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Abstract—Contactless device-free wireless sensing has recently
attracted significant interest due to its potential to support a wide range
of immersive human-machine interactive applications using
ubiquitously available radio frequency (RF) signals. Traditional
approaches focus on developing a single global model based on a
combined dataset collected from different locations. However, wireless
signals are known to be location and environment specific. Thus, a
global model results in inconsistent and unreliable sensing results. It is
also unrealistic to construct individual models for all the possible
locations and environmental scenarios. Motivated by the observation
that signals recorded at different locations are closely related to a set of
physical-layer semantic features, in this paper we propose SANSee, a
semantic-aware networking-based framework for distributed wireless
sensing. SANSee allows models constructed in one or a limited
number of locations to be transferred to new locations without requiring
any locally labeled data or model training. SANSee is built on the
concept of physical-layer semantic-aware network (pSAN), which
characterizes the semantic similarity and the correlations of sensed
data across different locations. A pSAN-based zero-shot transfer
learning solution is introduced to allow receivers in new locations to
obtain location-specific models by directly aggregating the models
trained by other receivers. We theoretically prove that models obtained
by SANSee can approach the locally optimal models. Experimental
results based on real-world datasets are used to verify that the
accuracy of the transferred models obtained by SANSee matches that
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1 INTRODUCTION

Wireless sensing has recently attracted significant interest
due to its potential to achieve device-free movement
detection and tracking in a wide range of applications,
including smart healthcare, urban sensing, and unmanned
surveillance systems. It is a key enabler of emerging
applications that require immersive contact-free
human-machine interactions, including augmented
reality/virtual reality (AR/VR) and Tactile Internet [2], [3].
Recent results show that by detecting changes in the RF
signal propagation and reflection patterns caused by the
human body, it is possible to recognize a wide range of
human actions and gestures, such as falling, walking,
sitting, etc. Furthermore, if wireless sensing data collected
by multiple receivers can be jointly analyzed, more
fine-grained human gestures, such as hand gestures and
finger movement, can be detected [4].

(a) (b)

Fig. 1: (a) Visualization of the statistical features of wireless
signals recorded at the same location when different human
gestures are performed, and (b) visualization of statistical
diversity of wireless signals recorded by receivers at
different locations when the same gesture is performed.

Most existing works on wireless sensing adopt a
one-fits-all approach, in which a centralized model is
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trained based on wireless sensing data recorded from a few
locations and applied to a much wider range of locations
and environments. However, wireless signals are known to
exhibit highly temporal and spatial heterogeneity.
Specifically, wireless signals are highly dependent on
location, environment, and human-related factors. For
example, different locations of transmitters, receivers, and
objects, as well as room layouts will result in drastically
different signal characteristics and data distributions.
Furthermore, different body movement patterns (e.g.,
human gestures) and orientations will also result in
different spatial and temporal variations of wireless
sensing data. To shed more light on this observation, in Fig.
1 we use principal components analysis (PCA) to reduce
data dimension and then visualize the resulting
2-dimension statistical features of wireless sensing signals
[5], i.e., channel state information (CSI), recorded when the
same person performs different gestures at the same
location (Fig. 1(a)) and when the person performs the same
gesture at different locations (Fig. 1(b)). We can observe
that the statistical features vary significantly when different
gestures are performed or when receivers are deployed at
different locations. Accordingly, training a single global
model by combining sensing data collected at different
locations, while ignoring the unique features of each
individual location, environment, and gesture profile, will
significantly reduce the wireless sensing accuracy and will
result in highly unreliable sensing performance across
different locations and gestures.

One possible solution is to train separate models for
different locations and environments. Unfortunately, this
approach incurs too much overload and relies on a large
number of high-quality labeled data samples. Also, due to
physical space and cost limitations, it is generally
unrealistic to have a highly dense deployment of sensors
and receivers to collect data that covers all spatial and
temporal resolutions of different users and their gestures.
To summarize, due to the heterogeneity of wireless signals
and the scarcity of lablled samples, it is difficult for
conventional distributed wireless sensing solutions to
achieve a desired gesture recognition accuracy, especially
when most receivers cannot collect labeled data samples or
construct local models due to their limited computational
and storage capabilities.

To overcome the above challenges, we propose SANSee,
a distributed wireless sensing framework that transfers the
gesture recognition models trained for one or a few
locations to new locations without training new models or
collecting new data samples. Our proposed model is
motivated by the observation that the statistics of the
wireless signals recorded in a given location are closely
related to a set of physical-layer semantic features, such as
the spatial layout, environmental features, and gesture
profiles. These physical-layer semantic features can be
utilized to infer the statistical correlations between wireless
sensing signals across different locations and environments
for location-specific model construction and transfer. More
specifically, we develop a novel physical-layer semantic-aware
networking (pSAN) framework to characterize the similarity
between physical-layer semantic features and correlations
of wireless signal distributions at different locations and

environmental scenarios. We then propose a pSAN-based
zero-shot transfer learning solution, in which receivers at new
locations and environments obtain location-specific gesture
recognition models by directly aggregating the already
trained models of other receivers. In our solution, the
aggregation coefficients of the model transfer are calculated
based on the correlations between semantic features of
different locations. We theoretically prove that the
aggregated model obtained by SANSee approaches the
locally optimal model without requiring any locally labeled
data or local model training. Extensive experiments
conducted based on real-world datasets are presented to
corroborate our theoretical results.

The key contributions of this paper are as follows:

• We identify the physical-layer semantic features,
including environment-related and gesture-related
semantics, called E- and G-semantics, respectively,
that determine the distributions of wireless sensing
signals under different physical environments and
gesture profiles. We then introduce the pSAN
framework, which captures similarity between
physical-layer semantics of different locations at
different physical environments.

• We develop a zero-shot transfer learning solution
based on pSAN, which allows receivers in new
locations to obtain location-specific models by
linearly aggregating the models trained by a few
receivers.

• We present theoretical bounds on model training
error and transfer errors of SANSee. We prove that
the localized models obtained by SANSee
approaches the locally optimal model in each
specific location even without locally labeled data or
local model training.

• Extensive experiments are conducted based on
real-world wireless sensing datasets consisting of
multiple types of human gestures recorded at 18
different locations. Our results show that our
proposed model aggregation solutions can match
models trained by real labeled data, obtained
through supervised learning.

The remainder of this paper is organized as follows.
Related works are reviewed in Section 2. We introduce the
system model and problem formulation in Section 3. An
overview of SANSee framework is provided in Section 4.
The detailed procedures of physical-layer semantics
estimation are discussed in Section 5. The concept of
semantic similarity and pSAN-based model correlation
network are introduced in Section 6.1. Model training and
transfer algorithms are proposed in Sections 6.2 and 6.3,
respectively. Theoretical results about model training error
and transfer error are derived in Section 7. Experimental
results are presented in Section 8, and we conclude the
paper in Section 9.

2 RELATED WORK

RF-based Wireless Sensing: Distributed wireless sensing
has emerged as a promising area of research, leveraging
ubiquitous wireless signals to enable contactless and
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device-free localization, tracking, and activity recognition
[6], [7]. Most existing works focus on capturing the spatial
and temporal dynamics of a few parameters, such as
Doppler frequency shift (DFS), Time-of-Flight (ToF), and
Angle-of-Arrival (AoA) [8], [9]. In [10] the authors
proposed SpotFi for decimeter-level human localization
based on the AoA and relative ToF information of
dominant incident signals from the target to multiple
receivers. In [11] the authors designed a human trajectory
tracking system named IndoTrack to achieve successive
tracking in an indoor environment. The main idea behind
IndoTrack is to first extract accurate DFS from noisy
channel state information samples and then jointly estimate
target velocity and location via probabilistic co-modeling of
DFS and AoA information from wireless receivers. In [12]
the authors proposed Widar3.0 to achieve cross-domain
gesture recognition by feeding the domain-independent
Body Coordinate Velocity Profile (BVP), extracted from
CSIs into a hybrid deep learning model, which consists of a
convolutional neural network (CNN) for spatial feature
extraction and a recurrent neural network (RNN) for
temporal modeling.
Semantic-Aware Networking: Utilizing semantic
knowledge to enhance communication and networking
performance has recently attracted significant interest [13],
[14]. Most existing works focus on extracting human
language-inspired semantic information to compress
various forms of human generated signals, and improve
communication efficiency and reliability [15]–[17]. For
example, in [15] the authors adopted an attention
mechanism-based solution to compress speech signals in
which essential speech information is identified by
providing higher weights to them when training the neural
network. In [17], the authors considered a
Transformer-based language text compression for
maximizing the system capacity and minimizing the
semantic errors by recovering the meaning of sentences.
Multi-modal data compression was also investigated in
[16], where a task-oriented semantic communications
framework was proposed to unify the structure of
transmitters for different tasks. In addition to compressing
and recovering data bits, recent studies suggested that
semantic information has a higher efficiency in recovering
signals with high human-oriented perception quality. The
so-called rate-distortion-perception tradeoff has been
investigated in semantic communication [18], [19], where
studies show that in some cases the receiver can directly
infer the semantic information source satisfying certain
distortion and perception constraints without requiring any
data communication from the transmitter. Recently,
semantic information has also been utilized to enable
high-level reasoning and inference in communication
networks [20], [21]. More specifically, the so-called implicit
semantic-aware communication network was proposed in
[20] in which the semantic correlations have been exploited
to infer implicit information, such as clue information or
background knowledge that are closely related to the data
information sent over the network. In addition to
communication networks, semantic knowledge has
recently been extended to other fields, such as mmWave
beam tracking [22], image and video segmentation [23],

emotional analysis [24], and affective computing [25]. In
contrast to all these existing works, in this paper, we
introduce the concept of physical-layer semantics to
capture the impact of environmental and human-related
features that influence the distribution of wireless sensing
data. To the best of our knowledge, this is the first work
that utilizes the semantic similarity of physical-layer
features to transfer models between different locations and
environmental scenarios.
Transfer Learning-based Wireless Sensing: To reduce the
cost of model training, transfer learning methods have been
recently applied to wireless sensing, with the goal to
transfer knowledge obtained from a source domain to a
target domain, so as to support a variety of wireless
sensing tasks [26]. A straightforward idea is to extract
domain-independent features from labeled samples in the
source domain. For example, in [27]–[29], the authors show
that adversarial architectures such as generative adversarial
networks (GANs) can be used to learn the hidden
relationships between the source inputs and the target
outputs by combining a CNN feature extraction and a
domain discriminator. Although integrating GANs into
distributed wireless sensing solutions is a promising
direction, it demands numerous ad-hoc “tricks” to achieve
model convergence [30]. In [31], CrossSense was
introduced as the state-of-the-art wireless transfer
technique on WiFi-based gait identification and gesture
recognition applications. To enable cross-domain sensing,
CrossSense employs an artificial neural network (ANN)
based mixture-of-experts strategy, where multiple
specialized sensing models, or experts, are used to capture
the mapping from diverse sourcing inputs to the targeting
outputs.
Federated Learning-based Wireless Sensing: Federated
learning (FL) is an emerging solution that enables
distributed model training by utilizing model parameter
sets instead of private data samples for sharing [32].
FL-based wireless sensing solutions have recently attracted
significant interest due to their unique advantages,
including decentralization, low communication overload,
and privacy protection [26], [33]. For instance, the authors
in [34] designed WiFederated for WiFi-based human
activity recognition, which was the first FL-based wireless
sensing framework proposed to overcome the challenge
posed by the centralized model training paradigm. In [35]
the authors introduced a cross-domain federated learning
framework called CDFL, which aims at addressing the
scarcity of labeled wireless data by generating simulated
training data using a physical model guided by public
datasets in other domains. Recent works [36], [37] also
investigated distributed indoor localization by combining
FL and wireless sensing based on receivers deployed across
different locations.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model
We consider human gesture recognition based on a
distributed wireless sensing system consisting of one or
more Wi-Fi transmitters and a set K of K receivers
deployed at different locations across the considered area.
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Each receiver records wireless signals (e.g., CSI data) that
are reflected and scattered by human users when
performing a set of gestures. We focus on the decentralized
sensing scenario in which each receiver stores its recorded
wireless signals locally which, due to the constraints in
data privacy, cannot be exposed to others. We assume that
only a subset of receivers KL for KL ⊆ K can have labeled
wireless sensing data samples. Each receiver in KL can
then construct a location-specific model to recognize
different gestures of the human users based on its local
dataset. There are some other receivers, denoted as subset
KN = K \ KL that cannot have any labeled data and
therefore cannot construct any local models using
traditional supervised learning approaches. As mentioned
earlier, due to the spatial heterogeneity of wireless sensing
signals, receivers at different locations require different
models to recognize the same gestures. In other words,
receivers in KN cannot directly utilize the gesture
recognition models of receivers in KL for their local gesture
recognition tasks.

3.2 Physical-layer Semantics

We observe that the statistics of received CSI signals are
closely related to the semantic information of the physical
environment, such as the size and layout of rooms, the
location of transmitters and receivers, and the human
users’ gesture profiles, such as the speed of movement of
different body parts when performing different gestures,
etc. Motivated by this observation, we investigate whether
it is possible to develop a model transferring solution that
allows one or a limited number of receivers with labeled
data to transfer their locally trained models to other
receivers, especially receivers without any labeled dataset,
based on the correlations of environmental and
gesture-related semantic features.

Let us first identify the key semantic features in wireless
sensing systems that may influence the distribution of the
CSI data recorded at each receiver. It is known that the CSI
signal recorded by a receiver is mainly characterized by the
wireless links connecting the transmitter and receiver,
influenced by the gesture-performing human users as well
as the physical objects located along side of the channels.
More specifically, the CSI signal recorded by receiver k at
arrival time α, subcarrier frequency θ, and antenna β can
be written as [12]:

Hk (α, θ, β) =

 ∑
n∈LS

Ak,ne
−j2πθτk,n(θ,β)

+
∑

m∈LM

Ak,m(α)e−j2πθτk,m(α,θ,β)

 ejϵ(α,θ,β), (1)

where LS and LM are sets of stationary and dynamic path
components, respectively, and ejϵ(α,θ,β) is the phase error
caused by asynchronization between transceivers and
hardware imperfection. For each propagation path l for
l ∈ LS ∪ LM , Ak,l and τk,l are the channel attenuation
factor and time delay, respectively. Here dynamic path
components correspond to the received signals reflected by
the moving targets, while the stationary path components

correspond to the signals received from the direct paths
and the reflection signals from static objects such as walls
and furniture. Since the CSI can only be sampled as discrete
signals in time (packet), frequency (subcarrier), and space
(antenna) [38], the time delay of static and dynamic signal
paths, respectively, in (1) can be written as follows:

τk,n (θ, β) = τk,0 +∆βk,n ·ϖk,0, for n ∈ LS (2)

τk,m (α, θ, β) = τk,0 −
ρk,0

∆θk,m
∆αk,m +∆βk,m ·ϖk,0,

for m ∈ LM (3)

where ∆αk,l, ∆θk,l, ∆βk,l for l ∈ LS ∪ LM are differences
of packets, subcarriers, and spatial positions, respectively,
between two consecutive CSI samples of Hk (α, θ, β) in (1).
Hk (0, 0, 0) is defined as the CSI reference signal with the
time delay τk,0, DFS ρk,0 and AoA ϖk,0.

From (1), we can observe that the CSI signals recorded
by receiver k ∈ K are closely related to the following two
types of physical-layer semantics:
Environment-related semantics (E-semantics): include the
semantic information related to the physical environment
such as environmental layout and the relative locations and
orientations of transmitters, receivers, and human users.
We therefore can write the feature vector of E-semantics of
receiver k as uk = ⟨Ak,n, τk,n, ϖk,n⟩n∈LS

.
Gesture-related semantics (G-semantics): include the
semantic information associated with gestures such as the
users’ body coordinates and movement patterns of
gestures. We can write the feature vector of G-semantics of
receiver k as vk = ⟨Ak,m, τk,m, ϖk,m, ρk,m⟩m∈LM

.
We can then rewrite (1) into the following form:

Hk (α, θ, β) =
∑
n∈LS

pk,n(θ, β;uk)

+
∑

m∈LM

qk,m(α, θ, β;vk), (4)

where pk,n(θ, β;uk) = Ak,ne
−j2πθτk,n(θ,β)+jϵ(α,θ,β) and

qk,m(α, θ, β;vk) = Ak,m(α)e−j2πθτk,m(α,θ,β)+jϵ(α,θ,β) are
stationary and dynamic path component signals,
respectively.

We combine both E- and G-semantics and write the
physical-layer semantic feature vector of wireless signals
recorded by receiver k as ϕk = ⟨uk,vk⟩. We can observe
that the physical-layer semantics are location-specific and
therefore each receiver k has a unique semantic feature
vector ϕk which plays a key role in determining the
probability distribution of the locally received CSI signals.

3.3 Physical-Layer Semantic-Aware Network
Let us now formally introduce the concept of physical-layer
semantic-aware network (pSAN) as follows:
Definition 1. A physical-layer semantic-aware network (pSAN) is

a wireless sensing network in which the physical-layer
semantics, including both E- and G-semantics, can be
aware, known, and utilized, by each receiver.

In pSAN, the similarity of physical-layer semantics
between different receivers can be used to infer correlations
between different location-specific models trained by these
receivers. Recall that only a subset KL of KL receivers can
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have labeled CSI signals. To simplify our description, we
use k′ for k′ ∈ KL to denote the kth receiver with labeled
CSI data. Let Dk′ be the set of labeled CSI data at receiver
k′. We assume the labeled data samples at different
receivers in KL are associated with the same set of gesture
classes. Similarly, let k′′ for k′′ ∈ KN be the k′′th receiver
that does not have any labeled data.

The key idea is to establish a mapping function that
converts different high-dimensional physical-layer
semantics into the same low-dimensional semantic space to
capture the similarity between the key statistic features of
physical-layer semantics that determine the gesture
recognition models trained by different receivers.
Specifically, let ϕ̄k be the low-dimensional semantic vectors
converted from ϕk to the semantic space for k ∈ K.
Common metrics for measuring semantic similarity include
energy-based and statistic-based metrics. In this paper, we
mainly focus on energy-based semantic similarity. We will
present a formal definition and give a more detailed
discussion in Section 6. Without loss of generality, in this
paper, we use S

(
ϕ̄j , ϕ̄k

)
to denote the semantic similarity

between two semantic features ϕj and ϕk.

3.4 Problem Formulation

Each labeled CSI data ζk′,i = ⟨xk′,i, yk′,i⟩ recorded by
receiver k′ for k′ ∈ KL consists of a CSI signal xk′,i, e.g., an
instance of CSI signal recorded by receiver k′, and a class
label yk′,i that belongs to one of a set of gesture classes Y .
Let Dk′ be the set of local training data samples at receiver
k′. Each receiver k′ ∈ KL can then construct a local model
ωωωk′ by minimizing its local objective function,

min
ωωωk′

Fk′ (ωωωk′) =
1

|Dk′ |
∑

ζk′,i∈Dk′

[fk′ (ωωωk′ ; ζk′,i)] , (5)

where ωωωk′ is the model parameters of receiver k′.
We also need to learn a semantic-aware model transfer

function to transfer models learned by receivers with
labeled data to those receivers without any labeled data
according to their semantic similarity. In our considered
decentralized wireless sensing scenario, the CSI data
recorded by each receiver cannot be exposed to others. It is
however possible for the receivers to expose their locally
trained models to other receivers. In the rest of this paper,
we will develop a pSAN-based model aggregation and
transfer approach in which each receiver k′′ ∈ KN can
directly obtain a location-specific model by aggregating
models that are already trained by receivers in KL.

The main objective is to design an appropriate model
transfer approach, so the transferred model at receiver k′′

can approach the locally optimal model ωωω∗
k′′ , i.e., we write

the problem as follows:

min
ωωωk′′

[Fk′′ (ωωωk′′)− Fk′′ (ωωω
∗
k′′)] , ∀k′′ ∈ KN , (6)

where ωωωk′′ is the transferred model obtained by receiver k′′

which, if we consider a linear model transfer framework,
can be obtained as follows:

ωωωk′′ =
∑
k′∈K′

ξ
(
S(ϕ̄k′ , ϕ̄k′′)

)
ωωωk′ , (7)

where S(ϕ̄k′ , ϕ̄k′′) denotes the semantic similarity between
semantics ϕ̄k′ of receiver k′ and semantics ϕ̄k′′ of receiver
k′′, ξ(·) is a semantic-aware model transfer function that
maps the semantic similarity between receivers k′ and k′′ to
a normalized model aggregation coefficient value. We will
give a more detailed discussion on how to obtain S(·, ·) and
ξ(·) in Section 6 and prove the convergence result of our
proposed solutions later in Section 7.

…
 φ1/ω1  φ2/ω2 φ /ω    φk'' φ 

…

hψ(ωi,ωj)

S(φi,φj)S(φi,φj)
φ1

ω1

Environment 1 Environment 2

Semantic-Similarity Net.

Model Correlation Net.

φ2

φ

ω2

ω
Coordinator

(a)

Mapping from 

Semantic Similarity to 

Model CorrelationModel Training at 

Receivers with Labeled Data

Model Transfer to Receivers 

without Labeled Data

Physical-layer Semantic

Parameter Estimation
①

②
③

④Physical-layer Semantic

Parameter Estimation
①

Receivers with Labeled Data

Receivers without Labeled Data

(b)

Fig. 2: (a) SANSee framework and (b) key training
procedures.

4 SANSEE OVERVIEW

The architectural framework and key training procedures of
SANSee are illustrated in Fig. 2a and 2b, respectively. The
detailed operations are described as follows:
Physical-layer Semantics Estimation: Each receiver needs
to first estimate key physical-layer semantic parameters
that influence its local CSI data. Note that estimating
semantic parameters does not require any labeled CSI data.
To estimate E- and G- semantics separately, each receiver
needs to first separate its CSI signals by applying the
high-pass and low-pass filters, respectively, and then apply
the maximum likelihood estimation (MLE) approach to
estimate the combination of different semantic parameters.
Mapping from Semantic Similarity to Model Correlation:
After each receiver has successfully estimated its
physical-layer semantics, we then need to construct a
mapping function that can convert the semantic similarity
to the model correlation between different receivers. To
characterize the semantic similarity between different
receivers, we introduce a low-dimensional semantic space
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in which the distance between any two physical-layer
semantics is proportional to their semantic similarity. We
then construct a mapping function to map the
high-dimensional semantic feature vector into the semantic
space. We also introduce a correlation coefficient to
characterize the model correlation between local models
trained by different receivers. Finally, we design a novel
loss function to simultaneously optimize parameters of the
semantic mapping function and the calculation function of
the model correlation coefficient to match semantic
similarity with model correlations.
Model Training at Receivers with Labeled Data: All the
receivers with labeled data will jointly construct their
location-specific models. We adopt a personalized
federated learning-based solution for receivers to
collaboratively train their location-specific models without
exposing their local datasets. After successfully training
their models, all the receivers with labeled data will link
their models with their physical-layer semantics and
establish a mapping function to convert semantic similarity
to model correlation coefficients.
Model Transfer at Receivers without Labeled Data: Each
receiver without labeled data will rely on the coordinator
to construct its location-specific model based on the
correlated model trained by receivers with labeled data.
More specifically, each receiver without labeled data will
submit its locally estimated semantic features to the
coordinator. The coordinator will then apply the previously
constructed mapping function to calculate the model
correlation coefficients for all the correlated models
obtained by receivers with labeled data, and finally send
the aggregated model to each corresponding receiver.

5 PHYSICAL-LAYER SEMANTICS ESTIMATION

The first step in pSAN is to quantify the impact of
physical-layer semantics on the CSI data recorded by each
receiver. From (1), we can observe that, the raw CSI signal
Hk(α, θ, β) obtained by each receiver consists of phase
error term ejϵ(α,θ,β) which may result in inaccurate
estimation of physical-layer semantics. This issue can be
addressed when the receiver has two or more antennas, in
which the phase error term can be canceled by performing
conjugate multiplication and amplitude adjustment on CSI
signals received by two antennas [11]. Let Ĥk(α, θ, β) be
the phase error-canceled version of the CSI signal of
receiver k. We also use q̂k,m and p̂k,n to denote dynamic
and stationary path components in Ĥk(α, θ, β),
respectively.

By applying a high-pass filter, we can separate the sum
of dynamic components related to G-semantics vk from the
raw CSI of receiver k ∈ K, denoted as ĤM

k (α, θ, β) =∑
m∈LM

q̂k,m(α, θ, β;vk). We can then adopt the maximum
likelihood estimation (MLE) to estimate the G-semantics
parameters consisting of a collection of parameters of all
dynamic signal components, i.e., vk = {vk,m}m∈LM

with
vk,m = ⟨Ak,m, τk,m, ϖk,m, ρk,m⟩. More specifically, the
G-semantics v∗

k of receiver k can be estimated by solving

the following problem:

v∗
k = argmax

vk

{−
∑

α∈A,θ∈Θ,β∈B
|ĤM

k (α, θ, β)

−
∑

m∈LM

qk,m(α, θ, β;vk,m)|2}, (8)

where ĤM
k (α, θ, β) is the obtained from real-measured CSI

signal and qk,m(α, θ, β;vk,m) is the estimated components.
A, Θ, B are the sets of possible packets, subcarriers, and
antennas, i.e., α ∈ A, θ ∈ Θ, β ∈ B.

Similarly, we can extract the sum of stationary
components ĤS

k (θ, β) =
∑
n∈LS

pk,n(θ, β;uk) related to
E-semantics by applying a low-pass filter and estimate
parameters in E-semantics, i.e., uk = {uk,n}n∈LS

with
uk,n = ⟨Ak,n, τk,n, ϖk,n⟩ as follows:

u∗
k = argmax

uk

{−
∑

θ∈Θ,β∈B
|ĤS

k (θ, β)

−
∑
n∈LS

pk,n(θ, β;uk,n)|2}, (9)

where ĤS
k (α, θ, β) is obtained from the real-measured CSI

signal and pk,n(θ, β;uk,n) is the estimated components.
We can observe that, it is generally difficult to derive

closed-form solutions of v∗
k and u∗

k in (8) and (9). We can
however adopt a modified Space Alternating Generalized
Expectation Maximization (mSAGE) algorithm to estimate
the values of v∗

k and u∗
k using an iteration-based approach

[39]. We use superscript t to denote the operation in the tth
iteration. The mth dynamic signal path component can be
calculated by first performing the expectation step as
follows:

qt+1
k,m(α, θ, β;vtk,m) = qtk,m(α, θ, β;vtk,m) (10)

+πH

ĤM
k (α, θ, β)−

∑
m′∈LM

qtk,m
(
α, θ, β;vtk,m′

) ,
where vtk,m′ is the G-semantics of the m-th path estimated
in the tth iteration of receiver k, and πH is the non-negative
step size and its default value can be set as 1. We then
obtain the optimal value of parameter v∗

k,m by maximizing
the magnitude of the signal received at the mth signal path
component zk,m(τ,ϖ, ρ; qt+1

k,m) =
∑
α∈A,θ∈Θ,β∈B

|e2π(∆θk,mτk,m+fc∆βk,mϖk,m−∆αk,mρk,m)qt+1
k,m

(
α, θ, β;vtk,m

)
|2,

i.e. v∗
k,m is given by,

v∗
k,m = argmax

vk,m

zk,m(τ,ϖ, ρ; qt+1
k,m), (11)

where fc is the carrier frequency of the wireless channel,
and ∆αk,m, ∆θk,m, ∆βk,m are defined previously in (3).
To solve (11), we apply the following steps to sequentially
estimate each individual parameter τ t+1

k,m , ϖt+1
k,m, ρt+1

k,m, and
At+1
k,m in vk,m as follows:

τ t+1
k,m = argmax

τ
|zk,m(τ,ϖt

k,m, ρ
t
k,m; qt+1

k,m(α, θ, β;vtk,m))|2, (12)

ϖt+1
k,m = argmax

ϖ
|zk,m(τ t+1

k,m , ϖ, ρ
t
k,m; qt+1

k,m(α, θ, β;vtk,m))|2, (13)

ρt+1
k,m = argmax

ρ
|zk,m(τ t+1

k,m , ϖ
t+1
k,m, ρ; q

t+1
k,m(α, θ, β;vtk,m))|2, (14)

At+1
k,m =

zk,m(τ t+1
k,m , ϖ

t+1
k,m, ρ

t+1
k,m; qt+1

k,m(α, θ, β;vtk,m))

|A| · |Θ| · |B|
. (15)
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The above iteration process ends when the difference
between two successive estimations of vk,m is within a
pre-defined threshold ς . For stationary component signal
estimation, we can follow a similar approach to estimate
the parameters of uk for receiver k. The detailed
procedures of the physical-layer semantics estimation
process are summarized in Algorithm 1.

Algorithm 1 Physical-layer Semantics Estimation Algorithm
of Receiver k
Input: CSI Hk(α, θ, β); Numbers of estimated paths LM and LN ; Pre-
defined threshold ς ; Initial iteration t = 0; Initial values uk = 0, vk = 0.
Output: Physical-layer semantics ϕk = ⟨u∗

k,v
∗
k⟩.

1: Cancel Hk(α, θ, β) by denoising and obtain Ĥk(α, θ, β) ;
2: While ∥vt

k,m − vt+1
k,m∥ ≤ ς do

3: For m = 1, · · · , LM do
4: Apply a high-pass filter to obtain ĤM

k (α, θ, β);
5: Calculate qt+1

k,m(α, θ, β;vt
k,m) by using (10);

6: Estimate parameters of vt+1
k,m by using (12)-(15);

7: End for
8: t = t+ 1;
9: End while

10: While ∥ut
k,n − ut+1

k,n ∥ ≤ ς do
11: For n = 1, · · · , LN do
12: Apply a low-pass filter to obtain ĤS

k (θ, β);
13: Calculate pt+1

k,n (θ, β;ut
k,n) by substituting ĤS

k into (10);
14: Estimate ut+1

k,n by substituting pt+1
k,n into (12)-(15);

15: End for
16: t = t+ 1;
17: End while

6 MODEL TRAINING AND TRANSFER

6.1 Semantic Similarity and Model Correlations
From the previous discussion, we can observe that the
physical-layer semantics directly affect the distributions of
the CSI data at each receiver. It is known that, for a given
algorithmic framework, the distribution of training dataset
and the resulting model are in one-to-one correspondence.
Thus, in this section, we aim to develop a mapping
function that converts the semantic similarity to the
correlations of models.

Motivated by the fact that physical-layer semantics of
each receiver consist of multiple key parameters that have
different impacts on the performance of different
gesture-recognition tasks, we need to first convert the
high-dimensional physical-layer semantics of different
receivers into a low-dimensional space referred to as the
(physical-layer) semantic space. In the semantic space, the
distance between different semantics of different receivers
is proportional to the correlations of their local gesture
recognition models, e.g., the larger the distance (similarity)
between receivers’ semantics, the higher the correlations
between different local models of different receivers. In this
way, we can use the semantic similarity to transfer models
from some receivers, e.g., receivers with labelled data, to
other receivers, e.g., receivers without labeled data, without
requiring any extra model training.

In this paper, we consider a neural network-based
mapping function to convert the high-dimensional
physical-layer semantics ϕk into the low-dimensional
version ϕ̄k in the semantic space. We can write the
mapping function that outputs the low-dimensional

semantic representation as ϕ̄k = gδ(ϕk), where δ is the
parameters of the mapping function.

Let S
(
ϕ̄k, ϕ̄j

)
be the semantic similarity between

receivers k and j in the semantic space. We consider a
general framework in which semantic similarity can be
measured using different metrics. For example, if the
Euclidean distance has been adopted to measure similarity
between two semantics ϕ̄k and ϕ̄j in semantic space, we
can write:

S
(
ϕ̄k, ϕ̄j

)
= S

(
gδ(ϕk), gδ(ϕj)

)
= |ϕ̄k − ϕ̄j |2. (16)

We can also use other types of metrics such as
statistic-based similarity metrics, including cross-entropy
(CE) and Jensen–Shannon divergence (JSD), by following
the same line in [20].

Next, we need to define the correlation between
gesture-recognition models trained based on datasets
available at different receivers. In this paper, we adopt a
linear correlation in which the correlation between different
models ωωωj and ωωωk is characterized by a linear coefficient
ξj,k. If suppose model ωωωj is correlated with a set of models,
e.g., {ωωωk}k∈KL for j /∈ KL, we then can write model ωωωj as a
linear combination of all the correlated models with
normalized coefficients given by ωωωj =

∑
k∈KL ξj,kωωωk,

where ξj,k satisfies 0 ≤ ξj,k ≤ 1 and
∑
k∈KL ξj,k = 1.

Suppose the model correlation coefficient ξj,k can also be
learned by a neural network hψ with parameter ψ, i.e., we
can write ξj,k = hψ(ωωωj ,ωωωk).

Finally, we can use the following loss function to train
parameters δ and ψ to match the semantic similarity with
the model correlation:

L(δ, ψ) =
∑

j,k∈KL

|hψ(ωωωj ,ωωωk)− S
(
ϕ̄k, ϕ̄j

)
|2. (17)

The models δ and ψ can be trained at the same time by
minimizing the above loss function using the standard SGD
approach.

In SANSee, δ and ψ are first trained based on the set of
receivers with labeled data KL. The receivers without
labeled data in KN can then directly obtain their local
models by performing a linear combination operation on
the set of models {ωωωk}k∈KL . We will give a more detailed
discussion on the model construction process at receivers
in KL as well as the model transfer process from receivers
in KL to receivers KN in the next section.

6.2 Model Training at Receivers with labelled data

In this paper, we follow a commonly adopted FL setting in
which receivers optimize their model parameters to
minimize the loss functions based on their local data
distributions. In other words, for a given model, the
optimal model parameters obtained based on the local data
minimize the loss function and maximize the output
accuracy of the trained model. The optimal parameters of
the trained models directly reflect the correlation between
the data distributions of different receivers and therefore
can be used to decide the set of receivers with similar data
distributions. The above results have been verified both
theoretically and practically in many FL-based applications
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and have already served as the foundation of many
well-developed personalized FL solutions [40]–[45].

In fact, the difference between model parameters
learned by different receivers due to different distributions
of the local datasets is commonly referred to as the client
drift problem. This problem results in slow convergence
and even divergence of the model training process in
model-aggregation-based FL approaches [46]. To address
the client drift problem, an attention-inducing function
λ
∑
k′<j′ R

(
∥ωωωk′ −ωωωj′∥2

)
is introduced in the regularized

loss function, which improves the collaboration between
the personalized models trained by different receivers. The
attention-inducing function enhances the convergence and
performance of personalized models through an attentive
message-passing mechanism, which is model agnostic and
can coordinate various intermediate results, with proven
convergence for both convex and non-convex models [47].
Specifically, we consider an attention-inducing
function-based personalized federated learning solution in
which all receivers in KL collaborate in training a set of KL
location-specific models, denoted as ΩΩΩ = ⟨ωωωk⟩k∈KL by
minimizing the following objective functions:

J (Ω) :=
∑
k′∈KL

Fk′(ωk′) + λ
∑
k′<j′

R
(
∥ωωωk′ −ωωωj′∥2

) , (18)

where λ > 0 is a non-negative collaboration parameter,
R(∥ωωωk′ − ωωωj′∥2) is a regularizer which is an
attention-inducing function included here to encourage
collaborations between receivers with correlated models. In
particular, we follow a commonly adopted setting [47] and
use the negative exponential function to characterize the
difference between models ωωωk′ and ωωωj′ , defined as follows:

R(∥ωωωk′ −ωωωj′∥2) = 1− e−∥ωωωk′−ωωωj′∥
2/σR , (19)

where σR is the difference parameter that controls the
relative difference between models. The added
attention-inducing function in the objective function in (18)
is an increasing function of the difference between model
parameters of receivers. Thus, when minimizing the
objective function at a receiver, other models learned by
receivers with higher (lower) similarity in the local data
distributions will have higher (lower) weights. Moreover,
the regularization also smooths the difference between the
model parameters at different receivers. This further
reduces the variations of the model parameter differences,
especially at the beginning of the model training process,
which further improves the convergence and robustness of
the personalized model aggregation. We then describe the
detailed personalized model training process.

In this paper, we adopt a standard SGD-based FL
setting as introduced in [33] to iteratively construct
personalized models for receivers in the set KL.
Specifically, a coordinator is pre-assigned and announced
to all the receivers, which would periodically upload their
local model parameters to the coordinator for model
aggregation and download the updated models for the
next round of local model training. The proposed model is
flexible; the coordinator is a logical entity deployed at any
receiver, e.g., a coordination receiver, or a physical entity
installed at a dedicated central server. In the former case,

all other receivers periodically upload their intermediate
local models to the coordinating receiver, which in turn
aggregates the received models with its own model. In the
latter case, all receivers upload their intermediate local
models to the central server for model aggregation once in
a while. Both scenarios have already been widely applied
in many FL applications. In the rest of this section, we use
the superscript (·)t,e to denote the parameters in eth local
iteration of the tth global coordination round, i.e., ωωωt,e is
the model downloaded from the coordinator at the
beginning of the tth round. In the tth coordination round,
each receiver k′ ∈ KL updates its local model as follows:

ωωωt,e+1
k′ = ωωωt,ek′ − η∇F̃k′(ωωωt,ek′ ), for e = 0, . . . , E − 1 (20)

where ωωωt,ek′ denotes the local model of receiver k′ in the eth
iteration in the tth coordination round, η is the local
learning rate, and ∇F̃k′(ωωωt,ek′ ) is the unbiased stochastic
gradient. At the end of the Eth local iteration, receivers
will upload models {ωωωt,E1 , · · · ,ωωωt,EKL} to the coordinator for
global model updating. At the coordinator, the following
step will be performed for each receiver k′ to obtain the
next-round model ωωωt+1

k′ for each receiver k′ as follows, for
k′, j′ ∈ KL:

ωωωt+1
k′ = ωωωt,Ek′ −

∑
k′ ̸=j′

η̃λ∇R(∥ωωωt,Ek′ −ωωωt,Ej′ ∥2), (21)

where η̃ = ηE is the step size. Repeat the above processes
until the preset target loss ϵJ is reached.

In fact, the step in (21) at the coordinator is in essence to
update the model for each receiver k′ by performing a linear
combination given by

ωωωt+1
k′ =

∑
j′∈KL

ξtk′,j′ωωω
t,E
j′ (22)

where ξtk′,j′ is given by

ξtk′,j′ =


η̃λR

′
(∥ωωωt,Ek′ −ωωωt,Ej′ ∥2), k′ ̸= j′,

1− η̃λ
KL∑
j′ ̸=k′

R
′
(∥ωωωt,Ek′ −ωωωt,Ej′ ∥2), k′ = j′,

(23)

where R
′
(∥ωωωt,Ek′ − ωωωt,Ej′ ∥2) = e

−∥ωωωt,E
k′ −ωωω

t,E
j′

∥2/σR

σR
. Note that,

the value of R(∥ωωωt,Ek′ − ωωωt,Ej′ ∥2) decreases as the model
correlation between models ωωωt,Ek′ and ωωωt,Ej′ increase. Also,
since 0 ≤ R

′
(∥ωωωt,Ek′ − ωωωt,Ej′ ∥2) ≤ 1

σR
, we can ensure

0 ≤ ξtk′,j′ ≤ 1 by choosing a proper local learning rate, e.g.,
η ≤ 1

λE(KL−1) . The coordinator needs to perform only
simple linear combining operations based on the models
uploaded by a limited number of receivers with labeled
data. Thus its computational load is negligible compared to
that of the local model training process at each receiver.
More specifically, in SANSee, we follow similar model
aggregation operations as the existing personalized FL
solutions in which the coordinator performs linear
combining of model parameters received from the receivers
for personalized model coordination. The overhead of such
a model aggregation approach is generally considered
negligible by many existing works in FL [48].
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Algorithm 2 Model Training Algorithm
Input: Target loss ϵJ ; Local SGD steps E; Set of receivers with labelled
data KL; labelled data {D1, . . . , DKL};
Output: Personalized models of labeled receivers {ωωωT

0 , . . . , ωωωT
KL−1

}.

1: Server broadcasts an initial model ωωω0 to all receivers in KL;
2: While J (Ω) ≥ ϵJ do
3: For receiver k′ ∈ KL in parallel do
4: For e = 0, · · · , E − 1 do
5: Uniformly sample a mini-batch ζt,e

k′ from Dk′ ;
6: Perform SGD iterations on ωωωt,e

k′ by using (20);
7: End for
8: End parallel for
9: For k′ ∈ KL do on coordinator

10: Obtain coefficient ξt
k′,j′ by using (23);

11: Update next-round model ωωωt+1
k′ by using (22);

12: End for on coordinator
13: End for

6.3 Model Transfer to Receivers without labelled data
Let us now develop a model transfer solution that maps the
personalized models constructed by receivers with labelled
data to receivers without any labelled data. Specifically, each
receiver k′ ∈ KL with a labeled dataset first establishes a
semantic mapping pair ⟨ϕk′ ,ωωωk′⟩ consisting of its location-
specific semantics ϕk′ obtained in Section 5 and its local
modelωωωk′ constructed in Section 6.2. We can then follow the
same line as Section 6.1 to jointly develop two modules: a
semantic mapping functional module gδ(·) with parameter
δ and a model correlation functional module hψ(·, ·) with
parameter ψ.

The detailed procedures for implementing model
transfer in SANSee are illustrated in Fig. 3. The semantic
mapping functional module gδ(·) with parameter δ is
implemented based on a 4-convolutional block-based CNN
architecture in which each block consists of a 3×3
convolutional layer followed by a batch normalization and
a ReLU layer. Two max-pool layers are then inserted after
the first two blocks to extract important features while
simultaneously reducing the data dimensions. After that,
the resulting low-dimensional semantics {ϕ̄1, · · · , ϕ̄k′} are
concatenated and fed into a feature concatenation layer,
followed by two convolutional blocks, a fully connected
ReLU layer and a fully connected sigmoid layer that
outputs the semantic similarity between any pairs of input
physical-layer semantics. The model correlation functional
module hψ(·, ·) with parameter ψ is implemented using the
convolutional block concatenated with two fully connected
layers. Finally, the objective loss function L(δ, ψ) given in
(17) is used to establish the mapping relationship between
semantic similarity and model correlations. To minimize
the loss function L(δ, ψ), we jointly optimize both
functional modules by solving the following problem:

⟨δ∗, ψ∗⟩ = arg min
⟨δ,ψ⟩

L(δ, ψ). (24)

In this case, receivers with no any labeled data can
obtain a location-specific model by performing linear
combinations of all personalized models at receivers with
labeled data, i.e., the location-specific model ωωωk′′ of receiver
k′′ ∈ KN can be calculated as ωωωk′′ =

∑
k′∈K′ ξk′′,k′ωωωk′ ,

where ξk′′,k′ is the model aggregation coefficient predicted
by the optimized semantic mapping functional module, i.e.,
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Fig. 3: Detailed architectural components of the proposed
model transfer solution.

ξk′′,k′ = S(gδ∗(ϕk′′), gδ∗(ϕk′)). SANSee does not require
any labelled data at the target receivers. Furthermore, the
model transfer process involves only linear operations
summation and therefore, compared to existing transfer
learning solutions [29]–[31]. SANSee significantly reduces
the data labelling overhead as well as the required
computational cost at the target receivers. We illustrate the
detailed procedures of model transfer in Algorithm 3. As
will be proved in the next section, the model obtained by
each receiver k′′ ∈ KN without labeled data can approach
to the real local model ωωω∗

k′′ .

Algorithm 3 pSAN-based Model Transfer Algorithm
Input: Raw CSI samples of all receivers.
Output: Transfer models {ωωωk′′}k′′∈KN of receivers in KN .

1: Estimate physical-layer semantics {ϕ1, . . . , ϕK} of all
receivers by using Alg. 1;

2: Obtain local models {ωωω1, . . . , ωωωKL} of receivers in KL by
using Alg. 2;

3: Construct a set of semantic mapping pairs {ϕk′ ,ωωωk′}k′∈KL ;
4: Train the two functional modules by minimizing (17) ;
5: For k′′ ∈ KN do on coordinator
6: Calculate aggregation coefficients {ξk′′,1, · · · , ξk′′,KL} by

using the optimized modules;
7: Obtain the transfer model ωωωk′′ by performing a linear

combination;
8: End for on coordinator

7 THEORETICAL RESULTS

In this section, we present the theoretical results related to
our proposed SANSee architecture. As mentioned earlier,
SANSee is a distributed personalized model construction
framework that involves two major steps: (1) Local model
training: it first trains a set of models at the receivers with
labelled data and, (2) model transfer: these trained models
will be transferred to new receivers at novel locations
without requiring any labelled data. In the rest of this
section, we derive theoretical bounds of the following two
types of errors:

(1) (Local) Model Training Error: corresponds to the
performance gap between the models
ΩΩΩ = ⟨ωωωk⟩k∈KL trained by receivers based on their
locally recorded datasets and the ground truth
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model ΩΩΩ∗ = ⟨ωωω∗
k⟩k∈KL , given by E[J (ΩΩΩ) − J (ΩΩΩ∗)]

where J (ΩΩΩ) is defined previously in (18). We will a
present detailed discussion in Section 7.1.

(2) Model Transfer Error: corresponds to the error of
the transferred models obtained by the receivers
without labelled data and the ground truth model,
defined previously in (6). We will present a detailed
discussion in Section 7.2.

7.1 Model Training Error

We use superscript T to denote the models trained in the
T th coordination round, e.g., we use ΩΩΩ0 and ΩΩΩT to denote
the models in the 0th (initial model vector) and T th
coordination round. We can then prove the following result
about the model training error.

Theorem 1. Suppose the following assumptions hold:

Assumption 1: (Strong Convexity) F1, · · · , FK are all
µ-convex: i.e., µ

2 ∥ννν − ωωω∥2 ≤ Fk(ννν) − Fk(ωωω)
−⟨∇Fk(ωωω), ννν −ωωω⟩, for all ννν,ωωω ∈ Rd and k ∈ K,
Assumption 2: (Lipschitz Smoothness) F1, · · · , FK
are all L-smooth: i.e., L2 ∥ννν − ωωω∥2 ≥ Fk(ννν) − Fk(ωωω)
−⟨∇Fk(ωωω), ννν −ωωω⟩, for all ννν,ωωω ∈ Rd and k ∈ K,
Assumption 3: (Bounded Variance) The variance of
stochastic gradients on all local objective functions is
bounded: E∥∇F̃k(ωωω, ζk) − ∇Fk(ωωω)∥2 ≤ σ2

F , for all
ωωω ∈ Rd and k ∈ K,
Assumption 4: (Bounded Gradient) The gradient of
the attention-inducing function is bounded: ∇R(∥ννν−
ωωω∥2) ≤ κR, for all ννν,ωωω ∈ Rd.

Then, there exist λ > 2L, T ≥ 4
η̃1µ

, and learning rate
η ≤ η̃1

E such that

E[J (ΩΩΩT )− J (ΩΩΩ∗)] ≤ O
(
∥ΩΩΩ0 −ΩΩΩ∗∥2e

−η̃1µT
4

+
(1 + µT )(EΓL + σ2

F /B)

µ3T 2EKL

)
,

(25)

where η̃1 :=
(
12(L+ λκR) +

128λκRL
2

µ2 + 96L2

µ

)−1
,

ΓL =
∑
k′∈KL ∥∇Fk′(ωωω∗

k′)∥2, and B is mini-batch size.
O(·) is the big-O notation which ignores
poly-logarithmic and constant numerical factors.

Proof: See Appendix A.
We can observe that the assumptions introduced in the

above theorem are reasonable in many practical scenarios.
More specifically, as discussed in [42], [46], Assumptions
1-3 are satisfied by many commonly adopted loss functions
such as cross-entropy, L2 regularization, etc. Assumption 4
can also be achieved by choosing many commonly used
regularizers such as the negative exponential function [40].

We can observe from Theorem 1 that the model training
error is closely related to the initial model selection,
mini-batch size B, the number of local iterations between
consecutive coordination rounds E, and the total number
of receivers participating in the model training KL. More
specifically, ∥ΩΩΩ0 − ΩΩΩ∗∥2 term in (25) quantifies the error
caused by the selection of the initial model. Since this term
is multiplied with term e

−η̃1µT
4 , we can reduce the impact

of incorrect selection of the initial model by increasing the

value of η̃1 which can be achieved by choosing a smaller
value λ. We can also observe that the model training error
always increases with the values of B, E, and KL.
Increasing these parameters however will result in higher
computation of complexity and longer coordination delay
during each coordination round.

It is known that, in most existing FL-based solutions,
the convergence rate is always adversely affected by the
heterogeneity level of datasets at the model training
participating receivers [40], [42]. Our result in Theorem 1
can also capture this issue. More specifically, the term ΓL is
a commonly used metric to measure the heterogeneity
level, i.e., level of non-iid, among datasets at the receivers.
We can observe that model training error increases with the
value of ΓL. We can however observe that the impact of the
non-iid decreases when the number of coordination rounds
T becomes large.

7.2 Model Transfer Error
In the model transfer step, receiver k′′ ∈ KN can directly
obtain its model by aggregating the already trained models
of others, e.g., receiver k′ for k′ ∈ KL. Therefore, the model
transfer error is closely related to the data distribution
difference between receivers in sets KL and KN . In this
paper, we use a commonly used metric, total variation
distance, to quantify the data distribution difference which
is defined as follows:
Definition 2. For the data distributions Pk′ and Pk′′ of

receivers k′ and k′′ over the dataset D, the total
variation distance between them is defined as
∥Pk′ − Pk′′∥TV := supζ∈D |Pk′(ζ)− Pk′′(ζ)|, where ζ is
data uniformly sampled from dataset D.

We can then prove the following result about the model
transfer error.
Theorem 2. Suppose Assumptions 1-4 and the following

assumptions hold:

Assumption 5: The local objective function is
M -bounded: Fk(·, ζk) ≤M , for all k ∈ K.

Then, we have

E[Fk′′(ωωωk′′)− Fk′′(ωωω
∗
k′′)] ≤

ϵ+ (λ+ ΓN )KL

KL
(26)

+M
∑
k′∈KL

∥ξk′′,k′Pk′′ −
Pk′
KL

∥TV ,

where ϵ is the model training error derived in (25), ϕk′′
are defined in Sections 6.1 and 6, ωωωk′′ =∑
k′∈KL ξk′′,k′ωωωk′ , ξk′′,k′ = S(gδ∗(ϕk′′), gδ∗(ϕk′)), and

ΓN = 1
KL

∑
k′∈KL Fk′(ωωω

∗
k′)− Fk′′(ωωω

∗
k′′).

Proof: See Appendix B.
Assumptions 5 and 6 in Theorem 2 are reasonable in

many transfer learning application scenarios [49], [50]. This
is because receivers without labeled data rely on the
transferred model to recognize specific human gestures
when observing new testing data points. In the ideal
scenario in which the transferred model can perfectly
recognize the label of any new testing data point, the local
objective function Fk(ΩΩΩ

∗
k′′ , ζk) will be minimized and also

the gradient value ∇Fk(·, ζk) will approach zero. Even in
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most non-ideal scenarios, the local objective function and
its gradient based on any new testing data point need to be
assumed to be bounded to derive any valid theoretical
bounds.

We can observe that the theoretical bound of model
transfer error depends mainly on the TV distance between
data distributions of receivers k′ and k′′ as shown in (27).
More specifically, as the TV distance between Pk′ and Pk′′
reduces, the term in (27) approaches zero. We can therefore
apply solutions developed in Section 6.1 to learn the
optimal model correlation coefficients ξk′′,k′ to minimize
(27). We can also observe that the model transfer error is
also related to the model training error. However, as the
number of model training receivers becomes large, the
impact of the model training error on the transfer error
decreases, as shown in (26).

8 PERFORMANCE EVALUATION

8.1 Experimental Setup

Dataset: To evaluate the performance of SANSee, we
conduct extensive experiments based on a public available
wireless sensing dataset, Widar [12], consisting of 6 types
of human gestures (e.g., Push-Pull, Sweep, Clap, Slide,
Draw-O, and Draw-zigzag) recorded at three different
environments: classroom, hall, and office. In each
environment, an off-the-shelf Wi-Fi transmitter with one
activated antenna and 6 receivers, each has three activated
antennas, have been deployed at different locations with
the same relative distances in a 2m×2m sensing area. The
transmitter is set to broadcast data packets at a rate of 1,000
packets per second at 5.825 GHz Wi-Fi band. The dataset
consists of 12,000 labeled gesture data samples in total.

Model: For gesture recognition model construction,
each gesture is assumed to last around 1.5 seconds and the
CSI signals recorded by each receiver will be equally
divided into a set of 1.5 second time segments. We adopt
ResNet-8 model to extract the spatial and temporal features
of the training data samples associated with different
gestures, trained based on a cross-entropy loss function
using the standard SGD algorithm. For the semantic-based
transfer learning model, we design a 4-convolutional
block-based CNN architecture to convert high-dimensional
semantic features into low-dimensional semantic space in
which each block consists of a 3×3 convolutional layer
followed by a batch normalization and ReLU layer. To map
semantic similarity to model correlation, the
low-dimensional semantic representations are fed into a
feature concatenation layer, followed by 2 convolutional
blocks, a fully connected ReLU layer and a fully connected
sigmod layer to output the model correlation coefficient.

Platform: We conduct our experiments on a workstation
with an Intel(R) Core(TM) i9-13900K CPU@5.8GHz,
128.0GB RAM@4000.0MHz, 1 TB SSD, 4 TB HDD, and two
NVIDIA GeForce RTX 4090 GPUs. The CSI data samples
are processed using MatLab and gesture recognition
models and pSAN-based transfer learning models are
trained using Python 3.8, CUDA 12.2 and Pytorch 2.1.0
running on Ubuntu 22.04.

8.2 Physical-layer Semantics Estimation

SANSee is built based on the basic idea that the
physical-layer semantics play a key role in determining the
distributions of wireless sensing signals as well as the
models to recognize different gestures. We therefore need
to first evaluate the E- and G-semantics estimated by our
proposed physical-layer semantics estimation algorithm
under different settings.The main idea of human gesture
recognition is to detect the impact of the Doppler shift
caused by human body movements on the wireless signal,
particularly its higher frequency content. In this case, the
magnitude of the Doppler shift of wireless signals detected
by the receiver mainly depends on the gesture-performing
speed as well as the signal frequency for gesture detection.
It is known that body movement speeds for most human
gestures, including Sweep, Clap, and Slide considered in
this paper, are between 0.25 m/sec and 4 m/sec [51], which
correspond to the Doppler frequency shift between 8 Hz
and 134 Hz at 5 GHz band [52]. We therefore set the
threshold for separating the high-pass and low-pass filters
to 2 Hz. In Fig. 4-6, we present the physical-layer semantic
features, including amplitude, ToF, AoA, and DFS of both
E- and G-semantics, estimated based on Algorithm 1
proposed in Section 5. We also show estimated results of
the primary path, which responds to the reflected signal
with the highest amplitude (navy blue points), with (red
solid lines) and without (black dash lines) the Gaussian
smoother (GS). These different features can be influenced
by different semantic features of the environmental layout
and gestures. For example, signal amplitudes are mainly
affected by the transmit signal power as well as various
power losses caused by environmental reflections,
blockages, transmission distance between the transmitter
and receivers. AoAs of the received signals are mainly
affected by the relative orientations of the transmitter,
receivers, and the gesture performing human user. In Fig.
4-6, we can observe that the impact of these semantic
features can be perfectly captured by the stationary and
dynamic path components estimated by our proposed
algorithm. For example, in Fig. 4-5, due to the differences
in movement patterns, we can observe that all estimated
G-semantics parameters of gestures ”Push & Pull” and
”Sweep” are significantly dissimilar to each other.
E-semantics of ”Push & Pull” and ”Sweep” gestures look
very similar as they are recorded in the same environment
office and also the three main components observed in the
amplitudes of E-semantics correspond to the signals
received from the direct path and two paths reflected from
the walls. Moreover, in Fig. 5-6, we can observe that the
fluctuation patterns of the G-semantic parameters of
gesture “Sweep” look very similar to each other even they
are performed in the different environments, but the
G-semantics are different due to the change in the physical
environments. This also suggests that neither E-semantic
nor G-semantic alone will not be able to capture the full
picture of the impact of human gestures on wireless
signals. Generally speaking, taking into consideration more
physical-layer semantic features will result in a higher
gesture recognition accuracy. It may however result in a
higher computational complexity as will be discussed next.



12

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: G-semantic features (b)-(e) and E-semantic features (g)-(j) of gesture ”Push & Pull” (a) performed in the office
environment (f), based on L = 5 estimated paths.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: G-semantic features (b)-(e) and E-semantic features (g)-(j) of gesture ”Sweep” (a) performed in the office environment
(f), based on L = 5 estimated paths.

Based on the above observations, we then evaluate the
impact of different physical-layer semantic features on the
recorded CSI signals at the receivers. In Fig. 7, we present
the t-SNE-based visualizations of the statistical features of
CSI signals of the same gesture recorded at different
locations in different environments. We observe that, even
the relative locations and orientations of the transmitter,
receivers, and the human user remain the same at different
environments, the recorded CSI signals may vary
significantly. This further justifies our observations that the
traditional centralized modeling approaches, in which

wireless sensing data samples recorded at different
locations are combined at a centralized server to train a
single global model for recognizing gestures performed at
different locations, cannot provide accurate and consistent
wireless sensing results at different receivers, especially in
complex environments.

8.3 Model Training

To evaluate the extra computational complexity introduced
by considering more semantic features in the model
training, we use the time consumption of training a given
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: G-semantic features (b)-(e) and E-semantic features (g)-(j) of gesture ”Sweep” (a) performed in the classroom
environment (f), based on L = 5 estimated paths.
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Fig. 7: (a) Locations of 6 receivers (labeled as R1-R6)
deployed in 3 different environments, and (b) t-SNE-based
visualization of statistical diversity of the CSIs of the same
gesture recorded by different receivers.

model with a fixed number of iterations as the main metric
to evaluate the complexity of model training, and compare
the required model training time and the resulting model
accuracy when different combinations of semantic features
are fed into the model during training in Table I. We can
observe that the model training time almost doubles when

a new semantic feature, E- or G-semantics, is added in the
model training. Despite the increase in model training
complexity, the accuracy of gesture recognition improves
significantly, e.g., the gesture recognition accuracy
improves over 50%, increasing from 61.67% with only
amplitudes being considered to 96.34% with all the features
of both G- and E-semantics being included in the model
training. We also evaluate the impact of estimating
different numbers of path components in Algorithm 1 on
the model complexity and accuracy in Table I. We can
observe that, when the number of estimated path
components increases from L = 5 to L = 20, the overall
time consumption increases only at around 8% and the
resulting model accuracy improves around 18%.

Let us now evaluate the model training performance of
SANSee for the receivers with labelled data. We compare
the model accuracy of all 18 receivers at three different
environments achieved by SANSee to the state-of-the-art
algorithms in Fig. 8. More specifically, in addition to
comparing SANSee with the local training (Local) in which
each receiver trains a local model based only on its local
dataset and FedAvg [32] in which all receivers train a single
global model by periodically aggregating their local model
parameters, we also consider three state-of-art personalized
federated learning algorithms: pFedMe [40], FedAMP [47],
and Ditto [41]. Moreover, Fig. 8 includes the average
accuracy calculated based on models trained at 10
experiments. We also highlight the highest and lowest
bounds on accuracy for models trained at different
receivers. In Fig. 8, we can observe that SANSee
outperforms all these existing personalized model training
algorithms and can achieve model accuracy improvements
between 9.44 % and 27.64 % on average. Furthermore, the
model performance at different receivers is more consistent
in SANSee compared to other algorithms. More specifically,
in local training, FedAvg, pFedMe, FedAMP, and Ditto
algorithms, the gap between the highest and lowest model
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Amplitude
Only (L=10)

DFS Only
(L=10)

G-semantics
Only (L=10)

E-semantics
Only (L=10)

Both E- and G-
Semantics (L=5)

Both E- and G-
Semantics (L=10)

Both E- and G-
Semantics (L=20)

Dimensional Size of Semantics 1× 100× 300 1× 120× 300 4× 120× 300 4× 120× 300 8× 120× 300 8× 120× 300 8× 120× 300
Model Training Time 1.78 h 2.23 h 6.04 h 6.04 h 13.37 h 13.90 h 14.44 h

Model Accuracy 61.67% 73.87% 89.98% 16.67% 81.11% 92.90% 96.34%

TABLE 1: Comparison of model training time and accuracy when considering different combinations of semantic features
and the numbers of estimated path components.

accuracy when implementing the trained models at
different receivers are 18.75%, 11.63%, 14.02%, 12.20%,
22.76%, respectively, all of which is larger than the 9.16%
gap achieved by our proposed SANSee.

To verify the theoretical results derived in Section 7.1,
we evaluate the convergence performance of the model
training process at receivers with labelled data under
different number of coordination rounds and combinations
of key model parameters including λ, σR, KL, B and E in
Fig. 9 and 10.

Recall that λ is the collaboration parameter that controls
the weights of the attention-inducing regulation function in
the local objective function of each receiver. Increasing λ
accelerates collaboration between receivers with highly
correlated models. We can observe in Fig. 8(a) that when
the value of λ increases from zero to one, the model
convergence speed also increases. However, when λ
continues to increase from one to 10, the model accuracy
will be degraded. This is because λ can only control the
weight of the regularization term in the local objective
function, and when this weight becomes too high, the
regularization term will overwhelm the overall local
objective function, resulting in high distortion on the
original local objective as well as resulting models.
Therefore, there is an optimal λ for the target problem,
which can not only accelerate the model convergence and
avoid overfitting, but also prevent the regularization term
from overwhelming the effect of the cross-entropy loss
term because the large penalty of increasing the weight
modulus from 0 distorts the shape of the loss surface.

Similarly, in Fig. 9(b), we can observe that another key
parameter σR in the negative exponential regularization
function to control the weights of aggregation of correlated
model also needs to be carefully chosen to improve the
model accuracy level with maximized convergence speed,
e.g., as observed in Fig. 9(b), the highest convergence
performance is achieved when σR = 1. In the rest of this
section, we set both values of λ and σR into 1. In Fig. 9(c),
we present the convergence rate under different numbers
of receivers participating in the model training. It is known
that for most traditional federated learning solutions, if
datasets at different receivers are non-iid, allowing more
receivers to participate in the model training generally
results in reduced convergence rates. We can observe in
Fig. 9(c), however, that the convergence performances of
SANSee do not change much even when the number of
receivers participating in the model training increases from
2 to 18.

In Fig. 10, we compare the average model accuracy and
the loss values under different coordination rounds and
combinations of mini-batch sizes B and local iteration
(epoch) numbers between consecutive coordination rounds
E. We can observe in Theorem 1 that the convergence rate

is in the order of O( 1
E ) when all the other parameters are

fixed, which is aligned with Fig. 10(a) and (b), in which we
can observe that, as E increases from 1 to 10, the number of
global coordination rounds also increases. Similarly, in Fig.
10(c) and (d), we fix E = 5 and compare the convergence
performance of SANSee under different B. We can observe
that increasing B results in almost linear reduction of the
required number of coordination rounds T to convergence.

In Fig. 11(a), we compare the performance of wireless
sensing when adopting different models in SANSee,
including a 2-layer CNN, a lightweight CNN called
Mobilenet-v2 [53], a hybrid neural network (CNN+GRU)
consisting of a CNN for spatial feature extraction and a
GRU for temporal modeling [12], as well as ResNet-8,
ResNet-18, and ResNet-50. We also compare the
computational complexity (in FLOPs) and sizes of
parameters of these models in Fig. 11(b). We observe that,
in terms of average accuracy, ResNet-18 outperforms the
other models, achieving 2.31% to 7.45% improvements on
average. When considering the variance of wireless
sensing, however, adopting more complex models (with a
higher number of parameters) can always reduce the
variance. This is due to the fact that for a given number of
training samples, models with small or large numbers of
parameters tend to cause underfitting or overfitting issues,
resulting in higher bias with lower variance or lower bias
with higher variance in performance. Furthermore, we can
observe that lightweight models such as Mobilenet-v2 and
ResNet-8 can still achieve relatively good wireless sensing
accuracy. Furthermore, choosing complex models such as
ResNet-50, i.e., models with large numbers of parameters,
may not always result in improved performance. This is
because large models may result in overfitting.

In Fig. 12, we compare the average model accuracy of
SANSee under different numbers of gesture classes (Fig.
12(a)) and different training dataset sizes per gesture (with
six gestures in total) (Fig. 12(b)) at each receiver. From Fig.
12(a), we observe that when the number of gesture classes
increases from 2 to 9, the average model accuracy decreases
from 99.809% to 84.915%. This is because, as the number of
gesture classes increases, the output dimension of the
model also increases, resulting in underfitting issues for
each class of gestures. In Fig. 12(b), we can observe that
when the training dataset size per gesture at each receiver
increases, the increasing speed of the average model
accuracy decreases. For example, as the number of samples
per gesture at each receiver increases from 1 to 25, the
model accuracy increases from 49.05% to 87.28%, resulting
in 38.23% improvement. However, if the training sample
size continues to increase from 75 to 100, the model
accuracy improves by only 0.417%.
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Fig. 8: Wireless sensing accuracy at 18 receivers achieved by models trained by different algorithms, including local training,
FedAvg, pFedMe, FedAMP, Ditto, and the proposed SANSee.

(a) (b) (c)

Fig. 9: Comparison of convergence rates under different model training parameters, including (a) λ (σR = 1,KL = 18); (b)
σR (λ = 1,KL = 18); and (c) KL (λ = 1, σR = 1).

(a) (b) (c) (d)

Fig. 10: Comparison of convergence rates of model training under different batch-sizes and local epoch numbers.

(a) (b)

Fig. 11: (a): Model accuracies achieved by different models,
each with computational complexity (in FLOPs) and size
of parameters listed in Figure (b), including a 2-layer CNN
network (CNN), a lightweight CNN network (Mobilenet-v2)
[53], a hybrid neural network composed of CNN and GRU
(CNN+GRU) [12], ResNet-8, ResNet-18, and ResNet-50.

8.4 Model Transfer

To evaluate the performance of SANSee for transferring the
already trained models, i.e., base models, to receivers
without labeled dataset, we consider two model transfer
scenarios: in-environment model transfer in which all the

(a) (b)

Fig. 12: Average model accuracy with (a) different numbers
of gesture classes, and (b) different training dataset sizes per
gesture (with six gestures in total) at each receiver.

receivers with and without labelled data are in the same
environment and cross-environment model transfer in which
models trained by receivers in one environment are
transferred to receivers located in a new environment.

We evaluate the in-environment model transfer
performance in Fig. 14, in which we compare the gesture
recognition accuracy of models obtained by a receiver
without labeled data when its model are transferred based
on different numbers, 1-4, of available models constructed
by receivers with labeled data. We can observe that, as the
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number of available models increases, the accuracy of the
transferred model also improves. The increasing speed of
the model accuracy however decreases as the number of
available models becomes large. This means that SANSee is
able to transfer a relatively small number of trained
models, e.g., trained by two to three receivers, to any
number of location-specific models with sufficiently
“good” accuracy, e.g., above 70% gesture recognition
accuracy.

Fig. 13: Comparison of in-environment model transfer
performance at three environment under different numbers
of base models KL.

Fig. 14: Comparison of cross-environment model transfer
performance under different numbers of base models KL.

We evaluate the cross-environment model transfer
performance in Fig. 13 where models trained by receivers
in one environment are transferred to the receivers in
another environment. We can observe that, generally
speaking, the accuracy of the cross-environment model
transfer is slightly worse than that of the in-environment
model transfer under the same number of available
models. The performance of the transferred model is again
affected by the number of models that have already been
trained. For example, in hall-classroom cross-environment
model transfer scenario, as the number of models increases
from 2 to 6, the accuracy of the transferred model improves
almost 50% from accuracies 41% to 83%. The increasing
speed of the model performance again approaches a
stationary level when the number of available models
increases. In other words, SANSee is a useful solution for
achieving sustainable network AI in a large networking
system, in which an almost infinite number of novel
models tailored for a wide range of applications and
scenarios can be transferred based on a very limited
number of base models using their semantic correlations.

9 CONCLUSION

This paper proposed a semantic-aware networking-based
framework for distributed wireless sensing, called SANSee,
that allowed models constructed in a limited number of
locations to be directly transferred to other locations
without any training efforts. In particular, a physical-layer
semantic-aware network, called pSAN, has been developed
to characterize the similarity between physical-layer
semantic features and the correlations of wireless sensing
data distributions across different locations. We have then
proposed a pSAN-based zero-shot transfer learning
solution for receivers without labeled data to construct its
location-specific model based on the correlated model
trained by receivers with labeled data. Finally, extensive
experiments have been conducted based on real-world
datasets to evaluate the performance of SANSee, and
numerical results showed the accuracy of transferred
models obtained by SANSee matched that of the models
trained by the locally labeled data based on supervised
learning approaches.
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APPENDIX A
PROOF OF THEOREM 1

In this section, we present detailed derivation of the (local)
model training error E[J (ΩΩΩ)−J (ΩΩΩ∗)] in Theorem 1, where
J (ΩΩΩ) is defined previously in (18), can converge to near
the minimum as the number of training rounds T increases.
Before we present the detailed proofs, let us first introduce
the following lemmas which will be useful for our proofs of
Theorem 1.

A.1 Key Lemmas of Theorem 1

Recall the definition of J (Ω) = F (Ω) + λR (Ω) in (18),
where R(Ω) =

∑
k′∈KL

∑
k′ ̸=j′ R

(
∥ωωωk′ −ωωωj′∥2

)
and

F(Ω) =
∑
k′∈KL Fk′(ωk′), respectively.

Lemma 1. Suppose that Assumptions 1-3 in Theorem 1 hold.
If LJ := L + λκR, then for any ΩΩΩ, ΩΩΩ′ ∈ RdK , we can
derive the following results:
(a) ∥∇F(ΩΩΩ)−∇F (ΩΩΩ′)∥ ≤ L ∥ΩΩΩ−ΩΩΩ′∥;
(b) ∥∇J (ΩΩΩ)−∇J (ΩΩΩ′)∥ ≤ LJ ∥ΩΩΩ−ΩΩΩ′∥;
(c) ∥∇F(ΩΩΩ)∥2 ≤ 2L2 ∥ΩΩΩ−ΩΩΩ′∥2 + 2 ∥∇F (ΩΩΩ′)∥2;
(d) ∥∇J (ΩΩΩ)∥2 ≤ 2L2

J ∥ΩΩΩ−ΩΩΩ′∥2 + 2 ∥∇J (ΩΩΩ′)∥2;
(e) J (ΩΩΩ)−J (ΩΩΩ′) ≤ ⟨∇J (ΩΩΩ′) ,ΩΩΩ−ΩΩΩ′⟩+ LJ

2 ∥ΩΩΩ−ΩΩΩ′∥2.
(f) E∥∇J̃ (ΩΩΩ, ζ)−∇J (ΩΩΩ)∥2 ≤ σ2

F

Lemma 2. Suppose that Assumption 1-2 hold and λ > 2L.
Then there exists a positive value ΓL such that, for any
ΩΩΩ, ΩΩΩ ∈ RdK , we have

∥∇F(Ω∗)∥2 ≤ ΓL. (27)

ΓL is measured only at unique solution Ω∗, and thus
ΓL is finite. The bound is tight in the sense that
ΓL = λ2∥∇R (Ω∗) ∥2 = 0 for the i.i.d. cases, where
ωωω1 = · · · = ωωωKL . In the considered wireless scenarios,
there is always ΓL > 0 due to the heterogeneity of
wireless data samples.

Lemma 3. Suppose that Assumptions 4 holds. The gradient
of server update in (21) at the tth coordination round,
denoted as gt, can be be represented as follows:

gt =
E−1∑
e=0

∇J̃
(
ΩΩΩt,e

)
+ λκRL

(
ΩΩΩt,e −ΩΩΩt

)
+
ηλκRL
E

E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)
. (28)

Proof: In the tth coordination round, the eth local
update of the model vector ΩΩΩ in (20) can be represented
as follows:

ΩΩΩt,e+1 = ΩΩΩt,e − η∇F̃
(
ΩΩΩt,e

)
(29)

implies that after E local update steps, we have

η
E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)
=

E−1∑
e=0

(
ΩΩΩt,e −ΩΩΩt,e+1

)
= ΩΩΩt,0 −ΩΩΩt,e = ΩΩΩt −ΩΩΩt,e. (30)

we then rewrite the server update in (21) as follows

ΩΩΩt+1 = (I − ηλκRL)
[
ΩΩΩt − η

E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)]
(31)

= ΩΩΩt − η
E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)
− ηλκRLΩΩΩt

+
η2λκRL

E

E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)
= ΩΩΩt − η

(
E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)
− λκRLΩΩΩt

+
ηλκRL
E

E−1∑
e=0

∇F̃
(
ΩΩΩt,e

))

= ΩΩΩt − η

(
E−1∑
e=0

∇J̃
(
ΩΩΩt,e

)
+
λκRL
E

E−1∑
e=0

(
ΩΩΩt,e −ΩΩΩt

)
+
ηλκRL
E

E−1∑
e=0

∇F̃
(
ΩΩΩt,e

))
,

which finishes the proof.

Lemma 4. Suppose that Assumptions 1 to 3 hold. We can
derive the gradient bound of the server update in
Lemma 3 as follows:

E
∥∥Zt∥∥2 ≤ (1 + η2λ2κ2RL2)

(
6L2

JE(t) + 6E
∥∥∇J (ΩΩΩt)∥∥2

+
3σ2

F

E

)
+ 3λ2κ2R∥L∥2E(t) (32)

Proof: Using Jensen’s inequality, we have that

E
∥∥Zt∥∥2 ≤ 3E

∥∥∥∥∥ 1E
E−1∑
e=0

∇J̃
(
ΩΩΩt,e

)∥∥∥∥∥
2

(33)

+3E

∥∥∥∥∥λκRLE

E−1∑
e=0

L
(
ΩΩΩt,e −ΩΩΩt

)∥∥∥∥∥
2

+3E

∥∥∥∥∥ηλκRLE

E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)∥∥∥∥∥
2

.

First, according to [45, Lemma 9] the definition of E(t),
we can bound the the first term in (34) as follows:

3E

∥∥∥∥∥ 1E
E−1∑
e=0

∇J̃
(
ΩΩΩt,e

)∥∥∥∥∥
2

(34)

≤ 3

E

E−1∑
e=0

E
∥∥∇J (ΩΩΩt,e)∥∥2 + 3σ2

F

E

≤ 3

E

E−1∑
e=0

(
2L2

JE
∥∥ΩΩΩt,e −ΩΩΩt

∥∥2
+2E

∥∥∇J (ΩΩΩt)∥∥2)+ 3σ2
F

E

= 6L2
JE(t) + 6E

∥∥∇J (ΩΩΩt)∥∥2 + 3σ2
F

E
.
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Next, we can bound the second term in (34) as follows:

3E

∥∥∥∥∥λκRLE

E−1∑
e=0

L
(
ΩΩΩt,e −ΩΩΩt

)∥∥∥∥∥
2

= 3λ2κ2RE

∥∥∥∥∥ 1E
E−1∑
e=0

L
(
ΩΩΩt,e −ΩΩΩt

)∥∥∥∥∥
2

≤ 3λ2κ2R
E

E−1∑
e=0

E
∥∥L (ΩΩΩt,e −ΩΩΩt

)∥∥2
≤ 3λ2κ2R

E
∥L∥2

E−1∑
e=0

E
∥∥(ΩΩΩt,e −ΩΩΩt

)∥∥2 = 3λ2κ2R∥L∥2E(t).

(35)
Then, proceeding as in (35), the third term in (34) can be
bounded as follows:

3E

∥∥∥∥∥ηλκRLE

E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)∥∥∥∥∥
2

≤ 3η2λ2κ2RL2E

∥∥∥∥∥ 1E
E−1∑
e=0

∇F̃
(
ΩΩΩt,e

)∥∥∥∥∥
2

≤ η2λ2κ2RL2

(
6L2

JE(t) + 6E
∥∥∇J (ΩΩΩt)∥∥2 + 3σ2

F

E

)
.

(36)
Substituting (35), (35), and (36) into (34), the result of this
Lemma in (32) can be obtained. This concludes the proof.

Lemma 5. Let Et := 1
E

∑E−1
e=0 E ∥ΩΩΩt,e −ΩΩΩt∥2 be the drift

caused by E local update steps at clients, where E is the
expectation taken over all random sources and
ΩΩΩt = ΩΩΩt,0. Suppose that Assumption 3 holds, we have

Et ≤ 4η2E
∥∥∇F (ΩΩΩt)∥∥2 + 2η2σ2

FE

Proof: By Assumption 3, using Lemmas 3(a) and 3, we
derive that

E
∥∥ΩΩΩt,e −ΩΩΩt

∥∥2 = E
∥∥∥ΩΩΩt,e−1 −ΩΩΩt − η∇F̃

(
ΩΩΩt,e−1

)∥∥∥2
≤ E

∥∥ΩΩΩt,e−1 −ΩΩΩt − η∇F
(
ΩΩΩt,e−1

)∥∥2
+η2σ2

F

≤
(
1 +

1

E

)
E
∥∥ΩΩΩt,e−1 −ΩΩΩt

∥∥2
+(1 + E)η2E

∥∥∇F (ΩΩΩt)∥∥2 + η2σ2
F

≤
(
1 +

1

E

)
E
∥∥ΩΩΩt,e−1 −ΩΩΩt

∥∥2
+
2η2

E
E
∥∥∇F (ΩΩΩt)∥∥2 + η2σ2

F , (37)

where the last inequality is due to the fact that 1+Rτ ≤
R+R = 2R since R ≥ 1 and τ ≤ 1. Telescoping the last
inequality yields

E
∥∥ΩΩΩt,e −ΩΩΩt

∥∥2 (38)

≤
(
2η̃2

E
E
∥∥∇F (ΩΩΩt)∥∥2 + η̃2σ2

F

R2

)R−1∑
r=1

(
1 +

1

E

)r
.

Since
∑m−1
j=0 xj =

xm−1
x−1 and

(
1 + x

n

)n ≤ ex,∀x ∈ R, n ∈

N, we have
∑E−1
e=0

(
1 + 1

E

)r
=

(1+ 1
E )

E−1

(1+ 1
E )−1

≤ (e− 1)E ≤
2E, and thus

E
∥∥ΩΩΩt,e −ΩΩΩt

∥∥2 ≤ 4η2E
∥∥∇F (ΩΩΩt)∥∥2 + 2η2σ2

FE. (39)

Averaging it over r, we get the conclusion.

A.2 Proof of Theorem 1

First, according to the result of Lemma 3, we can have

E
∥∥ΩΩΩt+1 −ΩΩΩ∗∥∥2 = E

∥∥ΩΩΩt −ΩΩΩ∗∥∥2 + η̃2E
∥∥Zt∥∥2

−2η̃E
〈
Zt,ΩΩΩt −ΩΩΩ∗〉 . (40)

For the third term, we can obtain its bound from the Lemma
3 as follows:

−2η̃E
〈
Zt,ΩΩΩt −ΩΩΩ∗〉 (41)

=
2η̃

E

E−1∑
e=0

E
〈
∇J

(
ΩΩΩt,e

)
,ΩΩΩ∗ −ΩΩΩt

〉
+
2η̃λκR
E

E−1∑
e=0

E
〈
L
(
ΩΩΩt,e −ΩΩΩt

)
,ΩΩΩt −ΩΩΩ∗〉

+
2η̃2λκR
E

E−1∑
e=0

E
〈
L∇F

(
ΩΩΩt,e

)
,ΩΩΩt −ΩΩΩ∗〉

≤ 2η̃

E

E−1∑
e=0

(
E
[
J (ΩΩΩ∗)− J

(
ΩΩΩt
)]

− µ

4
E
∥∥ΩΩΩt −ΩΩΩ∗∥∥2

+LJE
∥∥ΩΩΩt,e −ΩΩΩt

∥∥2)
+
2η̃λκR
E

E−1∑
e=0

(m
2
∥L∥2E

∥∥ΩΩΩt,e −ΩΩΩt
∥∥2

+
1

2m
E
∥∥ΩΩΩt −ΩΩΩ∗∥∥2)

+
2η̃2λκR
E

E−1∑
e=0

(n
2
∥L∥2E

∥∥∇F (ΩΩΩt,e)∥∥2
+

1

2n
E∥ΩΩΩt −ΩΩΩ∗∥2

)
,

where m,n > 0 will be chosen later. Due to the smoothness
of F (·), we have

E
∥∥∇F (ΩΩΩt,e)∥∥2 ≤ 2L2E

∥∥ΩΩΩt,e −ΩΩΩt
∥∥2 + 2E

∥∥∇F (ΩΩΩt)∥∥2
≤ 2L2E

∥∥ΩΩΩt,e −ΩΩΩt
∥∥2

+
8L2

µ
E
[
J
(
ΩΩΩt
)
− J (ΩΩΩ∗)

]
+ 4ΓL.(42)

Substituting (42) into (42) and setting m = 8λ
µ and n =

8η̃λ
µ , we have

−2η̃E
〈
Zt,ΩΩΩt −ΩΩΩ∗〉 (43)

≤ −
(
2η̃ − 64η̃3λ2κ2R∥L∥2L2

µ2

)
E
[
J
(
ΩΩΩt
)
− J (ΩΩΩ∗)

]
− η̃µ

4
E
∥∥ΩΩΩt −ΩΩΩ∗∥∥2 + 32η̃3λ2κ2R∥L∥2ΓL

µ

+η̃

(
2LJ +

λ2κ2R∥L∥2

µ
+

16η̃2λ2κ2R∥L∥2L2

µ

)
E(t).
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Combining this with (44) and Lemma 3, we rewrite (40) as
follow:

E
∥∥ΩΩΩt+1 −ΩΩΩ∗∥∥2 (44)

≤
(
1− η̃µ

4

)
E
∥∥ΩΩΩt −ΩΩΩ∗∥∥2 + η̃pE(t) + 6η̃2E

∥∥∇J (ΩΩΩt)∥∥2
−
(
2η̃ − 64η̃3λ2κ2R∥L∥2L2

µ2

)
E
[
J
(
ΩΩΩt
)
− J (ΩΩΩ∗)

]
+6η̃4λ2κ2R∥L∥2E

∥∥∇F (ΩΩΩt)∥∥2 + 32η̃3λ2κ2R∥L∥2ΓL

µ

+
3η̃2

(
1 + η̃2λ2κ2R∥L∥2

)
σ2
F

E
,

where p = 2LJ +
8λ2κ2

R∥L∥2

µ + 64β2

µ +
12L2

J

λκR∥L∥ +6λκR∥L∥+
48L2

λκR∥L∥ .

Using Lemma 5, we have

E
∥∥ΩΩΩt+1 −ΩΩΩ∗∥∥2 (45)

≤
(
1− η̃µ

4

)
E
∥∥ΩΩΩt −ΩΩΩ∗∥∥2

−
(
2η̃ − 64η̃3λ2κ2R∥L∥2L2

µ2

)
E
[
J
(
ΩΩΩt
)
− J (ΩΩΩ∗)

]
+
(
4pη̃3 + 6η̃4λ2κ2R∥L∥2

)(
4
L2

µ
E [J(ΩΩΩ)− J (ΩΩΩ∗)]

+2ΓL
)
+

2pη̃3τ2σ2
F /B

E
+ 12η̃2LJE [J(ΩΩΩ)− J (ΩΩΩ∗)]

+
32η̃3λ2κ2R∥L∥2ΓL

µ
+

3η̃2
(
1 + η̃2λ2κ2R∥L∥2

)
σ2
F /B

E

≤
(
1− η̃µ

4

)
E
∥∥ΩΩΩt −ΩΩΩ∗∥∥2 + η̃3

p
(
8EΓL + 2σ2

F /B
)

E︸ ︷︷ ︸
C2

−
[
2η̃ − η̃2q

]
E
[
J
(
ΩΩΩt
)
− J (ΩΩΩ∗)

]
+η̃2

(64λκR∥L∥E + 48)ΓL + 15σ2
F /B

µE︸ ︷︷ ︸
C1

,

where q =
(
128λκR∥L∥L2

µ2 + 12LJ + 96L2

µ + 32pL2

µλκR∥L∥

)
. Let

µ ≤ η̃1
E . Then η̃ ≤ η̃1 = min

{
1
q ,

2
λκR∥L∥

}
≤ 1

q , which
implies that 2η̃ − η̃2q ≥ η̃, and so

E
∥∥ΩΩΩt+1 −ΩΩΩ∗∥∥2 ≤

(
1− η̃µ

4

)
E
∥∥ΩΩΩt −ΩΩΩ∗∥∥2

− η̃E
[
J
(
ΩΩΩt
)
− J (ΩΩΩ∗)

]
+ η̃3C2 + η̃2C1

(46)

Recalling that ∆(t) = ∥ΩΩΩt −ΩΩΩ∗∥2, rearranging the terms,
and multiplying both sides of (66) with θ(t)

η̃τΘT
, where ΘT =∑T−1

t=0 θ(t), we obtain that

T−1∑
t=0

θ(t)E [J (ΩΩΩt)]

ΘT
− J (ΩΩΩ∗)

≤
T−1∑
t=0

E

[(
1− η̃µ

4

)
θ(t)∆(t)

η̃τΘT
− θ(t)∆(t+1)

η̃τΘT

]
+ µ2τC2 + η̃C1

=
T−1∑
t=0

E

[
θ(t−1)∆(t) − θ(t)∆(t+1)

η̃τΘT

]
+ µ2τC2 + η̃C1

=
1

η̃τΘT
∆(0) − θ(T−1)

η̃τΘT
E∆(T ) + η̃2C2 + η̃C1

≤ 1

η̃τΘT
∆(0) + η̃2C2 + η̃C1.

(47)
Here, (47) follows from the fact that(

1− η̃µ
4

)
θ(t) = θ(t−1) due to θ(t) =

(
1− η̃µ

4

)−(t+1)
. Now,

let T ≥ 4E
η̃1µS

. There is(
1− η̃µ

4

)T
≤ exp

(
− η̃µT

4

)
≤ exp(−1) ≤ 3

4 , and thus

ΘT ≥
(
1− η̃µ

4

)−T 1

η̃µ
=
θ(T−1)

η̃µ
. (48)

which yields 1
η̃ΘT

≤ µ
θ(T−1) ≤ µe−

η̃µT
4 . Therefore, (47) can

be rewritten as follows:
T−1∑
t=0

θ(t)E [J (ΩΩΩt)]

ΘT
− J (ΩΩΩ∗) ≤ µ∆(0)e−

η̃µT
4 + η̃2C2 + η̃C1,

(49)
which together with the convexity of J implies that

E
[
J

(
Ω̃ΩΩ
T
)
− J (ΩΩΩ∗)

]
= E

[
J

(
T−1∑
t=0

θ(t)

ΘT
ΩΩΩt
)]

− J (ΩΩΩ∗)

≤ µ∆(0)e−
η̃µT
4 + η̃2C2 + η̃C1.

(50)
Using (49) -(50) and by the L-smoothness of J(·), we can
easily obtain ,

E
[
J
(
ΩΩΩT
)
− J (ΩΩΩ∗)

]
≤ L

2

(
E
[
∥ΩΩΩT −ΩΩΩ∗∥2

])
≤ L

µ

(
µ∆(0)e−

η̃µT
4 + η̃2C2 + η̃C1

)
=
L

µ
O
(
E
[
J

(
Ω̃ΩΩ
T
)
− J (ΩΩΩ∗)

])
.

(51)
Following the same approaches in [40], we consider the
following cases.

• If η̃1 ≥ µ̂ := max
{

4
µT ,

4
µT log

(
µ2∆(0)T
C1

)}
, then we

choose µ = µ̂ and have

E
[
J

(
Ω̃ΩΩ
T
)
− J (ΩΩΩ∗)

]
≤ Õ

(
C2

µ2T 2

)
+ Õ

(
C1

µT

)
(52)

• If 4
µT ≤ η̃1 ≤ µ̂, then we choose µ = η̃1 and have

E
[
J

(
Ω̃ΩΩ
T
)
− J (ΩΩΩ∗)

]
≤O

(
α∆(0)e−

η̃1µT
4

)
+ Õ

(
C2

µ2T 2

)
+ Õ

(
C1

µT

)
(53)
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By combining (51) and the above two cases,

E
[
J
(
ΩΩΩT
)
− J (ΩΩΩ∗)

]
(54)

≤ O
(
∆(0)e−

η̃1µ2T
4 +

(1 + µT )(EΓL + σ2
F /B)

µ3T 2EKL

)
,

where ∆(0) = ∥ΩΩΩ0 −ΩΩΩ∗∥2. This concludes the proof.

APPENDIX B
PROOF OF THEOREM 2
In this section, we would like to bound the transfer
objective E[Fk′′(ωωωk′′) − Fk′′(ωωω

∗
k′′)] in (6) to capture the

above-performance gap between the transfer model
obtained by our proposed transfer solution and the local
optimal model. Note that the expected error bound of
E[Fk′′(ωωωk′′) − Fk′′(ωωω

∗
k′′)] can be decomposed into the

following form:

E[Fk′′(ωωωk′′)− Fk′′(ωωω
∗
k′′)]︸ ︷︷ ︸

transfer error

≤ E[Fk′′(ωωωk′′)−
1

KL

∑
k′∈KL

Fk′(ωωωk′)]︸ ︷︷ ︸
generalization error

+ E[
1

KL

∑
k′∈KL

Fk′(ωωωk′)]−
1

KL

∑
k′∈KL

Fk′(ωωω
∗
k′)︸ ︷︷ ︸

training error

+
1

KL

∑
k′∈KL

Fk′(ωωω
∗
k′)− Fk′′(ωωω

∗
k′′)︸ ︷︷ ︸

transfer gap

.

(55)

Hence, to bound the expected transfer error, we should
bound the expectation of training and generalization errors.
To begin with, we first introduce the following lemmas.

B.1 Key Lemmas of Theorem 2
Lemma 6. Suppose Assumptions 5 holds. According to the

proposed model transfer solution, we can bound the
generalization error term in (55) as follows:

E[Fk′′(ωωωk′′)−
1

KL

∑
k′∈KL

Fk′(ωωωk′)]

≤M
∑
k′∈KL

∥ξk′′,k′Pk′′ −
Pk′
KL

∥TV . (56)

Proof: Due to ωωωk′′ =
∑
k′∈KL ξk′′,k′ωωωk′ , using Jensen’s

inequality, we have Fk′′(ωωωk′′) ≤
∑
k′∈KL ξk′′,k′Fk′′(ωωωk′).

Therefore, we can derive the following result:

E[Fk′′(ωωωk′′)−
1

KL

∑
k′∈KL

Fk′(ωωωk′)]

≤
∑
k′∈KL

E[ξk′′,k′Fk′′(ωωωk′)−
1

KL
Fk′(ωωωk′)]

≤M
∑
k′∈KL

∥ξk′′,k′Pk′′ −
Pk′
KL

∥TV . (57)

The last inequality in (57) can be obtained by using
Definition 2. This concludes the proof.

Lemma 7. Let E[J (ΩΩΩT ) − J (ΩΩΩ∗)] ≤ ε hold. When choosing
R(∥ωωωk′ − ωωωj′∥2) = 1 − e−∥ωωωk′−ωωωj′∥

2/σR with parameter
σR, the training error term in (55) can be bounded as
follows:

E[
1

KL

∑
k′∈KL

Fk′(ωωωk′)]−
1

KL

∑
k′∈KL

Fk′(ωωω
∗
k′) ≤

ε

KL
+ λ.

(58)
Proof: According to the Theorem 1, we have

E
[
J
(
ΩΩΩT
)
− J (ΩΩΩ∗)

]
=

E
[
F
(
ΩΩΩT
)
− F (ΩΩΩ∗)

]
+ λ (R(Ω)−R(Ω∗)) ≤ ε. When

choosing R(∥ωωωk′ − ωωωj′∥2) = 1 − e−∥ωωωk′−ωωωj′∥
2/σR , we

can derive that
1

KL
E
[
F
(
ΩΩΩT
)
−F (ΩΩΩ∗)

]
(59)

=
1

KL
E
[
J
(
ΩΩΩT
)
− J (ΩΩΩ∗)

]
+

λ

KL
(R(Ω)−R(Ω∗))

<
ε

KL
+ λ.

The inequality in (60) holds due to
0 < R(∥ωωωk′ −ωωωj′∥2) < 1 in this case. This concludes the
proof.

B.2 Proof of Theorem 2
Proof: By combining Lemma 6 and Lemma 7, we can

rewrite (55) as follows:

E[Fk′′(ωk′′)− Fk′′(ω
∗
k′′)] (60)

≤M
∑
k′∈KL

∥∥∥∥ξk′′,k′Pk′′ − Pk′
KL

∥∥∥∥
TV

+
ϵ+ (λ+ ΓN )KL

KL
,

where ΓN = 1
KL

∑
k′∈KL Fk′(ωωω

∗
k′) − Fk′′(ωωω

∗
k′′). This

concludes the proof.
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