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Abstract
Indirect and direct methods have been developed for reconstructing parametric images from
dynamic PET data. Indirect methods are simple and easy to implement because reconstruction and
kinetic modeling are performed in two separate steps. Direct methods estimate parametric images
directly from dynamic PET sinograms and, in theory, can be statistically more efficient, but the
algorithms are often difficult to implement and are very specific to the kinetic model being used.
This paper presents a class of generalized algorithms for direct reconstruction of parametric
images that are relatively easy to implement and can be adapted to different kinetic models. The
proposed algorithms use optimization transfer principle to convert the maximization of a penalized
likelihood into a pixel-wise weighted least squares (WLS) kinetic fitting problem at each iteration.
Thus, it can employ existing WLS algorithms developed for kinetic models. The proposed
algorithms resemble the empirical iterative implementation of the indirect approach, but converge
to a solution of the direct formulation. Computer simulations showed that the proposed direct
reconstruction algorithms are flexible and achieve a better bias-variance tradeoff than indirect
reconstruction methods.

Index Terms
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I. Introduction
Parametric imaging using dynamic positron emission tomography (PET) provides important
information for biological research and clinical diagnosis (e.g. [1]–[3]). To obtain a
parametric image, a typical approach is to reconstruct a sequence of emission images from
the measured projection data first [4], and then to fit the time activity curve (TAC) at each
pixel to a linear or nonlinear kinetic model [5]. To obtain an efficient estimate, the noise
distribution of the reconstructed activity images should be modeled in the kinetic analysis.
However, exact modeling of the noise distribution in emission images reconstructed by
iterative methods is difficult because the noise is spatially variant and object-dependent.
Usually the space-variant noise variance and correlations between pixels are simply ignored
in the kinetic fitting, which can lead to sub-optimal results.

Direct reconstruction of parametric images from the raw projection data solves this problem
by combining kinetic modeling and emission image reconstruction into a single formula. It
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allows accurate compensation of noise propagation from sinogram to the kinetic fitting
process. Direct reconstruction has been given attention by many researchers [6]–[15]. It has
been shown that images reconstructed by direct reconstruction methods have better bias-
variance characteristics than those obtained by indirect methods for both linear models [13],
[14] and nonlinear kinetic models [12], [16], [17].

One drawback of direct reconstruction with compartment models is that the optimization
algorithms are usually more complex than indirect methods, because the kinetic parameters
are involved in the reconstruction formulation nonlinearly [12], [15]. Carson and Lange [6]
and Yan et al [17] used the expectation-maximization framework. Kamasak et al [12]
applied the coordinate descent algorithm to dynamic PET reconstruction. Both methods
result in nonlinear optimization algorithms that are limited to the specific kinetic model
being used.

In this paper we present a new method for direct reconstruction to overcome this difficulty.
The proposed method decouples image update and kinetic modeling at each iteration to take
advantage of well-developed fitting algorithms for kinetic modeling. By using the
optimization transfer principle, the proposed algorithms transfer the penalized maximum
likelihood problem at each iteration into a pixel-wise nonlinear least squares (NLS)
formulation, which can be easily solved by existing algorithms developed for compartment
modeling, such as the Levenberg-Marquardt algorithm for general compartment models [18]
and the basis function algorithm for one-tissue compartment models [5], [19], [20].
Therefore, the proposed method can be adapted to different kinetic models as long as an
NLS fitting algorithm exists for that model. Furthermore, it also allows us to use different
kinetic models for different organs in an image as long as the information about the organ
boundaries and the corresponding kinetic models is available before the reconstruction. In
practice, the specific kinetic model for a tissue region is often determined by prior kinetic
modeling studies. Regional boundaries can be found using coregistered anatomical images
from CT or MRI. For regions that do not conform to a kinetic model, we can simply use
frame-based TACs. Essentially the proposed direct reconstruction method is as flexible as
indirect methods in handling different kinetic models in different regions. An extension of
the proposed method to a simplified reference tissue model can be found in [21].

Each iteration of the proposed algorithms essentially consists of two separate steps:
reconstruction of dynamic emission images and a pixel-wise weighted NLS kinetic fitting.
The algorithms therefore resemble an empirical iterative implementation of the indirect
approach (e.g. [22]), but pursues the solution of direct reconstruction. An essential
difference between the NLS fitting in the proposed algorithms and the empirical indirect
algorithm is that the weighting factor in kinetic fitting is automatically determined by the
surrogate function in the proposed algorithms while it is manually chosen by a user in the
indirect algorithm.

The rest of the paper is organized as follows. Section II describes the general formulation of
the indirect and direct reconstruction methods for dynamic PET data. Section III presents the
details of the proposed algorithm under a minorization-maximization framework. Computer
simulations to validate the performance of the proposed algorithms are given in Section IV.
Conclusions are drawn in Section V.
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II. Reconstruction of Parametric Images
A. Indirect Methods

In indirect methods, the reconstruction of emission images and kinetic modeling are treated
separately. Efficient algorithms for both image reconstruction and kinetic modeling have
been developed.

1) Emission Image Reconstruction—PET data are modeled as a collection of
independent Poisson random variables with the expectation ȳm in time frame m related to
the image xm through an affine transform [23]–[25],

(1)

where P ∈ IRni×nj is the detection probability matrix with element (i, j) being the probability
of detecting an event originated in voxel j by detector pair i, and rm ∈ IRni is the expectation
of scattered and random events in the mth frame. ni and nj are the total number of the
detector pairs and voxels, respectively. The above affine model assumes PET scanner
operate in a linear range or at least the count-rate dependent effects can be corrected by
normalization factors.

The log-likelihood function of the dynamic data set, omitting constants that are independent
of x, is

(2)

where y = {ym} denotes the measured dynamic sinogram and x = {xm} denotes the unknown
dynamic image.

The estimation of the dynamic emission images x can be achieved by maximizing a
penalized likelihood function1

(3)

where U(x) is a roughness penalty and β is the regularization parameter that controls the
tradeoff between the resolution and noise. Commonly used penalty functions can be written
in the following form [26]

(4)

where D ∈ IRns×nj is a sparse neighborhood differentiation matrix whose sth row has
nonzero elements corresponding to the pixels that form the sth clique, and ψsm(·) is the
potential function defined on the clique in time frame m.

1The penalized likelihood reconstruction is equivalent to a maximum a posteriori reconstruction with βU(x) being the negative log
prior.
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2) Tracer Kinetic Modeling—Tracer kinetic behaviors in dynamic PET are often
described by compartmental models which mathematically can be represented by a set of
ordinary differential equations [27], [28],

(5)

where c(t) is a column vector representing the activity concentration of different tissue
compartments at time t, K and L are the kinetic parameter matrices which comprise of
various rate constants, and u(t) denotes the system input. The differential equation model (5)
can be analytically solved by using the Laplace transform and the solution is

(6)

where “⊗” denotes the convolution operator, q(t) is the impulse response vector and Cp(t) is
the tracer concentration in plasma.

For a commonly used two tissue compartment model, c(t) = (Cf (t), Cb(t))T where the
superscript “T” denotes vector or matrix transpose, Cf(t) and Cb(t) are the concentrations in

the free and bound compartments; u(t) = Cp(t);  and ,
where K1, k2, k3, k4 are the tracer rate constants. The impulse response vector q(t) is given
by

(7)

where Δα = α2 − α1 with , and e−α(t) = (e−α1t,
e−α2t)T.

The quantity that PET measures is the total concentration

(8)

where 1 is the all-one vector, fv is the fractional volume of blood in the tissue, and Cwb(t) is
the tracer concentration in the whole blood. In practice, PET data are binned into discrete
time frames. Thus the measured quantity in frame m is the average concentration

(9)

where tm,s and tm,e denote the start and end time of frame m, respectively, Δtm ≡ tm,e − tm,s,
λ is the decay constant of the radiotracer, and κ contains the kinetic parameters to be
estimated. For example, κ = [K1, k2, k3, k4, fv]T for the two-tissue compartment model.

Given a measured TAC, ẑ = {ẑm}, kinetic analysis is to estimate the rate constants in K and
L, and fv, which is usually accomplished by using an NLS fitting
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(10)

where {γm} are the weighting factors. A simple choice of γm is Δtm. A Levenberg-
Marquardt algorithm [18] is commonly used to solve (10).

B. Direct Methods
Direct methods combine the kinetic model and image reconstruction into a single formula.
Let κj denote the kinetic parameters for pixel j and κ = {κj}, the log-likelihood function can
be written as,

(11)

The expectation of the data is now a nonlinear transform of the kinetic parameters κ,

(12)

where xm(κj) denotes the image intensity at pixel j in frame m due to the kinetic parameters
κj.

The solution of the direct reconstruction is

(13)

The smoothness penalty U(κ) can be applied either on the kinetic parameters κ or on the
time activity curve xm(κ). Here we apply the penalty on xm(κ) and use the same penalty
function as shown in (4). An important advantage of applying the penalty on xm(κ) is that it
simplifies the reconstruction algorithm so that the proposed methods can directly adopt
existing least squares kinetic fitting algorithms. As a result, the proposed methods can
incorporate nearly an arbitrary kinetic model (beyond the linear compartment models in
Section II.A.2) as long as a weighted least squares fitting algorithm exists for that kinetic
model.

III. The Proposed Minorization-Maximization Algorithms
A. Optimization Transfer

This paper develops a class of optimization transfer algorithms [29] for direct reconstruction
of parametric images. The basic idea is depicted in Fig. 1. It constructs a surrogate function
φ(κ|κn) of the kinetic parameters at the nth iteration which minorizes the original objective
function Φ(κ) by satisfying the following two conditions:

(14)

(15)
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Throughout this paper, the superscript n denotes the estimate at the nth iteration. Then the
maximization of Φ(κ) is transfered into maximizing φ(κ|κn)

(16)

The surrogate function φ(κ|κn) is usually easier to optimize by design than the original
objective function. The new update κn+1 increases the original penalized likelihood
monotonically,

(17)

and this minorization-maximization procedure guarantees the convergence. The well-known
expectation maximization (EM) algorithm [30] is a special case of the optimization transfer
algorithms.

B. Paraboloidal Surrogate Function
The Poisson likelihood function can be rewritten in the following form

(18)

where lim = [Pxm(κ)]i and

(19)

We use the paraboloidal surrogate function φℒ(κ|κn) that was originally proposed by Fessler
and Erdogan in [31] for the log-likelihood function

(20)

where  and ηim(l) is the curvature of the surrogate function. Among a few
choices, we use the optimal curvature [31]

(21)

where ḣim(l) and ḧim(l) are the first and second derivatives of him(l), respectively. Note that
the paraboloidal surrogate function is only valid for rim > 0 and lim ≥ 0.

We also employ the quadratic surrogate function φU(κ|κn) that was proposed in [32] to
minorize the penalty function at each iteration
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(22)

where usm ≡ [Dxm(κ)]s, , and the curvature of the surrogate function for
the penalty function, , is

(23)

Note that the regularization is applied directly on the emission image xm(κ).

By combining the surrogate functions for the likelihood and penalty function, the overall
surrogate function for the penalized likelihood function in (13) is

(24)

where Δxm ≡ xm (κ) − xm(κn),  denotes the gradient vector and  is the surrogate
curvature matrix of the penalized log-likelihood with respect to x at x(κn). They can be
calculated by

(25)

(26)

where diag[·] denotes a diagonal matrix,  and .

C. Coordinate Ascent (CA) Algorithm
A pixel-wise coordinate ascent algorithm can be used to maximize the surrogate function

φ(κ| κn) to obtain the estimate . The procedure can be written as

(27)

(28)

which maximizes φ(κ| κn) for pixel j by fixing other pixels. The above one-dimenstional
objective function can be written in a quadratic form

(29)
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where  and the gradient  and curvature  with respect
to xjm are

(30)

(31)

with dsj being the (s, j)th element of D.

Maximizing φj(κj) with respect to κj is then equivalent to the following least squares
problem

(32)

where

(33)

Equation (33) can be seen as a coordinate-wise ascent update of the emission image to

obtain  and (32) is just an NLS fitting with the newly estimated image. Note  is
defined by the surrogate function and compensates for the noise propagation in the kinetic
fitting.

D. Separable Paraboloid (SP) Algorithm
The coordinate ascent algorithm requires column-access of the system matrix P, which is
difficult to parallelize and incompatible with ordered-subsets method. Using the convex
property of φ(κ|κn) in (24), we can construct a separable surrogate φs(κ|κn)

(34)

where  is given by

(35)

where pi ≡ Σj pij and dj ≡ Σs dsj. We omit Φ(κn) in (34) for simplicity.

The new surrogate is composed of separable paraboloids [33], [34], which can be
maximized for all the pixels simultaneously. Maximizing φs(κ| κn) with respect to κ can be
written into the following least squares formulation
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(36)

where

(37)

where  is the jth element of  defined in (25) and  is given in (35). Equation (37) has
the same form as the SP algorithm for emission image reconstruction and (36) can be solved
by any NLS algorithm for kinetic modeling.

E. Summary of the Algorithms
In the above algorithms, the minorization step implicitly consists of a dynamic image update
procedure. The surrogate function constructed in this step is nonlinear with respect to the
kinetic parameters, but is quadratic with respect to the activity image. The maximization
step is then solved by a least squares formulation. The minorization-maximization (MM)
algorithm can be summarized into the following reconstruction-fitting steps at each iteration:

i. Image reconstruction

(38)

ii. Weighted NLS fitting

(39)

where the gradient gjm equals to  for the CA algorithm and  for the SP

algorithm, and the weighting factor wjm equal to  for the CA algorithm and 
for the SP algorithm.

The advantage of the proposed algorithms is that they can be adapted to different kinetic
models by directly using existing NLS algorithms in the kinetic fitting step. Furthermore,
because the kinetic fitting is performed pixel-by-pixel, we can easily apply different kinetic
models to different organs in an image if necessary.

It is worth noting that the weights in (39) are determined by the surrogate function and are
updated at each outer iteration, as opposed to that the weights in the NLS fitting in indirect
methods are often selected empirically by users. Another feature is that it is not necessary to
run the NLS fitting in (39) till convergence at each iteration, as long as the new estimate
increases the cost function. Here we use two iterations of the Levenberg-Marquardt
algorithm [35]. Therefore, each iteration of the direct reconstruction takes about the same
amount of time as that for one iteration of the dynamic image reconstruction and two
iterations of the Levenberg-Marquardt algorithm.
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F. Convergence
Both the CA and SP algorithms are monotonically convergent. However, because of the
nonlinear relationship between the dynamic PET data and kinetic parameters, the log-
likelihood function ℒ (y|κ) is non-concave with respect to κ. As a result, both algorithms
can only guarantee convergence to a local optimum.

IV. Simulation Studies
We performed computer simulations to validate the proposed MM algorithms. The tracer
kinetic models include a dynamic 18F-FDG study with a two-tissue compartment model for
imaging glucose metabolism and a dynamic 15O-water PET study with a one-tissue
compartment model for blood flow imaging. The MM algorithm for the FDG study used the
CA algorithm with the Levenberg-Marquardt fitting algorithm. The MM algorithm for the
water study used the SP algorithm with the basis function algorithm [5], [19], [20] in the
fitting step. Both algorithms were implemented in MATLAB. Fifty iterations were used for
the CA algorithm and 500 iterations were used for the SP algorithm to ensure effective
convergence.

A. Metabolism Imaging with 18F-FDG PET
A phantom shown in Fig. 2(a) was used to simulate glucose metabolism in brain. It consists
of gray matter, white matter and a small tumor inside the white matter. The TAC of each
region was generated using a two tissue compartment model and an analytical blood input
function in Feng’s model [36]. The calculation of the kinetic model and the fitting procedure
were performed using functions provided by the COMKAT package [35]. The kinetic
parameters used in the simulation were taken from literature [37] and are listed in Table I. fv
was set to zero for all regions. The scanning schedule of dynamic PET data consists of 30
time frames: 4×20 s, 4×40 s, 4×60 s, 4×180 s and 14×300 s, the same as that used in [37].

The TACs were integrated for each frame and forward projected to generate dynamic
sinograms. Poisson noise was then generated, which resulted in an expected total number of
events over the 90 minutes equal to 50 million. One hundred independent and identically-
distributed noisy datasets were generated and processed independently by the direct method
and indirect method to estimate the kinetic parameters. The regularization parameters in
both methods were the same and varied from a reasonably small value 10−8 to a large value
10−4. Both methods use the CA algorithm in the reconstruction step and the Levenberg-
Marquardt algorithm in the fitting step. The weighting factor in the kinetic fitting in the
indirect method was chosen to be the squared frame duration divided by the total number of
events in the frame [5]. The computational cost is about 10 s per reconstruction step and 5 s
per kinetic fitting step for a total of 15 s per iteration in MATLAB when running on a single
3 GHz CPU. The long reconstruction time of the CA algorithm is mostly due to the
inefficiency of MATLAB in handling loops.

The major parameter of interest for FDG PET studies is the influx rate

(40)

which is related to the glucose metabolic rate by a scaling factor [38]. Fig. 3 shows Ki
images reconstructed by the direct method and indirect method. The regularization
parameters used in the two methods are the same (β = 10−5). In comparison, the result of the
direct reconstruction is less noisy and the tumor is better defined.
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The corresponding mean and standard deviation images of the reconstructions in Fig. 3 are
shown in Fig. 4. The horizontal profiles through the center of the tumor of the mean and
standard deviation images are shown in Fig. 5. The similarity between the mean images
indicates that both approaches result in similar resolution and bias. However, the standard
deviation of the direct reconstruction is much lower than that of the indirect method. The
reduction in noise in this case is almost equivalent to a four-fold increase in PET detection
sensitivity.

To further compare the two approaches, we computed the average bias (root mean squares)
and variance of the parametric images for all the pixels inside each region. Fig. 6 shows the
average bias versus average standard deviation tradeoff curves of the influx rate Ki
estimated by the direct and indirect methods for different regions in the brain phantom. The
curves are a function of the regularization parameter β with β = 10−5 for the left start points
and β = 10−8 for the right end points. For all the regions, direct reconstruction results in less
variance at any given bias level than the indirect method.

To take into account of spatial correlation, we also calculated the bias versus standard
deviation tradeoff curve for region of interest (ROI) quantification. The ROI was chosen to
be the tumor region. The tradeoff curves are plotted in Fig. 7. Compared with the bias-
standard deviation plots shown in Fig. 6, the standard deviation is reduced because of the
average over the pixels inside the ROI. Again, the standard deviation of the direct
reconstruction is less than that of the indirect method at all bias levels.

In all the above reconstructions, we used two iteration of the Levenberg-Marquardt
algorithm at each fitting step. To study the effect of the number of the kinetic fitting
subiterations on reconstructed images, we reconstructed the same data set shown in Fig. 3
using the direct reconstruction algorithm and running the Levenberg-Marquardt algorithm
until convergence at each fitting step (typical 10–20 iterations). Fig. 8 compares the
objective functions of the two reconstructions (two subiterations per fitting versus
convergent fitting) as a function of the outer iteration. The two curves are quite similar with
the difference quickly diminishing after 10 outer iterations. This is because that each kinetic
fitting step uses the result of previous fitting as the initial value, so after a few outer
iterations, the initial value is fairly close to the optimal solution. Therefore, the number of
the kinetic fitting subiterations does not affect final reconstructed images as long as the
algorithm is run to convergence.

B. Blood Flow Simulation with 15O-water PET
To demonstrate the wide applicability of the proposed algorithms, we used a different
phantom (Fig. 9(a)) to simulate the 15O-water PET study. The kinetic model of blood flow is
described by

(41)

where F is the flow rate and k2 is the clearance rate [20]. We used the default Gamma3
function in COMKAT [35] as the blood input function. The kinetic parameters used in the
simulation were taken from [39] and are listed in Table II. The dynamic PET scanning
sequence consists of 21 frames: 6×5 seconds, 9×10 seconds, and 6×30 seconds, the same as
that used in [39]. The blood input and the regional time activity curves are shown in Fig.
9(b) and (c), respectively.

One hundred noisy PET sinograms were generated following the same procedure as
described in Section IV-A. The expected total number of events over the 5-minute scan was
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5 million. Both the indirect and direct methods use the SP algorithm in image reconstruction
and the basis function algorithm [19], [20] in NLS fitting. One hundred basis functions with
rate constants log-uniformly distributed from 0.01 to 1.5 were used. The weighting factors in
the kinetic fitting in the indirect method were set to be the squared frame durations divided
by the total counts of the frame. The advantage of the basis function algorithm over the
Levenberg-Marquardt algorithm is that it is much faster for one-tissue compartment models
[20]. The computational cost of the SP algorithm is 1.0 second per reconstruction step and
0.7 second per kinetic fitting step for a total of 1.7 s per iteration in MATLAB on a single 3
GHz CPU. The reconstruction time can be further reduced by using ordered subsets and
parallel computing techniques.

Fig. 10 plots the averaged bias versus averaged standard deviation of the estimated blood
flow in the gray matter and white matter. Similar as the FDG PET study, the direct method
produces better bias-variance tradeoff than the indirect method for blood flow
quantification, although the relative improvement is slightly less than those shown in Fig. 6.

V. Conclusions
This paper presents a class of generalized algorithms for direct reconstruction of parametric
images from dynamic PET sinograms. The proposed algorithms use paraboloid surrogate
functions to transfer the penalized maximum likelihood problem into a pixel-wise weighted
nonlinear least squares fitting formulation. The algorithms are easy to implement and can be
adapted to different kinetic models. Computer simulations show that the proposed
algorithms have better bias versus standard deviation characteristics than conventional
indirect methods.
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Fig. 1.
Illustration of optimization transfer. The surrogate function φ(κ|κn) minorizes the original
objective function Φ(κ). The new update κn+1 at iteration (n + 1) which is the maxmizer of
φ(κ|κn) increases Φ(κ) monotonically.
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Fig. 2.
The FDG-PET simulation settings. (a) A brain phantom composed of gray matter, white
matter and a small tumor; (b) the blood input function; and (c) regional time activity curves.
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Fig. 3.
Sample images of the influx rate Ki reconstructed using the direct and indirect methods.
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Fig. 4.
The mean and standard deviation images of Ki image reconstructed using the direct and
indirect algorithms. The regularization parameter is β = 10−5.
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Fig. 5.
Horizontal profiles through the tumor of the mean and standard deviation images of Ki
shown in Fig. 4.
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Fig. 6.
The average bias versus standard deviation tradeoff curves of the influx rate Ki
reconstructed using the direct and indirect algorithms in different brain regions. Different
points on the curves were obtained by varying the regularization parameter.
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Fig. 7.
The bias versus standard deviation tradeoff of ROI quantification on Ki images
reconstructed using the direct and indirect algorithms.
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Fig. 8.
(a) Comparison of the objective functions of the direct reconstruction using two iterations of
the Levenberg-Marquardt algorithm per fitting versus running the Levenberg-Marquardt
algorithm until convergence at every fitting step as a function of the outer iteration. (b) The
difference between the two curves shown in (a).
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Fig. 9.
The 15O-water simulation settings. (a) A brain phantom composed of gray matter, white
matter, and CSF; (b) the blood input function; and (c) regional time activity curves.
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Fig. 10.
The bias versus standard deviation tradeoff curves of the blood flow image reconstructed
using the direct and indirect algorithms. Different points on the curve were obtained by
varying the regularization parameter.
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TABLE I

The kinetic parameters used in the FDG PET simulation.

K1 min−1 k2 min−1 k3 min−1 k4 min−1

Gray matter 0.1104 0.1910 0.1024 0.0094

White matter 0.0622 0.1248 0.0700 0.0097

Tumor 0.0640 0.0890 0.0738 0.0057
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TABLE II

Kinetic parameters used in the 15O-water simulation.

F (min−1) k2 min−1 fv

Gray matter 0.40 0.42 0.05

White matter 0.20 0.25 0.03
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