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Abstract
Multiclass receiver operating characteristic (ROC) analysis has remained an open theoretical
problem since the introduction of binary ROC analysis in the 1950s. Previously, we have
developed a paradigm for three-class ROC analysis that extends and unifies decision theoretic,
linear discriminant analysis, and probabilistic foundations of binary ROC analysis in a three-class
paradigm. One critical element in this paradigm is the equal error utility (EEU) assumption. This
assumption allows us to reduce the intrinsic space of the three-class ROC analysis (5-D
hypersurface in 6-D hyperspace) to a 2-D surface in the 3-D space of true positive fractions
(sensitivity space). In this work, we show that this 2-D ROC surface fully and uniquely provides a
complete descriptor for the optimal performance of a system for a three-class classification task,
i.e., the triplet of likelihood ratio distributions, assuming such a triplet exists. To be specific, we
consider two classifiers that utilize likelihood ratios, and we assumed each classifier has a
continuous and differentiable 2-D sensitivity-space ROC surface. Under these conditions, we
proved that the classifiers have the same triplet of likelihood ratio distributions if and only if they
have the same 2-D sensitivity-space ROC surfaces. As a result, the 2-D sensitivity surface
contains complete information on the optimal three-class task performance for the corresponding
likelihood ratio classifier.

Keywords
Extended receiver operating characteristic (ROC) analysis; ROC analysis; three-class ROC
analysis

I. Introduction
Many medical diagnostic problems involve more than two diagnostic alternatives. For
example, in mammography, patients can be classified as having no tumors or benign or
malignant tumors. Similarly, in myocardial perfusion imaging, patients can have normal
perfusion or fixed or reversible perfusion defects. To effectively evaluate and optimize
diagnostic techniques for such multialternative tasks, a general multiclass receiver operating
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characteristic (ROC) analysis method is required, but has remained an open problem ever
since the introduction of binary ROC analysis in 1950s [1], [2].

According to the current understanding of three-class classification performance, task
performance can only be described with full generality by a 5-D hypersurface in a 6-D space
of decision outcome fractions, which are most often taken to be the six false decision
outcome fractions [3], [4]. Previously, we have proposed a solution to the three-class ROC
analysis problem that extends and unifies the decision theoretic, linear discriminant analysis
(LDA) and probabilistic foundations of binary ROC analysis in a three-class paradigm [2]-
[5]. This method was originally derived under a decision theoretic framework by assuming
that the utilities for incorrect classifications were the same under a given class. This
assumption was termed the equal error utility assumption (EEU). Under this assumption, we
demonstrated that the task performance can be assessed in terms of a 2-D surface in the 3-D
space of sensitivities (true positive fractions).

The goal of this work is to build a foundation for investigating whether the EEU assumption
yields a limited three-class ROC analysis or is truly utility independent under decision
theory. In the following, we first review previous work on decision-theory based three-class
ROC analysis to provide a foundation for this work. Next, we present a particular
perspective for interpreting three-class task performance. To be specific, we argue that
optimal three-class task performance can be completely characterized by the triplet of
likelihood distributions, and that this triplet is a full descriptor of general three-class
classification performance. With this foundation, we prove that a 2-D ROC surface
generated from the likelihood ratio distributions uniquely determines that triplet of
likelihood ratio distributions, making such a 2-D ROC surface a full-descriptor of optimal
three-class classification performance.

II. Background
ROC analysis has been widely accepted as a way to describe binary classification
performance, and binary ROC analysis methodology is well established. To evaluate three-
class classification performance, three-class ROC analysis methodology is needed. Many
three-class ROC analysis methods have been proposed by extending binary ROC analysis in
various ways [1]-[29]. Among these, the most appealing approaches have been the decision
theoretic ones due to their strong foundation in decision theory [12], [19]-[27]. In the
following, we briefly introduce the fundamentals of decision theoretic three-class ROC
analysis.

A. General Three-Class ROC Analysis
This approach originated with Metz’s reformulation [12] to a three-class paradigm of the
decision theoretic framework proposed by Van Trees [30]. Metz’s general three-class ROC
theory rigorously formulates the basic decision theoretic aspects of three-class ROC
analysis. In a three-class classification task, whose decision table is shown in Table I, there
are nine diagnostic accuracy fractions and three relationships between them, namely

(1)

(2)

and

(3)
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where TiF is the probability that class i is correctly classified, and FijF is the probability that
a Class i decision is made while the underlying truth is class j. Thus, of the nine diagnostic
accuracy fractions, six are needed to fully describe three-class classification performance.
Therefore, we see that when moving from 2 to 3 classes, the total number of fractions
needed to fully describe the classification performance increases from 2 to 6. Thus, the
binary ROC curve is a 1-D curve in a 2-D ROC space and three-class ROC hypersurface is
proposed to be a 5-D hypersurface in a 6-D space.

In the following, the set of {TiF} will be referred to as the set of sensitivities and the set of
{FijF} will be referred to as the set of false decision outcome fractions. Under Metz’s three-
class decision theoretic formulation, it has been proved that optimal decision variables for
three-class classification are two likelihood ratios [12], [20], i.e.,

(4)

and

(5)

where  is the data vector, fi ( ) is the likelihood function of the ith class, and Λi3 (i = 1, 2)
is the likelihood ratio of Class i to Class 3.

The decision space is thus spanned by two likelihood ratios. Given a set of prior information
(in the form of class prevalence and utilities of each of the nine possible decision outcomes),
a set of decision rules that maximize the expected utility is represented by three rays
originating from a common point, known as the critical point. These rays partition the
decision space into three regions. Each of these regions corresponds to a region where one
of the decisions is made. The rays delineating these regions are expressed as [12]-[20],

(6)

(7)

and

(8)

where Uij is the utility for deciding Class i when the truth is Class j, and Pi is the prior
prevalence of the of the ith class. An example of the likelihood ratio decision plane is shown
in Fig. 1.

The three lines are determined by six parameters, and since the three lines intersect at one
point, there are a total of 5 parameters required. As a result, to fully describe three-class task
performance, Metz and Edwards proposed a 5-D ROC hypersurface in a 6-D hyperspace
spanned by the six false decision outcome fractions. This 5-D hypersurface in the 6-D
hyperspace is termed the general three-class ROC analysis method [12], [19]-[27].

He et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



B. Practical Three-Class ROC Analysis
We have previously proposed a decision theoretic three-class ROC analysis method. In the
derivation of this method, we reduced the dimensionality of the three-class problem by
making the equal-error utility (EEU) assumption [31]. This assumption states

(9)

As a result, the number of degrees-of-freedom of the decision structure is reduced to 2. The
resulting decision spaces and structures spanned by the likelihood ratio and log likelihood
ratios are shown in Fig. 2. In the log likelihood ratio decision space (right plot), the shape of
the decision structure does not vary as it moves across the decision space due to the EEU
assumption. To be specific, the angles of the three lines with respect to the x-axis are always
0°, 90°, and 45°. In the likelihood decision space (left plot), the boundary between class 1
and 2 varies, but the other two are fixed as vertical and horizontal. Moving the decision
structure across the decision space and computing the set of sensitivities, (T1F, T2F, T3F),
traces out a 2-D three-class ROC surface in the 3-D space spanned by {TiF}. An example of
the resulting three-class ROC surface is shown in Fig. 3.

The volume under the three-class ROC surface (VUS) was proposed as a figure-of-merit
(FOM) for task performance under the EEU [31]. The VUS is analogous to the area under
the ROC curve (AUC) in the two-class case: it is a FOM for EEU task performance in the
case where the surfaces or curves do not cross.

We have further investigated this 2-D three-class ROC surface and demonstrated that it
contains all the optimal operating points that maximize the probabilities of making correct
decisions for all possible combinations of prior prevalence (i.e., disease prevalence); it
contains all the optimal operating points that satisfy Neyman–Pearson criterion in a sense of
maximizing one sensitivity given the other two; and it contains the optimal operating point
that satisfies the maximum likelihood criterion [32]. In addition, when the data follow
Gaussian distributions with equal covariances, the signal-to-noise ratios (SNRs) of the test
statistics between each pair of the classes are simultaneously maximized [33]. Finally, we
have shown that the VUS value is equivalent to the percent correct in a three-class
categorization procedure—a relationship that provides a foundation for nonparametric
statistical analysis methods for three-class ROC analysis as well as a practical method for
data collection in reader studies [34].

III. Task Performance, Decision Variables, and Decision Rules
In this section, we present a particular perspective for viewing three-class classification
performance and its relationship to the decision variables and decision rules. We then
discuss the necessary properties of a general task performance display or FOM.

A. Pair/Triplet of Likelihood Ratio Distributions as a Complete Descriptor of Binary/Three-
Class Optimal Task Performance

In a classification task, the decision space is a space spanned by decision variables and
partitioned according to decision rules. Fig. 4 schematically shows examples of a pair of
likelihood ratio distributions in a binary decision space and a triplet of likelihood
distributions in a three-class decision space. Shaded ellipses schematically represent
distributions of the likelihood ratios of the three classes. Given the triplet of likelihood ratio
distributions, the optimal task performance is known exactly. That is, for any set of prior
information (prevalences and utilities), we can compute the optimal decision structure and
use it to evaluate the nine decision outcome fractions.
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While the triplet of likelihood ratio distributions is a complete descriptor of task
performance, it is not practically useful: it is very difficult to compare two systems directly
via their likelihood ratio distributions on the likelihood ratio decision space. As a result, we
believe the goal of ROC analysis is to provide a standard for summarizing and comparing
the likelihood ratio distributions of different systems.

Since the triplet of likelihood ratio distributions provides a complete descriptor of three-
class task performance, a necessary condition for an ROC surface to be a general descriptor
is that there is a one-to-one relationship between the ROC surface and the triplet of
likelihood ratio distributions. In other words, if each unique ROC surface is uniquely related
to a unique set of likelihood ratio distributions, then the ROC surface can be said to be
general in a decision theoretic sense.

Some readers might wonder whether binary ROC analysis fits the above conditions, since it
is well known that different pairs of rating distributions would yield the same ROC curve. In
such a case, the decision variables are monotonic transformations of each other. However,
only one transformation will yield the unique pair of corresponding likelihood ratio
distributions due to the properties of likelihood ratios, to be described in Section IV. It is this
constraint, relating an ROC surface to its equivalent ideal observer, that we shall use to
uniquely relate an ROC surface to the triplet of likelihood ratio distributions.

B. Role of Decision Rules in Optimal Task Performance Assessment
The decision structure, which represents the decision rules, specifies how to partition the
decision space into regions corresponding to the possible decisions. The 5-D hypersurface is
obtained using the 5-D decision structure (Fig. 1) to partition the likelihood ratio decision
space. It provides one way of describing the triplet of likelihood ratio distributions, and has
been considered to be a complete descriptor of three-class task performance [19]-[27]. The
2-D ROC surface is obtained by using the 2-D decision structure to partition the likelihood
ratio decision space (Fig. 2). It provides another way of describing the triplet of likelihood
ratio distributions and has been considered to be an incomplete descriptor of three-class task
performance due to the use of the EEU assumption [20].

The above two examples reveal the roles of decision rules in task performance description.
They provide ways to convert the triplet of likelihood ratio distributions—a complete
descriptor of task performance—to a hypersurface in a 3-D or 6-D space spanned by
different sets of decision outcome fractions, with the goal of finding a convenient way to
summarize task performance. Note that both the 2-D and 5-D decision structures use the
same triplet of likelihood ratio distributions. As long as this conversion is one-to-one or
reversible, there is no loss of information about task performance.

C. Necessary Properties of a General Three-Class Task Performance Descriptor in the
Decision Outcome Fraction Space

As discussed above, the goal of ROC analysis is to convert the likelihood ratio distributions
to a hypersurface in a decision outcome fraction space with the goal of finding a tractable
descriptor of optimal task performance that can be used to compare systems. Let us now
consider some of the essential (necessary but insufficient) properties of such a conversion.
(Note that we are elucidating these points here, but will not prove them or examine them
further.)

1. It must provide a way to determine the conditional probabilities for all possible
utility combinations. For example, a binary ROC curve describes the sensitivity and
specificity pairs of all possible utility combinations. In the proposed 2-D decision
model for three-class ROC analysis, the 2-D ROC surface describes the conditional
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probabilities for all possible utility combinations that satisfy the EEU assumption.
A general three-class descriptor must also have the ability to describe the
conditional probabilities in cases when EEU is not valid.

2. The general descriptor should not be biased toward any class. This means that the
system should be independent of the class labels. For example, in evaluating binary
classifiers, the ranking of the systems using the ROC curve is not affected by
calling positive cases Class 1 or Class 2.

3. A general metric summarized from a general descriptor must rank ideal observer
performance as the optimal one, i.e., the ideal observer must have better
performance than any other observers.

IV. Theory
We propose the following conjecture.

Conjecture—There is a unique triplet of likelihood ratios that produces a given well-
behaved 2-D ROC surface.

In the following, we first introduce the properties of likelihood ratio distributions, which are
keys to the proof, and then prove the conjecture by demonstrating the unique relationship
between the 2-D ROC surface and triplet of likelihood ratio distributions, assuming such a
triplet exist exists.

A. Properties of Likelihood Ratio Distributions
Binary Classification—In the following we review several properties of likelihood ratios
[35] that are used in the proofs in this paper. The likelihood ratio between Classes a and b is
defined as

(10)

where  is the data vector, and fa ( ) and fb ( ) are the likelihood functions under Class a
and b hypotheses, respectively. Likelihood ratio distributions have the property that the
likelihood ratio of the likelihood ratio is the likelihood ratio [35], i.e.,

(11)

where ga(Λ) and gb(Λ) are the distributions of the likelihood ratios under Class a and b
hypotheses.

Three-Class Classification—In three-class ROC analysis, previous work has shown that
the optimal decision variables are the two likelihood ratios as expressed in (4) and (5) [12],
[20], [31]. Similarly, we can extend the relationship in (11) to three-class

(12)

where gi () (i = 1, 2) is the joint distribution of the likelihood ratios under ith hypothesis. The
proof for (12) can be found in [36].
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B. Unique Relationship Between the Triplet of Likelihood Ratio Distributions and the 2-D
ROC Surface

Consider two systems with log likelihood ratios given by (λ13, λ23) = (logΛ13, logΛ23) for
System 1 and (λ′13, λ′23) = (logΛ′13, logΛ′23) for System 2. Let each system have
continuous and differentiable 2-D sensitivity-space ROC surfaces. If the triplets of log
likelihood ratio distributions are identical in System 1 and System 2, it is obvious that the
two systems have identical 2-D ROC surfaces. Below we prove that if two systems have
identical 2-D ROC surfaces, which are continuous and differentiable, the two systems must
have identical triplets of likelihood ratio distributions. In other words, the two systems are
identical in terms of all the decisions they produce.

Since the 2-D ROC surface is continuous and differentiable everywhere and these two
systems have identical 2-D ROC surfaces, the corresponding operating points (sensitivities)
on the surfaces must have identical coordinates and identical derivatives. Mathematically,
we have the following.

1. For each (λ13, λ23), there is an (λ′13, λ′23) such that TiF(λ13, λ23) = TiF′(λ′13,
λ′23), where i = 1, 2, 3.

2. For each operating point on the 2-D ROC surface, i.e., {T1F, T2F, T3F} obtained
from the former system and {T1F′, T2F′, T3F′} obtained from the latter, the
derivatives must be the same. Thus, for (λ13, λ23) and (λ′13, λ′23) above we have

and

In Appendix II, we provide a mathematical derivation for computing ∂T2F/∂T1F, ∂T3F/
∂T1F and ∂T3F/∂T2F. Following Appendix II, the partial derivatives of the first system are

and

(13)

Similarly, for the second system we have
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and

(14)

Combining (13) and (14) condition above, and substituting them into condition 2, above, we
see that

(15)

Equation (15) is true for arbitrary operating points if and only if (λ13, λ23) = (λ′13, λ′23).
Given condition 1, above, we have T3F(λ13, λ23) = T3F′(λ13, λ23). Note that, using the
class labeling in this work, T3F and T3F′ are cumulative density functions (CDF), i.e.,

(16)

where p3() is the joint distribution of the log likelihood ratios λ13 and λ23 under the Class 3
hypothesis. Since the two distributions always have identical CDFs at the same (λ13, λ23)
location, then the two distributions are identical. Thus the two systems have identical Class
3 likelihood ratio distributions. Using (12), we see that the likelihood ratio distributions of
Classes 1 and 2 can be determined by that of Class 3. As a result, the two systems have
identical Class 1 and 2 likelihood ratio distributions, respectively. This proves that the only
way two systems can have identical 2-D ROC surfaces is if they have identical likelihood
ratio distributions.

C. Theorem of Uniqueness and Corollary on ROC Analysis
Given the unique relationship between a three-class ROC surface and the triplet of
likelihood ratio distributions, we arrive at the following theorem.

Theorem of Uniqueness—Consider two classification systems based on likelihood
ratios. Let each system have continuous and differentiable 2-D sensitivity-space ROC
surfaces. The systems have the same triplet of likelihood ratio (hypothesis-conditional)
distributions if and only if they have the same 2-D sensitivity-space ROC surfaces.

In addition, the above theorem states that there is a one-to-one relationship between the 2-D
ROC surface and the triplet of likelihood ratio distributions, assuming such a triplet exists.
The intersection of the 2-D surface with the three planes defined by pairs of axes produces
the three ROC curves, one for each of the three combinations of the classes taken 2 at a
time. As a result, the ROC curve must uniquely determine the pair-wise likelihood ratio
distributions. We thus have the following corollary:

Corollary—Consider two classification systems whose pairs of likelihood ratios are
known. Let each system have continuous and differentiable ROC curves. The systems have
the same pair of likelihood ratio distributions if and only if they have the same ROC curve.

Note that the Corollary can be proved directly from the properties of likelihood ratios in the
binary classification, i.e., (11). We leave the proof to the reader.
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V. Conclusion
Previously, we have shown that the proposed three-class ROC analysis method extends and
unifies the decision theoretic (under the EEU assumption), LDA, and probabilistic
foundations of ROC analysis in a three-class paradigm. In this work, we further explored the
decision theoretic foundation of the proposed three-class ROC analysis method, and have
built a foundation for investigating whether its generality under decision theory is restricted
by the EEU assumption or not.

In particular, we have proved that two systems have the same triplet of likelihood ratio
(hypothesis-conditional) distributions if and only if they have the same 2-D sensitivity-space
ROC surfaces (assuming both systems have continuous and differentiable 2-D sensitivity-
space ROC surfaces). Thus, the 2-D sensitivity-space ROC surface generated from
likelihood ratio distributions uniquely characterizes the complete optimal three-class task
performance descriptor—the triplet of likelihood ratio distributions. In other words, contrary
to previous understanding, the 2-D sensitivity-space ROC provides complete information
about three-class task performance of the likelihood ratio classifier.

Note that the proof of this is for the analytic 2-D ROC surface generated from the likelihood
ratio distributions, and not empirical observer data. This result suggests that the 2D ROC
surface may have an important role in developing a practical method for ranking of
diagnostic systems in terms of three-class classification performance. However, significant
theoretical work remains before the implications of the result of this paper are fully
practical.
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Appendix I
Now we derive the partial derivatives of TiF (i = 1, 2, 3) with respect to λ13 and λ23.

A. Geometric Derivation of the Partial Derivative of T1F With Respect to λ13

and λ23

We first compute the partial derivative of T1F with respect to the two log likelihood ratios.
As shown in Fig. 5(a), on the log likelihood decision space, for a decision structure centered
on (λ13, λ23), T1F(λ13, λ23) is an integral of p1(λ13, λ23) over the area for Class 1
decision, i.e., the shaded area in Fig. 5(a), where pi(λ13, λ23) (i = 1, 2, 3) is the log
likelihood ratio distribution under ith hypothesis.

Note that the partial derivative is defined as derivatives of a function of multiple variables
when all but the variable of interest are held fixed during the computation of the derivative,
and the derivative is defined as an infinitesimal change in the function with respect to one of
its variables. In Fig. 5(b) and (c), we illustrate how T1F(λ13, λ23) changes with respect to a
small change of λ13 and λ23, respectively. In particular, Fig. 5(b) shows the computation of
∂T1F(λ13, λ23)/∂λ13. When the decision structure moves an infinitesimal Δλ13 along the
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λ13 axis (solid line decision structure → dashed line decision structure), we see that
T1F(λ13, λ23) decreases, and the amount of decrease is equivalent to integrating p1(λ13,
λ23) along the small strip as shown in the shaded area in Fig. 5(b). This observation can be
written down mathematically. Given the definition of the partial derivative

(A1)

As in Fig. 5(b), when Δλ13 → 0, the difference between T1F(λ13 + Δλ13, λ23) and T1F
(λ13, λ23) is expressed as integration of p1(λ13, λ23) along the vertical line and the 45°
multiplied by Δλ13. Consequently, the partial derivative is

(A2)

The negative sign is because that T1F (λ13 + Δλ13, λ23) < T1F (λ13, λ23) for Δλ13 > 0.

Similarly, the partial derivative of T1F with respect to λ23 is equivalent to integrating
p1(λ13, λ23) along the 45° line, as shown in Fig. 5(c), i.e.,

(A3)

B. More Rigorous Computation of Partial Derivative of T1F With Respect to
λ13 and λ23

Observing Fig. 5(a) shows that the area for Class 1 decision is bounded by a vertical ray
extending from the center of the decision structure to −∞ and a second ray from the center
of the decision structure along the 45° line from the center of the decision structure toward
(∞,∞). Thus, T1F(λ13, λ23) can be expressed as

(A4)

where the first term is an integral of p1() over the shaded region above the dashed line in
Fig. 5(a), and the second term is an integral of p1 over the shaded region below the dashed
line in Fig. 5(a). The partial derivative of T1F with respect to λ13 can be easily computed
using (A4) by applying the Leibnitz’s rule to the differentiation of the first term. We leave
the derivation of T1F with respect to λ23 to the readers.

C. Partial Derivatives of T2F and T3F With Respect to λ13 and λ23

Using the methods in the previous section, we can easily compute the partial derivatives of
T2F and T3F with respect to λ13 and λ23. The illustrations for these partial derivatives are
given in Fig. 6. For more rigorous derivation, please refer to our previous publication [34].
In particular, a change of Δλ13 > 0 results in an increase of T2F in the shaded area as
illustrated in Fig. 6(a). When Δλ13 → 0, ∂T2F/∂λ13 equals p2(λ13, λ23) integrated along
the 45° line. Similarly, ∂T2F/∂λ23 is p2(λ13, λ23) integrated long the 45° and the horizontal
line [Fig. 6(b)]; ∂T3F/∂λ13 is p3(λ13, λ23) is integrated along the vertical line [Fig. 6(c)];
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and ∂T3F/∂λ23 is p3(λ13, λ23)integrated along the horizontal line. These partial derivatives
are expressed as

(A5)

(A6)

(A7)

and

(A8)

Appendix II
In this Appendix, we provide a method for deriving the partial derivatives of the 2-D ROC
surface, e.g.,∂T2F/∂T1F. We use pi(λ13, λ23) (i = 1, 2, 3) to denote the log likelihood ratio
distributions for Class i and gi(Λ13,Λ23) the corresponding likelihood ratio distribution for
Class i. By definition of the probability density functions, we have

(A9)

where J = (∂(Λ13, Λ23)/∂(λ13, λ23)) = e(λ13+λ23) =J (λ13,λ23).

In (A9), J is the Jacobian.

A. Geometric Derivation of ∂T2F/∂T1F
Given the intuitive description of TiF with respect to λ13 and λ23, we provide a intuitive
description of dTiF (i = 1, 2, 3), shown in Fig. 7. The total derivative of dTiF (i = 1, 2, 3),
which is expressed as

(A10)

We thus see that dTiF (i = 1, 2, 3) is a sum of infinitesimal change of TiF along both λ13
and λ23 directions, i.e., (∂TiF /∂λ13)Δλ13 and (∂TiF/∂λ23)Δλ23. We have illustrated the
derivations of ∂TiF/∂λ13 and ∂TiF/∂λ23 in the previous sections, Fig. 7 illustrates the
derivation of ∂T2F/∂T1F. Again, the partial derivative is defined as derivatives of a function
of multiple variables when all but the variable of interest are held fixed during the
differentiation. Partial derivative ∂T2F/∂T1F is equivalent to dT2F/dT1F given dT3F = 0.
Shown in Fig. 7, moving the decision structure from the original location (represented by
solid lines) to another location (represented by the dashed line), i.e., a shift of (Δλ13, Δλ23)
where Δλ13 → 0 and Δλ23 → 0, results in small change in all three sensitivities. Fig. 7(c)
shows the change of T3F. Shifts of decision structure to the right increase T3F, while shifts
downward decrease T3F. In order for dT3F = 0, we see that the increase of T3F along λ13

He et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



direction must equal the decrease of T3F along λ23 direction. Fig. 7(a) shows the change of
T1F, where the shift of decision structure results in decrease of T1F. As a result, dT1F is a
sum of the change in T1F caused by Δλ13 and the change in T1F caused by Δλ23. Fig. 7(b)
shows the change of T2F, where the shift of decision structure results in increase of T2F.

B. Computation of ∂T2F/∂T1F
The partial derivative is defined as derivatives of a function of multiple variables when all
but the variable of interest are held fixed during the differentiation. Using ∂T2F/ ∂T1F as an
example, in the sensitivity space that is spanned by T1F, T2F and T3F, the 2-D ROC surface
can be expressed as a function of the three sensitivities, i.e., T2F = T2F(T1F, T3F). Thus,
∂T2F/∂T1F is obtained by holding T3F fixed during the differentiation, i.e.,

(A11)

where dTiF (i = 1, 2, 3) is the total derivative of Class i. Equation (A11) shows that the key
to computing the partial derivative ∂T2F/∂T1F of is to compute the total derivatives dTiF (i
= 1, 2, 3), as expressed in (A10), which shows that dTiF is determined by the partial
derivative of TiF (i = 1, 2, 3) with respect to λ13 and λ23. In Appendix I, we have provided
derivations of ∂TiF/∂λ13 and ∂TiF/∂λ23.

Now our goal is to substitute ∂TiF/∂λ13 and ∂TiF/∂λ23, derived in Appendix I, into (A10)
and to simplify it. The key to the simplification is the property of likelihood ratios. Using the
properties of likelihood hood ratios in (12), we have

and

(A12)

Apply the Jacobian for the log transformations in (A9) to (A12), we have

and

(A13)

To compute ∂T2F/∂T1F, we use (A13) to rewrite ∂TiF/∂λ13 and ∂TiF/∂λ23, and obtain new
expressions for dT1F and dT2F. The goal of doing so is to cancel out some of the terms
when computing the division of dT2F by dT1F.

We first compute dT1F, i.e., the denominator. Substituting (A13) into (A12), we have

He et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A14)

Similarly, ∂T1F/∂λ23 is expressed as in (A3). Substituting (A13) and (A3) into (A10) and
rearranging the terms, we have

(A15)

We then compute dT2F. Substituting the third equation in (A13) into (A5), ∂T2F/∂λ13 is
expressed as

(A16)

Similarly, applying the properties of likelihood ratios and the Jacobian for change of
variables as in (A13), (A6) can be expressed as

(A17)

Thus, dT2F can be obtained by substituting (A16) and (A17) into (A10), and rearrange the
terms, i.e.,

(A18)

Substituting (A15) and (A18) into (A11), we have

where
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(A19)

To further simplify (A19), we substitute the expressions for ∂T3F/∂λ13 derived in (A7) and
∂T3F/∂λ23 derived in (A8) into dT3F = 0. We see that

(A20)

Equation (A20) shows that the terms inside the square brackets in the denominator and
numerator of (A19) are equal. Thus, (A19) becomes

where

(A21)

Factoring −eλ23− λ13 from the numerator of (A21), we see that the remaining terms are
equal, leaving

(A22)

Using the same approach, we can derive
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and

(A23)

References
1. Swets JA, Birdsall TG. The human use of information .3. Decision-making in signal-detection and

recognition situations involving multiple alternatives. IRE Trans Inf Theory. 1956; 2:138–165.

2. Swets, JA.; Pickett, RM. Evaluation of Diagnostic System: Methods From Signal Detection Theory.
New York: Academic; 1982.

3. Yeung KY, Bumgarner RE, Raftery AE. Bayesian model averaging: Development of an improved
multi-class, gene selection and classification tool for microarray data. Bioinformatics. May 15.2005
21:2394–2402. [PubMed: 15713736]

4. Xiong CJ, van Belle G, Miller JP, Morris JC. Measuring and estimating diagnostic accuracy when
there are three ordinal diagnostic groups. Stat Med. Apr.2006 25:1251–1273. [PubMed: 16345029]

5. Scurfield BK. Generalization of the theory of signal detectability to n-event m-dimensional forced-
choice tasks. J Math Psychol. Mar.1998 42:5–31. [PubMed: 9606159]

6. Scurfield BK. Multiple-event forced-choice tasks in the theory of signal detectability. J Math
Psychol. Sep.1996 40:253–269. [PubMed: 8979976]

7. Sahiner B, Chan H-P, Hadjiiski LM. Performance analysis of 3-class classifiers: Properties of the
3D ROC surface and the normalized volume under the surface. Proc SPIE. 2006; 6146

8. Sahiner B, Chan HP, Hadjilski LM. Performance analysis of three-class classifiers: Properties of a
3-D ROC surface and the normalized volume under the surface for the ideal observer. IEEE Trans
Med Imag. Feb.2008 27(2):215–227.

9. Patel AC, Markey MK. Comparison of three-class classification performance metrics: A case study
in breast cancer CAD. Proc SPIE. 2005

10. Nakas CT, Yiannoutsos CT. Ordered multiple-class ROC analysis with continuous measurements.
Stat Med. Nov.2004 23:3437–3449. [PubMed: 15505886]

11. Mossman D. Three-way ROCs. Med Decision Making. Jan-Mar;1999 19:78–89.

12. Metz, CE. The optimal decision variable: Likelihood ratio Univ. Chicago. Chicago, IL:
Mathematics for medical physicists handout; 2000.

13. Kijewski MF, Swensson RG, Judy PF. Analysis of rating data from multiple-alternative tasks. J
Math Psychol. 1989; 33:428–451.

14. Johnson AJ, Noga AJ, Kosoy O, Lanciotti RS, Johnson AA, Biggerstaff BJ. Duplex microsphere-
based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus
immunoglobulin M antibodies. Clin Diag Lab Immunol. May.2005 12:566–574.

15. Heckerling PS. Parametric three-way receiver operating characteristic surface analysis using
mathematica. Med Decis Making. 2001; 21:409–417. [PubMed: 11575490]

16. Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class
classification problems. Mach Learn. 2001; 45:171–186.

17. Fukunaga, K. Introduction to Statistical Pattern Recognition. New York: Academic; 1990.

18. Everson RM, Fieldsend JE. Multi-class ROC analysis from a multi-objective optimisation
perspective. Pattern Recognit Lett. Jun.2006 27:918–927.

19. Edwards DC, Metz CE, Nishikawa RM. The hypervolume under the ROC hypersurface of “near-
guessing” and “near-perfect” observers in N-class classification tasks. IEEE Trans Med Imag.
Mar.2005 24(3):293–299.

20. Edwards DC, Metz CE, Kupinski MA. Ideal observers and optimal ROC hypersurfaces in N-class
classification. IEEE Trans Med Imag. Jul.2004 23(7):891–895.

21. Edwards, DC.; Metz, CE. Optimality of a utility-based performance metric for ROC analysis. In:
Sahiner, B.; Manning, DJ., editors. Proc SPIE Med Imag 2008: Image Perception, Observer
Performance, Technology Assessment. Vol. 6917. 2008.

He et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



22. Edwards DC, Metz CE. A utility-based performance metric for ROC analysis of N-class
classification tasks. Proc SPIE Med Imag 2007: Image Perception, Observer Performance, Technol
Assessment. 2007:6515031–65150310.

23. Edwards DC, Metz CE. Optimization of restricted ROC surfaces in three-class classification tasks.
IEEE Trans Med Imag. Oct.2007 26(10):1345–1356.

24. Edwards DC, Metz CE. Analysis of proposed three-class classification decision rules in terms of
the ideal observer decision rule. J Math Psychol. 2006; 50:478–487.

25. Edwards DC, Metz CE. Restrictions on the three-class ideal observer’s decision boundary lines.
IEEE Trans Med Imag. Dec.2005 24(12):1566–1573.

26. Edwards DC, Lan L, Metz CE, Giger ML, Nishikawa RM. Estimating three-class ideal observer
decision variables for computerized detection and classification of mammographic mass lesions.
Med Phys. Jan.2004 31:81–90. [PubMed: 14761024]

27. Edwards, DC. Ideal Observer Estimation and Generalized ROC Analysis for Computer-Aided
Diagnosis Univ Chicago. Chicago, IL: 2003.

28. Dreiseitl S, Ohno-Machado L, Binder M. Comparing three-class diagnostic tests by three-way
ROC analysis. Med Decis Making. Jul-Sep;2000 20:323–31. [PubMed: 10929855]

29. Chan H-P, Sahiner B, Hadjiiski LM, Petrick N, Zhou C. Design of three-class classifiers in
computer-aided diagnosis: Monte carlo simulation study. Proc SPIE. 2003; 5032:567–578.

30. Van Trees, HL. Detection, Estimation and Modulation Theory: Part I. New York: Wiley; 1968.

31. He X, Metz CE, Tsui BMW, Links JM, Frey EC. Three-class ROC analysis—A decision theoretic
approach under the ideal observer framework. IEEE Trans Med Imag. May; 2006 25(5):571–581.

32. He X, Frey EC. Three-class ROC analysis—The equal error utility assumption and the optimality
of three-class ROC surface using the ideal observer. IEEE Trans Med Imag. Aug.2006 25(8):979–
986.

33. He X, Frey EC. An optimal three-class linear observer derived from decision theory. IEEE Trans
Med Imag. Jan.2007 26(1):77–83.

34. He X, Frey EC. The meaning of the volume under the three-class ROC Surface (VUS). IEEE Trans
Med Imag. May; 2008 27(5):577–588.

35. Barrett, HH.; Myers, KJ. Foundations of Image Science. New York: Wiley; 2003.

36. Edwards DC, Metz CE. Evaluating Bayesian ANN estimates of ideal observer decision variable by
comparison with identity functions. Proc SPIE. 2005; 5749:174–182.

He et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Three-class decision plane, where likelihood ratios Λ13 and Λ23 are used as the decision
variables. The decision rules, represented by the decision structure, have 5 degrees-of-
freedom.
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Fig. 2.
Three-class likelihood ratio and log likelihood ratio decision plane under EEU assumption.
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Fig. 3.
Example of the 2-D practical three-class ROC surface in the 3-D sensitivity space.
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Fig. 4.
Examples of a pair of likelihood ratio distributions in a binary decision space and a triplet of
likelihood distributions in a three-class decision space.
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Fig. 5.
Illustration for the computation of T1F and its partial derivatives. (a) T1F is computed by
integrating p1(λ13, λ23) over the shaded region. (b) Moving the decision structure to (λ13 +
Δλ13, λ23), ∂T1F/∂λ13 is the integral of p1(λ13, λ23) over the shaded stripe when Δλ13 →
0, i.e., the integral of p1(λ13, λ23) along the vertical and 45-degree line. Since T1F is
decreasing, this partial derivative is negative. (c) Moving the decision structure to (λ13, λ23
+ Δλ23), ∂T1F/∂λ23, is the integral of p1(λ13, λ23) over the shaded stripe when Δλ23 → 0,
i.e., the integral of p1(λ13, λ23) along 45° line.
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Fig. 6.
Illustration of the derivations of the partial derivative of T2F and T3F with respect to λ13
and λ23. (a) Illustration of ∂T2F/∂λ13; (b) illustration of ∂T2F/∂λ23; and (c) illustration of
∂T3F/∂λ13.
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Fig. 7.
Illustration for the computation of ∂T2F/∂T1F. (a) Moving the decision structure while
keeping T3F constant; (b) the increase of T3F after moving the decision structure; and (c)
the decrease of T1F after moving the decision structure.
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TABLE I

Decision Table For Three-Class Classification

True Status of an object

Class 1 Class 2 Class 3

Decision Class 1 T1* F12 F13

Class 2 F21* T2 F23

Class 3 F31 F32 T3

*
Ti (i = 1, 2, 3) True decision, i.e., Class i decision when the underlying truth is also Class i.

*
Fij (i, j = 1, 2, 3 i ≠ j) False decision, i.e., Class i decision when the underlying truth is Class j.
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