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Part-Guided Attention Learning for Vehicle
Instance Retrieval

Xinyu Zhang∗, Rufeng Zhang∗, Jiewei Cao, Dong Gong, Minyu You#, Chunhua Shen

Abstract—Vehicle instance retrieval (IR) often requires one to
recognize the fine-grained visual differences between vehicles. Be-
sides the holistic appearance of vehicles which is easily affected by
the viewpoint variation and distortion, vehicle parts also provide
crucial cues to differentiate near-identical vehicles. Motivated by
these observations, we introduce a Part-Guided Attention Network
(PGAN) to pinpoint the prominent part regions and effectively
combine the global and local information for discriminative
feature learning. PGAN first detects the locations of different part
components and salient regions regardless of the vehicle identity,
which serves as the bottom-up attention to narrow down the
possible searching regions. To estimate the importance of detected
parts, we propose a Part Attention Module (PAM) to adaptively
locate the most discriminative regions with high-attention weights
and suppress the distraction of irrelevant parts with relatively
low weights. The PAM is guided by the identification loss and
therefore provides top-down attention that enables attention to
be calculated at the level of car parts and other salient regions.
Finally, we aggregate the global appearance and local features
together to improve the feature performance further. The PGAN
combines part-guided bottom-up and top-down attention, global
and local visual features in an end-to-end framework. Extensive
experiments demonstrate that the proposed method achieves
new state-of-the-art vehicle IR performance on four large-scale
benchmark datasets.1

Index Terms—Vehicle instance retrieval, bottom-up attention,
top-down attention.

I. INTRODUCTION

VEHICLE instance retrieval (IR) aims to verify whether
or not two vehicle images captured by different cameras

belong to the same identity. Vehicle IR is also known as
vehicle re-identification. With the growth of road traffic, it
plays an increasingly important role in urban systems and
intelligent transportation [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10].

Different levels of granularity of visual attention are re-
quired under various IR scenarios. In the case of comparing
vehicles of different car models, we can easily distinguish their
identities by examining the overall appearances, such as car

Manuscript received April 06, 2020; revised September 24, 2020.
X. Zhang, R. Zhang and M. You are with Department of Control Sci-

ence and Engineering, Tongji University, Shanghai 201804, China (e-mail:
zhangxinyu@tongji.edu.cn; cxrfzhang@tongji.edu.cn; myyou@tongji.edu.cn).
M. You is also with Shanghai Institute of Intelligent Science & Technology,
Tongji University, Shanghai 201804, China.

J. Cao, D. Gong and C. Shen are with The University of Adelaide, Adelaide,
SA 5005, Australia (e-mail: jonbakerfish@gmail.com; edgong01@gmail.com;
chunhua.shen@adelaide.edu.au). JC, DG, CS and their employer received no
financial support for the research, authorship, and/or publication of this article.
∗Part of this work was done when X. Zhang was visiting The University

of Adelaide. First two authors contributed to this work equally.
#Correspondence should be addressed to M. You.
1Code is available at: https://git.io/PGAN-Vehicle.

ID1 ID2

(a)

(b)

(c)

FIG. 1: Illustration of the part-guided attention. (a) The rear and front views
of two different vehicles with the same car model. (b) The detected candidate
part regions from the part extraction module. (c) The heatmaps of part
features from the part attention module. The prominent part regions like annual
signs are highlighted, while the wrong candidates and insignificant parts like
background and back mirror are suppressed.

types and headlights [3]. However, most production vehicles
can exhibit near-identical appearances since they may be mass-
produced by the same manufacturer. When two vehicles with
the same car model are presented, more fine-grained details
(e.g., annual service signs, customize paintings, and personal
decorations) are required for comparison, as shown in Figure 1
(a) that ID1 looks similar like ID2 since they are from the same
car mode. Therefore, the key challenge of vehicle IR lies in
how to recognize the subtle differences between vehicles and
locate the prominent parts that characterize their identities.

Most existing works focus on learning global appear-
ance features with various vehicle attributes, including model
type [6], [11], [12], license plate [11], spatial-temporal in-
formation [13], [14], orientation [5], [15], [16], [17], etc. The
main disadvantage of global features is the lack of capability to
capture more fine-grained visual differences, which is crucial
in vehicle IR. Despite the help of auxiliary attributes, the
supervision is still weak. For instance, the license plates are
usually not available for privacy protection, while the two
extremely similar vehicles from the same model type can not
be distinguished (as shown in Figure 1). Also, they are easily
degraded by the viewpoint variation, distortion, occlusion,
motion blur and illumination, especially in the unconstrained
real-world environment. Therefore, it is important to explore
more robust and environment-invariant information to repre-
sent specific vehicles. Recent many works tend to explore
subtle variances from car parts [18], [19], [20] to learn the
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local information. However, these methods mainly focus on
the localization of the spatial part regions without considering
how these regions are subject to attention with different degree.

To address above problems, we propose a novel part-guided
attention network (PGAN) to improve the performance effec-
tively by focusing on the most prominent part regions, which
is implemented by integrating the bottom-up attention and the
top-down attention systematically. Specially, we first utilize
a bottom-up attention module to extract the related vehicle
part regions, which is called the part extraction module in our
work. With the established object detectors [3], [20] that are
pre-trained on the vehicle attributes, we consider the extracted
part regions from the part extraction module as candidates,
which is beneficial for narrowing down the searching area for
network learning. Importantly, this bottom-up attention can
effectively take advantage of the context correlation among
pixels in the same part via assigning same values for all pixels
in a specific part region, which is superior to grid attention that
gives no consideration on the pixel relationships. Besides, we
call these candidate regions as coarse part regions since the
quality of the detection may be not accurate with the pre-
trained part extraction module and some part regions with less
information may be included in these candidates.

To extract more effective local information, we apply a
top-down attention process to select the most prominent part
regions as well as assign appropriate importance scores to
them after obtaining the above candidate part regions. Here,
we introduce a part attention module (PAM), which is guided
by the identification loss to allocate the importance for each
coarse part region. PAM adaptively locates the discriminative
regions with high-attention weights and suppresses the distrac-
tion of irrelevant parts with relatively low weights, as shown
in Figure 1 (c). It is also beneficial for filling out the wrongly
detected part regions by giving a weight near to zero (as shown
in the rear view of ID2 in Figure 1). In detail, PAM can assign
a special attention weight for each corresponding part region,
i.e., all pixels in this region share the same weight, reflecting
the importance of the selected part regions by considering
all pixels in a part region as a whole. Therefore, PAM is
more efficient than grid attention or evenly decomposed part
attention [21], [22], [19], [23], since PAM is able to provide
more fine-grained attention which is conducted only on the
selected part regions by taking the context information among
pixels into consideration instead of all spatial pixels. We call
these selected-weighted part regions as fine part regions.

With the combination of bottom-up and top-down attention,
our attention mechanism can provide more prominent part
regions for improving the feature representation. Finally, we
aggregate the vehicle’s holistic appearance and part char-
acteristics with a feature aggregation module to improve
the performance further. Figure 2 shows the whole training
process.To summarize, our main contributions are as follows:
• We design a novel Part-Guided Attention Network

(PGAN), which effectively combines part-guided bottom-up
and top-down attention together to capture both local and
global information.
• We propose to extract Top-D part regions without part

alignment to maintain more prominent yet less available parts

Vehicle dataset

Part extraction module Global feature learning module

Coarse part regions Global features

Part attention module

Fine part regions

Feature aggregation module

Loss function

FIG. 2: The flow of the overall training process of our framework. The
trapezoid represents the modules involved in our framework, while the solid
rectangle denotes the outputs of the modules.

effectively in the part extraction module.
• We propose a part attention module (PAM) to evaluate

the relative importance of the selected Top-D part regions,
which further focuses more on prominent parts and reducing
the distraction of wrongly detected or irrelevant parts.
• Extensive experiments on four challenging benchmark

datasets demonstrate that our proposed method achieves new
state-of-the-art vehicle IR performance.

II. RELATED WORK

A. Global Feature-based Methods

Feature Representation Vehicle IR aims at learning dis-
criminative feature representation to deal with significant
appearance changes for different vehicles. Public large-scale
datasets [3], [4], [6], [11], [8], [25], [26] are widely col-
lected with annotated labels and abundant attributes under
unrestricted conditions. These datasets face huge challenges on
occlusion, illumination, low resolution and various views. One
way to deal with these datasets uses deep features [4], [5], [11],
[27], [26] instead of hand-crafted features to describe vehicle
images. To learn more robust features, some methods [6],
[11], [12], [13], [14], [28] try to explore details of vehicles
using additional attributes, such as model type, color, spatial-
temporal information, etc. Moreover, works of [15], [17]
propose to use synthetic multi-view vehicle images from a
generative adversarial network (GAN) [29] to alleviate cross-
view influences among vehicles. In [5], [16] authors also
implement view-invariant inferences effectively by learning a
viewpoint-aware representation. Although great progress has
been obtained by these methods, there is a huge drop when
encountering invisible variances of different vehicles as well
as large diversities in the same vehicle identity.
Metric Learning To alleviate the above limitation, deep
metric learning methods [30], [31], [32], [33] use powerful
distance metric expression to pull vehicle images in the
same identity closer while pushing dissimilar vehicle images
further away. The core idea of these methods is to utilize the
matching relationship between image pairs or triplets as much
as possible, which are widely used in IR works [34], [35],
[24]. Whereas, sampling strategies in deep metric learning lead
to suboptimal results and also lack of abilities to recognize
more meaningful unobtrusive details. It is thus limited by the
complex differences of the vehicle appearances.
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FIG. 3: Part-Guided Attention Network (PGAN) pipeline. The model consists of four modules: Part Extraction Module, Global Feature Learning Module,
Part Feature Learning Module and Feature Aggregation Module. The input vehicle image is first processed to obtain the global feature Fg and the part masks
{Mi }Di=1 of Top-D candidate parts. The part mask features {Fi }Di=1 is then obtained via Eq. (2), after which {Fi }Di=1 is fed into a Part Attention Module
(PAM) to obtain the part-guided feature Fp . PAM is a compact network, learning a soft attention weight w ∈ RD , which is composed of a mask-guided
average pooling (MGAP) layer and some linear and non-liner layers. Subsequently, the fusion feature F f is obtained by concatenating Fg and Fp . After the
refinement and global average pooling (GAP) operation, F̃g , F̃p and F̃ f are all used for the optimization of triplet loss functions L f , Lg and Lp , respectively.
Besides, as [24], F̃ f is followed by a BN layer and the normalized feature F̃ f b is used for optimizing the softmax cross-entropy loss Lc . Here, FC, WN, LN
and BN represent fully-connected layer, weight normalization, layer normalization and batch normalization respectively. Mean denotes a channel-wise mean
operation. C and C′ are channel dimension before and after refine operation.

B. Part Feature-based Methods

Similar as [36], [37], [38], [39], [40] focusing on object
patches in other IR works, a series of part-based learning
methods explicitly exploit the discriminative information from
multi-part locations of vehicles. [20] provides an attribute
detector while [41] provides a marker detector. [19], [21],
[22], [23], [42] take great efforts on separating feature maps
into multiple even partitions to extract specific features of
respective regions. However, it is difficult for vehicles to di-
rectly apply this naive partitions since the vehicle appearances
change a lot. In other words, almost all pedestrian images have
relative regular appearances from top to bottom (representing
head to feet), while vehicle appearances suffer from multiple
views without unique commons. For example, the bottom
partition of the front vehicle is wheels, while that is the
vehicle back of the rear one in ID2 in Figure 1. Although
[19] utilizes discriminative features from quadruple directions
for each vehicle, it still suffers from the misalignment problem
due to inaccurate grid partitions.

Another line of part-based methods [5], [43], [44], [45]
bring informative key-points to put more attention on effective
localized features. In particular, although [43] attempts to
detect and use keypoints, it defines a heuristic rule to choose
keypoints for every input image. Actually, [43] extracts a sub-
group of keypoint features based on the vehicle orientation,
in which the choice of the keypoint groups is manually
pre-defined. [5] applies an aggregation module on the local

features based on orientation. However, keypoints in each
orientation are treated equally and the detail information is
easy to be ignored. In contrast, we adaptively learn a soft-
attention for each detected local part feature, conditional on
the input image. The soft-attention coefficients, measuring the
importance of a local feature for the target task, are learnt by
using the sole target identification loss. In other word, we do
not rely on extra information while [43] uses orientation as
extra supervision.

Besides, [18], [20] denote to design part-fused networks
using ROI features of each part on vehicles from a pre-trained
detection model to extract discriminative features. However,
there is no importance selection on the candidate part regions
in [18], which considers all part regions equally. Instead, our
PGAN can select the most prominent part regions, e.g., annual
service signs and hungs, which are subtle yet important to
distinguish different vehicles. In addition, we apply a single
tailor-designed supervision for the soft-weighted part features
together. Compared with [18] applying separate supervision
to each part feature, our PGAN can provide more accurate
supervision with the aggregated feature. Although [46], [47],
[48] also utilize attention in the feature maps, the attention
mechanism is applied on each pixel in the feature map. Our
part attention module focuses on the pixel sets, i.e., detected
part regions on the feature maps. Thus, the context correlation
in a same part can be integrally considered. In this way, we
can not only consider all part features together as a whole but
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also pay more attention to the prominent part regions as well
as alleviate the influence of irrelative ones.

III. METHODOLOGY

We firstly define each vehicle image as x and the unique
corresponding identity label as y. Given a training set
X t={(xtn, ytn)}N

t

n=1, the main goal of the vehicle IR is to learn
a feature embedding function φ(xt ; θ) for measuring the
vehicle similarity under certain metrics, where θ denotes the
parameters of φ(·). It is important to learn a φ with good gen-
eralization on unseen testing images since there is no overlap
identities in training and testing dataset. During testing, given
a query vehicle image xq , we can find vehicles with the same
identity from a gallery set Xg = {(xgn, ygn )}

Ng

n=1 by comparing
the similarity between φ(xq; θ) and each φ(xgn ; θ), ∀xgn .

In this section, we present the proposed Part-Guided At-
tention Network (PGAN) in detail. The overall framework is
illustrated in Figure 3, which consists of four main compo-
nents: Part Extraction Module, Global Feature Learning Mod-
ule, Part Feature Learning Module and Feature Aggregation
Module. We first generate the part masks of vehicles in the part
extraction module, which are then applied on the global feature
map to obtain the mask-guided part feature. After that, we
learn the attention scores of different parts to enhance the part
feature via increasing the weights of discriminative parts as
well as decreasing that of less informative parts. Subsequently,
the three refined features, i.e., global, part, and fusion features
are all used for model optimization.

A. Global Feature Learning Module

For a vehicle image x, before obtaining the part features,
we first extract a global feature map Fg ∈ RH×W×C with a
standard convolutional neural network, as shown in Figure 3
(a). Most previous methods [34], [24] directly feed Fg into a
global average pooling (GAP) layer to obtain the embedding
feature that mainly considers the global information, which is
studied as a baseline model in our experiments.

However, due to the lost of the spacial information after
GAP, it is difficult to distinguish two near-identical vehicles,
as illustrated in ID1 and ID2 in Figure 1. Therefore, it is crucial
to maintain the spatial structure of feature maps, which helps
describe the subtle visual differences. We thus directly apply
Fg as one of the inputs for the following part learning process
and the final optimization, and we explore a novel method to
focus on the effective part regions following.

B. Part Extraction Module

We first extract the part regions using a pre-trained SSD de-
tector specially trained on vehicle attributes [20].Here, we only
consider 16 of all 21 vehicle attributes as shown in Table I.
The reason is that the remaining attributes are vehicle styles,
i.e., “car”, “trunk”, “tricycle”, “train” and “bus”, representing
the whole vehicle image which can be recognized as the global
information in our paper. Once detected, we only use the
confidence scores to select part regions and ignore the label
information of each part. It is reasonable since not all attributes

TABLE I: Name and abbreviation of vehicle attributes used in our paper.

Name Abbreviation Name Abbreviation
annual service signs anusigns back mirror backmirror
car light carlight carrier carrier
car topwindow cartopwindow entry license entrylicense
hanging hungs lay ornament layon
light cover lightcover logo logo
newer sign newersign tissue box tissuebox
plate plate safe belt safebelt
wheel wheel wind-shield glass windglass

are available in each vehicle due to the multi-view variation,
so that it is hard to decide a universal rule for reliable part
alignments (i.e., selecting same part regions for all vehicles).

Instead of naively selecting relevant part regions by setting
a threshold on the confidence scores, we select the most
confident top-D proposals as the candidate vehicle parts. The
main reasons are twofold: 1) some crucial yet less confident
bounding boxes, like annual service signs, play a crucial role
in distinguishing different vehicle images; 2) part number
is fixed, which is easy to learn the attention model in the
following stage. Note that we want to ensure a high recall
rate to avoid missing relevant parts. The irrelevant parts are
filtered out from the subsequent top-down attention learning.

We use the index i ∈ {1, 2, ...,D} to indicate each of the
selected top-D part regions. The spatial area covered by each
part is denoted as Ai . For each candidate part region i, we
obtain a binary mask matrix Mi ∈ {0, 1}H×W by assigning 1
to the elements inside the part region Ai and 0 to the rest,
denoted as:

Mi(pix) =
{
1, if pix ∈ Ai

0, if pix < Ai
, ∀i, (1)

where pix indicates a pixel location of Mi . Note that the size
of each Mi is the same as a single channel of Fg. It means
that if the parameters of the neural network or the sizes of
input images change, the corresponding part locations on Mi

will be changed accordingly and the spacial area Ai is also
changed. Although M can be scaled based on the input of
multi-scale images, we resize all images to the same resolution
for simplification and thus the size of M can be regularized
to H ×W . Besides, during processing, we force all Ai in the
range of H ×W to ensure all part regions are located in the
range of image areas (i.e., the size of H ×W).

After obtaining global feature Fg and part masks {Mi}Di=1,
we project the part masks on the feature map Fg to generate a
set of mask-based part feature representations {Fi}Di=1, which
will be taken as the input of the following part feature attention
module. For each part region i, we can obtain Fi via the
following formula:

Fi =Mi � Fg, ∀i ∈ {1, 2, ...,D}, (2)

where � denotes the element-wise product operation on each
channel of Fg. Fi is the mask-based part feature map of the
i-th part region. Note that all Fi ∈ RH×W×C . In each Fi ,
only the elements in the regions of i-th part are activated.
The illustration is shown in Figure 3 (c).

We learn an attention module on the part regions in the
following section. Unlike the traditional grid attention method
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FIG. 4: The module structure in the refine operation. C and C′ are the size
of channel of feature maps before and after the refine operation.

that processes a set of uniform grids, our attention model
can focus on the prominent parts by only activating the
selected parts. The irrelevant parts can thus be ignored directly.
Besides, the context correlation in a same part can be integrally
considered, alleviating missing of essential features. Moreover,
this part extraction process can be considered as a bottom-
up attention mechanism [49] with a set of candidate images
regions proposed.

C. Part Feature Learning Module

Part feature learning module is to produce a weight map
across the mask-based part feature maps {Fi}. In this way,
the network can focus on specific part regions. Recent meth-
ods [18], [50] highlight all part regions equally and thus ig-
nores the importance discrepancy among different part regions.
Besides, some detected parts might not be informative for
some specific cases, such as wrongly detected background
or windshield without useful information, which tends to
result in degraded results. To tackle the above problems, we
propose a part attention module (PAM) to adaptively learn
the importance of each part so as to take more attention
to the most discriminating regions and suppress those with
less information. Consequently, PAM can be considered as a
part-based top-down attention mechanism, since this attention
signal is supervised by the specific identification task to predict
an importance distribution over candidate image regions.
Part attention module (PAM) Our PAM is designed to obtain
a part-guided feature representation Fp ∈ RH×W×C relying on
a top-down attention mechanism on candidate part regions.
From PAM, we can obtain a soft weight vector w ∈ RD
to indicate the importance of each part region, thus the part-
guided feature representation Fp can be obtained as:

Fp =

D∑
i=1

wiFi + Fg, (3)

where wi ∈ [0, 1] denotes the i-th element of the soft weight
w, which represents a learned weight of i-th part feature Fi

obtained via Eq. (4). w is normalized with sum as 1 so that the
relative importance between different parts is obvious. Here,
Fg is added to augment the capability of part regions.

We learn a compact model to predict the attention weights w
for measuring the different importance of each selected part,

as shown in Figure 3 (c). Specifically, we first use a mask-
guided global average pooling operation (MGAP) on each Fi

and then learn a mapping function with a softmax layer to
obtain w. Each element wi can be predicted by:

wi =
exp( ψ(mgap(Fi,Mi), θψ) )∑D
j=1 exp( ψ(mgap(Fj,Mj), θψ) )

, (4)

where ψ (·) denotes a learnable function that is able to
highlight the most important part regions with high values
(as shown in Figure 3 (c)). θψ is the parameter of mapping
function ψ(·), and mgap(·) denotes MGAP operation discussed
in the following.

Before feeding Fi into ψ, we average each channel of Fi as
a scalar via the mgap(·) operator. Note that, in each Fi , only
the elements in the part region i are activated and most of the
elements in Fi are zero. Instead of performing the standard
global average pooling (GAP), we restrict the average pooling
in the areas indicated by the mask Mi via the MGAP operator.
In detail, for each channel of Fi , after summing the nonzero
elements, the MGAP operator devides the sum value with
the number of elements (i.e.| |Mi | |1 < H ×W), instead of the
number of total elements (i.e. H ×W) in the GAP.

D. Feature Aggregation Module
Since global and part-based features provide complementary

information, we concatenate the global feature Fg and part-
guided feature Fp together, which is then denoted as fusion
feature F f ∈ RH×W×2C . Furthermore, we adopt a Refine oper-
ation on F f to reduce the dimension of feature representation
to speed up the training process. The Refine operation is
composed of a SE Block [51] and a Residual Block [52],
which is illustrated in Figure 4. After a global average pooling
(GAP) layer, the refined fusion feature F̃ f ∈ R2C′ , F̃g ∈ RC

′

and F̃p ∈ RC
′

are obtained for the whole model optimization.
Here, C ′ is the size of channel of feature maps after the refine
operation, while C is that before the refine operation. Note that
following [24], an additional batch normalization(BN) layer is
adopted on F̃ f . It is proved to be beneficial for optimizing the
softmax cross-entropy loss [24]. Here, we denote the feature
after the BN layer as F̃ f b .

E. Model Training
In the training process, we adopt softmax cross-entropy loss

and triplet loss [34] as a joint optimization. In specific, we
apply triplet loss on F̃ f and softmax cross-entropy loss on F̃ f b ,
denoted as L f and Lc . In order to make full use of the global
and part information separately, we also optimize the refined
global feature F̃g and part-guided feature F̃p with triplet loss,
which are denoted as Lg and Lp , respectively. Overall, the
total loss function can be formulated as:

L = λLc + Ltri = λLc + L f + Lg + Lp, (5)

where λ is the loss weight to trade off the influence of two
types of loss functions, i.e., softmax cross-entropy loss Lc

and triplet loss Ltri . Experiments show that joint optimization
could improve the ability of feature representation.

For evaluation, we use the normalized fusion feature F̃ f b

as the final feature representation in our work.
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TABLE II: Comparison on the different optimization methods of PGAN on
VeRi-776. F̃ f b is used as the feature representation. For fairness, the feature
dimension is fixed to 512 for all methods including the baseline model. We
omit the loss weight in Eq. 5 for clarity and set λ to 2 here.

Method Optimization mAP Top-1 Top-5
Baseline Lc + L f 75.7 95.2 98.2

Ours

Lc + L f 77.7 95.9 98.5
Lc + L f + Lg 78.0 95.1 97.7
Lc + L f + Lp 78.5 95.8 98.3

Lc + L f + Lg + Lp (PGAN) 79.3 96.5 98.3

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We evaluate our PGAN method on four public large-scale
Vehicle IR (a.k.a., re-identification) benchmark datasets.

VeRi-776 [11] is a challenging benchmark in vehicle IR task
that contains about 50, 000 images of 776 vehicle identities
across 20 cameras. Each vehicle is from 2-18 cameras with
various viewpoints, illuminations and occlusions. All datasets
are split into a training set with 37, 778 images of 576 vehicles
and a testing set with 11, 579 images with 200 vehicles.

VehicleID [25] is a widely-used vehicle IR dataset which
contains vehicle images captured in the daytime by multiple
cameras. There are total of 221, 763 images with 26, 267
vehicles, where each vehicle has either front or rear view. The
training set contains 110, 178 images of 13, 134 vehicles while
the testing set comprises 111, 585 images of 13, 133 vehicles.
The evaluation protocol of the large test subset VehicleID is
randomly selecting one image from each vehicle to generate a
gallery set (2400 images) while the remaining images are used
as query set. The random selection process was repeated for
10 times and the mean result is used as the final performance.

VRIC [26] is a realistic vehicle IR benchmark with un-
constrained variations of images in resolution, motion blur,
illumination, occlusion, and multiple viewpoints. It contains
60, 430 images of 5, 622 vehicle identities captured from 60
different traffic cameras during both daytime and nighttime.
The training set has 54, 808 images of 2, 811 vehicles, while
the rest is used for testing with 5, 622 images of another 2, 811
vehicle IDs.

VERI-Wild [8] is recently released with 416, 314 vehicle
images of 40, 671 IDs captured by 174 cameras. The training
set consists of 30, 671 IDs with 277, 797 images. The small
test subset consists of 3, 000 IDs with 41, 816 images while
the medium and large subset consist of 5, 000 and 10, 000 IDs
with 69, 389 and 138, 517 images respectively.

Evaluation metrics. To measure the performance for ve-
hicle IR, we utilize the Cumulated Matching Characteristics
(CMC) and the mean Average Precision (mAP) as evaluation
criterions. The CMC calculates the cumulative percentage of
correct matches appearing before the top-K candidates. We
report Top-1 and Top-5 scores to represent the CMC criterion.
Given a query image, Average Precision (AP) is the area
under the Precision-Recall curve while mAP is the mean value
of AP across all query images. The mAP criterion reflects
both precision and recall, which provides a more convincing
evaluation on IR task.

TABLE III: Performance comparison on different attention methods, i.e.,
grid attention, PGAN without Part Attention Module (PAM) and our PGAN
on VeRi-776.

Method Dimension mAP Top-1 Top-5
Baseline

256

75.3 95.3 98.2
Grid Attention 76.1 95.3 97.7
PGAN w/o PAM 77.9 95.6 98.4
PGAN 78.6 95.4 98.0
Baseline

512

75.7 95.2 98.2
Grid Attention 77.0 95.8 98.0
PGAN w/o PAM 78.0 95.5 98.2
PGAN 79.3 96.5 98.3

B. Implementation Details

Part extraction. we directly conduct the inference process
to extract part regions using the pretrained detector [20].
There is no re-train or finetune process in our method since
the attribute annotations in the four datasets, i.e., VeRi-776,
VehicleID, VRIC and VERI-Wild, are not available. In the
training process of the detector in [20], which is based on
the SSD model [53], the VOC21_S dataset [20] is used as
the training data. The VOC21_S dataset is captured during
both daytime and nightime by multiple real-world cameras in
several cities, so that this dataset shares similar scenarios with
the four datasets we used. Since these datasets are collected by
different cameras in not exactly the same environment, there
is a domain gap issue to some extent. During the inference,
the NMS threshold is set to 0.45 in all experiments. For each
image, we extract Top-D part regions according to confident
scores, where D = 8 without specification.

Vehicle IR model. We adopt ResNet50 [52] without the last
classification layer as the backbone model in the global fea-
ture learning module, which is pre-trained on ImageNet [54]
initially. The model modification follows [24], i.e., removing
the last downsample operation and adding a BN layer before
softmax cross-entropy loss.

All images are resized to 224×224. The data augmentations,
i.e., random horizontal flipping and random erasing [55] with
a probability of 0.5, are used as in [24]. We use Adam
optimizer [56] with a momentum of 0.9 and a weight decay
5 × 10−4. For all experiments without other specification, we
set the batch size to 64 with 16 IDs randomly selected. The
learning rate starts from 1.75 × 10−4 and is multiplied by 0.5
every 20 epochs. The total number of epochs is 130.

C. Ablation Study

1) Effectiveness of joint optimization: We first design an
ablation experiment analyzing the effectiveness of joint opti-
mization with different features and loss functions. For our
method, we use the normalized feature F̃ f b as the feature
representation and fix the feature dimension of F̃ f b to 512,
i.e., C ′ = 256. For a fair comparison, we also set the feature
dimension to 512 in a baseline model. As reported in Table II,
we can observe that only using optimization on the fusion
feature, i.e., Lc + L f , can improve the performance by 2%
on mAP comparing with baseline model, which confirms that
PAM can provide important part information that is better
for model optimization. After adding Lg and Lp separately,
mAP can improve by about 1%. It shows that combining
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FIG. 6: Parameter analysis of the loss weight λ on VeRi-776.

with the additional optimizations on the global and part
feature can provide more useful information for the model
training. Furthermore, with the joint optimization with all
these loss functions, the result improves to 79.3% mAP, which
outperforms the baseline model by 3.6%.

2) Analysis of different attention method: We first imple-
ment traditional grid attention by removing part extraction
module, i.e., PAM is directly used on each grid of Fg ∈
RH×W×C . As shown in Table III, grid attention can only
achieve 77.0% mAP and 95.8% Top-1 accuracy when the
feature dimension is 512, showing that part guidance is crucial
for filtering invalid information like background. Moreover, we
also use the identical weight for each part region by removing
PAM. It can be seen as a bottom-up attention with the part
guidance from a detection model. From Table III, we can find
0.7% and 1.3% mAP decrease when feature dimension is 512
and 256 without PAM. It proves that PAM is beneficial for
focusing on prominent parts as well as suppressing the impact
of some wrongly detected or useless regions. We exactly note
that our PGAN w/o PAM is still better than grid attention
by 1.0% mAP, which also proves the important role of the
part-guided bottom-up attention.

3) Parameter analysis of the feature dimension: We first
analyze the effectiveness of different feature dimension. The
dimension 2C ′ of fusion feature F̃ f b on VeRi-776 is used as
the variable. As shown in Figure 5, our PAM module has
consistent improvement compared with the baseline model
whatever the dimension is. In particular, when 2C ′ = 2048,
our PGAN outperforms baseline model by 3.9% and 1.7%
in mAP and Top-1 respectively. Besides, it is worth noting
that our PGAN with low dimension still performs better
than baseline with high dimension. For example, our PGAN

TABLE IV: Performance comparison on different part number D of PGAN
on VeRi-776. F̃ f b is used as the feature representation.

Part Number D
Dimension 256 Dimension 512

mAP Top-1 Top-5 mAP Top-1 Top-5
Baseline 75.3 95.3 98.2 75.7 95.2 98.2
4 76.9 95.4 97.8 76.8 94.8 98.0
6 78.5 95.8 98.0 78.7 96.2 98.0
8 78.6 95.4 98.0 79.3 96.5 98.3
10 77.6 95.5 98.3 79.1 95.9 98.2
12 77.9 94.7 97.9 77.5 95.6 98.1

TABLE V: Performance comparison on different part number D of PGAN on
VRIC and VERI-Wild (large subset). F̃ f b is used as the feature representation.
The feature dimension is fixed to 512.

Part Number D
VRIC VERI-Wild (large)

mAP Top-1 Top-5 mAP Top-1 Top-5
Baseline 83.5 76.1 93.0 69.4 88.1 95.4
4 84.1 76.8 93.0 70.8 89.5 95.9
6 84.6 77.6 93.6 70.7 89.4 95.8
8 84.8 78.0 93.2 70.6 89.2 95.7
10 84.1 76.8 93.2 70.7 89.6 95.8
12 84.3 77.1 93.8 70.6 89.7 95.8

with 256 dimension surpasses the baseline model with 512
dimension by a large margin (78.6% vs. 75.7% mAP), which
highly proves the effectiveness of our PGAN.

4) Parameter analysis of the loss weight λ: In Figure 6, we
conduct experiments to compare different values of the loss
weight λ in Eq. (5), which evaluates the trade off between
softmax cross-entropy loss and triplet loss. When λ = 0, we
only use triplet loss on F̃ f as the optimization. It is clear
that when adding softmax cross-entropy loss on F̃ f b into the
model, our approach can obtain further improvement when the
range of λ is from 1.0 to 2.0. However, too small λ and too
large λ both lead to the bad influence for the model training.
We believe that there is a trade off between these two-type loss
functions. Too large λ means the relation restriction among
samples from the triplet loss does less effort for the model
optimization, while too small λ means less effectiveness of
the global structure from the softmax cross-entropy loss. Form
Figure 6 we can see that the best result is obtained when λ
is set to 2. Without specification, we use λ = 2 as the default
loss weight in our paper.

5) Parameter analysis of the number of part regions D:
In addition, we analyse how the number of part regions D in
the part extraction module affects the IR results. We test the
performance with D = {4, 6, 8, 10, 12} of our PGAN on VeRI-
776 in Table IV and on VRIC and VERI-Wild in Table V.
The evaluated feature dimension is set to 256 and 512.

As shown in Table IV and Table V, there is a consistent
improvement when utilizing the part guidance in our PGAN
compared with the baseline model, which clearly verifies the
effectiveness of our PGAN method. When the part number
D is not large, our PGAN can gradually improve the IR
performance with the number of part regions increasing. It
shows that the fixed number of part regions is able to narrow
down the possible searching regions, which is helpful for
focusing on the valid part components. Besides, our PAM
can further improve the effectiveness of the part guidance by
applying more concentration on the prominent part regions.
Especially, when D is changed from 6 to 8 on VeRi-776
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TABLE VI: Comparisons with state-of-the-art IR methods on VeRi-776, VehicleID, VRIC and VERI-Wild. In each column, the first and second highest
results are highlighted by red and blue respectively. The results of Siamese-CNN+Path-LSTM [14] and OIFE [5] on VRIC is reported by MSVR [26]. ∗
denotes that VANet uses ResNet50 for VehicleID dataset while uses GoogLeNet for VeRi.

Method Backbone VeRi-776 VehicleID VRIC VERI-Wild
Small Medium Large

mAP Top-1 mAP Top-1 Top-5 mAP Top-1 Top-5 mAP Top-1 mAP Top-1 mAP Top-1
FACT+Plate-SNN+STR [11] GoogleNet 27.8 61.4 - - - - - - - - - - - -
Siamese+Path-LSTM [14] ResNet50 58.3 83.5 - - - - 30.6 57.3 - - - - - -
OIFE [5] GoogleNet 51.4 92.4 - 67.0 82.9 - 24.6 51.0 - - - - - -
PROVID [13] GoogleNet 53.4 81.6 - - - - - - - - - - - -
VAMI [16] Self-design 50.1 77.0 - 47.3 70.3 - - - - - - - - -
MSVR [26] MobileNet 49.3 88.6 - 63.0 73.1 - 46.6 65.6 - - - - - -
RNN-HA [12] ResNet50 56.8 74.8 - 81.1 87.4 - - - - - - - - -
SCAN [46] VGG16 49.9 82.2 - 65.4 78.5 - - - - - - - - -
RAM [23] VGGM 61.5 88.6 - 67.7 84.5 - - - - - - - - -
AAVER [43] ResNet50 66.4 90.2 - 63.5 85.6 - - - - - - - - -
Part-Regular [18] ResNet50 74.3 94.3 - 74.2 86.4 - - - - - - - - -
FDA-Net [8] Self-design 55.5 84.3 61.8 55.5 74.7 - - - 35.1 64.0 29.8 57.8 22.8 49.4
QD-DLF [19] Self-design 61.8 88.5 68.4 64.1 83.4 - - - - - - - - -
VANet [57]∗ ResNet50 66.3 89.8 - 80.4 93.0 - - - - - - - - -
TAMR [48] ResNet18 - - 61.0 59.7 73.9 - - - - - - - - -
GRF+GGL [42] VGGM 61.7 89.4 - 70.0 87.1 - - - - - - - - -
MVAN [47] ResNet50 72.5 92.6 76.8 72.6 83.1 - - - - - - - - -
Baseline [24] ResNet50 75.7 95.2 83.5 77.5 91.0 83.5 76.1 93.0 82.6 94.0 77.2 91.7 69.4 88.1
PGAN ResNet50 79.3 96.5 83.9 77.8 92.1 84.8 78.0 93.2 83.6 95.1 78.3 92.8 70.6 89.2

dataset, the performance can be improved by 3% to 3.6% in
mAP when the feature dimension is 512 and 3.2% to 3.3%
in mAP when the feature dimension is 256 compared with
the baseline model. When D = 8, we can obtain the relatively
best result. However, the performance decreases when the part
number continually increases. The reasons are twofold: 1)
many detected part regions are covered with each other, which
provide no further part information for the model learning; 2)
more wrongly detected parts are extracted that results in the
distraction of the model learning via providing large invalid
information. We believe that if we use a better detector, the
performance will be further improved.

The similar trend is observed on VRIC dataset, as shown
in Table V. However, for VERI-Wild dataset, our PGAN is
relatively robust to the part number. The reason is that images
in VERI-Wild are high resolution and the part regions are
detected more accurately. A few part regions are satisfactory to
distinguish different vehicles. Although there exists an optimal
D for a specific dataset, we use 8 as the default setting for
simplification.

6) Effectiveness on different baseline: In order to fully
verify the effectiveness of our PGAN, we apply our method
on various of baseline models. As shown in Figure 7, we can
see that deeper backbone is beneficial for the performance,
e.g., ResNet18 baseline achieves 71.0% mAP while ResNet50
baseline 75.7%. In particular, we discard the last three FC
layers in VGGM [58] backbone and the last FC layer in
GoogleNet [59] backbone to insert our PGAN into the model.
PGAN gains 2.8% and 1.7% mAP increases when applied on
the GoogleNet baseline and VGGM baseline respectively. This
validates the effectiveness of our proposed PGAN, which can
be used as a general module for other tasks to some extent.
We can also see that the improvement on VGGM is less than
PGAN applied on ResNet50 baseline (3.6% mAP). The reason
might be that the size of channels of the output features from
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FIG. 7: Effectiveness on different baseline. v1 and v2 are the variation
versions of our used baseline ResNet50 model [24]. v1 denotes the plain
ResNet50 (last stride is 2) in [52] without data augmentation [55]. v2 denotes
the v1 with [55]. Here, we remove the downsampling and use [55] in
ResNet18, GoogleNet and ResNet50 for fair comparison.

the VGGM and GoogleNet backbone is 512 and 1024, which
is smaller than that of ResNet50 (i.e., 2048). Therefore, PAM
module has more robust ability of feature representation in
ResNet50 than that in VGGM and GoogleNet backbone.

Moreover, we can observe that some training methods
in [24] are beneficial for the performance increase. In par-
ticular, when we use ResNet50 (v1), the original model with
last stride as 2 and without data augmentation [55], our PGAN
obtains about 3% improvement. Our PGAN is also useful for
the version of ResNet50 (v2), i.e., adding [24] on ResNet50
(v1). We can get 2.6% mAP improvement when comparing
with the baseline. Overall, our PGAN can provide consistent
improvement whatever the baseline is.

D. Comparison with State-of-the-art Methods

Finally, we compare our PGAN against other state-of-the-
art vehicle IR methods, shown in Table VI. All reported results
of our method are based on 512-dimension F̃ f b .
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FIG. 8: Illustration of visualized comparison between traditional grid attention and our PGAN on VeRi-776 dataset. For a query image, we draw: (a) Top-5
retrieval results and (b) the corresponding heatmaps of Fp from PAM in grid attention; (c) Top-5 retrieval results, (d) the detected candidate part regions
and (e) the corresponding heatmaps of Fp from PAM in PGAN. The correct and false matched vehicle images are enclosed in green and red rectangles
respectively. It shows that our PGAN can put more attention on the most prominent part regions, such as back mirrors, windshield stickers and car brands.
However, the grid attention mainly focuses on some insignificant regions like the car roof, resulting in the attention distracting. (Best viewed in color)

For VeRi-776, we strictly follow the cross-camera-search
evaluation protocol as [11]. From Table VI, it is clear that our
PGAN outperforms all the existing method for a large margin.
For instance, the performance of PGAN is better than the
state-of-the-art method, i.e., Part-Regular [18], for 5% mAP
and 2.3% Top-1 respectively. RAM [23] concatenates all the
global and local features together as the final representation,
which achieves 61.5% mAP with VGGM backbone. Similar
as RAM, our PGAN can achieve 63.6% mAP with VGGM
when combining F̃ f b , F̃g and F̃p together.

For VehicleID, we only report the result of the large test
subset on Top-1 and Top-5. Our method surpasses almost all
the methods except RNN-HA [12] at Top-1 and VANet [57].
Notice that RNN-HA uses the additional supervision of the
vehicle model and the size of input image is 672 × 672 (9
times bigger than ours). However, as reported in [12], the
performance of RNN-HA is extremely dropped by a large
margin on VeRi-776 when the image size is set to 224 × 224,
which is lower than our PGAN for about 22% in Top-1. In
addition, VANet uses a specific viewpoint-based loss function,
in which viewpoint labels are generated from a viewpoint
model that is trained on manually annotated training samples.
It is specially good for the front and rear view that appears
in all vehicles in VehicleID. For VeRi-776, containing multi-

view vehicles, the mAP of VANet is lower than our PGAN
by 13%. Since VANet only reports the result on GoogleNet
backbone on VeRi-776, we also use the same backbone in our
PGAN. From Figure 7, we can see that our PGAN obtains
71.2% mAP using GoogleNet as the backbone model, which
is largely higher than VANet (66.3% mAP). It means that our
PGAN is more beneficial for improving the performance in
the multi-view scenario.

For VRIC, one of the largest dataset in vehicle IR, our pro-
posed PGAN achieves satisfactory performance with 78.0%
mAP and 93.2% Top-1. Note that we only use single reso-
lution in both training and inference stages, achieving higher
performance than MSVR [26] using multi-scale feature rep-
resentations. We can also observe that although our baseline
model has achieved satisfactory results, our PGAN can still
improve the performance. It proves that although suffering
from extreme motion blur, low resolution and various complex
environment in VRIC dataset, our method can still extract
useful and valid information. Since the detector [20] is applied
without finetune, we believe that with a more accurate detector,
our PGAN is able to perform better.

VERI-Wild is a newly released large vehicle dataset with
more unconstrained variations in resolutions, illuminations,
occlusion, and viewpoints, etc. There are only a few meth-



10

Top-1 Top-3ID1

(a)

(b)

(c)

Top-1 Top-3ID2

Top-1 Top-3ID3 Top-1 Top-3ID4

(a)

(b)

(c)

FIG. 9: Visualization of Top-3 retrieval images of baseline and our PGAN.
ID1 and ID2 are from VRIC dataset, while ID3 and ID4 are from VERI-
Wild dataset. For a query image, we draw: (a) Top-3 retrieval results from
baseline; (b) Top-3 retrieval results and (c) the corresponding heatmaps of
Fp from PAM in PGAN. The correct and false matched vehicle images are
enclosed in green and red rectangles respectively.

ods that have reported the results. Table VI shows that our
proposed PGAN achieves great improvement compared with
other methods, e.g., achieving 70.6% mAP at the large test
subset. FDA-Net [8] uses grid attention module to strengthen
the model ability on local subtle differences, which performs
worse than our PGAN. For fairness, we also conduct grid
attention instead of PAM in our method and achieve 70.2%
mAP, showing that our method is more useful via focusing
on subtle differences. Moreover, we apply VGGM as the
backbone model for VeRi-776, as shown in Figure 7. Our
PGAN gets 59.5% mAP that is better than FDA-Net (55.5%).

We also report the result of the baseline model on all dataset.
Note that, we also set the feature dimension to 512 in baseline
model for fairness since the feature dimension of our fusion
feature F̃ f b is set to 512. Experiments show that our method
achieves higher results than the baseline model in all datasets.

E. Visualization

In this section, we visualize some retrieval results of the
baseline, grid attention and our part-guided attention method
(PGAN), repectively. As shown in Figure 8, we illustrate four
different query vehicle images and their corresponding Top-
5 most similar images as well as the heatmaps of Fp from
the gallery set on VeRi-776 dataset. Meanwhile, we illustrate
the Top-3 retrieval results on VRIC and VERI-Wild datasets in
Figure 9 to show the effectiveness of our PGAN. In detail, the
main advantages of our PGAN can be summarized as follows:

1) Insensitive to various situations: Our PGAN can extract
more robust feature representation so as to significantly im-
prove the IR performance. As shown in the ID2 and ID3 in
Figure 8, given a rear vehicle image, we can not only find the
easy vehicles from the rear views, but also get the side-view
vehicle images that are difficult to recognize even by humans.
In contrast, the grid attention can only focus on the images
from the nearly same views. Moreover, our PGAN is also able

TABLE VII: The average running
time (ms) per frame on VeRi-776.

Method Module
Detector IR Total

Baseline - 11.8 11.8
PGAN 39.2 12.3 51.5

Top-1 Top-2ID3 Top-1 Top-2ID4

FIG. 10: Illustrations of some failed
samples on the VRIC dataset.

to deal with various situations. As shown in Figure 9, although
images in VRIC and VERI-Wild datasets suffer from blur,
illumination and occlusion, our PGAN can still find the correct
vehicles according to the prominent part regions. It means that
our method is more robust to learn discriminative features that
is not sensitive to multiple variants from the environment.

2) The effectiveness of the part extraction module as the
bottom-up attention: The detected part regions play an impor-
tant role in feature representation. As illustrated in the ID3,
it is clear that the wrongly retrieved images from the grid
attention method are different from the query image from the
car lights. However, a lot of regions representing the body
and the bottom of the car are concentrated, which are not the
obvious differences between two vehicles. Nevertheless, with
the guidance of the detected part regions, our PGAN can only
focus on these candidate regions that is beneficial for focusing
on useful regions as well as alleviating the bad effect from the
other regions. In other words, the part extraction module helps
the network learning by narrowing down the searching ranges.

3) The effectiveness of the part attention module as the top-
down attention: Our PGAN is useful for selecting the most
prominent part regions and lighten the influence of invalid and
useless regions. As described in the main paper, we propose
a part attention module (PAM) that is responsible for learning
a soft attention weight for each part. Therefore, the important
part regions are underlined by a high-attention value, while
the impact of other insignificant parts is relatively suppressed.
From the feature maps, we can clearly observe that our PGAN
could focus on the most prominent part regions, such as the car
lights in ID3, back mirrors in ID1. As shown in ID4, although
there are few valid part regions that are extracted, our PGAN
can still find the key information to recognize the vehicles,
such as the wheel and the cat lights. On the contrary, the grid
attention is largely influenced by some invalid regions that are
extremely similar in different vehicles, such as the bottom of
the vehicle body.

4) The influence of the overlapped part regions: When the
area of the overlapped region is large, the attention weights
of both two regions from our PAM will be tended to be large
consistently if this region is prominent, and vice versa, e.g.,
the side wind-shield glass of ID3 in Figure 8. For another
situation that the area of the overlapped region is small, our
PAM can provide the overall evaluation for every part region.
For example, as the illustrated image in Figure 3, the attention
weight of the annul services sign is large due to its unique,
while the weight of the wind-shield glass is small because it
has relatively less informative information.

5) The limitation of our PGAN: From Figure 10, it shows
that our PGAN fails to distinguish: i) the extreme similar
vehicles that share the same appearance; ii) the public vehicles
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without unique features. It is reasonable since our PGAN
depends on the discriminative information. If vehicle plates
are available, our PGAN can achieve higher performance.

F. Discussion

As shown in Table I, 16 attributes are included in our
part extraction module. Although the attribute information is
ignored when selecting the top-D part regions based on the
confidence scores, we can still analyze which part regions are
prominent. We extract the attention weights from the PAM
on the VeRi-776 training dataset. Note that we set D = 8 in
this section and newer sign attribute is not appeared in VeRi-
776 training dataset. From Figure 11(a), we can observe that
carlight is the most frequently selected part. It makes sense that
carlight appears in almost all vehicles whatever the vehicle
view is. Moreover, windglass, backmirror and wheel also
appear frequently, while layon (lay ornament), entry license,
hungs and tissue appear rarely. Refer to Figure 11(b), it is clear
that carlight plays the most important role in distinguishing
different vehicles. It is interesting to see that some subtle part
regions still have useful information, such as logo, hungs,
entrylicense and annusigns, although these attributes appear
less than windglass and backmirror that include nearly no
information. The analyses show that our PGAN is effective to
attend the meaningful and useful information for identifying
vehicles in an interpretatable way.

Furthermore, we also report the running time. All experi-
ments are conducted on a GeForce GTX 1080 Ti machine.
Table VII shows that the IR module in PGAN can achieve the
comparable speed with the baseline despite the additional PAM
module and feature aggregation module. Although the SSD
detector [20] is time-consuming, our PGAN is still practical
in the real world.

V. CONCLUSION

In this work, we have presented a novel Part-Guided At-
tention Network (PGAN) for vehicle instance retrieval (IR).
First, we extract part regions of each vehicle image from an
object detection model. These part regions provide a range
of candidate searching area for the network learning, which
is regarded as a bottom-up attention process. Then we use
the proposed part attention module (PAM) to discover the
prominent part regions by learning a soft attention weight for
each candidate part, which is a top-down attention process. In
this way, the most discriminative parts are highlighted with
high-attention weights, while the opposite effects of invalid
or useless parts are suppressed with relatively low weights.
Furthermore, with the joint optimization of the holistic feature
and the part feature, the IR performance can be further
improved. Extensive experiments show the effectiveness of our
method. The proposed PGAN outperforms other state-of-the-
art methods by a large margin. We plan to extend the proposed
method to the multi-task learning, i.e., object detection and
tracking, for simultaneously improving the performance of
these two tasks.
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FIG. 11: Statistical analysis of the effectiveness of each attribute in Table I on
VeRi-776 training dataset. Attribute names are denoted as the abbreviations
in Table I. (a) Number statistic for each vehicle attribute. (b) The probability
density function of attention weights from PAM for each attribute. The most
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