ∼
N(0, D2

q), respectively. Furthermore, the measurements of
the total flow at the on-ramps and off-ramps might be subject
to additive measurement noise say γri ∼ N(0, D2

r) and
γsi ∼ N(0, D2

s), respectively. In addition there is additive
process noise ξvi ∼ N(0, D2

v), ξqi ∼ N(0, D2
q), and ξq

a

i ∼
N(0, D2

qa), i = 0, . . . , N , affecting the speed and flow
equations, namely, (23), and (5), (6), respectively. The noise
statistics are summarized in Table II.

The parameters and initial conditions of the Kalman filter
(18)–(22), (12)–(15) are shown in Table III. In Fig. 2
we show the emptied scenario of input flow of connected
vehicles and total input flow at the entry of the highway for
our simulation investigation. We assume that there are three
on-ramps at segments 2, 6, 10. The total flow and the flow
of connected vehicles at the on-ramps are shown in Fig. 3.



TABLE III
PARAMETERS OF THE KALMAN FILTER (18)–(22) AND (12)–(15).

Filter’s parameter Value
Q IN×N

R 100

µ (10, . . . , 10)T

H IN×N

Four off-ramps are supposedly present on the highway under
study, specifically at segments 4, 8, 12. It is assumed that
si = 0.1qi−1 and sa

i = 0.1qa
i−1, i = 4, 8, 12.

The total flow and the flow of connected vehicles resulting
from the simulation at the eighth off-ramp are shown in Fig.
4. The average speed at segments 2 (where the first on-ramp
is located) and 8 (where the second off-ramp is located) are
shown in Fig. 5 and Fig. 6, respectively. The corresponding
densities of the total number of vehicles are shown in Fig.
7 and Fig. 8, respectively. It is evident from Fig. 5 and Fig.
7 that a congestion is created between the first and second
hour of our test, whereas, free-flow conditions are reported
for the first and last hour. Congestion starts approximately at
the location of the second on-ramp, i.e., at the sixth segment
of the highway, and propagates backwards all the way to the
input of the highway.

In both traffic conditions, our estimator successfully esti-
mates the percentage of connected vehicles on the highway,
as it is evident from Fig. 9 and Fig. 10, which display the
actual percentage and its estimate at two different segments
of the highway, namely at segments 2 (at which congested
conditions prevail for one hour) and 8, respectively. Note the
very fast convergence of the produced percentage estimates,
starting from remote initial values. Fig. 11 and Fig. 12 dis-
play the resulting estimation of the total density of vehicles at
segments 2 and 8, respectively, using relation (4). Moreover,
in Fig. 13 we show the relative performance index of the
estimation scheme defined as

PR =

√
1

MN

∑k=M
k=0

∑i=N
i=1

(
ρi(k)− ρa

i (k)ˆ̄pi(k)
)2

1
MN

∑k=M
k=0

∑i=N
i=1 ρi(k)

, (25)

with simulation time horizon M = 3
T = 1080, as a function

of the parameter Q = σIN×N of the Kalman filter while R
was kept constant at a value R = 100. From Fig. 13 it is
evident that the Kalman filter is robust to the choice of the
tuning parameter Q.

D. The Case of Unmeasured Total Flow at Off-Ramps

In the case that the total flow at off-ramps is not directly
measured, one can extract this information as follows. We
assume the following relations for the flow at off-ramps

si = βiqi−1 (26)
sa
i = βa

i q
a
i−1, (27)

where βi and βa
i denote exit rates, i.e., the flow percentage

of vehicles and connected vehicles, respectively, exiting at an

Time (h)

0 0.5 1 1.5 2 2.5 3
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

q0

(
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h

)

q
a
0

(

veh

h

)

Fig. 2. The total flow of vehicles q0
(

in veh
h

)
at the entry of the highway

and the flow of connected vehicles qa
0

(
in veh

h

)
at the entry of the highway.
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Fig. 3. The total flows r2, r6, r10

(
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)
of vehicles and the flows
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a
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a
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(
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)
of connected vehicles at the on-ramps.

Time (h)

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

s8

(

veh

h

)

s
a
8

(

veh

h

)

Fig. 4. The total flow s8
(
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h

)
of vehicles and the flow sa8

(
in veh

h

)
of connected vehicles at the off-ramp located at the eighth segment.



Time (h)
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v
2
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k
m h

)

0
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Fig. 5. The average speed v2

(
in km

h

)
of the second segment of the

highway as it is produced by the METANET model (1), (5), (23), (24) with
parameters given in Table I and additive process noise given in Table II.
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Fig. 6. The average speed v8

(
in km

h

)
of the eighth segment of the

highway as it is produced by the METANET model (1), (5), (23), (24) with
parameters given in Table I and additive process noise given in Table II.

off-ramp located at segment i. Assuming that the exit rates
βi and βa

i in (26), (27) are equal, and using (4), we get that

si = βa
i q

a
i−1p̄i−1. (28)

Substituting (28) into (7), we get a new model for p̄i, i =
1, . . . , N , of the form (10), (11), with C given in (15) and

A(k) =


aij = T

∆i

(1−βa
i (k))qa

i−1(k)

ḡa
i (k) , if i− j = 1

and i ≥ 2

aij =
ρa
i (k)− T

∆i
qa
i (k)

ḡa
i (k) , if i = j

aij = 0, otherwise

 (29)

B(k) =


bij = T

∆i

1
ḡa
1(k) , if i = 1 and j = 1, 2

bij = T
∆i

1
ḡa
i (k) , if j − i = 1

bij = 0, otherwise

 (30)

u(k) =
[
q0(k) r1(k) · · · rN (k)

]T
, (31)
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of the highway as it is produced by the METANET model (1), (5), (23),
(24) with parameters given in Table I and additive process noise given in
Table II.

Time (h)

0 0.5 1 1.5 2 2.5 3

ρ
8

(

v
e
h

k
m

)

0

10

20

30

40

50

60

70
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(
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)
at the eighth segment of

the highway as it is produced by the METANET model (1), (5), (23), (24)
with parameters given in Table I and additive process noise given in Table
II.

where ḡa
i (k) = ρa

i (k)+ T
∆i

(
(1− βa

i (k)) qa
i−1(k)− qa

i (k)
)

+
T
∆i
ra
i (k), A ∈ RN×N , and B ∈ RN×(N+1). With the same

arguments as in Section III, one can show that system (10),
(11) with C given in (15) and A, B, and u given in (29),
(30), and (31), respectively, is observable provided that

• relations (26) and (27) hold and
• βa

i is available.
One can then implement the Kalman filter (18)–(22) with A,
B, and u given by (29), (30), and (31), respectively.

IV. CONCLUSIONS

We presented a macroscopic model-based approach for
the estimation of the traffic state on highways in presence
of connected vehicles, through estimating the percentage
of connected vehicles, with respect to the total number of
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by the Kalman filter with parameters given in Table III.

vehicles, on the highway. Specifically, we derived a linear
time-varying system for the dynamics of the percentage and
employed a Kalman filter for its estimation. We illustrated the
effectiveness of our estimation design in simulation, using
a second-order macroscopic traffic flow model as ground
truth for the traffic state. We also discussed the possibility of
applying our methodology to the case of unmeasured total
flow of vehicles at off-ramps.

A topic of ongoing research is the development of an
alternative estimation algorithm for the total traffic density
in highways utilizing only average speed measurements
reported by connected vehicles, thus relaxing the requirement
of measuring flows and densities for connected vehicles. That
approach exploits the fact that the dynamics of the total
density, as described by the conservation law equation, can
be described by a linear time-varying system with known
parameters on the basis of the same assumption employed
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of the highway (black line) and its estimate ρ̂2 = ρa
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(
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(blue line)

as it is produced by the Kalman filter (18)–(22), (12)–(15) with parameters
given in Table III.
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as it is produced by the Kalman filter (18)–(22), (12)–(15) with parameters
given in Table III.

in the present paper, namely, that the average speed of
conventional vehicles is roughly equal to the average speed of
connected vehicle. Our current research also includes several
studies for the comparison of the performance of the two
estimation approaches.

Future research will:

• address the problem of unmeasured total flow of vehi-
cles at on-ramps, via use of additional flow measure-
ments at the mainstream of the highway,

• address the problem of optimal fixed sensor placement
on the highway;

• validate the developed traffic estimation methodologies
with a much more detailed microscopic simulation
platform; considering a more realistic simulation of all
involved real-time measurements.
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