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Abstract

In this paper, we consider the bacterial point-to-point and multiple-access molecular communications

with ligand-receptors. For the point-to-point communication, we investigate common signaling methods,

namely the Level Scenario (LS), which uses one type of a molecule with different concentration levels, and

the Type Scenario (TS), which employs multiple types of molecules with a single concentration level. We

investigate the trade-offs between the two scenarios from the capacity point of view. We derive an upper

bound on the capacity using a Binomial Channel (BIC) model and the symmetrized Kullback-Leibler

(KL) divergence. A lower bound is also derived when the environment noise is negligible. For the TS, we

also consider the effect of blocking of a receptor by a different molecule type. Then, we consider multiple-

access communications, for which we investigate three scenarios based on molecule and receptor types,

i.e., same types of molecules with Different Labeling and Same types of Receptors (DLSR), Different

types of Molecules and Receptors (DMDR), and Same types of Molecules and Receptors (SMSR). We

investigate the trade-offs among the three scenarios from the total capacity point of view. We derive

some inner bounds on the capacity region of these scenarios when the environment noise is negligible.

I. INTRODUCTION

Molecular communication (MC) has stimulated a great deal of interest because of its potential broad

applications. There are different mechanisms for MC, among which diffusion is the most favorable, as

it does not require any prior infrastructure. In diffusion-based systems, information might be encoded

into the concentration, type, or releasing time of the molecules. For instance, in [1], an on-off keying

∗This paper has been presented in part at the IEEE International Symposium on Information Theory (ISIT), Wan Chai, Hong

Kong, June 2015.
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modulation is proposed where molecules are released only when the information bit is one. It is shown

that if there is no interference from the previous transmission slots, the channel can be modeled by a

Z-channel. In [2], [3], new modulation techniques based on multiple types of molecules are presented.

Two models for diffusion-based channels have been proposed, namely small and large scales. Diffusion

process is viewed as a probabilistic Brownian motion in the small scale model, whereas it is described

by deterministic differential equations in the large scale model. In this paper, we concentrate on the

large scale model which reflects the average effects of diffusion. However, to derive the large-scale

diffusion capacity of MC, one has to deal with the reception process at the receiver side. Two reception

models are considered for a passive receiver. The first model is a perfect absorber where the receiver

absorbs the hitting molecule. The second model, which is more realistic, is the ligand-receptor binding

receiver, where the hitting molecule is absorbed by the receptor with some binding probability, [4], [5].

The randomness in ligand-receptor binding process is modeled in [6] and a closed form solution for

this modeling is derived by using Markov chains. Ligand-receptors are modeled by a Markov chain in

[4], by a discrete-time Markov model in [7], and by a BIC for a bacterial colony in [8]. The BIC is

defined by P (y|x) =
(
n
y

)
xy(1− x)n−y where the input is x ∈ [0, 1], the output is y ∈ {0, 1, . . . , n} and

n, the number of trials, is a given natural number. Average and peak constraints on the input x may

exist. The capacity of this channel without average and peak constraints, for large values of n, behaves

as 1
2 log

n
2πe + log π [9]. However, there is no explicit upper or lower bound on the capacity of the BIC

when n is not large enough. An algorithm for computing the capacity of the BIC was presented in [10]

using convex optimization methods.

On the other hand, the bacteria based multiple-access communications have been studied in [11]–[13]

for diffusion channel and ligand-receptor, where the transmitters use binary on-off keying modulations

employing the same type of molecules but with different labeling. In these papers, the capacity of the

multiple-access channel (MAC) is simply computed as the sum of the capacity of the channels between

each transmitter and the receiver. In [11], the expected concentration of bound molecules is computed.

Then, by approximating the number of delivered molecules as the normally distributed random variable,

the maximum detection probability is calculated, and based on the result, by modeling each user channel

as a binary symmetric channel, the capacity of the channel is computed. In [12], the channel randomness

effect has been modeled by adding an additive Gaussian noise to the concentration of bound molecules.

Then, by using the Gaussian channel model approximation, the capacity of each user channel is derived.

In [13], the capacity of each user channel is computed by representing the diffusion channel as a binary

test channel. In all these works, the average interference from the other transmitters is taken into account

in calculating the binding probability. In this paper, however in contrast to the previous works, we
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examine the instantaneous effect of the multiple-access interference instead of its average value. In the

following, we first concentrate on a point-to-point molecular communication and evaluate its capacity

and the upper and lower bounds. Then we consider three multiple-access scenarios and for each, we

evaluate the capacity region and some inner bounds.

Our main contributions are as follows:

• Point-to-Point Communication: We investigate the trade-offs between two bacterial point-to-point

communication scenarios for ligand-receptors with fixed total number of molecules and receptors: (a)

multi-type molecular communication with a single concentration level, and (b) single-type molecular

communication with multiple concentration levels. At the first glance, scenario (a) introduces new

degrees of freedom and reduces the intersymbol interference (ISI). However, since the number of

molecules per type (the power per type) reduces increasing the number of types, we should examine

the benefit of using different types of molecules. To make the comparison between scenario (a)

and (b), we adopt the model of [8] in this work. In addition, a Markov model for the interactions

between different types of molecules near the receptor is presented and the capacity for this model

is computed numerically.

• Upper and Lower Bounds for the BIC Capacity: Using KL divergence bound of [14], we derive

an upper bound on the capacity of the point-to-point BIC model under given average and peak

constraints on the channel input (Theorem 1). Based on numerical evidence, we believe that this

upper bound works well in the low SNR regime (which can occur in MC systems). A lower bound

is derived on the point-to-point BIC capacity under average and peak constraints in the case of no

environment noise in Lemma 1.

• Multiple-Access Communication: We investigate the trade-offs among three multiple-access bac-

terial communication scenarios for ligand-receptors with fixed total number of receptors: (a) Using

the same molecule type with different labeling for different transmitters and one receptor type at the

receiver (DLSR), (b) Using different molecule types for different transmitters and different receptor

types at the receiver (DMDR), and (c) Using the same molecule type for the transmitters and one

receptor type at the receiver (SMSR). Scenarios (a) and (c) share the receptors and introduce a new

degree of freedom. However, the benefit of using different types of molecules in scenario (b) should

be examined. Scenario (a) has also the advantage that the transmitters use a self-identifying label

and therefore seems to have better performance than scenarios (b) and (c). To compare the three

scenarios, we compute their total capacities numerically. By assuming two transmitters in Section

V-A, we derive some inner bounds on the capacity region of the three scenarios under average and
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(a) Level scenario (LS) (b) Type scenario (TS)

Fig. 1: Two scenarios: LS and TS

peak constraints in the case of no environment noise.

All logarithms are in base e in this paper. This paper is organized as follows: in Section II, we present

the system model for point-to-point communication scenarios, whose capacities are discussed in Section

III. The interaction of molecules near the receptor is modeled in Subsection II-A. In Subsection III-A, a

new upper bound on the capacity of the BIC is presented by considering peak and average constraints.

Subsection III-B includes a lower bound on the capacity of the BIC by extending the Z-channel. In

Section IV, three scenarios for multiple-access communication are presented, whose capacity regions

and total capacities are discussed in Section V. The achievable rates for these scenarios are provided in

Subsection V-A. Section VI includes the numerical results, and finally concluding remarks are given in

Section VII.

II. POINT-TO-POINT SYSTEM MODEL

In this section, we describe two bacterial point-to-point communication scenarios with ligand-receptors.

Level Scenario (LS): Here, the transmitter encodes information at multiple concentration levels to

create the codewords. At the transmitter and the receiver, there is only one colony with n bacteria where

each bacteria has N receptors; i.e., nN receptors in total. All these n bacteria produce just one type of

molecule. This scenario is shown in Fig. 1a.

Type Scenario (TS): This scenario uses multiple types of molecules at the transmitter and the receiver.

We assume the same total number of n bacteria (as in LS) are available which are equally divided into m

colonies at both the transmitter and receiver as shown in Fig. 1b. As such, each colony has n/m bacteria.

Moreover, different colonies at the transmitter produce different types of AHL molecules. Furthermore,

the colonies are synchronized at the transmitter. Similar to the LS scenario, each bacteria has N receptors.

Therefore, there are nN/m receptors in total per each colony, i.e., each type of molecule. Each colony

can detect its own molecule type, and as a result, produces different color Fluorescent Proteins (e.g.,
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GFP, YFP, ...) which are used by the receiver to decode the received signal. In addition, we assume that

all receptors of a colony are independent and sense a common molecule concentration.

In both scenarios, we assume that there is no intersymbol interference (ISI). In other words, we assume

those molecules, who do not bind to the receptors in the current time slot, will be degraded to the next

time slot and hence will not interfere with molecules from the next time slot. This assumption, together

with the large-scale diffusion channel property, results in a linear channel. For simplicity, we further

assume that no attenuation occurs in the channel. Therefore, the received concentration Ar is equal to

the transmitted concentration As. At the receiver with ligand-receptors, the probability of binding at the

steady state is given by [8]

pb =
As

As +
κ
γ

, (1)

where γ is the input gain and κ is the dissociation rate of trapped molecules in the cell receptors. If we

consider an environment noise with concentration Ane, due to the molecules of the same type from other

sources, the probability of binding becomes pb = As+Ane
As+Ane+

κ

γ

.

In LS, we only have one type of molecule and its binding probability is equal to

pLSb =
X +ALSne

X +ALSne + κ
γ

, (2)

where X is the received concentration at the receiver and ALSne is the concentration of the environment

noise. We can view the LS scenario as a BIC as follows:

PLS(Y = y|X = x) =

(
nN

y

)
fypb(x+ALSne )

(
1− fpb(x+ALSne )

)nN−y
, (3)

fpb : [0,∞]→ [0, 1], y ∈ {0, 1, ..., nN}.

The function fpb(.) is the binding probability function. From (2), we have fpb(X + Ane) =
X+Ane

X+Ane+
κ

γ

.

As such, the function fpb(.) is an increasing and concave function.

In TS, we have different types of molecules. Here, we assume that the binding processes of different

molecule types are independent and every receptor binds to its own molecule type and two different

types do not bind to one receptor. We investigate a more general model in Subsection II-A by taking

into account the interaction of different types of molecules in TS. The probability of binding for the ith

type of molecule is given by

pTSbi =
Xi +ATSnei

Xi +ATSnei +
κi
γi

, (4)

where Xi is the received concentration of the ith type of molecule and ATSnei is the concentration of the

environment noise for the ith type of molecule. Without loss of generality, we assume ATSnei = ATSne and
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the same γ and κ for all types of molecules and receptors. This scenario can be viewed as m orthogonal

BICs as follows:

P TSi (Yi = yi|Xi = xi) =

(nN
m

yi

)
fyipb (xi +ATSnei)

(
1− fpb(xi +ATSnei)

)nN
m
−yi

, i = 1, ...,m, (5)

fpb : [0,∞]→ [0, 1], yi ∈ {0, 1, ...,
nN

m
}.

A. Blocking of Receptors

In the TS scenario, we assumed orthogonal parallel channels for different types of molecules with no

interference between them (i.e., no blocking of a receptor by molecules of another type). However, when

there are different types of molecules, they may interfere with each other. In other words, one type of

molecule may block another type of molecule from binding to its receptor counterpart. For example,

consider m = 2 with two types of molecule, A and B and their corresponding receptors as RA and RB .

The molecule type A near RB may prevent the molecule type B from binding to RB and vice versa.

Assume that XA and XB are the received concentrations of types A and B. The main reaction kinetics,

for binding of the molecule type B to its receptor, is modeled as [5]

XB +RB
γB


κB
XRB, (6)

where γB ≥ 0 is the association rate of the molecule type B with receptors of type B and κB ≥ 0 is the

dissociation rate of XRB complex. Now, we characterize the blocking for the receptor type B, similar

to the reaction kinetics formulas by

XA +RB
γBlock,AB−−−−−→ RBlock,AB , XA +RB

κBlock,AB←−−−−− RBlock,AB , (7)

where γBlock,AB ≥ 0 is the blocking rate of RB by molecule type A and κBlock,AB is the unblocking rate

of RBlock,AB . If we do not take the blocking into account, then we have a reaction kinetics for each type

of receptor to its molecule type. As in [5], we define a Markov model for the no blocking case based

on (6), as shown in Fig. 2a for m = 2. Likewise, according to (7), we propose a Markov model for the

blocking case, as shown in Fig. 2b. We consider three states. The full state is when the receptor binds

to its type, the empty state when the receptor is free, and the block state when the receptor is blocked

with a different molecule type. Solving the chain for the no blocking case, the steady state behaviour

of the system-reaction formula is obtained as (1). Solving the chain for the blocking case, we have the

following probabilities of binding and blocking for the receptor type B:

pb = pFull =

γB
κB
XB

γB
κB
XB + γBlock,AB

κBlock,AB

XA + 1
, pBlock =

γBlock,AB

κBlock,AB

XA

γB
κB
XB + γBlock,AB

κBlock,AB

XA + 1
. (8)
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(a) With no blocking (b) With blocking

Fig. 2: Two Markov models for receptor type B

If we increase the concentration for one type of molecule, the probability of binding for another type is

decreased as expected. This model can be extended for m > 2 via,

pbi = pFulli =

γi
κi
Xi

γi
κi
Xi +

∑m
j=1,j 6=i

γBlock,ji

κBlock,ji

Xj + 1
, pBlocki =

∑m
j=1,j 6=i

γBlock,ji

κBlock,ji

Xj

γi
κi
Xi +

∑m
j=1,j 6=i

γBlock,ji

κBlock,ji

Xj + 1
. (9)

where pbi and pBlocki are the binding probability of the ith type of receptor to the molecules of its type

and the blocking probability of the ith type of receptor by the molecules of the other types, respectively.

The blocking and unblocking rates for the ith type of receptor by the molecules of the jth type are

defined by γBlock,ji and κBlock,ji , respectively. It is also possible to consider the environment noise for

the binding and blocking probabilities. Hence, the probability of binding for the ith type of molecule is

given by

pTS,Bbi
=

γi
κi
(Xi +ATSnei)

γi
κi
(Xi +ATSnei) +

∑m
j=1,j 6=i

γBlock,ji

κBlock,ji

(Xj +ATSnej ) + 1
, (10)

We can view the TS scenario with blocking as a multi-input multi-output BIC as follows:

P TS,Bi (Yi = yi|X1 = x1, ..., Xm = xm)

=

(nN
m

yi

)
fyipbi (x1, ..., xm, A

TS
nei)

(
1− fpbi (x1, ..., xm, A

TS
nei)
)nN
m
−yi

, i = 1, ...,m, (11)

where fpbi (X1, ..., Xm, A
TS
nei) = pTS,Bbi

is the probability of binding when the blocking is considered.

III. POINT-TO-POINT CAPACITY ANALYSIS

We investigate the capacity for the two scenarios. In both scenarios, the output is discrete. Further, we

assume the environment noise and average and peak concentration level constraints.

In LS, we have a single colony with input X and output Y . The peak and average concentration

constraints for the input are 0 ≤ X ≤ As and E[X] ≤ αsAs, respectively.

Then, we obtain the capacity for LS as

CLS = max
P (x):

0≤X≤As, E[X]≤αsAs

I(X;Y ), Y ∈ {0, 1, ..., nN}. (12)

DRAFT



8

In TS, we use Xi to denote the input of the ith colony to the channel and Yi to denote the output of

the ith colony at the receiver. The peak and average concentration constraints for the input of the ith

colony are 0 ≤ Xi ≤ As
m and E[Xi] ≤ αs Asm , respectively.

Hence, the capacity can be written as

CTS = max
P (x1,x2,...,xm):

0≤Xi≤Asm , E[Xi]≤αs Asm

I(X1, ..., Xm;Y1, ..., Ym), Yi ∈ {0, 1, ...,
nN

m
}. (13)

If we do not consider the blocking, the capacity could be obtaind as follows:

CTS = m× max
P (xi):

0≤Xi≤Asm , E[Xi]≤αs Asm

I(Xi;Yi), Yi ∈ {0, 1, ...,
nN

m
}. (14)

For a fair comparison of CLS with CTS , we consider ALSne = ATSne = Ane. Since we have a BIC in

LS and m BICs in TS with no blocking, we consider a BIC for the two scenarios as follows:

P (Y = y|X = x) =

(
N ′

y

)
fypb(x+Ane) (1− fpb(x+Ane))

N ′−y , (15)

fpb : [0,∞]→ [0, 1], y ∈ {0, 1, ..., N ′}.

Since P (y|x) is a Binomial distribution, we have
∑

y yP (y|x) = N ′fpb(x). The peak and average

constraints for the input of the BIC are 0 ≤ X ≤ A′s and E[X] ≤ αsA
′
s, respectively. Note that for LS

and TS we have the following parameters:

• LS: N ′ = nN and A′s = As.

• TS with no blocking: N ′ = nN
m and A′s =

As
m .

A. Capacity Upper Bound

There is no closed form for the BIC capacity. As such, for the first time, we propose an upper bound

on the capacity of the BIC at the low SNR regime by considering average and peak constraints using the

symmetrized KL divergence, referred as KL upper bound in [14]. We first explain the KL upper bound

briefly. Let Dsym(p‖q) = D(p‖q) +D(q‖p). Then,

U(P (y|x)) = max
P (x)

Dsym(P (x, y)‖P (x)P (y)) ≥ max
P (x)

I(X;Y ) = C(P (y|x)). (16)

The KL U(P (y|x)) is always an upper bound on the capacity. It is straightforward to show that

Dsym (P (x, y)‖P (x)P (y)) = EP (x,y) logP (Y |X)− EP (x)P (y) logP (Y |X). (17)

Now, we state our upper bound in the following theorem. The proof of this theorem can be found in

Appendix A.
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Theorem 1. Consider a point-to-point BIC as (15) and any input probability mass function (p.m.f) P (x).

Then, the symmetrized KL divergence upper bound has the following explicit formula:

I(X;Y ) ≤ U(P (x, y)) = N ′Cov

(
fpb(X +Ane), log

(
fpb(X +Ane)

1− fpb(X +Ane)

))
, (18)

where Cov(X,Y ) = E[XY ]− E[X]E[Y ]. Furthermore, imposing the average intensity constraint αsA′s

and peak constraint A′s, we get

UBinomial(P (y|x)) := max
P (x):

0≤X≤A′s, E[X]=αsA′s

U(P (x, y))

= N ′


fpb (αsA

′
s+Ane)

fpb (A
′
s+Ane)

[fpb(A
′
s +Ane)− fpb(αsA′s +Ane)]E, if (∗),

fpb (A
′
s+Ane)
4 E, if (∗∗),

(19)

where E = log
(
fpb (A

′
s+Ane)(1−fpb (Ane))

fpb (Ane)(1−fpb (A′s+Ane))

)
, (∗) : fpb(αsA′s + Ane) <

fpb (A
′
s+Ane)
2 , and (∗∗) : fpb(αsA′s +

Ane) ≥
fpb (A

′
s+Ane)
2 . Hence,

C = max
P (x):

0≤X≤A′s, E[X]=αsA′s

I(X;Y ) ≤ UBinomial(P (y|x)). (20)

We compute this KL upper bound numerically in Section VI. Based on the numerical evidence, this

upper bound works well for all Binomial channels (such as MC channels) with low capacity.

B. Capacity Lower Bound

We obtain a lower bound on the capacity of the BIC when the environment noise is negligible.

We assume a binary input, while in the previous section, a continuous input was assumed. Under this

assumption, the resulted capacity is a lower bound on the capacity of the BIC. We compute a closed

form formula for the lower bound in the following lemma.

Lemma 1. Consider a point-to-point BIC as (15) and any input p.m.f P (x), in which Ane = 0, x ∈

{0, A′s} and E[X] ≤ αsA′s. The capacity of this channel is obtained as

C =


H
(

1
1+eg(pc)

)
− g(pc)

1+eg(pc) , αs ≥ 1

1−pc+e
−pc log pc

1−pc
,

fI(αs, pc), 0 < αs <
1

1−pc+e
−pc log pc

1−pc
,

(21)

where H(p) = −p log p − (1 − p) log(1 − p), g(p) = H(p)
1−p , pc =

( κ

γ

A′s+
κ

γ

)N ′
and fI(α, p) = −α(1 −

p) logα+ αp log p− (1− α+ αp) log (1− α+ αp).

Proof. The proof is provided in Appendix B.

If we consider N ′ = 1, then the channel would reduce to a Z-channel.

DRAFT



10

(a) DLSR scenario (b) DMDR scenario (c) SMSR scenario

Fig. 3: Three schemes of multiple-access in molecular communication systems

IV. MULTIPLE-ACCESS SYSTEM MODEL

We describe three bacterial multiple-access communication scenarios with ligand-receptors based on

molecule and receptor types differences.

DLSR Scenario: As shown in Fig. 3a, the transmitters send the same type of molecule (AHL) with

different labelings and the receiver employs one type of bacteria (receptor). At the receiver, there is only

one colony with n bacteria where each bacteria has N receptors; i.e., nN receptors in total.

DMDR Scenario: As shown in Fig. 3b, each transmitter uses a different type of bacteria and a different

type of molecule (AHL) and the receiver employs different types of bacteria (receptor). At the receiver,

there are m different colonies with n/m bacteria where each bacteria type has N receptors; i.e., nN/m

receptors in total for the ith molecule type.

SMSR Scenario: As shown in Fig. 3c, the transmitters send the same type of molecule (AHL) and

the receiver employs one type of bacteria (receptor). At the receiver, there is only one colony with n

bacteria, where each bacteria has N receptors; i.e., nN receptors in total.

In all scenarios, we assume that there is no intersymbol interference (ISI) and no attenuation occurs

in the channel. Further, we assume that Xi is the received concentration from the ith transmitter.

In the DLSR scenario, since different labelings are used [11]–[13], it is possible to distinguish between

the molecules emitted from different transmitters. For example, consider m = 2 with two different

labelings of a molecule, L1 and L2. Assume that XL1 and XL2 are the received concentrations of the

different labelings L1 and L2, respectively. The main reaction kinetics, for binding of the molecules with

different labeling to the receptors, are modeled as

XL1 +R
γ


κ
XRL1, XL2 +R

γ


κ
XRL2, (22)

where we consider the same association and dissociation rates for the two different labelings. Similar to

the blocking case, we propose a Markov model for the labeling scenario, as shown in Fig. 4 for m = 2.
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Fig. 4: Markov model for labeling

The steady state behaviour of the system-reaction formula is obtained as

pb1 = pFull by L1
=

XL1

XL1 +XL2 + κ
γ

, pb2 = pFull by L2
=

XL2

XL1 +XL2 + κ
γ

. (23)

This model can be extended for m > 2 via,

pbi =
XLi∑m

j=1X
Lj + κ

γ

, (24)

where pbi is the binding probability of the receptors to the molecules with the ith type of label. It is also

possible to consider the environment noise for the binding probabilities:

pDLSRbi =
Xi +ADLSRnei∑m

j=1(Xj +ADLSRnej ) + κ
γ

, (25)

where ADLSRnei is the concentration of the environment noise for the molecules with the ith type of

label. Without loss of generality, we assume ADLSRnei = ADLSRne . Let the output Yi be the number of

receptors bound to the molecules with the ith type of label. The outputs have multinomial distribution

with parameters pDLSRb1
, ..., pDLSRbm

:

PDLSR(y1, ..., ym|x1, ..., xm) = P (Y1 = y1, ..., Ym = ym|X1 = x1, ..., Xm = xm)

=

(
nN

y1

)
...

(
nN −

∑m−1
i=1 yi

ym

)(
pDLSRb1

)y1
...
(
pDLSRbm

)ym (
1−

m∑
i=1

pDLSRbi

)nN−∑m
i=1 yi

. (26)

In the DMDR scenario, we have different molecule types for the transmitters. Without blocking, the

binding probability for the ith type of molecule is obtained as

pDMDR
bi =

Xi +ADMDR
nei

Xi +ADMDR
nei + κi

γi

, (27)

where ADMDR
nei is the concentration of the environment noise for the molecules of the ith type. Without

loss of generality, we assume ADMDR
nei = ADMDR

ne . Let the output Yi be the number of receptors bound

to the molecules of the ith type. Then, Yi ∼ Binomial
(
nN
m , pDMDR

bi

)
and

PDMDR(y1, ..., ym|x1, ..., xm) = P (Y1 = y1, ..., Ym = ym|X1 = x1, ..., Xm = xm)

=

m∏
i=1

P (Yi = yi|Xi = xi) =

m∏
i=1

(nN
m

yi

)(
pDMDR
bi

)yi(
1− pDMDR

bi

)nN
m
−yi

. (28)
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TABLE I: Variables of the multiple-access scenarios

Variable Definition

pDLSR
bi

Xi+ADLSRnei∑m
j=1(Xj+ADLSRnej

)+κ
γ

pDMDR
bi

Xi+ADMDRnei

Xi+ADMDRnei
+
κi
γi

pDMDR,B
bi

γi
κi

(Xi+ADMDRnei
)

γi
κi

(Xi+ADMDRnei
)+

∑m
j=1,j 6=i

γ
Block,j
i

κ
Block,j
i

(Xj+ADMDRnej
)+1

pSMSR
b

∑m
i=1 Xi+ASMSRne∑m

i=1 Xi+ASMSRne +κ
γ

PDLSR(y1, ..., ym|x1, ..., xm)
(
nN
y1

)
...
(
nN−

∑m−1
i=1 yi

ym

) (
pDLSR
b1

)y1 ... (pDLSR
bm

)ym (1−∑m
i=1 p

DLSR
bi

)nN−
∑m
i=1 yi

PDMDR(y1, ..., ym|x1, ..., xm)
∏m

i=1

(nN
m
yi

)(
pDMDR
bi

)yi(1− pDMDR
bi

)nN
m

−yi

PDMDR,B(y1, ..., ym|x1, ..., xm)
∏m

i=1

(nN
m
yi

)(
pDMDR,B
bi

)yi(
1− pDMDR,B

bi

)nN
m

−yi

PSMSR(y|x1, ..., xm)
(
nN
y

)(
pSMSR
b

)y(
1− pSMSR

b

)nN−y

However, by considering the blocking, taking the same steps as deriving (9), we have the following

binding probability for the ith type of molecule:

pDMDR,B
bi

=

γi
κi
(Xi +ADMDR

nei )

γi
κi
(Xi +ADMDR

nei ) +
∑m

j=1,j 6=i
γBlock,ji

κBlock,ji

(Xj +ADMDR
nej ) + 1

, (29)

Here, we have Yi ∼ Binomial
(
nN
m , pDMDR,B

bi

)
and

PDMDR,B(y1, ..., ym|x1, ..., xm) = P (Y1 = y1, ..., Ym = ym|X1 = x1, ..., Xm = xm)

=

m∏
i=1

P (Yi = yi|X1 = x1, ..., Xm = xm) =

m∏
i=1

(nN
m

yi

)(
pDMDR,B
bi

)yi(
1− pDMDR,B

bi

)nN
m
−yi

. (30)

In the SMSR scenario, we have one molecule type for the transmitters. The receiver senses the sum

of the concentrations Xi. Hence, the probability of binding is equal to

pSMSR
b =

∑m
i=1Xi +ASMSR

ne∑m
i=1Xi +ASMSR

ne + κ
γ

, (31)

where ASMSR
ne is the environment noise. Let the output Y be the number of bound receptors. Then,

Y ∼ Binomial
(
nN, pSMSR

b

)
and

PSMSR(y|x1, ..., xm) = P (Y = y|X1 = x1, ..., Xm = xm) =

(
nN

y

)(
pSMSR
b

)y(
1− pSMSR

b

)nN−y
.

(32)

Table I summarizes the variables defined in this section.
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V. MULTIPLE-ACCESS CAPACITY REGION ANALYSIS

In this section, we investigate the capacity region of the MAC for the three scenarios. In all scenar-

ios, the output is discrete. Further, we assume the environment noise and consider peak and average

concentration level constraints for the input of the ith transmitter as 0 ≤ Xi ≤ Asi and E[Xi] ≤ αsiAsi .

The DMDR scenario with no blocking can be viewed as m orthogonal point-to-point channels and the

capacity of each channel can be computed according to Section III. So here, we consider the blocking.

Since we have one receiver with m outputs in the DLSR and DMDR scenarios, we may view these

scenarios as SIMO (single transmit antenna and multiple receive antennas) MACs and compute the

capacity region as the convex hull of rate tuples (R1, ..., Rm) such that [15]∑
i∈I

Ri ≤ I(X(I); (Y1, .., Ym)|X(Ic)) ∀I ⊆ {1, ...,m}, (33)

for some p.m.f
∏k
i=1 P (xi) that satisfies 0 ≤ Xi ≤ Asi , E[Xi] ≤ αsiAsi , i = 1, ...,m. The total capacity

in these scenarios can be computed as follows:

CDLSR,DMDR
total = max

P (x1,x2,...,xm):
0≤Xi≤Asi , E[Xi]≤αsiAsi , i=1,...,m

I(X1, ..., Xm;Y1, ..., Ym). (34)

The SMSR scenario can be viewed as a SISO (single transmit antenna and single receive antenna)

MAC. The capacity region of this channel is the convex hull of rate tuples (R1, ..., Rm) such that [15]∑
i∈I

Ri ≤ I(X(I);Y |X(Ic)) ∀I ⊆ {1, ...,m}, (35)

for some p.m.f
∏k
i=1 P (xi) that satisfies 0 ≤ Xi ≤ Asi , E[Xi] ≤ αsiAsi , i = 1, ...,m. The total capacity

in this scenario can be computed as follows:

CSMSR
total = max

P (x1,x2,...,xm):
0≤Xi≤Asi , E[Xi]≤αsiAsi , i=1,...,m

I(X1, ..., Xm;Y ). (36)

There is no algorithm to compute the capacity region of the MAC numerically [16]. Instead, the

total capacities of the three scenarios are computed numerically in Sention VI. We remark that the total

capacity in the MAC is active and therefore it is sensible to compute it.

For a fair comparison of the total capacities, we consider ADLSRne = ADMDR
ne = ASMSR

ne = Ane.

A. Capacity Region Inner Bounds

We consider two transmitters and obtain inner bounds on the capacity region of the multiple-access

communication in the three scenarios when the environment noise is negligible. We assume a binary

input to arrive at an inner bound, which is computed numerically in Section VI.
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DLSR, DMDR: We may view the DLSR and DMDR scenarios as interference channels with full

receiver cooperation. The capacity region of the interference channel is an inner bound on the capacity

region of this channel. The time-division inner bound for an interference channel consists of all rate pairs

(R1, R2) such that

R1 < k C1, R2 < (1− k) C2, (37)

for some k ∈ [0, 1], where C1 and C2 are the maximum achievable individual rates as follows [15]:

C1 = max
x2, P (x1)

I(X1;Y1|X2 = x2), C2 = max
x1, P (x2)

I(X2;Y2|X1 = x1). (38)

This inner bound is computed in Lemma 2 for the DLSR and DMDR scenarios with binary inputs

and considering peak and average concentration constraints. It is shown in this lemma, whose proof is

provided in Appendix C, that the maximum achievable individual rate for each transmitter in the two

scenarios occurs when the signal concentration of the other transmitter is zero and therefore the closed

form formula for the maximum achievable individual rates is obtained.

The interference-as-noise inner bound for an interference channel consists of all rate pairs (R1, R2) such

that [15]

R1 < I(X1;Y1), R2 < I(X2;Y2), (39)

for some p.m.f P (x1)P (x2). This inner bound is computed in Lemma 3 for the two scenarios with binary

inputs and considering peak and average concentration constraints. The proof of this lemma is provided

in Appendix D.

Lemma 2. Consider interference channels with two sender-receiver pairs and PDLSR(y1, y2|x1, x2),

PDMDR,B(y1, y2|x1, x2), and any input p.m.f P (x1)P (x2), in which ADLSRne = ADMDR
ne = 0, x1 ∈

{0, As1}, x2 ∈ {0, As2}, E[X1] ≤ αs1As1 , and E[X2] ≤ αs2As2 . The time-division inner bound on the

capacity region of these channels is obtained as

R1 < kC1, R2 < (1− k)C2,

Ci =


H
(

1
1+eg(pci0 )

)
− g(pci0 )

1+eg(pci0 ) , αsi ≥ 1

1−pci0+e
−pci0 log pci0

1−pci0

,

fI(αsi , pci0), 0 < αsi <
1

1−pci0+e
−pci0 log pci0

1−pci0

,

i = 1, 2,
(40)

for some k ∈ [0, 1], where H(p) = −p log p− (1− p) log (1− p), g(p) = H(p)
1−p , and fI(α, p) = −α(1−

p) logα+αp log p− (1−α+αp) log (1− α+ αp). For the DLSR scenario, pci0 =
( κ

γ

Asi+
κ

γ

)nN
, i = 1, 2

and for the DMDR scenario with blocking, pci0 =
(

κi
γi

Asi+
κi
γi

)nN

2

, i = 1, 2.
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Lemma 3. Consider interference channels with two sender-receiver pairs and PDLSR(y1, y2|x1, x2),

PDMDR,B(y1, y2|x1, x2), and any input p.m.f P (x1)P (x2), in which ADLSRne = ADMDR
ne = 0, x1 ∈

{0, As1}, x2 ∈ {0, As2}, E[X1] ≤ αs1As1 , and E[X2] ≤ αs2As2 . The interference-as-noise inner bound

on the capacity region of these channels is obtained as

Ri < − logαi + αi((1− αji)pci0 + αjipci1) log ((1− αji)pci0 + αjipci1)

− αi
(
1− αi
αi

+ (1− αji)pci0 + αjipci1

)
log

(
1− αi
αi

+ (1− αji)pci0 + αjipci1

)
, i = 1, 2,

(41)

for some α1 ∈ [0, αs1 ], α2 ∈ [0, αs2 ], where j1 = 2 and j2 = 1. For the DLSR scenario, pci0 =( κ

γ

Asi+
κ

γ

)nN
, pci1 =

(
Asji

+κ

γ

Asi+Asji
+κ

γ

)nN
, i = 1, 2 and for the DMDR scenario with blocking, pci0 =(

κi
γi

Asi+
κi
γi

)nN

2

, pci1 =

 γ
Block,ji
i

κ
Block,ji
i

Asji
+1

γi
κi
Asi+

γ
Block,ji
i

κ
Block,ji
i

Asji
+1


nN

2

, i = 1, 2, where j1 = 2 and j2 = 1.

For As1 = As2 = As, we have pc10 = pc20 and pc11 = pc21 . Assume αs1 = αs2 = αs. The points where

R1 = R2 are obtained when α1 = α2 and are computed as follows:

R1 = R2 = k

[
− logα′ + α′((1− α′)pc10 + α′pc11) log ((1− α′)pc10 + α′pc11)

− α′
(
1− α′

α′
+ (1− α′)pc10 + α′pc11

)
log

(
1− α′

α′
+ (1− α′)pc10 + α′pc11

)]
, (42)

for some k ∈ [0, 1], where α′ = min{α, αs} and α is the solution of the following equation:

((1− 2α)pc10 + 2αpc11) log ((1− α)pc10 + αpc11)

− ((1− 2α)pc10 + 2αpc11 − 1) log

(
1− α
α

+ (1− α)pc10 + αpc11

)
= 0. (43)

SMSR: As mentioned before, we may view the SMSR scenario as a SISO MAC. According to [15]

for a MAC, the maximum achievable individual rates are

C1 = max
x2, P (x1)

I(X1;Y |X2 = x2), C2 = max
x1, P (x2)

I(X2;Y |X1 = x1). (44)

Using these rates, the time-division inner bound can be obtained as (37). This inner bound is computed

in lemma 4 for the SMSR scenario with binary input and considering peak and average concentration

constraints. The proof of this lemma is provided in Appendix E.

Lemma 4. Consider a MAC with two transmitters PSMSR(y|x1, x2) and any input p.m.f P (x1)P (x2),

in which ASMSR
ne = 0, x1 ∈ {0, As1}, x2 ∈ {0, As2}, E[X1] ≤ αs1As1 , and E[X2] ≤ αs2As2 . The
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time-division inner bound on the capacity region of this channel is obtained as

R1 < kmax{c10, c11}, R2 < (1− k)max{c20, c21},

ci0 =


H
(

1
1+eg(pci0 )

)
− g(pci0 )

1+eg(pci0 ) , αsi ≥ 1

1−pci0+e
−pci0 log pci0

1−pci0

,

fI(αsi , pci0), 0 < αsi <
1

1−pci0+e
−pci0 log pci0

1−pci0

,

i = 1, 2,

ci1 = −
nN∑
l=0

[
(1− α′i)P (y = l|xi = 0, xji = Asji ) log

(
(1− α′i) + α′i

P (y = l|xi = Asi , xji = Asji )

P (y = l|xi = 0, xji = Asji )

)

+α′iP (y = l|xi = Asi , xji = Asji ) log

(
(1− α′i)

P (y = l|xi = 0, xji = Asji )

P (y = l|xi = Asi , xji = Asji )
+ α′i

)]
, i = 1, 2,

(45)

for some k ∈ [0, 1], where j1 = 2, j2 = 1, H(p) = −p log p−(1−p) log (1− p), g(p) = H(p)
1−p , fI(α, p) =

−α(1 − p) logα + αp log p − (1 − α + αp) log (1− α+ αp), pci0 =
( κ

γ

Asi+
κ

γ

)nN
, α′i = min{αi, αsi},

i = 1, 2, where αi, i = 1, 2 is the solution of the following equation:
nN∑
l=0

[
P (y = l|xi = 0, xji = Asji ) log

(
(1− αi) + αi

P (y = l|xi = Asi , xji = Asji )

P (y = l|xi = 0, xji = Asji )

)

−P (y = l|xi = Asi , xji = Asji ) log

(
(1− αi)

P (y = l|xi = 0, xji = Asji )

P (y = l|xi = Asi , xji = Asji )
+ αi

)]
= 0, (46)

where j1 = 2 and j2 = 1.

VI. NUMERICAL RESULTS

In this section, we first consider a point-to-point communication, and evaluate the rates for the TS

and LS scenarios as well as the lower and KL upper bounds. Then, we evaluate the total capacity and

achievable rates for the three scenarios of the multiple-access communications.

A. Point-to-Point Capacity for LS and TS and Effect of Blocking

We evaluate the rates of the TS scenario given in (14) and the LS scenario given in (12), using the

Blahut-Arimoto (BA) algorithm [17]. The unit of the concentration of molecules is nano-Moles per litre

(nM). We assume N = 10, n = 16, and use the values γ = γ1 = ... = γm = 0.0004 (nM min)−1 and

κ = κ1 = ... = κm = 0.1 min−1 from [18]. Note that we consider small values of N and n because of

the time complexity of the BA algorithm for large values of N and n, although in practice, these values

can be very large.

Fig. 5a shows the capacity of TS with no blocking and LS, for m = 2, 4, 8, 16 when ALSne = ATSne = 0. It

is seen that increasing the number of molecule types, m, from 1 improves the performance (for fixed As),

DRAFT



17

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

As(nM)

C
a
p
a
ci
ty

(n
a
ts

p
er

ch
a
n
n
el

u
se
)

 

 

LS

TS (m=2)

TS (m=4)

TS (m=8)

TS (m=16)

(a) ALS
ne = ATS

ne = 0

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

As(nM)

C
a
p
a
ci
ty

(n
a
ts

p
er

ch
a
n
n
el

u
se
)

 

 

LS

TS (m=2)

TS (m=4)

TS (m=8)

TS (m=16)

(b) ALS
ne = ATS

ne = 5

Fig. 5: Capacitiy of TS with no blocking and LS for αs = 1
2 .
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Fig. 6: Capacitiy of TS with and without blocking and LS for αs = 1
2 and Ane = 0.

which is expected due to the parallel transmission of the molecules. However, if we continue to increase

m, and accordingly decrease the number of bacteria in each colony to n/m, the performance degrades.

The reason is that decreasing the concentration level of TS in (4) decreases the binding probability.

Hence, there is an optimal m. For example, for As = 80, this optimal value lies between m = 4 and

m = 8. This implies that for As = 80 and m = 2, 4, the capacity of TS is higher than LS, whereas for

m = 8, 16, the capacity of TS is lower than LS. Similar conclusions can be made from Fig. 5b in the

presence of the environment noise ALSne = ATSne = 5.

Fig. 6 shows the effect of blocking by showing the capacity of LS and TS for m = 2. We considered

two blocking cases:

• Low Blocking: γBlock,21 = γBlock,12 = 0.0003 (nM min)−1, κBlock,21 = κBlock,12 = 0.15 min−1.
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Fig. 7: Capacity and KL upper bound in terms of

Ane for the BIC with A′s = 80 and αs = 1
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Fig. 8: Capacity and Lower Bound in terms of A′s

for the BIC with N ′ = 20 and αs = 1
2 .

• High Blocking: γBlock,21 = γBlock,12 = 0.0005 (nM min)−1, κBlock,21 = κBlock,12 = 0.01 min−1.

As illustrated, the blocking decreases the capacity of TS. For small values of As, LS outperforms TS in

all cases of blocking.

B. Lower Bound and KL Upper Bound on the Capacity of the Point-to-Point Channel

Our proposed KL upper bound, (19), and the capacity are depicted in Fig. 7 by considering the

logarithmic scale. It can be observed that the distance between the KL upper bound and the capacity is

constant in the logarithmic scale. Therefore, the gap between the capacity and the upper bound decreases

as the environment noise increases. The lower bound in (21) along with the capacity are shown in Fig. 8.

For simplicity, we consider average constraint to be inactive. For small values of A′s, our lower bound

is tight which means the binary distribution is a capacity achieving distribution for small values of A′s.

C. Multiple-Access Total Capacity

In this section, we evaluate the total capacities of the DLSR and DMDR scenarios given in (34) and

the SMSR scenario given in (36), using the extension of the BA algorithm for the total capacity of the

MAC [19]. We assume N = 10, n = 6, m = 2. Similar to the previous sections, we use the values

γ = γ1 = γ2 = 0.0004 (nM min)−1, κ = κ1 = κ2 = 0.1 min−1, and consider no, low, and high blocking

cases.

Fig. 9a shows the total capacities of the three scenarios in terms of As1 = As2 = As when ADLSRne =

ADMDR
ne = ASMSR

ne = 0. It is observed that DLSR has the highest total capacity for all values of As.

For small values of As, SMSR has higher total capacity than DMDR, whereas for large values of As,

SMSR has lower total capacity than DMDR. The reason is that when As is small, sharing the receptors
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Fig. 9: Total capacity of DLSR, DMDR, and SMSR for αs1 = αs2 =
1
2 .
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Fig. 10: Total capacity of DLSR, DMDR, and SMSR with continuous and binary inputs for αs1 = αs2 =
1
2

and Ane = 0.

is useful. But when As increases, using different types of molecules becomes more useful. Since DLSR

has both of these advantages, it is more effective than the other two scenarios. Fig. 9b shows the total

capacity for the three scenarios when ADLSRne = ADMDR
ne = ASMSR

ne = 5. Similar conclusions can be

made in the presence of the environment noise.

The total capacities of the three scenarios for both continuous and binary inputs are depicted in Fig. 10.

It can be observed that in all three scenarios, the total capacities with binary inputs are equal to the total

capacities with continuous inputs for small values of As. For large values of As, the total capacities of

DLSR and DMDR with binary inputs reach to the same value since all receptors become full and these

scenarios behave the same. However, the total capacity of SMSR with binary input reaches to a lower
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(b) DMDR with low blocking
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(c) DMDR with high blocking
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Fig. 11: Capacity region and Inner bounds for DLSR, DMDR, and SMSR with binary inputs for αs1 =

αs2 =
1
2 and Ane = 0.

value since it doesn’t have the advantage of using different types of molecules or self-identifying labels.

D. Inner Bounds on the Capacity Region of the MAC

The capacity region inner bounds for the DLSR, DMDR, and SMSR scenarios, provided in Section

V-A, are depicted in Fig. 11. The capacity regions of the three scenarios with binary inputs are shown in

Fig. 12 by considering As1 = As2 = 100. It is observed that DMDR with low blocking and DLSR have

the same square shaped capacity regions, which indicates that for this parameter setup, these scenarios

almost experience orthogonal MACs. These two scenarios have the largest Capacity region and SMSR

has the smallest capacity region and the capacity region of DMDR with high blocking is in between.

Fig. 13 shows the maximum achievable equal rates given in (42), when considering interference as

DRAFT



21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R1 (nats per channel use)

R
2
(n
at
s
p
er

ch
an

n
el

u
se
)

 

 

DLSR
DMDR, Low Blocking

DMDR, High Blocking

SMSR
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Fig. 13: Maximum achievable equal rates by

viewing interference as noise for DLSR and

DMDR with binary inputs for αs1 = αs2 = 1
2

and Ane = 0..

noise, in terms of As for DMDR with low and high blocking and DLSR. It is observed that the rate for

DLSR is larger than DMDR and reaches to a constant value as As increases. Though the constant value

is almost the same for DMDR with low blocking and DLSR, the value is higher than that of DMDR

with high blocking. The reason is that when considering binary inputs and increasing As, DMDR with

low blocking behaves like DLSR since all receptors become full. However, DMDR with high blocking

behaves worse than DLSR since some of the receptors are always blocked.

VII. COCLUSION

In this paper, we first investigated the capacity performance of point-to-point communication scenarios,

including Level and Type scenarios. We also modeled the blocking as a Markov process and derived the

probabilities of binding and blocking. Next, we derived a new upper bound on the capacity of the BIC

at low SNR-regime based on the KL divergence upper bound as well as a lower bound. As expected and

confirmed by simulations, the blocking would decrease the capacity of type scenario. Then we proposed

three scenarios for the multiple-access communication, including same types of molecules with Different

Labeling and Same types of Receptors (DLSR), Same types of Molecules and Receptors (SMSR), and

Different types of Molecules and Receptors (DMDR) scenarios and investigated their capacity region

and total capacity. We derived some inner bounds on the capacity region of these scenarios when the

environment noise is negligible. Based on numerical results, DLSR outperforms the other scenarios for

all values of the maximum signal level from the total capacity point of view. For small values of the
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maximum signal level, SMSR has better performance than DMDR, whereas for large values of maximum

signal level, DMDR has better performance.
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APPENDIX A

PROOF OF THEOREM 1

We find KL upper bound for the BIC as follows:

I(X;Y ) ≤
∑
x,y

[P (x, y)− P (x)P (y)] logP (y|x)

=
∑
x,y

[P (x, y)− P (x)P (y)] log
((

N ′

y

)
fypb(x+Ane)(1− fpb(x+Ane))

N ′−y
)

= EP (x,y)

[
log

(
N ′

y

)]
− EP (x)P (y)

[
log

(
N ′

y

)]
+ EP (x,y) [y log fpb(x+Ane)]

− EP (x)P (y) [y log fpb(x+Ane)] + EP (x,y)[(N
′ − y) log (1− fpb(x+Ane))]

− EP (x)P (y) [(N
′ − y) log (1− fpb(x+Ane))]

= EP (x,y) [y log fpb(x+Ane)]− EP (x)P (y) [y log fpb(x+Ane)]
[
EP (x,y) [y log (1− fpb(x+Ane))]

−EP (x)P (y) [y log (1− fpb(x+Ane))]
]

=
∑
x

((∑
y

yP (y|x)

)
log

fpb(x+Ane)

1− fpb(x+Ane)
P (x)

)

−

(∑
x

(∑
y

yP (y|x)

)
P (x)

)(∑
x

log
fpb(x+Ane)

1− fpb(x+Ane)
P (x)

)

= E
[
N ′fpb(x+Ane) log

(
fpb(x+Ane)

1− fpb(x+Ane)

)]
− E [N ′fpb(x+Ane)]E

[
log

(
fpb(x+Ane)

1− fpb(x+Ane)

)]
= N ′Cov

(
fpb(X +Ane), log

(
fpb(X +Ane)

(1− fpb(X +Ane))

))
.

As mentioned earlier, fpb(X +Ane) is an increasing function. Hence,

Cov

(
fpb(X +Ane), log

(
fpb(X +Ane)

(1− fpb(X +Ane))

))
≥ 0

. A further observation is that

C ≤ max
P (x)

N ′Cov

(
fpb(X +Ane), log

(
fpb(X +Ane)

(1− fpb(X +Ane))

))
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is always achievable with a binary random variable X . We consider two points, x1 and x2 with proba-

bilities p1 and p2. We have

max
P (x)

Cov(fpb(X +Ane), log(F )) = max
P (x):

E(fpb (X+Ane))≤αsA′s,
0≤X≤A′s

(E[fpb(X +Ane) logF ]− E[fpb(X +Ane)]E[logF ])

= max
P (x):

E(fpb (X+Ane))≤αsA′s,
0≤X≤A′s

(E[(fpb(X +Ane)− E[fpb(X +Ane)]) logF ]),

where F =
fpb (X+Ane)

1−fpb (X+Ane)
. Now, based on the analysis in [14, Appendix C], the optimal distribution is

given by P (x) = αsA′s
fpb (A

′
s+Ane)

δ(x−A′s) +
(
1− αsA′s

fpb (A
′
s+Ane)

)
δ(x) and the upper bound is obtained as

max
αsA′s≤fpb (αsA′s+Ane)

αsA
′
s

fpb(A
′
s +Ane)

[fpb(A
′
s +Ane)− αsA′s]E,

where E = log
(
fpb (A

′
s+Ane)(1−fpb (Ane))

fpb (Ane)(1−fpb (A′s+Ane))

)
. The upper bound is equal to

fpb(αsA
′
s +Ane)

fpb(A
′
s +Ane)

[fpb(A
′
s +Ane)− fpb(αsA′s +Ane)] log

fpb(A
′
s +Ane)(1− fpb(Ane))

fpb(Ane)(1− fpb(A′s +Ane))
,

for αsA′s ≤
fpb (A

′
s+Ane)
2 and fpb (A

′
s+Ane)
4 log

(
fpb (A

′
s+Ane)(1−fpb (Ane))

fpb (Ane)(1−fpb (A′s+Ane))

)
, otherwise.

Now, if we consider fpb(X +Ane) =
X+Ane

X+Ane+
κ

γ

, then the upper bound is:

ABinomial(P (y|x)) := max
P (x),

E[X]=αsA′s, 0≤X≤A′s

U(P (x, y))

= N ′


fpb (αsA

′
s+Ane)

fpb (A
′
s+Ane)

[fpb(A
′
s +Ane)− fpb(αsA′s +Ane)]E, if (∗),

fpb (A
′
s+Ane)
4 E, if (∗∗),

where E = log
(
fpb (A

′
s+Ane)(1−fpb (Ane))

fpb (Ane)(1−fpb (A′s+Ane))

)
, (∗) : fpb(αsA′s + Ane) <

fpb (A
′
s+Ane)
2 , and (∗∗) : fpb(αsA′s +

Ane) ≥
fpb (A

′
s+Ane)
2 .

APPENDIX B

PROOF OF LEMMA 1

Let

pc = (1− pb)N
′
.

The BIC transition probabilities by considering binary input is characterized as

P (y = 0|x = 0) = 1, P (y = i|x = 0) = 0, i = 1, ..., N ′,

P (y = i|x = A′s) =

(
N ′

i

)
pib(1− pb)

N ′−i, i = 1, ..., N ′.
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Assume P (x = A′s) = α. The average constraint results in α ≤ αs. The lower bound on the BIC capacity

without considering the average constraint could be derived as follows:

C = max
α

I(X;Y ) = max
α

H(Y )−H(Y |X)

= max
α

H(Y )− P (x = 0)H(Y |x = 0)− P (x = A′s)H(Y |x = A′s)

= max
α
−

N ′∑
i=1

αP (y = i|x = A′s) log (αP (y = i|x = A′s))

− (1− α+ αpc) log (1− α+ αpc)− αH(Y |x = A′s)

= max
α
−α(1− pc) logα+ αpc log pc − (1− α+ αpc) log (1− α+ αpc).

Taking a derivative with respect to α from the above expression and setting it to zero we obtain α∗ =

1

1−pc+e
−pc log pc

1−pc
. Then,

C = H

(
1

1 + eg(pc)

)
− g(pc)

1 + eg(pc)
,

where H(p) = −p log p−(1−p) log (1− p) and g(p) = H(p)
1−p . Now, if we consider the average constraint,

the equation for C is valid for α∗ ≤ αs since the mutual information is concave in α. But for α∗ > αs,

the capacity lower bound is obtained for α = αs.

APPENDIX C

PROOF OF LEMMA 2

We prove the lemma for the DLSR scenario. The approach for the DMDR scenario is the same. Let

pb11 = pDLSRb1 (x1 = As1 , X2 = x2), pb21 = pDLSRb2 (x1 = As1 , X2 = x2),

pc1 = P (y1 = 0|x1 = As1 , X2 = x2) =

(
x2 +

κ
γ

As1 + x2 +
κ
γ

)nN
,

pc10 = P (y1 = 0|x1 = As1 , x2 = 0) =

(
κ
γ

As1 +
κ
γ

)nN
.

Channel transition probabilities for the first transmitter by considering binary inputs x1 ∈ {0, As1} and

x2 ∈ {0, As2} are characterized as

P (y1 = 0|x1 = 0, X2 = x2) = 1,

P (y1 = i|x1 = As1 , X2 = x2) =

nN−i∑
j=0

(
nN

i

)(
nN − i

j

)
pib11p

j
b21

(1− (pb11 + pb21))
nN−i−j , i = 0, ..., nN,
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Assume P (x1 = As1) = α1. The average constraint for the first transmitter results in α1 ≤ αs1 . In

the following, the maximum achievable individual rate for the first transmitter, C1, is computed. The

approach for computing C2 is the same. Without considering the average constraint we have

C1 = max
x2, α1

I(X1;Y1|X2 = x2) = max
x2, α1

H(Y1|X2 = x2)−H(Y1|X1, X2 = x2)

= max
x2, α1

H(Y1|X2 = x2)− P (x1 = 0)H(Y1|x1 = 0, X2 = x2)− P (x1 = As1)H(Y1|x1 = As1 , X2 = x2)

= max
x2, α1

−
nN∑
i=1

α1P (y1 = i|x1 = As1 , X2 = x2) log (α1P (y1 = i|x1 = As1 , X2 = x2))

− (1− α1 + α1pc1) log (1− α1 + α1pc1)− α1H(Y1|x1 = As1 , X2 = x2)

= max
x2, α1

−α1(1− pc1) logα1 + α1pc1 log pc1 − (1− α1 + α1pc1) log (1− α1 + α1pc1).

Taking a derivative with respect to α1 from the above expression and setting it to zero we obtain α∗1 =

1

1−pc1+e
−pc1 log pc1

1−pc1

. Then,

C1 = max
x2

(
H

(
1

1 + eg(pc1)

)
− g(pc1)

1 + eg(pc1 )

)
,

where H(p) = −p log p− (1− p) log (1− p), g(p) = H(p)
1−p . Taking a derivative with respect to x2 from

the above expression we obtain

d

dx2
Iα∗1(X1;Y |X2 = x2) = −

p′c1g
′(pc1)e

g(pc1 )

(1 + eg(pc1 ))2
H ′
(

1

1 + eg(pc1 )

)
−
p′c1g

′(pc1)(1 + eg(pc1 ) − g(pc1)eg(pc1 ))
(1 + eg(pc1 ))2

.

Since H ′(p) = log(1−pp ), we have

d

dx2
Iα∗1(X1;Y |X2 = x2) = −

p′c1g
′(pc1)(g(pc1)e

g(pc1 ) + 1 + eg(pc1 ) − g(pc1)eg(pc1 ))
(1 + eg(pc1 ))2

= −
p′c1g

′(pc1)(1 + eg(pc1 ))

(1 + eg(pc1 ))2
,

and this is a negetive value for all x2 ≥ 0 since p′c1 =
nNAs1

As1+x2+
κ

γ

(
x2+

κ

γ

As1+x2+
κ

γ

)nN−1
> 0 and g′(pc1) =

− p′c1 log pc1
(1+eg(pc1 ))2

> 0. x2 can take two values 0 and As2 . So the maximum occurs when x2 = 0. Hence,

C1 = H

(
1

1 + eg(pc10 )

)
− g(pc10)

1 + eg(pc10 )
.

Now, we consider the average constraint. For both values of x2 = 0 and x2 = As2 , if αs1 ≥ α∗1(x2), the

maximum for I(X1;Y1|x2 = x2) occurs when α1 = α∗1(x2) and if 0 < αs1 < α∗1(x2), the maximum

occurs when α1 = αs1 since I(X1, Y1|X2 = x2) is concave in α1. Let α∗10 = α∗1(x2 = 0) and α∗11 =

α∗1(x2 = As2). If αs1 ≥ α∗10 and αs1 ≥ α∗11, C1 = max{Iα∗10(X1;Y1|x2 = 0), Iα∗11(X1;Y1|x2 =

As2)} equals to Iα∗10(X1;Y1|x2 = 0). If αs1 ≥ α∗10 and αs1 < α∗11, C1 = max{Iα∗10(X1;Y1|x2 =

0), Iαs1 (X1;Y1|x2 = As2)} equals to Iα∗10(X1;Y1|x2 = 0) since Iα∗10(X1;Y1|x2 = 0) > Iα∗11(X1;Y1|x2 =
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As2) ≥ Iαs1 (X1;Y1|x2 = As2). If 0 < αs1 < α∗10 and 0 < αs1 < α∗11, C1 = max{Iαs1 (X1;Y1|x2 =

0), Iαs1 (X1;Y1|x2 = As2)} equals to Iαs1 (X1;Y1|x2 = 0) since

d

dx2
I(X1;Y |X2 = x2) = α1p

′
c1 log

α1pc1
1− α1 + α1pc1

≤ 0

and I(X1;Y1|X2 = x2) is a decreasing function with respect to x2 for all values of α1 ∈ [0, 1]. If

0 < αs1 < α∗10 and αs1 ≥ α∗11, C1 = max{Iαs1 (X1;Y1|x2 = 0), Iα∗11(X1;Y1|x2 = As2)} equals to

Iαs1 (X1;Y1|x2 = 0) since Iαs1 (X1;Y1|x2 = 0) > Iα∗11(X1;Y1|x2 = 0) > Iα∗11(X1;Y1|x2 = As2).

APPENDIX D

PROOF OF LEMMA 3

We prove the lemma for the DLSR scenario. The approach for the DMDR scenario is the same. Let

pb11 = pDLSRb1 (x1 = As1 , X2 = x2), pb21 = pDLSRb2 (x1 = As1 , X2 = x2),

pb12 = pDLSRb1 (X1 = x1, x2 = As2), pb22 = pDLSRb2 (X1 = x1, x2 = As2),

pc10 = P (yi = 0|x1 = As1 , x2 = 0) =

(
κ
γ

As1 +
κ
γ

)nN
,

pc11 = P (yi = 0|x1 = As1 , x2 = As2) =

(
As2 +

κ
γ

Asi +Asj +
κ
γ

)nN
,

Channel transition probabilities by considering binary inputs x1 ∈ {0, As1} and x2 ∈ {0, As2} are

characterized as

P (y1 = 0|x1 = 0, X2 = x2) = P (y2 = 0|X1 = x1, x2 = 0) = 1,

P (y1 = i|x1 = As1 , X2 = x2) =

nN−i∑
j=0

(
nN

i

)(
nN − i

j

)
pib11p

j
b21

(1− (pb11 + pb21))
nN−i−j , i = 0, ..., nN,

P (y2 = i|X1 = x1, x2 = As2) =

nN−i∑
j=0

(
nN

i

)(
nN − i

j

)
pjb12p

i
b22(1− (pb12 + pb22))

nN−i−j , i = 0, ..., nN.

Assume P (x1 = As1) = α1 and P (x2 = As2) = α2. The average constraints result in α1 ≤ αs1 and

α2 ≤ αs2 . The interference-as-noise inner bound for this channel is computed as follows:

R1 < I(X1;Y1) = H(Y1)−H(Y1|X1) = H(Y1)− P (x1 = 0)H(Y1|x1 = 0)− P (x1 = As1)H(Y1|x1 = As1)

= −
nN∑
i=1

α1((1− α2)P (y1 = i|x1 = As1 , x2 = 0) + α2P (y1 = i|x1 = As1 , x2 = As1))

× log (α1((1− α2)P (y1 = i|x1 = As1 , x2 = 0) + α2P (y1 = i|x1 = As1 , x2 = As2)))

− ((1− α2)((1− α1) + α1pc10) + α2((1− α1) + α1pc11))

× log ((1− α2)((1− α1) + α1pc10) + α2((1− α1) + α1pc11))− α1H(Y1|x1 = As1)
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= −α1 logα1

nN∑
i=1

((1− α2)P (y1 = i|x1 = As1 , x2 = 0) + α2P (y1 = i|x1 = As1 , x2 = As2))

+ α1(H(Y1|x1 = As1) + ((1− α2)pc10 + α2pc11) log ((1− α2)pc10 + α2pc11))

− ((1− α1) + α1((1− α2)pc10 + α2pc11)) log ((1− α1) + α1((1− α2)pc10 + α2pc11))

− α1H(Y1|x1 = As1)

= −α1(1− (1− α2)pc10 − α2pc11) logα1 + α1((1− α2)pc10 + α2pc11) log ((1− α2)pc10 + α2pc11)

− α1

(
1− α1

α1
+ (1− α2)pc10 + α2pc11

)
log

(
α1

(
1− α1

α1
+ (1− α2)pc10 + α2pc11

))
= − logα1 + α1((1− α2)pc10 + α2pc11) log ((1− α2)pc10 + α2pc11)

− α1

(
1− α1

α1
+ (1− α2)pc10 + α2pc11

)
log

(
1− α1

α1
+ (1− α2)pc10 + α2pc11

)
.

for some α1 ∈ [0, αs1 ] and α2 ∈ [0, αs2 ]. With the same approach for R2 we have

R2 < − logα2 + α2((1− α1)pc20 + α1pc21) log ((1− α1)pc20 + α1pc21)

− α2

(
1− α2

α2
+ (1− α1)pc20 + α1pc21

)
log

(
1− α2

α2
+ (1− α1)pc20 + α1pc21

)
,

For As1 = As2 = As, we have pc10 = pc20 and pc11 = pc21 . The points where R1 = R2, without

considering the average constraints, are as follows:

R1 = R2 = kmax
α
− logα+ α((1− α)pc10 + αpc11) log ((1− α)pc10 + αpc11)

− α
(
1− α
α

+ (1− α)pc10 + αpc11

)
log

(
1− α
α

+ (1− α)pc10 + αpc11

)
,

for some k ∈ [0, 1]. Taking a derivative with respect to α from the above expression and setting it to

zero we obtain

((1− 2α)pc10 + 2αpc11) log ((1− α)pc10 + αpc11)

− ((1− 2α)pc10 + 2αpc11 − 1) log

(
1− α
α

+ (1− α)pc10 + αpc11

)
= 0.

If we consider the average constraints with αs1 = αs2 = αs, the above equation for the optimum value

of α is valid if the solution of the equation is lower than or equal to αs since I(X1;Y1) for α1 = α2 = α

is concave in α. If the solution is higher than αs, the maximum occurs when α = αs.

APPENDIX E

PROOF OF LEMMA 4

Let

pb10 = pSMSR
b (x1 = As1 , x2 = 0), pb01 = pSMSR

b (x1 = 0, x2 = As2),
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pb11 = pSMSR
b (x1 = As1 , x2 = As2),

pc10 = P (y = 0|x1 = As1 , x2 = 0) =

(
κ
γ

As1 +
κ
γ

)nN
,

Channel transition probabilities by considering binary inputs x1 ∈ {0, As1} and x2 ∈ {0, As2} are

characterized as

P (y = 0|x1 = 0, x2 = 0) = 1,

P (y = i|x1 = As1 , x2 = 0) =

(
nN

i

)
pb10

i(1− pb10)
nN−i, i = 0, ..., nN,

P (y = i|x1 = 0, x2 = As2) =

(
nN

i

)
pb01

i(1− pb01)
nN−i, i = 0, ..., nN,

P (y = i|x1 = As1 , x2 = As2) =

(
nN

i

)
pb11

i(1− pb11)
nN−i, i = 0, ..., nN.

Assume P (x1 = As1) = α1. The average constraint for the first transmitter results in α1 ≤ αs1 . In

the following, the maximum achievable individual rate for the first transmitter, C1, is computed. The

approach for computing C2 is the same. Without considering the average constraint we have

C1 = max
x2, α1

I(X1;Y |X2 = x2) = max
x2, α1

H(Y |X2 = x2)−H(Y |X1, X2 = x2)

= max
x2, α1

H(Y |X2 = x2)− P (x1 = 0)H(Y |x1 = 0, X2 = x2)− P (x1 = As1)H(Y |x1 = As1 , X2 = x2)

= max
x2, α1

−
N∑
i=0

P (y = i|X2 = x2) logP (y = i|X2 = x2)− (1− α1)H(Y |x1 = 0, X2 = x2)

− α1H(Y |x1 = As1 , X2 = x2).

We can write this as follows:

C1 = max{c10, c11},

c10 = max
α1

I(X1;Y |x2 = 0), c11 = max
α1

I(X1;Y |x2 = As2).

For c10 we have

c10 = max
α1

−
nN∑
i=0

P (y = i|x2 = 0) logP (y = i|x2 = 0)− α1H(Y |x1 = As1 , x2 = 0)

= max
α1

−
nN∑
i=1

α1P (y = i|x1 = As1 , x2 = 0) log (α1P (y = i|x1 = As1 , x2 = 0))

− (1− α1 + α1pc10) log (1− α1 + α1pc10)− α1H(Y |x1 = As1 , x2 = 0)

= max
α1

−α1(1− pc10) logα1 + α1pc10 log pc10 − (1− α1 + α1pc10) log (1− α1 + α1pc10).
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Taking a derivative with respect to α1 from the above expression and setting it to zero we obtain α∗10 =
1

1−pc10+e
−
pc10 log pc10

1−pc10

, Then,

c10 = H

(
1

1 + eg(pc10 )

)
− g(pc10)

1 + eg(pc10 )
,

where H(p) = −p log p − (1 − p) log (1− p), g(p) = H(p)
1−p . If we consider the average constraint, the

above equation for c10 is valid if αs1 ≥ α∗10 since I(X1;Y1|x2 = 0) is concave in α1. If 0 < αs1 < α∗10,

the maximum occurs when α1 = αs1 . For c11 we have

c11 = max
α1

I(X1;Y |x2 = As2) = max
α1

−
nN∑
i=0

P (y = i|x2 = As2) logP (y = i|x2 = As2)

− (1− α1)H(Y |x1 = 0, x2 = As2)− α1H(Y |x1 = As1 , x2 = As2)

= max
α1

−
nN∑
i=0

((1− α1)P (y = i|x1 = 0, x2 = As2) + α1P (y = i|x1 = As1 , x2 = As2))

× log ((1− α1)P (y = i|x1 = 0, x2 = As2) + α1P (y = i|x1 = As1 , x2 = As2))

− (1− α1)H(Y |x1 = 0, x2 = As2)− α1H(Y |x1 = As1 , x2 = As2)

= max
α1

−
nN∑
i=0

[
(1− α1)P (y = i|x1 = 0, x2 = As2) log

(
(1− α1) + α1

P (y = i|x1 = As1 , x2 = As2)

P (y = i|x1 = 0, x2 = As2)

)
+α1P (y = i|x1 = As1 , x2 = As2) log

(
(1− α1)

P (y = i|x1 = 0, x2 = As2)

P (y = i|x1 = As1 , x2 = As2)
+ α1

)]
.

Taking a derivative with respect to α1 from the above expression and setting it to zero we obtain
nN∑
i=0

[
P (y = i|x1 = 0, x2 = As2) log

(
(1− α1) + α1

P (y = i|x1 = As1 , x2 = As2)

P (y = i|x1 = 0, x2 = As2)

)
−P (y = i|x1 = As1 , x2 = As2) log

(
(1− α1)

P (y = i|x1 = 0, x2 = As2)

P (y = i|x1 = As1 , x2 = As2)
+ α1

)]
= 0.

If we consider the average constraint, the above equation for the optimum value of α1 is valid when the

solution of the equation is lower than or equal to αs1 since I(X1;Y1|x2 = As2) is concave in α1. If the

solution is higher than αs1 , the maximum occurs when α1 = αs1 .
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