
This is a post-print version of the article
ERRATA CORRIGE ON “ MODELING AND COMPUTING TERNARY PROJECTIVE RELATIONS BETWEEN REGIONS”

Eliseo Clementini, Roland Billen and Marco Santic
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

NOVEMBER 2011
PP 7-15

ORIGINAL PUBLICATION CAN BE FOUND AT THIS ADDRESS : HTTP://DOI.IEEECOMPUTERSOCIETY.ORG/10.1109/TKDE.2011.239
 1

Errata Corrige on “ Modeling and Computing
Ternary Projective Relations Between

Regions”

Eliseo Clementini, Roland Billen, and Marco
Santic

We report a corrected version of the algorithms to com-
pute ternary projective relations between regions ap-
peared in [1]. Not all the algorithms were affected by er-
rors, but only some special cases that were treated by par-
ticular functions (on pages 810-811).The affected func-
tions were “NN_Case_Before_After”,
“Treat_Between_Zone”, “BT_Case_Before_After”, and
“BT_Case_Leftside_Rightside”. The function
“NN_Case_Before_After” and “Treat_Between_Zone”
should be changed by the functions with the same name
as listed afterwards. The functions
“BT_Case_Before_After” and
“BT_Case_Leftside_Rightside” are instead to be replaced
by new functions “Case_Between_Before”,
“Case_Between_After”, “Case_Between_Leftside”, and
“Case_Between_Rightside”. The computational complexi-
ty of the overall algorithm is not affected by these
changes, which are merely a rearrangement of the condi-
tions to be checked. The errors were discovered thanks to
a new implementation and experiments performed on po-
lygons of various shapes, while the previous implementa-
tion was tested on a limited number of simplified shapes.
The corrected version of the algorithm has been checked
against all possible significant configurations and there-
fore we can be sure that all errors have been found out.
Providing a full proof of the correctness of the algorithms
would be out of the scope of this errata corrige. Nonethe-
less, we discuss the basic strategy that has been used. By
possible significant configurations we mean the geometric
configurations that produce a change in the projective re-
lation. There is a finite number of such geometric configu-
rations: consider the case of a segment a1a2 with an end-
point in Between zone and an endpoint in Leftside zone
(Fig.1). The algorithms in this case need to assess whether
the segment intersects After and Before zones as well. Let
us divide the Between zone in four parts as determined by
the internal tangents: considering the position of endpoint
a1 in each of these four parts, we enumerate the possible

positions (leftside or rightside) of the segment with respect
to the four points r,s,u,v (see Fig.1). Once obtained the
possible configurations of a segment, it suffices to check
whether the algorithm is correct. The same procedure can
be applied to identify the significant positions of seg-
ments for other combinations of the positions of end-
points in the five zones. The corrected functions are fol-
lowing.

Between(B,C)

Rightside(B,C)

Leftside(B,C)

Before(B,C)

After(B,C)B
C

a1

a2

r s

u v

1
23

4
5

6

7 8O

Fig.1. The possible configurations (dotted lines) of segment a1a2
bridging Between(B,C) and Leftside(B,C) zones. The Between(B,C)
zone is divided in four parts by the internal tangents, identified by the
angles rOs, uOr, vOu, sOv. If the endpoint a1 is inside the angle rOs,
there are three possible configurations of the segment (labels 1,2,3):
for configuration 1, ls(v,a1,a2) and ls(u,a1,a2) hold; for configuration 2,
rs(v,a1,a2) and ls(u,a1,a2) hold; for configuration 3, rs(v,a1,a2) and
rs(u,a1,a2) hold. Analogously, there are two configurations (labels
4,5) for angle uOr, one configuration (label 6) for angle vOu, and
two configurations (labels 7,8) for angle sOv.

function NN_Case_Before_After
begin

if pos = bf then {firstvertex= 1ia − ; secondvertex= ia }
else /* pos = af */

{firstvertex= ia ; secondvertex= 1ia − };
if Check_Intersect(firstvertex, secondvertex,

()CH B C∪)
then Update_5int(bt);
if ls(r, firstvertex, secondvertex) or

ls(s, firstvertex, secondvertex)
then Update_5int(rs)
else if rs(u, firstvertex, secondvertex)

or rs(v, firstvertex, secondvertex)
then Update_5int(ls)

end;

function Treat_Between_Zone
begin

if (pos = bf) or (posnext = bf) then
 if not Check_Matrix(ls, rs, af)

then Case_Between_Before else;
 if (pos = af) or (posnext = af) then
 if not Check_Matrix(ls, rs, bf)
 then Case_Between_After else;
 if (pos = ls) or (posnext = ls)
 if not Check_Matrix(bf, af)
 then Case_Between_Leftside else;
 if (pos = rs) or (posnext = rs)

————————————————
• E. Clementini is with the Dept. of Electrical and Information Eng., Univer-

sity of L’Aquila, L’Aquila, Italy. E-mail: eliseo.clementini@univaq.it.
• R. Billen is with the Dept. of Geography, University of Liege, Liege, Bel-

gium. E-mail: rbillen@ulg.ac.be.
• M. Santic is with the Dept. of Electrical and Information Eng., University

of L’Aquila, L’Aquila, Italy. E-mail: marco.santic@westaquila.com.

Manuscript received (insert date of submission if desired). Please note that all ac-
knowledgments should be placed at the end of the paper, before the bibliography.

http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.239�

2

 if not Check_Matrix(bf, af)
 then Case_Between_Rightside else;
end;

function Case_Between_Before
begin
 if pos = bf then {firstvertex= 1ia − ; secondvertex= ia }
 else /* posnext = bf */
 {firstvertex= ia ; secondvertex= 1ia − };
 if rs(secondvertex, r, v) then
 if ls(r, firstvertex, secondvertex)
 then
 { Update_5int(rs);
 if ls(s, firstvertex, secondvertex)
 then Update_5int(af);
 }
 if ls(secondvertex, u, s) then
 if rs(u, firstvertex, secondvertex)
 then
 { Update_5int(ls);
 if rs(v, firstvertex, secondvertex)
 then Update_5int(af);
 }
end;

function Case_Between_After
begin
 if posnext = af then
 {firstvertex= 1ia − ; secondvertex= ia }
 else /* pos = af */
 {firstvertex= ia ; secondvertex= 1ia − };
 if rs(firstvertex, u, s) then
 if ls(s, firstvertex, secondvertex)
 then
 { Update_5int(rs);
 if ls(r, firstvertex, secondvertex)
 then Update_5int(bf);
 }
 if ls(firstvertex, r, v) then
 if rs(v, firstvertex, secondvertex)
 then
 { Update_5int(ls);
 if rs(u, firstvertex, secondvertex)
 then Update_5int(bf);
 }
end;

function Case_Between_Leftside
begin
 if posnext = ls then
 {firstvertex= 1ia − ; secondvertex= ia }
 else /* pos = ls */
 {firstvertex= ia ; secondvertex= 1ia − };
 if rs(u, firstvertex, secondvertex)
 then Update_5int(bf);
 if ls(v, firstvertex, secondvertex)
 then Update_5int(af);
end;

function Case_Between_Rightside

begin
 if pos = rs then {firstvertex= 1ia − ; secondvertex= ia }
 else /* posnext = rs */
 {firstvertex= ia ; secondvertex= 1ia − };
 if rs(r, firstvertex, secondvertex)
 then Update_5int(bf);
 if ls(s, firstvertex, secondvertex)
 then Update_5int(af);
end;

(a)

Between(B,C)

Rightside(B,C)

Leftside(B,C)

Before(B,C)

After(B,C)B
C

a1
a2

a3

a4

r s

u v

(b)

Between(B,C)

Rightside(B,C)

Leftside(B,C)

Before(B,C)

After(B,C)B
C

a1

a2

a3

a4

r s

u v

Fig.2. Geometric configurations illustrating the special case Between
and Leftside.

(a)

Between(B,C)

Rightside(B,C)

Leftside(B,C)

Before(B,C)
After(B,C)B

C

a1 a2

a3
a4

r s

u v

(b)

Between(B,C)

Rightside(B,C)

Leftside(B,C)

Before(B,C)

After(B,C)
B

C

a1

a2

a3

a4

r s

u v

Fig. 3. Geometric configurations illustrating the special case Before
and After.

Regarding the old function BT_Case_Leftside_Rightside,
it wrongly included the relations before and after in some
configurations. To illustrate this case, both in Fig.2(a) and
Fig.2(b), relations between and leftside hold because there

This is a post-print version of the article
ERRATA CORRIGE ON “ MODELING AND COMPUTING TERNARY PROJECTIVE RELATIONS BETWEEN REGIONS”

Eliseo Clementini, Roland Billen and Marco Santic
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

NOVEMBER 2011
PP 7-15

ORIGINAL PUBLICATION CAN BE FOUND AT THIS ADDRESS : HTTP://DOI.IEEECOMPUTERSOCIETY.ORG/10.1109/TKDE.2011.239
 3
are some vertices falling in both Between and Leftside
zones, as it is assessed by Algorithm 2. Also, Algorithm 4
is called (Treat_Special_Cases): one of the special cases is
when one of the vertices falls inside the Between zone.
Therefore, the function Treat_Between_zone is called:
among other situations, this function checks whether, if
there are consecutive vertices falling in zones Between and
Leftside (e.g., in Fig.2(a) and (b), vertices a2 and a3), there is
an intersection of the corresponding segment with After
or Before zones. In Fig.2(a), such an intersection exists,
while in Fig.2(b) it does not. The old algorithm could not
correctly distinguish the conditions that apply when the
segment crosses the Between and Leftside zones from the
conditions that apply when the segment crosses the Be-
tween and Rightside zones. Dealing with the conditions in
two new separate functions Case_Between_Leftside and
Case_Between_Rightside allowed us to solve the prob-
lem. In the old function, the result in the case of Fig.2(b)
was bt:bf:ls:af(A,B,C) instead of bt:ls(A,B,C), due to the fact
that the condition rs(s,a1,a2) was verified and, therefore,
the relation after was added; also, the condition ls(r,a3,a2)
was verified and, therefore, the relation before was added.

The old function NN_Case_Before_After failed to include
in the result the Between zone in a few configurations. In
Fig. 3, we show two configurations related to the case
where two consecutive vertices of polygon A, e.g., a3 and
a4, fall inside the Before and After zones. In this case, Algo-
rithm 4 makes a call to the function
Treat_Non_Neighbor_Zone, which in turn makes a call to
the function NN_Case_Before_After. This latter function
in the original version correctly found the intersection of
polygon A with the Rightside zone (Fig.3(a)), since both
points r and s are leftside of points a4 and a3. Unfortu-
nately, the function did not recognize the intersection
with the Between zone in a similar situation (Fig.3(b)), giv-
ing the wrong result rs:bf:af(A,B,C). The corrected
NN_Case_Before_After function finds the result
bt:rs:bf:af(A,B,C) for the configuration in Fig.3(b) with an
additional Check_Intersect.

(a)

Between(B,C)

Rightside(B,C)

Leftside(B,C)

Before(B,C)
After(B,C)

B
C

a1

a2
a3

a4

r s

u v

(b)

Between(B,C)

Rightside(B,C)

Leftside(B,C)

Before(B,C) After(B,C)

B
C

a1

a2

a3

a4

r s

u v

Fig. 4. Geometric configurations illustrating the special cases Be-
tween and Before (a) and Between and After (b).

The old function BT_Case_Before_After did not recognize
the before and after relations in some cases and wrongly
recognized the rightside and leftside relations in other
cases. For example, in Fig. 4(a) we show a configuration
where the function fails to add the relation after to the re-
sult. Only the relation rightside was added giving the re-
sult bt:rs:bf(A,B,C). The new function
Case_Between_Before adds the relation after as well, re-
turning the result bt:rs:bf:af(A,B,C) for the configuration in
Fig.4(a). Analogously, the function Case_Between_After
solves the case where the old function
BT_Case_Before_After failed to include the before relation.
Another error of old function BT_Case_Before_After was
a false recognition of the Rightside zone like in Fig.4(b)
and of the Leftside zone as well in similar cases. The new
functions Case_Between_After and Case_Between_Before
give the correct result.
For the sake of completeness, we also update Algorithm 2
of [1] with a last check taking into consideration the case
when the zone Between(B,C) is properly contained inside
the region A. This case requires a point-in-polygon test
between an arbitrary point belonging to ()CH B C∪ and
region A itself. A java implementation of the complete al-
gorithms is available in [2].

Algorithm 2: Build 5-intersection.
Input: region A;)(CBCH ∪ ; internal tangents; intersec-

tions r,s,u,v;
Output: 5-intersection matrix;
begin
 1←i ;
 pos←Check_Position(ia ,)(CBCH ∪ , internal tan-

gents);
 Update_5int(pos);
 1+← ii ;
 while 1aai ≠ do
 posnext← Check_Position(ia ,)(CBCH ∪ , in-

ternal tangents);
 Update_5int(posnext);
 Treat_Special_Cases(1ia − , ia , pos, posnext,

)(CBCH ∪ , r,s,u,v);
 pos← posnext;
 1+← ii ;

http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.239�

4

 endwhile
 if 5-intersection matrix = (1 1 0 1 1 | 0 0) then
 if Point_In_Polygon(Any_Point_In(()CH B C∪), A)

then Update_5int(bt);
end

ACKNOWLEDGMENT
The authors are grateful to the anonymous referees for
their helpful comments.

REFERENCES
[1] E. Clementini and R. Billen, "Modeling and computing

ternary projective relations between regions," IEEE
Transactions on Knowledge and Data Engineering,
vol. 18, pp. 799-814, 2006.

[2] Java Projective Suite, "http://www.x-
placer.com/kb/JavaProjectiveSuite/," 2011.

http://www.x-placer.com/kb/JavaProjectiveSuite/,�
http://www.x-placer.com/kb/JavaProjectiveSuite/,�

	Acknowledgment
	References

