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Abstract—Multivariate Time Series (MTS) analysis is crucial
to understanding and managing complex systems, such as traffic
and energy systems, and a variety of approaches to MTS fore-
casting have been proposed recently. However, we often observe
inconsistent or seemingly contradictory performance findings
across different studies. This hinders our understanding of the
merits of different approaches and slows down progress. We ad-
dress the need for means of assessing MTS forecasting proposals
reliably and fairly, in turn enabling better exploitation of MTS
as seen in different applications. Specifically, we first propose
BasicTS+, a benchmark designed to enable fair, comprehensive,
and reproducible comparison of MTS forecasting solutions.
BasicTS+ establishes a unified training pipeline and reasonable
settings, enabling an unbiased evaluation. Second, we identify the
heterogeneity across different MTS as an important consideration
and enable classification of MTS based on their temporal and
spatial characteristics. Disregarding this heterogeneity is a prime
reason for difficulties in selecting the most promising technical
directions. Third, we apply BasicTS+ along with rich datasets to
assess the capabilities of more than 45 MTS forecasting solutions.
This provides readers with an overall picture of the cutting-
edge research on MTS forecasting. The code can be accessed at
https://github.com/GestaltCogTeam/BasicTS.

Index Terms—benchmarking, multivariate time series, spatial-
temporal forecasting, long-term time series forecasting

I. INTRODUCTION

SENSORS are increasingly being deployed in complex,
real-world systems. Readings from such sensors form

Multivariate Time Series (MTS) that in turn are used for
understanding and operating the host systems. For instance, the
PEMS [1] dataset consists of traffic data from critical locations
in a transportation system, and the Electricity [2] dataset
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records the electricity consumption by key clients in a power
system. Consequently, MTS forecasting has become funda-
mental to understanding and operating complex real-world
systems, enabling applications such as traffic management [3],
emergency management [4], and resource optimization [5].

MTS data analysis must consider both the temporal and
spatial aspects of the data [6], [7]. The temporal aspect often
encompasses complex dynamics, including non-stationarity,
periodicity, and randomness. The spatial aspect concerns in-
terdependencies among time series, known as spatial depen-
dencies [6] or cross-dimension dependencies [8], which can
affect prediction accuracy substantially. Effective modeling
the complex temporal and spatial aspects of MTS is a key
challenge, which also has been addressed in many studies.

Recent MTS forecasting solutions have been based pre-
dominantly on deep learning [7], [9], [10], [6], [11], [12].
These solutions often address two prominent and more specific
problems, namely Long-term Time Series Forecasting (LTSF)
and Spatial-Temporal Forecasting (STF), in which the model-
ing of temporal and spatial patterns in the data are essential.
LTSF solutions are concerned with long-term forecasting and
often employ advanced neural networks like Transformers [13]
to model long-term temporal dependencies. Notable solutions
include efficient Transformers [14], [7], [15], series-level cor-
relations [9], frequency-based solutions [10], and Transformers
utilizing patched time series [16], [8]. In contrast, STF solu-
tions aim to improve prediction by effectively modeling spatial
correlations. The prevalent approach is to combine Graph
Convolution Networks (GCN) [17] with different sequence
models [18], [19] to form Spatial-Temporal Graph Neural
Networks (STGNN). Examples include combining GCNs with
Recurrent Neural Networks (RNN) [6], Convolutional Neural
Networks (CNN) [11], and Attention mechanism [20], [21]

While proposals of new solutions include experimental
studies, such studies are at times incomparable or seemingly
inconsistent. This causes uncertainty on which directions to
take and impedes progress towards better solutions. As an
example of the current state of affairs, some studies [22],
[23], [24], [25] report poor performance of the key baselines
DCRNN [6] and GWNet [11], at up to 33% lower than the per-
formance we reproduce. Next, proposals of LTSF solutions [7],
[9], [10], [8] usually report evaluations solely using metrics
like MAE and MSE based on normalized time series, making
prediction errors seem to be very low. An alternative is to
perform evaluations on re-normalized data and to report more
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metrics like MAPE and WAPE, which are not affected by the
range of data. Issues such as these prevent researchers from
judging the strengths and weaknesses of different solutions.

Further, some studies present seemingly contradictory
findings in selecting which technical directions to take
when pursuing better solutions to LTSF and STF. In rela-
tion to the temporal aspect, (i) the effectiveness of advanced
neural networks has been debated [7], [26], [16], [27]. One
study [26] finds that LTSF-Linear, which employs a sim-
ple linear layer, significantly outperforms Transformer-based
models [7], [9], [10], [15], and the study concludes that
Transformer-based architectures are not as effective as pre-
viously claimed. However, subsequent studies [16], [28],
[27] find that advanced neural networks outperform LTSF-
Linear. We find that the difference in model size be-
tween these approaches makes it difficult to determine
their relative effectiveness. In relation to the spatial aspect,
(ii) the necessity of GCNs has been questioned [29], [30].
While STGNNs have brought significant improvements, many
recent studies highlight the inefficiency of STGNNs and ex-
plore alternative means of modeling the dependencies among
time series, e.g., normalization [31] [30]. The success of
these non-GCN methods indicates the need for a deeper
understanding of spatial dependencies and for insight into
when these alternative methods are effective.

To mitigate issues such as those exemplified above and
to offer insight into the advance achieved, we contribute a
comprehensive analysis and comparison of both MTS fore-
casting datasets and models. First, as we believe that providing
a fair, comprehensive, and reproducible benchmark for MTS
forecasting can mitigate the current state of affairs and enable
progress, we introduce BasicTS+, a benchmark for studying
and comparing MTS forecasting solutions. BasicTS+ estab-
lishes a unified training pipeline and reasonable evaluation
settings. The former resolves inconsistent performance issues
caused by unique data and experimental setups in previous
studies while the latter enables a more intuitive evaluation of
prediction errors. Overall, BasicTS+ facilitates a fair, compre-
hensive, and reproducible evaluation of over 45 popular MTS
forecasting solutions on 20 commonly used datasets.1

Second, we address the problem of selecting an appropriate
technical approach by studying the impact of the heterogene-
ity across MTS datasets. We use heterogeneity to refer to
completely different patterns observed across different MTS
datasets. In the temporal aspect, we classify datasets into those
with stable patterns, significant distribution drift, and unclear
patterns. In the spatial aspect, we find that spatial sample
indistinguishability is a key concept and partition datasets
into those with and without significant spatial sample indis-
tinguishability. Experimental studies show that previous con-
clusions are valid only for certain types of data. For example,
basic neural networks [26] only outperform advanced neural
networks [7], [9], [10] on datasets without stable temporal
patterns, and approaches for modeling spatial dependencies,
such as GCN-based approaches, are only effective on datasets

1Due to space limitations, not all baselines and datasets are presented in
this paper.

with significant spatial sample indistinguishability. We find
that blindly adopting conclusions from previous studies can
lead researchers to make misguided inferences.

Moreover, by using BasicTS+ with heterogeneous datasets,
we conduct an exhaustive analysis and comparison of popular
solutions. Initially, we discuss how to design or select MTS
prediction solutions for a given MTS dataset, as well as
how to choose suitable datasets for evaluating a given MTS
forecasting solution. Subsequently, we present detailed exper-
imental results on the performance and efficiency of popular
solutions across comprehensive datasets, shedding light on the
advancements made. The objective of these results and dis-
cussions is to accelerate progress and facilitate researchers in
drawing more reliable conclusions. Additionally, we highlight
directions that deserve more attention. In summary, we make
the following main contributions:

• We present BasicTS+, the first benchmark specifically
designed for fair comparison of MTS forecasting so-
lutions, especially both STF and LTSF solutions. Ba-
sicTS+ facilitates evaluation of over 45 popular models
on 20 datasets to address the seemly inconsistent per-
formance findings.

• We identify heterogeneity among MTS datasets as a key
challenge, and classify datasets based on temporal and
spatial characteristics. We find that neglecting hetero-
geneity is a cause of difficulties in selecting technical
directions, and that previous conclusions apply only to
certain types of data.

• We conduct an extensive analysis and comparison of
popular models using BasicTS+ together with rich het-
erogeneous datasets. The findings offer valuable insight
into the progress already made, aiding researchers in
choosing appropriate solutions or datasets, and drawing
more reliable conclusions.

The paper is organized as follows. Section II provides dis-
cussions of related work on LTSF, STF, and MTS forecasting
benchmarking. Section III covers preliminaries and essential
definitions. Section IV presents the BasicTS+ benchmark.
Section V then delves into the heterogeneity among MTS
datasets, and provides hypotheses for explaining seemingly
contradictory findings. Section VI reports on the application
of BasicTS+ to popular models and provides new insights.
Section VII concludes the paper.

II. RELATED WORK

We cover studies related to LTSF and STF, which are the
two most prominent topics in recent MTS forecasting studies.
We present their goals, techniques, and related open issues.
Furthermore, we cover existing MTS benchmarking studies.

A. Long-term Time Series Forecasting

To achieve accurate long-term time series forecasting [32],
studies concentrate on capturing the temporal patterns in MTS
data, and have proposed methods to efficiently and effectively
incorporate longer-term historical information. For example,
forecasting future electricity demand over several months or
even years in power systems is a typical application scenario,
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where such predictions are crucial for resource optimization
and strategic planning.

Early studies typically propose traditional statistical meth-
ods (e.g., ARIMA [33] and ETS [34]) or machine learning
methods (e.g., GBRT [35] and SVR [36]). These methods often
struggle to handle high non-linearity well, and they typically
rely heavily on stationarity-related assumptions [3]. With the
advent of deep learning [37], [38], studies have embraced
more powerful and advanced neural architectures for time
series modeling, such as TCN [19], LSTM [39], and Trans-
former [13]. Among these, Transformer-based models have
garnered increasing attention. Informer [7] proposes a Prob-
Sparse self-attention mechanism and distilling operation to
address the quadratic complexity of the Transformer, leading
to significant performance improvements and being recognized
as a milestone in LTSF (AAAI 2021 best paper). Subsequently,
Autoformer [9] features an efficient auto-correlation mecha-
nism to discover and aggregate information at the series level,
while FEDformer [10] proposes an attention mechanism with
low-rank approximation in frequency and a mixture of experts
to control distribution shifts. Additionally, Pyraformer [15]
designs pyramidal attention to effectively describe short and
long temporal dependencies with low complexity. Overall, the
Transformer architecture is widely regarded as one of the most
effective and promising approaches for MTS forecasting.

However, a recent study proposes LTSF-Linear [26] and
questions the effectiveness of Transformer architectures.
LTSF-Linear employs a simple linear layer and outperforms all
the earlier models. It carefully examines every key components
of Transformers and concludes that they are ineffective at
time series forecasting. This conclusion has subsequently been
challenged by studies [16], [27], [28] that employ advanced
neural networks to outperform LTSF-Linear. Nevertheless,
considering the substantial difference in model size and the
small difference in predictive performance, understanding fully
the effectiveness of advanced models remains challenging.
Furthermore, more exploration is required to understand why a
simple linear model can achieve state-of-the-art performance.

B. Spatial-Temporal Forecasting

In contrast to LTSF, spatial-temporal forecasting must con-
tend with not only temporal dynamics in time series but also
dependencies among time series. A prime example of this
is in traffic management, where predicting future conditions
requires data from multiple traffic sensors, clearly highlighting
the spatial dependencies among these sensors. Consequently,
considerable research has been devoted to effectively capture
and model these spatial and temporal patterns.

Early deep learning approaches often employ CNNs to pro-
cess spatial information and combine CNNs and RNNs [40],
[41], [2]. However, as the relationships among time series are
usually non-Euclidean, grid-based CNNs may not be optimal
for handling spatial dependencies. With the development of
GCNs [42], [17], STGNNs [6], [12] have gained increased
attention. STGNNs utilize GCNs to model spatial dependen-
cies based on pre-defined prior graphs, and further combine
them with sequential models [19], [18], [13]. For example,

models like DCRNN [6], ST-MetaNet [43], and DGCRN [44]
incorporate GCNs with RNNs [18] and their variants, and then
predict step by step following the seq2seq [39] architecture.
Graph WaveNet [11], STGCN [12], and Auto-DSTSGN [45]
integrate GCNs with gated TCNs and their variants to facilitate
parallel computation. Futhermore, attention mechanisms are
used widely in STGNNs, such as GMAN [20], ASTGNN [46].
In addition, neural architecture search solutions [45], [47]
have also received widespread attention. However, many recent
studies argue that the pre-defined prior graph might be biased,
incorrect, or even unavailable in many cases. Thus, they
propose to jointly learn the graph structure (i.e., a latent graph)
and optimize STGNNs, e.g., AGCRN [48], MTGNN [49],
StemGNN [23], GTS [50], DFDGCN [51], and STEP [52].

However, both prior graph-based STGNNs and latent graph-
based STGNNs are usually have a complexity ranging from
O(N2L) to O(N2L2) due to the graph convolution operation,
where N is the number of time series and L is the length
of a time series. Consequently, recent studies [53], [54] have
questioned the necessity of STGNNs [31], [29], [55], [56]
and have explored alternative techniques [30], [31], [57]. For
instance, STNorm [31] introduces spatial-temporal normal-
ization, and STID [30] implements a simple yet effective
spatial-temporal identity attaching approach. These solutions
achieve similar prediction performance as STGNNs but with
significantly higher efficiency. The success of these non-GCN
solutions highlights the need for a deeper understanding of
spatial dependencies and when and how these solutions are
effective.

C. MTS Forecasting Benchmarking
Several benchmarking studies have been devoted to MTS

forecasting and associated downstream tasks. For example,
studies like DGCRN [44], LibCity [58], DL-Traff [59], and
our previous work BasicTS [60], use the benchmarks to
address STF-based downstream tasks, e.g., urban spatial-
temporal forecasting [61]. Similarly, the studies that contribute
LTSF-Linear [26] and TimesNet [28] propose benchmarks for
LTSF. However, these benchmarks have several limitations.
First, they only cover some of the research in either STF or
LTSF, and cannot address comprehensively the temporal and
spatial aspects of MTS. Second, many of them lack a unified
pipeline and instead train each baseline individually with a
unique pipeline, which may lead to unfairness. Third, these
benchmarks are incapable of covering adequately the issues
related to the different technical approaches, to contending
with the temporal and spatial aspects of MTS forecasting.

Notably, the motivation and contribution of this study
significantly differ from [60]. The focus of this study is to
reliably and fairly evaluate MTS forecasting solutions, reveal
the heterogeneity across MTS datasets, and address seemingly
inconsistent findings in existing studies. This aims to enhance
the utilization of MTS in various applications rather than
solely proposing benchmarks, surpassing mere software-level
contributions. Moreover, even from a software perspective,
BasicTS+ has been refactored to adapt and apply to both STF
and LTSF tasks (whereas BasicTS [60] is designed only for
STF). BasicTS+ also incorporates more extensible features.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

TABLE I
INCONSISTENT PERFORMANCE OF GWNET AND DCRNN IN HIGHLY

CITED PAPERS. THE PINK BACKGROUND MARKS THE WORST
PERFORMANCE, WHILE THE GREEN BACKGROUND MARKS THE

PERFORMANCE PRODUCED BY BASICTS+. ASSUMING THAT x AND y ARE
THE VALUES REPORTED IN PREVIOUS STUDIES AND BASICTS+,

RESPECTIVELY, THEN THE GAP IS DEFINED AS (x− y)/x · 100%.

Source PEMS04 PEMS08

MAE RMSE MAPE MAE RMSE MAPE

G
W

N
et

[22], [62], [23], [63], [57] 25.45 39.70 17.29% 19.13 31.05 12.68%
[25], [64] 24.89 39.66 17.29% 18.28 30.04 12.15%

[46] 19.36 31.72 13.31% 15.07 23.85 9.51%
[24] 28.15 39.88 18.52% 20.30 30.82 13.84%

BasicTS+ 18.80 30.14 13.19% 14.67 23.55 9.46%

Gap 33.21%↑ 24.42%↑ 28.78%↑ 27.73%↑ 23.59%↑ 31.64%↑

D
C

R
N

N

[22], [62], [23], [63], [57] 24.70 38.12 17.12% 17.86 27.83 11.45%
[25] 24.63 37.65 17.01% 17.46 27.83 11.39%
[46] 23.65 37.12 16.05% 18.22 28.29 11.56%

[24], [48], [64] 21.22 33.44 14.17% 16.82 26.36 10.92%
BasicTS+ 19.66 31.18 13.45% 15.23 24.17 10.21%

Gap 20.40%↑ 12.20%↑ 21.43%↑ 16.41%↑ 14.56%↑ 11.67%↑

III. PRELIMINARIES

We define key concepts and the forecasting task.
Definition 1: Multivariate Time Series. A multivariate time

series includes multiple time-dependent variables. It can be
expressed as a matrix X ∈ RT×N , where T is the number of
time steps and N is the number of variables. We additionally
denote the data in time series i ranging from t1 to t2 as Xi

t1:t2 .
Definition 2: Multivariate Time Series Forecasting. Given

historical data X ∈ RTh×N from the past Th time steps, mul-
tivariate time series forecasting aims to predict Y ∈ RTf×N

of the Tf nearest future time steps.

IV. BENCHMARK CONSTRUCTION

We present BasicTS+, a benchmark designed for fair, com-
prehensive, and reproducible evaluation of MTS forecasting
solutions, including both STF and LTSF solutions.

A. Unified Training Pipeline

We proceed to delve into the root causes of seemingly
inconsistent performance findings and propose in response a
unified training pipeline, thereby enabling fair comparison of
forecasting models.

1) Inconsistent forecasting performance.: The inconsisten-
cies imply that the forecasting performance of the same
solution exhibits notable variations across experimental studies
in different papers, even when on the same dataset and with the
same experimental settings. To illustrate this, Table I compiles
performance findings from studies in a range of papers for
two solutions that are often used as baselines: DCRNN [6]
and Graph WaveNet [11], on PEMS04 and PEMS08 datasets.
All referenced papers employ an identical experimental setup,
i.e., they utilize the last 12 time steps to predict the subsequent
12, and they report MAE, RMSE, and MAPE results for the
prediction. Each row in the table thus presents performance
findings for Graph WaveNet (GWNet in short) or DCRNN as
reported in experimental studies in different papers.

TABLE II
EVALUATION ON NORMALIZED AND RE-NORMALIZED DATA.

Data Method normalized re-normalized

MAE MSE MAE MAPE WAPE

E
T

T
h1

Autoformer [9] 0.483 0.510 1.74 69.96% 37.61%
FEDformer [10] 0.460 0.467 1.71 68.92% 36.89%
Crossformer [8] 0.456 0.461 1.83 64.96% 39.44%
PatchTST [16] 0.426 0.432 1.60 64.38% 34.49%

E
T

T
h2

Autoformer [9] 0.448 0.433 3.40 59.17% 22.67%
FEDformer [10] 0.431 0.418 3.35 56.14% 22.33%
Crossformer [8] 0.453 0.447 3.72 66.76% 24.76%
PatchTST [16] 0.395 0.390 2.97 55.22% 19.78%

We can see a considerable performance variation for each
solution across the different papers. We also note that GWNet
and DCRNN provide publicly available source code. As such,
this variation is likely due to the varying training pipelines
employed in the different studies. Furthermore, our benchmark
yields markedly improved performance compared to the results
reported in the papers, with a maximum gap of 33% (MAE
of GWNet on PEMS04). To reduce spurious variations such
as those just reported, we conduct a comprehensive analysis
of existing codebases, and identify three primary sources of
spurious variations: data processing, training configurations,
and evaluation implementation. These aspects are often over-
looked, although they influence evaluation results substantially.
• Data Processing: A crucial step in the learning or inference

process involves normalizing raw time series data. Com-
mon approaches include min-max normalization and z-score
normalization, each exerting varying effects on prediction
performance. For example, some studies [46] employ min-
max normalization, whereas most studies usually adopt z-
score normalization.

• Training Configurations: Training configurations include
optimization strategies and various training tricks. Different
setups have substantial impact on the optimization. For
example, most studies [6], [11], [52], [3] employ masked
MAE for model training, which excludes abnormal values
that may affect predictions for normal values adversely.
In contrast, some studies [25], [24] adopt naive MAE as
their optimization function, which tends to yield inferior
results. Further, the incorporation of training tricks, such
as gradient clipping and curriculum learning, may also
influence performance significantly [3].

• Evaluation Implementation: While metrics have precise
definitions, their implementations can vary across studies,
including aspects such as handling outliers, and mini-batch
computations [50]. This difference results in significant
deviations between testing and actual performance.

2) Implementation of BasicTS+: BasicTS+ introduces a
unified training pipeline, as depicted in Figure 1. This mainly
incorporates unified dataloader, runner, and evaluation com-
ponents to address the identified sources of spurious perfor-
mance variations. The unified dataloader is equipped with
z-score normalization as the default choice, which generally
yields superior performance. Additionally, it adds external
temporal features to the raw data such as time-of-day and
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- normalize data 
- add external features 
- generate batches 
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Dataloader
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- num workers 
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- feedforward 
- standard input 
- standard output 
- ……
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Fi
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- train/valid/test 
- optimize 
- curriculum learning 
- gradient clip 
- ……

Uni!ed 
Runner

- metrics implementation 
- uni"ed settings 
- ……

Uni!ed 
Evaluation

- history data 
- future data 
- prediction 
- ……

Standard 
Model Interface

- logging system 
- ckpt auto saving 
- any loss and metrics 
- support all devices 
- ……

Extensible 
Features

User Con!gsBasicTS+

Fig. 1. Architecture of BasicTS+.

day-of-week attributes. The unified runner controls the entire
training, validation, and testing procedure. By default, we
employ masked MAE as the loss function, which typically
outperforms alternatives like naive MAE and MSE. Moreover,
the unified runner integrates commonly-used training tricks
like curriculum learning and gradient clipping. Lastly, the uni-
fied evaluation component provides standard implementations
of metrics including MAE, RMSE, MAPE, WAPE, MSE,
and their masked versions. The three components form the
foundation that enables BasicTS+ to support fair analyses and
comparisons. Given a model that conforms to the standard
model interface, BasicTS+ can produce evaluation results for
that model. Furthermore, BasicTS+ offers many extensibility
features, such as a logging system, customizable losses and
metrics, and compatibility with diverse devices.

B. Evaluation Settings

Evaluation results should be presented in a clear and in-
tuitive manner. In LTSF, many studies adopt metrics such as
MAE and MSE and report the prediction performance based

on normalized data (z-score normalized). However, MAE
and MSE represent absolute errors that can be influenced
significantly by the range of the data, rendering them less
intuitive for interpretation. Additionally, evaluating prediction
performance on normalized data can yield seemingly very low
prediction errors, potentially misleading readers unfamiliar
with the details. Thus, some approaches to reporting prediction
performance make it difficult for readers to judge whether the
prediction performance of the model is satisfactory.

We suggest a practical approach: evaluating on re-
normalized data and incorporating additional metrics such
as MAPE and WAPE. The performance of important LTSF
models on ETTh1 and ETTh2 datasets with normalization and
re-normalization are summarized in Table II. We can see that
the prediction performance appears less satisfactory on the re-
normalized data when considering the high MAPE and WAPE
values, in contrast to the seemingly low MAE and MSE values
obtained on the normalized data.

In summary, our evaluation is conducted on re-normalized
data, employing metrics such as MAE, RMSE, MAPE, and
WAPE. Assuming Ω represents the indices of all observed
samples, yi denotes the i-th actual sample, and ŷi denotes the
corresponding prediction, these metrics are defined as follows.

MAE(y, ŷ) =
1

|Ω|
∑
i∈Ω

|yi − ŷi|, RMSE(y, ŷ) =

√
1

|Ω|
∑
i∈Ω

(yi − ŷi)2

MAPE(y, ŷ) =
1

|Ω|
∑
i∈Ω

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , WAPE(y, ŷ) =
∑

i∈Ω |yi − ŷi|∑
i∈Ω |yi|

(1)
The MAE and RMSE metrics quantify the prediction accuracy,
while MAPE and WAPE serve to eliminate the influence of
data units. Additionally, for the M4 dataset, we adopt sMAPE,
MASE, and OWA. For brevity, we omit their formulations and
refer interested readers to the literature [65].

V. HETEROGENEITY ACROSS MTS DATASETS

Next, we put focus on the heterogeneity across MTS
datasets and delve into its role in explaining the seemingly
contradictory experimental findings that suggest that each of
two different technical approaches is the best approach to
achieve improved forecasting accuracy. Unlike datasets in
computer vision or natural language processing, which often
share common patterns, MTS datasets can exhibit very distinct
patterns derived from the diverse underlying systems. We thor-
oughly investigate this heterogeneity and categorize datasets
based on characteristics of their temporal and spatial aspects.
We argue that different types of patterns entail different solu-
tion challenges, implying that specific technical approaches are
applicable only to particular types of data. Neglecting this data
heterogeneity can lead to seemingly conflicting experimental
finding and to failure to advocate the right technical approach.

A. Temporal Aspect

We categorize MTS datasets into three types according to
their temporal aspect: datasets with clear and stable patterns,
datasets with significant distribution drift, and datasets with
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(a) PEMS03 (b) ETTh2 (c) ExchangeRate

Fig. 2. Visualization of data distribution based on t-SNE and kernel density estimation.

PEMS03

ETTh2

ExchangeRate

Fig. 3. Distinct temporal patterns in multiple MTS datasets.

unclear patterns. We argue that these types of datasets are
progressively less predictable. However, quantifying the pre-
dictability [66], [67] remains an unsolved challenge. Thus,
we analyze selected datasets through visualizations. Specif-
ically, we chose three typical datasets—PEMS03, ETTh2,
and ExchangeRate—and visualized the original time series in
Figure 3. To facilitate more intuitive comparisons, we reduce
the dimensionality of these datasets to 2D using the t-SNE
algorithm [68], and then visualize the data distribution of the
training and testing sets with the kernel density estimation
algorithm [69], as shown in Figure 2.2

We can see significantly distinct patterns across these
datasets. First, PEMS03, which records urban traffic flow
at different locations, exhibits clear and stable patterns, i.e.,
periodicity with a fixed period. This pattern conforms to the
overall periodicity and stability of urban traffic. Second, ETT
contains data from transformer sensors. Although it contains
evident cyclic patterns, the period is not fixed, and the mean
is shifting, indicating distribution drift. This is because the
measured values are affected by external, unobserved factors,
such as weather and sensor quality. Third, ExchangeRate
records the exchange rates of several currencies and displays
minimally discernible patterns. This outcome stems from the

2The results shown in Figure 2 are derived from time series datasets, where
samples are obtained by sliding a window of size P+F over the original time
series (i.e., the time series in Figure 3). Here, P and F represent the lengths
of the historical and future time series, respectively. For the PEMS03 dataset,
P and F are set to 12, while for the ETTh2 and ExchangeRate datasets, they
are set to 336. The selection of P and F is based on previous works [3],
[16], and using different values for P and F yields similar results.

fact that exchange rates are primarily governed by unpre-
dictable factors, such as economic policies. Thus, historical
data offers limited value for predictions, particularly for long-
term predictions. Additionally, as depicted in Figure 2, the
data distributions of the training and testing sets in PEMS03
exhibit a high degree of similarity, whereas in the cases of
ETTh2 and ExchangeRate, such similarity is not observed.

Expanding on these insights, we argue that the inherent het-
erogeneity of MTS data is a key cause of seemingly conflicting
findings when comparing advanced neural networks [7], [9],
[10], [16] and basic neural networks [26]. Advanced models
usually possess strong data fitting capabilities. When coupled
with a strong inductive bias, this means that such models imply
strong assumptions about data distributions. Conversely, due
to their simplicity, basic models like the linear model [26]
struggle to capture complex patterns, but also feature relatively
weak inductive bias. Considering both the different modeling
capabilities of these approaches and the heterogeneous tempo-
ral patterns in MTS data we argue that when used on datasets
with stable and clear patterns, advanced models should be
able to capture complex patterns such as periodicity, while
basic linear models remain under-fitted due to their limited
capacities. In contrast, when used on datasets with significant
distribution drift or unclear patterns, advanced models are
more likely to capture spurious features present only in the
training dataset, thus facing over-fitting problems. Based on
this discussion, we formulate the following hypothesis:

Hypothesis 1:

1.1 Advanced neural networks outperform basic ones on
datasets with clear and stable temporal patterns, while
basic neural networks suffer from under-fitting.

1.2 Basic neural networks generally outperform advanced
ones on datasets with significant distribution drift and
datasets with unclear patterns, while advanced neural
networks suffer from over-fitting.

The study that proposes LTSF-Linear [26] ignores dataset
heterogeneity, and conducts experiments on datasets without
clear and stable patterns, leading to the biased conclusion that
Transformer architectures are ineffective at MTS forecasting.
We study this hypothesis experimentally in Section VI-A3.
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Fig. 4. Spatial indistinguishability in different datasets.

B. Spatial Aspect

Unlike easy-to-see temporal patterns, spatial dependencies
are harder to grasp, and it is also more difficult to find clear
metrics that allow to distinguish among datasets according to
their spatial aspects. Many studies interpret spatial patterns
loosely as interactions between time series, and they model
them using GCNs, without discussing in depth how to un-
derstand and quantify such patterns. Fortunately, two recent
studies, ST-Norm [31] and STID [30], point out that the
indistinguishability of samples in the spatial dimension (spatial
indistinguishability in short) gets to the essence of spatial
dependencies. In the following, we adopt this idea and, for the
first time, design quantitative metrics to distinguish heteroge-
neous datasets according to their spatial aspect. Specifically,
we partition MTS datasets into two types: those with and
those without significant spatial indistinguishability, and then
we discuss when and how to model spatial dependencies.

In MTS forecasting, samples are generated using a sliding
window of size Tp+Tf , where Tp and Tf denote the lengths of
the historical data and future data. Spatial indistinguishability
means that for a given time t, we can expect to generate
many samples with similar historical data but different future
data. Simple regression models (e.g., using Multi-Layer Per-
ceptions (MLP), RNNs) cannot predict different future data
based on similar historical data. Put differently, they cannot
distinguish the historical samples [30]. Based on this concept,
we propose the following quantitative metrics:

r1 =

∑
t,i,j I(AP

t,i,j > eu ∧AF
t,i,j < el)

T ·N ·N
, r2 =

∑
t,i,j I(AP

t,i,j > eu ∧AF
t,i,j < el)∑

t,i,j I(AP
t,i,j > eu)

AP
t,i,j =

Xi
t−Tp:t

·Xj
t−Tp:t

∥Xi
t−Tp:t

∥∥Xj
t−Tp:t

∥
, AF

t,i,j =
Xi

t:t+Tf
·Xj

t:t+Tf

∥Xi
t:t+Tf

∥∥Xj
t:t+Tf

∥
(2)

Intuitive Understanding. For a dataset with T time steps and
N samples, we construct two similarity matrices, AP ,AF ∈
RT×N×N , representing pairwise similarities among the sam-
ples at each time step. Specifically, A∗

t,i,j denotes the simi-
larity between time series i and j at time step t. Using these
matrices, we define the total sample count as T · N · N , the
count of historically similar samples as

∑
i,j,t I(AP

i,j,t > eu),
and the count of indistinguishable samples as

∑
i,j,t I(AP

i,j,t >

eu ∧AF
i,j,t < el). Here, eu = 0.9 and el = 0.5 are the upper

and lower similarity thresholds, respectively. The indicator
function I(·) returns 1 when the condition is satisfied, and
0 otherwise. We then define two metrics: r1, the ratio of
indistinguishable samples to the total number of samples, and
r2, the ratio of indistinguishable samples to those with similar
historical data. These metrics provide complementary insights:
r1 helps determine whether indistinguishability is a major
obstacle to improving predictive performance, while r2 offers a
more nuanced evaluation of the degree of indistinguishability.

We calculate the above two metrics for 11 common datasets.
The results are shown in Figure 4. We can clearly see that the
r1 and r2 of ETT, Electricity (ELC), ExchangeRate (ER), and
Weather are very low, while the r1 and r2 of METR-LA (LA),
PEMS-BAY (BAY), PEMS04 (04), and PEMS08 (08) are
substantially higher. Interestingly, although these two different
groups of datasets have exactly the same format, they are
rarely combined in experimental studies. ETT, Electricity,
ExchangeRate, and Weather are often used in LTSF studies,
where spatial dependencies are not of prime interest. Further,
METR-LA, PEMS-BAY, PEMS04, and PEMS08 are used in
STF studies, where spatial dependencies take center stage.

Given the above insights, we discuss when and how to
model spatial dependencies. First, there is no urgent need
to model spatial dependencies on datasets without signifi-
cant spatial indistinguishability, and forcibly modeling spatial
dependencies may even degrade performance. Second, on
datasets with significant spatial indistinguishability, modeling
spatial dependencies by addressing spatial indistinguishability
can improve performance. To be more specific, we discuss
how STGNNs [11], [6], ST-Norm [31], and STID [30] work.
First, GCNs in STGNNs [11], [6] usually rely on graph
structures that conform to the homophily assumption [70],
[71], where connected nodes often share similar labels3. There-
fore, nodes (i.e., time series) with similar historical data but
different future data (i.e., labels) are often disconnected. Given
such graph structures, GCNs perform message aggregation to
make historical data distinguishable. Second, ST-Norm [31]
normalizes data on the spatial dimension by separately refining
the high-frequency and the local components underlying the
input data, making the historical data distinguishable as well.
Third, STID [30] proposes a simple yet effective idea of
attaching a trainable spatial identity to each time series to dis-
tinguish similar historical data. Based on the above discussion,
we state the following hypothesis:

Hypothesis 2:

2.1 On datasets with significant spatial indistinguishability,
modeling spatial dependencies by addressing spatial
indistinguishability can improve performance.

2.2 On datasets without significant spatial indistinguishabil-
ity, forcing the modeling towards spatial dependencies
may degrade performance degradation.

We study this hypothesis in Section VI-C.

3In regression, the label is a real-value response corresponding to the
instance [72].
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VI. EXPERIMENTS

In this section, we conduct extensive experiments to as-
sess our hypotheses and address controversies in technical
approaches. In addition, we provide comprehensive analysis
and comparison of popular MTS forecasting models based on
BasicTS+ and offer insight into the progress already made.
Specifically, Section VI-A covers datasets, baselines, and im-
plementation details. Section VI-A3 evaluates the effectiveness
of advanced and basic neural networks for LTSF, thus confirm-
ing the hypothesis presented in Section V-A V-A. Section
VI-C consider when and how to model spatial dependencies,
confirming the hypothesis in Section V-B. Section VI-D dis-
cusses how to select models or datasets, presents detailed
experimental results, and offers insight into the advancements
made. All code, datasets, experimental scripts, and results
can be accessed through the public GitHub repository at
https://github.com/GestaltCogTeam/BasicTS.

A. Experimental Setup

1) Datasets: Following previous LTSF and STF studies [2],
[7], [9], [73], [6], we use 14 datasets to conduct experi-
ments, including METR-LA, PEMS-BAY, PEMS03, PEMS04,
PEMS07, PEMS08, ETTh1, ETTh2, ETTm1, ETTm2, Elec-
tricity, Weather, ExchangeRate, and M4 datasets. Not all the
datasets from BasicTS+ are included due to space limitations.
The remaining datasets are available via the code repository,
including large-scale MTS datasets [74].

2) Baselines: We include popular baselines for which of-
ficial code is available, including LTSF and STF models.
For brevity, we omit their detailed descriptions and simply
categorize the baselines based on their technical approaches.

Considering STF models, we cover influential baselines
that have high citation counts or offer state-of-the-art per-
formance. First, STGCN [12], DCRNN [6], GWNet [11],
DGCRN [44], and D2STGNN [3] are prior-graph-based so-
lutions that rely on pre-defined graphs to indicate spatial
dependencies among time series. Second, AGCRN [48], MT-
GNN [49], StemGNN [23], GTS [50], and STEP [52] are
latent-graph-based methods that learn graph structures and
optimize STGNNs jointly. Third, we adopt two non-graph
based methods, ST-Norm [31] and STID [30].

Considering LTSF models, we cover both advanced and
basic neural networks. First, Informer [7], Autoformer [9],
FEDformer [10], Triformer [75], Pyraformer [15], Cross-
former [8], PatchTST [16] utilize variants of the Transformer
to capture long-term historical information. Second, Linear,
DLinear, and NLinear utilize a simple linear layer [26].

For a more exhaustive comparison, we also cover three clas-
sic time series forecasting models: LGBM [76], DeepAR [77],
and NBeats [65]. LGBM is a widely-used gradient boosting
framework. DeepAR [77] and NBeats [65] are classic deep
learning solutions. These baselines are adopted widely in many
industrial applications.

Due to the space limitation, we cannot cover all baselines in
BasicTS+; additional baselines are included in the repository,
e.g., STGODE [25], NHiTS [78], and TimesNet [28].

FEDformer@PEMS08 DLinear@PEMS08

FEDformer@ETTh2 DLinear@ETTh2

Fig. 5. MAE for varying epochs.

3) Implementation details: For dataset partitioning, we
adopt settings consistent with previous work for each dataset.
For brevity, we omit the details and refer interested readers
to our repository. We set the length of the historical data and
future data of the STF task to 12. For the LTSF task, we
set the length of future data to 336. We vary the historical
length among 96, 192, 336, and 720, and we report the best
prediction performance. For error calculations, we report only
the average error between the forecast time series and the
true future time series, due to the space limitation. For the STF
task, we employ the MAE, RMSE, MAPE, and WAPE metrics.
For the LTSF task, we disregard MAPE, considering that there
are many zero values in commonly used LTSF datasets. For the
M4 competition dataset, we employ its original settings [79].
In the efficiency studies in Section VI-D, we report the average
training time per epoch (in seconds) and the number of model
parameter (in million). We set the batch size to 64. If an Out-
Of-Memory (OOM) situation occurs, we reduce the batch size
by half (to a minimum of 8). All experiments are conducted
using a NVIDIA 3090 GPU and 128 GB memory.

4) Hyperparameter tuning: For model implementation, we
adopt the public model architecture and hyperparameters. For
optimization hyperparameters, such as learning rate and batch
size, we also adopt the public settings. Then, we tune these
hyperparameters of each model on each dataset via grid search
to ensure performance at least as good as reported in the
original paper (if available). Although using AutoML to tune
these hyperparameters may be optimal, we found that manual
hyperparameter tuning is acceptable within a certain range.
For example, batch sizes of 32, 64, and 128 yield similar
performance and do not contradict our findings.

B. Advanced Neural Networks vs. Basic Neural Networks

This subsection studies the performance of advanced mod-
els (e.g., Transformers) versus basic models (e.g., linear mod-
els) and assesses the hypotheses in Section V-A. We consider
four datasets: PEMS04 and PEMS08, which exhibit clear and
stable patterns, and ETTh2 and ETTm2, which demonstrate
significant distribution drift or unclear patterns. Six baseline
models are chosen based on the LTSF-Linear study [26],

https://github.com/GestaltCogTeam/BasicTS
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TABLE III
PERFORMANCE OF ADVANCED TRANSFORMER MODELS AND BASIC LINEAR MODELS ACROSS HETEROGENEOUS MTS DATASETS.

Methods PEMS04 PEMS08 ETTh2 ETTm2
MAE RMSE WAPE MAE RMSE WAPE MAE RMSE WAPE MAE RMSE WAPE

Informer 27.94 44.74 12.84% 26.92 43.79 11.63% 7.12 6.87 47.44% 5.84 7.90 38.97%
Autoformer 34.72 50.33 14.81% 33.75 51.23 14.13% 3.33 4.91 22.17% 2.74 4.58 18.27%
FEDformer 26.89 41.46 12.39% 25.14 39.17 10.87% 3.27 4.93 21.78% 2.70 4.54 17.99%

Linear 37.42 62.14 17.22% 34.04 57.07 14.71% 3.18 5.04 21.19% 2.52 4.24 16.80%
DLinear 37.51 62.21 17.26% 34.15 57.18 14.76% 3.13 5.00 20.85% 2.49 4.23 16.63%
NLinear 37.62 62.38 17.31% 34.11 57.26 14.74% 3.16 5.06 21.09% 2.49 4.21 16.60%

Gap 39.49%↓ 49.87%↓ 39.30%↓ 35.40%↓ 45.69%↓ 35.32%↓ 4.28%↑ 1.83%↑ 4.26%↑ 7.78%↑ 7.27%↑ 7.72%↑

where Informer, Autoformer, and FEDformer are advanced
Transformer models, and Linear, DLinear, and NLinear are
basic linear models. They all follow the LTSF setup described
in Section VI-A3. We report MAE, RMSE, and WAPE.
Furthermore, we calculate the performance gap between the
best advanced and basic models, as shown in Table III.

First, advanced models generally outperform basic models
by a very large margin (green background) on datasets with
clear and stable patterns. Second, basic models consistently
outperform advanced models on datasets with distribution
drifts or unclear patterns. This gap in prediction performance
may at first seem puzzling. To intuitively understand why, we
visualize the MAE when varying the number of epochs for
FEDformer and DLinear on PEMS08 and ETTh2 datasets—
see Figure 5. On PEMS08, the training, validation, and testing
MAEs of FEDformer start from similar values and keep
decreasing. In contrast, DLinear’s MAEs, even the training
MAE, do not decrease with increasing epochs, which indicates
that DLinear suffers from under-fitting. Next, on the ETTh2
dataset, the training MAE of FEDformer keeps decreasing,
while its validation and testing MAEs start to increase already
when reaching 2 epochs, which indicates that FEDformer
suffers from serious over-fitting. These results are consistent
with the hypothesis in Section V-A.

We summarize our findings as follows. First, benefiting from
their strong modeling capacities, advanced neural networks
are far more effective than basic neural networks when the
data has clear and stable patterns. Second, models with less
inductive bias [80] (e.g., models based on MLPs or a vanilla
Transformer [16]) usually perform better when there is no
explicit pattern. Moreover, although some recent solutions are
positioned as general MTS prediction solutions, we believe
that effective general solutions should first perform well on
data with clear patterns and should then also consider their
performance on time series with less clear patterns.
C. Delving into Spatial Dependencies

Here, we discuss when and how to model spatial dependen-
cies, and we assess the hypothesis in Section V-B. We select
four datasets, where METR-LA (LA) and PEMS-BAY (BAY)
feature high spatial indistinguishability (see r1 and r2 in
Section V-B), while ExchangeRate (ER) and ETTm1 feature
very low spatial indistinguishability. We choose two baseline
models that adopt different approaches to the modeling of
the spatial dependencies: STID [30] and AGCRN [48]. STID
designs trainable spatial identity embeddings, while AGCRN

adopts a GCN-based learning module. Additionally, we re-
move the spatial modeling components from each of them,
obtaining the variant STID∗ without the spatial identities and
the variant AGCRN∗ with an adjacency matrix set to be the
identity matrix.

The results are shown in Table IV. On datasets with sig-
nificant spatial indistinguishability, the use of both trainable
spatial identity embeddings and GCNs can yield significant
performance gains. Conversely, on datasets with low spatial
indistinguishability, adding these spatial modeling components
degrades performance, suggesting that modeling spatial de-
pendencies (or named cross-dimension dependencies) on these
datasets is not necessary.

Based on the above discussion, we conclude that spatial
indistinguishability is a strong indicator of spatial depen-
dencies and that we do not always need to model spatial
dependencies. When there is high spatial indistinguishability in
the data, it is purposeful to adopt spatial modeling approaches,
e.g., GCNs, normalization [31], and spatial identity [30], to
improve performance. In contrast, on datasets with low spatial
indistinguishability, designing spatial modeling modules needs
to be done with extreme care, as this may cause performance
degradation.

D. Performance and Efficiency Benchmarking

So far, we have examined thoroughly the impact of hetero-
geneity among datasets on the promises of different technical
directions and solutions. We find a strong relationship between
model architecture and data characteristics. Next, we discuss:

TABLE IV
PERFORMANCE OF STID, AGCRN, AND THEIR VARIANTS ON DATASETS

WITH VARYING SPATIAL INDISTINGUISHABILITY.

Data Metrics STID AGCRN STID∗ AGCRN∗ Gap

L
A MAE 3.12 3.16 3.58 3.36 12.85%↑

RMSE 6.49 6.44 7.24 6.90 10.35%↑
MAPE 9.13% 8.88% 10.32% 9.66% 11.53%↑

BA
Y MAE 1.56 1.60 1.80 1.70 13.33%↑

RMSE 3.59 3.67 4.21 3.96 14.72%↑
MAPE 3.53% 3.65% 4.12% 3.92% 14.32%↑

E
R MAE 0.0325 0.0455 0.0312 0.0421 8.07%↓

WAPE 4.28% 5.98% 4.11% 5.51% 8.52%↓
MAPE 7.21% 12.03% 6.89% 9.60% 25.31%↓

E
T

T
m

1 MAE 1.63 2.29 1.41 1.89 21.16%↓
WAPE 35.24% 49.42% 30.64% 40.89% 20.86%↓
MAPE 64.86% 75.64% 55.13% 68.39% 17.65%↓
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TABLE V
STF ON METR-LA, PEMS-BAY, PEMS03, PEMS04, PEMS07, AND PEMS08 DATASETS.

Data Metrics LGBM DeepAR NBeats STGCN DCRNN GWNet DGCRN D2STGNN AGCRN MTGNN StemGNN GTS STEP STNorm STID

M
E

T
R

-L
A MAE 5.03 3.33 3.79 3.11 3.03 3.03 2.94 2.88 3.16 3.05 3.72 3.13 2.93 3.14 3.12

RMSE 9.67 6.75 7.74 6.31 6.23 6.12 6.04 5.91 6.44 6.16 7.33 6.32 5.96 6.49 6.49
MAPE 13.12% 9.76% 10.69% 8.37% 8.31% 8.17% 7.79% 7.83% 8.88% 8.16% 10.43% 8.62% 8.00% 8.84% 9.13%
WAPE 8.72% 5.76% 6.65% 5.38% 5.24% 5.24% 5.10% 4.99% 5.48% 5.28% 6.45% 5.42% 5.07% 5.44% 5.40%
Param - 0.10 8.07 0.25 0.37 0.31 0.20 0.39 0.75 0.41 1.20 38.49 40.48 0.22 0.12
Speed - 24.48 11.36 21.01 94.87 27.70 128.84 152.33 28.22 24.37 16.19 52.23 497.26 25.26 7.50

PE
M

S-
BA

Y MAE 2.10 1.70 1.95 1.63 1.59 1.59 1.58 1.52 1.60 1.60 1.99 1.68 1.48 1.58 1.56
RMSE 4.63 3.84 4.96 3.72 3.69 3.68 3.65 3.53 3.67 3.71 4.49 3.79 3.42 3.65 3.59
MAPE 4.98% 3.83% 4.43% 3.69% 3.58% 3.60% 3.52% 3.44% 3.65% 3.59% 4.61% 3.78% 3.31% 3.52% 3.53%
WAPE 3.37% 2.72% 3.13% 2.61% 2.55% 2.55% 2.53% 2.43% 2.56% 2.57% 3.19% 2.68% 2.37% 2.52% 2.50%
Param - 0.11 8.07 0.31 0.37 0.31 0.21 0.40 0.75 0.57 1.39 58.67 60.47 0.28 0.12
Speed - 42.79 45.24 51.91 223.35 70.24 401.66 374.32 62.07 46.47 30.30 179.98 1406.90 63.90 13.28

PE
M

S0
3

MAE 20.56 16.63 19.71 15.83 15.54 14.59 14.60 14.63 15.24 14.85 16.95 15.41 N/A 15.32 15.33
RMSE 34.19 28.36 32.52 27.51 27.18 25.24 26.20 26.31 26.65 25.23 28.52 26.15 N/A 25.93 27.40
MAPE 22.58% 17.76% 19.27% 16.13% 15.62% 15.52% 14.87% 15.32% 15.89% 14.55% 19.61% 15.39% N/A 14.37% 16.40%
WAPE 11.82% 9.56% 11.34% 9.11% 8.94% 8.39% 8.40% 8.42% 8.77% 8.54% 9.75% 8.86% N/A 8.81% 8.82%
Param - 0.11 8.07 0.32 0.37 0.31 0.21 0.40 0.75 0.62 1.46 25.27 N/A 0.30 0.12
Speed - 20.41 20.60 25.55 102.77 30.82 191.13 187.48 28.92 21.66 13.50 59.16 N/A 29.58 5.78

PE
M

S0
4

MAE 26.56 20.64 25.30 19.76 19.66 18.80 18.84 18.32 19.28 19.13 22.98 21.32 18.32 19.21 18.35
RMSE 41.61 32.35 39.65 31.51 31.18 30.14 30.48 29.89 31.02 31.03 36.00 33.55 29.91 32.30 29.86
MAPE 18.96% 14.28% 17.66% 13.48% 13.45% 13.19% 12.92% 12.51% 13.18% 13.22% 16.56% 14.85% 12.60% 13.05% 12.50%
WAPE 12.09% 9.38% 11.51% 8.98% 8.94% 8.55% 8.57% 8.33% 8.77% 8.70% 10.45% 9.70% 8.33% 8.73% 8.34%
Param - 0.11 8.07 0.30 0.37 0.31 0.21 0.40 0.75 0.55 1.35 16.42 25.47 0.27 0.12
Speed - 11.81 13.01 14.21 57.67 16.88 117.09 124.82 16.04 12.01 7.51 29.38 745.62 16.87 3.54

PE
M

S0
7

MAE 29.64 22.00 26.14 22.25 21.16 20.44 20.04 19.49 20.68 21.01 22.50 22.47 N/A 20.59 19.61
RMSE 46.23 35.44 42.72 35.83 34.15 33.38 32.86 32.59 34.45 34.14 36.41 35.42 N/A 34.86 32.69
MAPE 13.52% 9.31% 11.37% 9.47% 9.02% 8.71% 8.63% 8.09% 8.77% 8.92% 9.57% 9.56% N/A 8.61% 8.31%
WAPE 9.47% 7.03% 8.36% 7.11% 6.77% 6.54% 6.41% 6.23% 6.61% 6.72% 7.19% 7.18% N/A 6.58% 6.27%
Param - 0.12 8.07 0.59 0.37 0.32 0.25 0.41 0.75 1.37 3.44 27.18 N/A 0.57 0.14
Speed - 39.30 60.89 67.14 324.75 94.51 634.47 748.51 93.79 60.59 50.93 512.84 N/A 73.45 13.63

PE
M

S0
8

MAE 21.29 16.80 18.91 16.19 15.23 14.67 14.77 14.10 15.78 15.25 16.90 16.92 14.00 15.39 14.21
RMSE 33.46 26.38 31.39 25.51 24.17 23.55 23.81 23.36 24.76 24.22 26.30 26.68 23.41 24.80 23.35
MAPE 14.34% 10.66% 12.11% 10.82% 10.21% 9.46% 9.77% 9.33% 10.42% 10.66% 11.89% 10.88% 9.50% 9.91% 9.32%
WAPE 9.15% 7.24% 8.14% 6.98% 6.56% 6.32% 6.36% 6.07% 6.80% 6.57% 7.28% 7.29% 6.03% 6.63% 6.12%
Param - 0.10 8.07 0.23 0.37 0.31 0.20 0.39 0.15 0.35 1.15 17.25 26.56 0.20 0.12
Speed - 10.62 8.01 7.46 35.36 10.34 138.65 109.42 11.33 9.57 6.64 17.49 420.86 10.98 3.38

Temporal Dimension: 
Clear and Stable Patterns?

Spatial Dimension: 
Indistinguishable Samples?

Yes

No

 Unbiased or Weakly Biased Models: 
•  Linear, MLP, Vanilla Transformer, etc. 

 Dynamic Distribution Modeling: 
•  Online Learning, Transfer Learning, etc. 

 Feature Engineering. 
 Uncertainty Estimation: 
•  Predictability, Probabilistic Prediction, Interval Prediction, etc.

No

Yes

 Sequence Models: 
•  CNNs, RNNs, Transformers, etc.

 Sequence Models  
+ Spatial Correlation Modeling: 

•  GNN, Normalization, Spatial Identities, etc.

MTS

Fig. 6. Road map for selecting or designing MTS models.

(i) how to select or design an MTS forecasting solution for
a given dataset and (ii) how to choose datasets suitable for
evaluating a given MTS forecasting solution, and we (iii)
comprehensively analyze the performance and efficiency of
existing solutions using rich datasets and (iv) discuss the
progress made and noteworthy research directions.

1) How to select or design MTS solutions for a given
dataset.: Patterns in the temporal dimension should be ex-
amined first. For data exhibiting significant distribution drift
or lacking clear patterns, unbiased or weakly biased models
should be chosen, e.g., linear layers, MLPs, or the vanilla
Transformer. If the data displays clear and stable patterns,

powerful sequence models are a more reasonable option, e.g.,
TCNs, RNNs, or Transformer architectures. In addition, we
need to investigate whether the data has a high sample indis-
tinguishability on the spatial aspect. If so, a spatial dependency
modeling module is recommended. Alternative approaches
include graph convolution, spatial-temporal normalization, and
spatial identity attaching. Moreover, we recommend STID [30]
and Linear [26] as baselines. Given their simplicity, we believe
that more complex LTSF or STF solutions are only effective
if they can significantly outperform these two. We summarize
the above discussion in the road map in Figure 6.

2) How to choose suitable datasets for evaluating a given
MTS solution.: The key to validating the effectiveness of
solutions, which are usually designed to address specific
tasks, is to select datasets that align with the task objectives.
For instance, STF algorithms often aim to model spatial-
temporal dependencies. Thus, datasets with significant spatial
dependency are necessary to validate the spatial modeling.
LTSF algorithms, on the other hand, aim for generic time
series forecasting and should be validated on datasets with and
without clear and stable patterns to assess their generalization.
However, most LTSF studies only validate on datasets lacking
clear patterns like ETT or ExchangeRate. Our experimental
results show that this can create an illusion of progress.

Moreover, there are times when our objective is practical,
ranking the performance of popular algorithms. In such cases,
real compound data is more suitable as it typically encom-
passes multiple challenges simultaneously. For example, the
M4 competition dataset comprises both time series with and
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TABLE VI
LTSF ON PEMS04, PEMS08, ETTH1, ETTM1, ELECTRICITY, WEATHER, AND EXCHANGERATE (ER) DATASETS.

Data Metrics LGBM DeepAR NBeats Informer Autoformer Pyraformer FEDformer Triformer Crossformer PatchTST Linear DLinear NLinear

PE
M

S0
4 MAE 34.55 34.79 27.95 27.94 34.72 25.49 26.89 23.81 26.75 25.72 37.42 37.52 37.62

RMSE 57.74 55.91 46.87 44.74 50.33 41.74 41.46 39.42 45.24 40.13 62.14 62.21 62.38
WAPE 14.94% 15.83% 12.86% 12.84% 14.81% 11.72% 12.39% 10.95% 12.31% 13.35% 17.22% 17.26% 11.35%
Param - 0.11 13.05 12.40 12.07 218.42 18.36 1.69 13.51 2.34 0.11 0.23 0.11
Speed - 392.98 31.65 28.62 137.61 25.22 147.75 313.52 338.94 147.42 21.13 21.24 21.27

PE
M

S0
8 MAE 38.15 35.58 21.43 26.92 33.75 22.03 25.14 18.74 21.75 19.86 34.04 34.15 34.11

RMSE 57.74 54.98 38.69 43.79 51.09 38.39 39.17 31.03 36.86 33.44 57.07 57.18 57.26
WAPE 14.94% 13.14% 9.26% 11.63% 15.37% 9.52% 10.87% 8.13% 9.40% 8.34% 14.71% 14.76% 14.74%
Param - 0.10 13.05 11.91 11.37 123.93 17.66 1.64 12.53 2.34 0.11 0.23 0.11
Speed - 557.72 18.06 23.34 81.54 20.94 147.89 200.50 224.90 86.81 12.60 12.78 13.04

E
T

T
h1

MAE 1.76 1.94 1.83 2.92 1.74 2.68 1.71 1.80 1.83 1.60 1.60 1.58 1.59
RMSE 3.34 3.44 3.36 4.60 3.12 4.26 3.15 3.31 3.19 3.08 3.08 3.06 3.09
WAPE 38.30% 41.89% 39.50% 62.87% 37.61% 57.75% 36.89% 38.72% 39.44% 34.49% 34.47% 34.06% 34.29%
Param - 0.10 13.05 11.33 10.54 11.59 16.30 1.59 11.36 0.24 0.11 0.23 0.11
Speed - 110.53 3.58 14.18 39.37 11.98 43.44 26.24 11.91 3.90 1.25 1.35 1.28

E
T

T
m

1 MAE 1.54 2.21 1.53 2.37 1.93 2.45 1.53 1.57 1.73 1.37 1.39 1.38 1.38
RMSE 2.92 4.02 2.94 4.20 3.67 3.92 2.89 2.94 3.01 2.78 2.80 2.80 2.81
WAPE 33.36% 47.72% 33.03% 51.16% 41.69% 52.79% 33.00% 33.83% 37.52% 29.60% 30.02% 29.80% 29.86%
Param - 0.10 13.05 11.33 10.54 11.59 16.83 1.59 11.79 0.24 0.11 0.23 0.11
Speed - 440.85 8.57 57.32 121.91 46.57 235.17 108.11 98.13 14.77 4.35 4.79 4.40

E
le

ct
ri

ci
ty MAE 543.11 283.72 281.63 325.53 295.98 335.23 317.20 275.42 283.86 253.57 256.60 250.08 251.80

RMSE 8352.53 2998.18 2936.83 2938.56 2933.97 2761.75 2935.53 2968.97 2732.70 2881.53 2896.04 2883.63 2892.13
WAPE 20.37% 12.27% 10.56% 12.22% 11.11% 12.58% 11.91% 10.33% 10.56% 9.51% 9.62% 9.38% 9.44%
Param - 0.11 13.05 12.45 12.14 228.20 17.91 1.69 1.20 0.24 0.11 0.23 0.11
Speed - 918.78 55.53 51.00 69.04 70.86 113.94 484.90 198.54 95.92 40.92 39.21 40.71

W
ea

th
er

MAE 16.66 24.88 12.29 12.88 29.37 38.94 15.61 11.29 11.36 10.85 12.25 12.08 12.02
RMSE 73.78 73.44 44.57 41.57 84.75 142.50 44.74 40.74 41.27 41.70 43.22 43.35 43.32
WAPE 9.96% 14.87% 7.29% 7.70% 17.56% 23.28% 9.33% 6.75% 6.79% 6.49% 7.32% 7.22% 7.19%
Param - 0.10 13.05 11.38 10.61 21.30 16.90 1.59 11.46 2.21 0.11 0.23 0.11
Speed - 439.89 10.77 78.30 99.51 50.52 503.17 120.21 107.23 42.72 8.19 8.73 8.38

E
R

MAE 0.0940 0.0608 0.0342 0.0611 0.0366 0.0632 0.0376 0.0367 0.0504 0.0332 0.0352 0.0350 0.0322
RMSE 0.1531 0.0885 0.0537 0.0803 0.0568 0.0870 0.0578 0.0533 0.0732 0.0525 0.0550 0.0547 0.0508
WAPE 11.55% 8.00% 4.51% 8.0355% 4.8152% 8.3192% 4.9405% 4.8431% 6.6406% 4.3804% 4.6343% 4.6086% 4.2450%
Param - 0.10 13.05 11.33 10.54 12.26 16.31 1.59 0.78 0.24 0.11 0.23 0.11
Speed - 64.02 1.39 8.60 13.72 13.03 26.20 15.98 6.65 2.38 0.93 0.95 0.91

without clear and stable patterns. It is important to note that
a solution designed specifically for one type of task might
not outperform others on such datasets as it contains multiple
complex tasks. For instance, SOTA models in STF or LTSF
might not yield satisfactory results on the M4 dataset.

3) Experimental Results: First, we present and discuss
the detailed performance and efficiency evaluations on LTSF
and STF tasks. Then, we select representative solutions from
STF and LTSF, along with classic time series solutions, and
showcase their results on the complex competition M4 dataset.

The results for LTSF are shown in Table VI. When used on
datasets without clear and stable patterns, the state-of-the-art
advanced Transformer models [8], [16] and the basic linear
models [26] exhibit comparable performance. Considering
the simplicity of Linear-based models, we believe that for
LTSF prediction tasks, designing new training strategies or
engaging in feature engineering to address distribution drift
or ambiguous patterns poses more important challenges than
designing increasingly more complex time series forecasting
models. Moreover, on datasets with clear and stable pat-
terns, it is surprising that many recent solutions struggle to
outperform the earliest baseline, Informer [7]. Considering
that making predictions on such datasets should be a more
straightforward task, this raises concerns that the architectures
of existing LTSF models might have been over-fitted datasets
like ETT, Electricity, Weather, and ExchangeRate that are used
commonly in LTSF studies. This reaffirms the importance of
selecting appropriate evaluation datasets.

Table V reports the experimental results for STF. Benefiting
from the incorporation of prior knowledge, prior-graph-based
methods generally perform better than latent-graph-based or
non-graph-based methods. Furthermore, it is apparent that
learning a graph structure can be very challenging. Among
the different solutions, only MTGNN [49] and STEP [52]
are capable of learning effective graph structures that do not
significantly degrade the prediction performance. Overall, it
is obvious that more intricate network structures yield very
limited improvement. For example, although D2STGNN [3],
published in 2022, is the state-of-the-art for STF prediction,
its MAE on METR-LA is only 6% higher than that of Graph
WaveNet [11], published in 2019. In addition, it is even more
surprising that Graph WaveNet [11] and its variant MTGNN
are still able to significantly outperform many newer solutions,
including StemGNN [23], GTS [50], and others [25], [24],
[64]. Therefore, we find that compared to improving prediction
accuracy by designing increasingly complex models, more
progress may be achieved by focusing on other important and
challenging issues, such as efficiency, graph structure learning.
For example, STID and STNorm are highly efficient and have
achieved satisfactory results on most datasets.

In summary, advanced solutions for LTSF and STF repre-
sent substantial progress on the modeling of long-term time
dependencies and spatial dependencies, respectively. However,
complex industrial datasets often contain more complex chal-
lenges. Table VII reports the experimental results of repre-
sentative solutions on the M4 dataset. Specifically, LGBM,
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TABLE VII
RESULTS ON THE M4 DATASET.

Models LGBM DeepAR NBeats STID PatchTST

Ye
ar

ly sMAPE 14.705 13.886 13.337 13.420 14.158
MASE 3.565 3.129 3.004 3.071 3.193
OWA 0.898 0.819 0.786 0.797 0.836

Q
ua

rt
er

ly sMAPE 11.358 11.374 9.866 9.869 10.257
MASE 1.418 1.352 1.136 1.141 1.184
OWA 1.033 1.009 0.862 0.864 0.898

M
on

th
ly sMAPE 14.559 14.749 12.168 12.624 13.244

MASE 1.172 1.185 0.897 0.940 1.002
OWA 1.056 1.068 0.844 0.879 0.93

O
th

er
s sMAPE 6.665 6.410 4.635 4.806 4.844

MASE 4.810 4.769 3.106 3.358 3.166
OWA 1.460 1.427 0.978 1.035 1.009

W
ei

gh
te

d

Av
er

ag
e sMAPE 13.430 13.323 11.508 11.755 12.324

MASE 1.963 1.851 1.550 1.599 1.658
OWA 1.008 0.975 0.829 0.851 0.888

DeepAR, and NBeats are widely used solutions in industrial
applications; STID represents STF prediction solutions, while
PatchTST represents LTSF solutions. We follow an existing
experimental setup from [28] and report their results on the
Yearly, Quarterly, Monthly, and Others subsets, including also
their weighted averages. As in the literature [28], we remove
the ensemble method in NBeats for fair comparison. Although
PatchTST and STID are superior in Tables VI and V, they
perform worse than classic algorithms on the M4 dataset.

4) Limitations of Current Studies and Future Directions:
There is no doubt that multivariate time series hold significant
value in various scientific fields [81], [82], [83]. Although
deep learning-based MTS forecasting solutions, particularly
in STF and LTSF, have seen substantial advancements, current
efforts mainly focus on designing increasingly intricate model
architectures. The limitation is that these endeavors appear
to be effective only when the data exhibits strong patterns.
However, unlike image [84], [85] and natural language data,
whose patterns are frequently consistent and stable, time series
data can be greatly affected by external factors, resulting in
distribution drift or the frequent occurrence of unpredictable
changes. Moreover, MTS data in real-world scenarios often
face challenges related to insufficient data volume and low data
quality [86]. These factors represent key bottlenecks for the
broader application of existing research outcomes. Therefore,
we emphasize that future research should prioritize more real-
istic scenarios, such as modeling distribution shifts, predicting
with low-quality data, and zero- or few-shot learning.

VII. CONCLUSION

In this study, we address the seemingly inconsistent experi-
mental findings and difficulties in selecting technical directions
in the area of Multivariate Time Series (MTS) forecasting,
shedding light on the actual advance achieved. First, we
introduce a novel benchmark called BasicTS+ that is designed
to enable fair and reasonable comparisons of MTS forecasting
solutions. By adopting a unified training pipeline, BasicTS+
addresses the issue of inconsistent performance, and provides
more reasonable evaluation procedures. Second, we delve
into the heterogeneity across MTS datasets. Considering the
temporal aspect, we categorize datasets according to whether

they exhibit clear and stable patterns, significant distribution
drift, or unclear patterns. Considering the spatial aspect, we
devise metrics to quantify spatial dependencies and partition
datasets into those with and without significant spatial indis-
tinguishability. We emphasize that many conclusions drawn
in prior research hold only for certain types of data, and
considering these conclusions to be more general can lead re-
searchers to make counterproductive inferences. Additionally,
using BasicTS+ and the associated MTS datasets, we conduct
an extensive analysis and comparison of popular solutions.
These findings offer valuable insight into the progress already
made, aiding researchers in choosing appropriate solutions or
datasets and drawing more reliable conclusions.
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APPENDIX

A. Datasets

• METR-LA and PEMS-BAY are traffic speed datasets
recorded every 5 minutes. The datasets include sensor
graphs to indicate spatial dependencies between sen-
sors [6].

• PEMS03, PEMS04, PEMS07, and PEMS08 are traffic
flow datasets recorded every 5 minutes. These datasets
include sensor graphs to indicate dependencies between
sensors [73].

• ETTh1, ETTh2, ETTm1, and ETTm2 record tem-
peratures of electricity transformers for use in electric
power long-term deployments. The ‘1’and ‘2’indicate
different transformers, while ‘h ’and ‘m’indicate different
sampling every hour and every 15 minutes [7].

TABLE VIII
STATISTICS OF DATASETS.

Dataset Samples Variates Frequency Time Span Graph
METR-LA 34272 207 5 mins 4 months Yes
PEMS-BAY 52116 325 5 mins 6 months Yes

PEMS03 26208 358 5 mins 3 months Yes
PEMS04 16992 307 5 mins 2 months Yes
PEMS07 28224 883 5 mins 4 months Yes
PEMS08 17856 170 5 mins 2 months Yes
ETTh1 14400 7 1 hour 20 months No
ETTh2 14400 7 1 hour 20 months No
ETTm1 57600 7 15 mins 20 months No
ETTm2 57600 7 15 mins 20 months No

Electricity 26304 321 1 hour 2 years No
Weather 52696 21 10 mins 1 year No

Exchange
Rate 7588 8 1 day 27 Years No

M4 19-9933 100000 Mixed N/A No
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• Electricity records electricity consumption in kWh by
321 clients every hour from 2012 to 2014 [2].

• Weather records 21 meteorological indicators every 10
minutes for the year of 2020 [9].

• ExchangeRate collects the daily exchange rates for the
currencies of eight countries including Australia, UK,
Canada, Switzerland, China, Japan, New Zealand, and
Singapore [2].

• M4 is a well-known competition dataset that con-
tains marketing data collected yearly, quarterly, monthly,
weekly, daily, and hourly, with a total of 100,000 time
series. These time series are not aligned, which means
they have different lengths and start and end times [87].

Table VIII reports summary statistics on the datasets.

B. Baselines

Table IX gives a brief summary of the baselines used in this
study.

TABLE IX
OVERVIEW OF BASELINES.

Methods Fied Category Notes
STGCN

STF

Prior-
Graph-
based

GCN + TCN
DCRNN GCN + RNN
GWNet GCN + TCN
DGCRN GCN + RNN

D2STGNN Mixed
AGCRN

Latent-
Graph-
based

GCN + RNN
MTGNN GCN + TCN

StemGNN GCN + TCN + Spectral
GTS GCN + RNN

STEP Pretraining-Enhanced
ST-Norm Non-Graph-

based
Normalization

STID Identity Embedding
Informer

LTSF

Advanced
Neural

Networks

Efficient Self-Attention
Autoformer Auto-Correlation
FEDformer Frequency-Enhanced
Pyraformer Pyramidal Attention
Triformer Triangular Attention

Crossformer Cross-Dimension Attention
PatchTST Channel Independent + Patchify

Linear Basic
Neural

Networks

Vanilla Linear Layer
NLinear Linear + Normalization
DLinear Linear + Decomposition
LGBM

Classic
Gradient Boosting

DeepAR Probabilistic Auto Regressive
NBeats Neural Basis Expansion
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