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Abstract

In this paper, we investigate the automatic detection of white and brown adipose tissues using 

Positron Emission Tomography/Computed Tomography (PET/CT) scans, and develop methods for 

the quantification of these tissues at the whole-body and body-region levels. We propose a patient-

specific automatic adiposity analysis system with two modules. In the first module, we detect 

white adipose tissue (WAT) and its two sub-types from CT scans: Visceral Adipose Tissue (VAT) 

and Subcutaneous Adipose Tissue (SAT). This process relies conventionally on manual or semi-

automated segmentation, leading to inefficient solutions. Our novel framework addresses this 

challenge by proposing an unsupervised learning method to separate VAT from SAT in the 

abdominal region for the clinical quantification of central obesity. This step is followed by a 

context driven label fusion algorithm through sparse 3D Conditional Random Fields (CRF) for 
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volumetric adiposity analysis. In the second module, we automatically detect, segment, and 

quantify brown adipose tissue (BAT) using PET scans because unlike WAT, BAT is metabolically 

active. After identifying BAT regions using PET, we perform a co-segmentation procedure 

utilizing asymmetric complementary information from PET and CT. Finally, we present a new 

probabilistic distance metric for differentiating BAT from non-BAT regions. Both modules are 

integrated via an automatic body-region detection unit based on one-shot learning. Experimental 

evaluations conducted on 151 PET/CT scans achieve state-of-the-art performances in both central 

obesity as well as brown adiposity quantification.

Index Terms—

Visceral Fat Segmentation; Central Obesity Quantification; Segmentation of Brown Fat; Brown 
Adipose Tissue; Abdominal Fat Quantification; Co-Segmentation

I. Introduction

BROWN adipose tissue (BAT), brown fat, and white adipose tissue (WAT) are the two types 

of adipose tissues found in mammals (Figure 1–A). Quantification of WAT and its subtypes 

is an important task in the clinical evaluation of obesity, cardiac diseases, diabetes, and other 

metabolic syndromes [1]–[3]. Among them, obesity is one of the most prevalent health 

conditions. About 30% of the world’s and over 70% of the United States’ adult populations 

are either overweight or obese [4], [5], causing an increased risk for cardiovascular diseases, 

diabetes, and certain types of cancer. Central obesity (also known as abdominal obesity) is 

the excessive buildup of fat in the abdominal region. Traditionally, Body Mass Index (BMI) 

has been used as a measure of obesity and metabolic health; however, BMI remains 

inconsistent across subjects, especially for underweight and obese individuals. Instead, 

volumetry of the abdominal fat, i.e., Visceral Adipose Tissue (VAT), is considered as a 

reliable, accurate, and consistent measure of body fat distribution. As VAT manifests itself 

mainly in the abdominal region, it is regarded as an important marker for evaluating central 

obesity. In clinical literature, the association between VAT and different diseases has been 

thoroughly discussed. For instance, visceral obesity quantified through Computed 

Tomography (CT) was found to be a significant risk factor for prostate cancer [6]. In [7], 

visceral adiposity was found to be a significant predictor of disease-free survival rate in 

resectable colorectal cancer patients. In contrast to Subcutaneous Adipose Tissue (SAT), 

VAT was concluded to have an association with incident cardiovascular disease and cancer 

after adjustment for clinical risk factors and general obesity [8]. Speliotes et al. [9] found 

VAT as the strongest correlate of fatty liver among all the other factors used in their study. In 

[10], VAT was found to be an independent predictor of all-cause mortality in men after 

adjustment for abdominal subcutaneous and liver fat. All these clinical evidences show that 

the robust and accurate quantification of VAT can help improve identification of risk factors, 

prognosis, and long-term health outcomes.

However, automatic separation of VAT from SAT in CT images is not trivial because both 

VAT and SAT regions share similar intensity characteristics (Hounsfield unit (HU)), and are 

vastly connected (Figure 1–B). To segregate these two tissues, radiologists usually use 
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various morphological operations along with manual interactions, but this process is 

subjective and unattractive for routine clinical evaluations. A set of representative slices at or 

near the umbilical level is often used for quantifying central obesity [11]. Still, these 

selections do not accurately infer volumetric quantification. Thus, inefficient and inaccurate 

quantification remains a major obstacle in the clinical evaluation of body fat distribution.

BAT is important for thermogenesis and is considered as a natural defense against 

hypothermia and obesity [12]. Since BAT is metabolically active, the sensitivity of Positron 

Emission Tomography (PET) imaging to detect BAT regions is much higher than that of 

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) (Figure 1–C). 

However, PET lacks specificity due to limited structural information. When combined with 

CT and/or MRI, both specificity and sensitivity are increased due to the inclusion of 

anatomical sites into the evaluation framework. Despite rapid improvements in the imaging 

facets of BAT detection, the available methods are limited to manual and semi-automated 

strategies; hence, they are time-consuming and non-reproducible.

II. Related Work

For abdominal fat (central obesity) quantification, Zhao et al. [13] used intensity profile 

along the radii connecting sparse points on the outer wall (skin boundary) starting from the 

abdominal body center. Boundary contour was then refined by a smoothness constraint to 

separate VAT from SAT. This method, however, does not adapt to obese patients easily, 

where the neighboring subcutaneous and visceral fat cavities lead to a leakage in the 

segmentation. In another study, Romero et al. [14] used heuristic search strategies to 

generate the abdominal wall mask on a small set of representative slices. In a similar 

fashion, the method in [15] developed a semi-supervised segmentation method based on a 

hierarchical fuzzy affinity function. Its success is vague when patient specific quantification 

is considered. Mensink et al. [16] proposed a series of morphological operations; however 

fine-tuning of the algorithm is difficult, and the step should be repeated almost for every 

patient when the abdominal wall is too thin. More recently, Kim et al. [17] generated a 

subcutaneous fat mask using a modified “AND” operation on four different directed masks. 

However, logical and morphological operations make the whole quantification system 

vulnerable to inefficiencies. In a more advanced method such as [18], SAT, VAT, and muscle 

were separated using a joint shape and appearance model, but the reproducibility of the 

method is highly dependent on the model at hand. Based on a similar idea as in [13], a 

recent method by Kim et al. [19] estimated the muscle boundary using a convex-hull and 

then performed smoothing by selecting points that minimize the distance between the 

contour and the organ regions. However, the performance is dependent on the goodness of fit 

of the convex-hull. Although the method addresses SAT-VAT separation at a volumetric 

level, it lacks the use of important appearance features and volumetric smoothing.

There is no automated Computer-Aided Detection (CAD) system proposed yet for BAT 

quantification using radiology scans. Existing studies are mostly based on the qualitative 

observations of expert radiologists and nuclear medicine physicians. In those studies, strictly 

chosen specific anatomical locations were explored for BAT presence [20], [21]. The 

quantification process was conducted either by manual or semi-automated delineation 
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methods. Since PET images have high contrast, thresholding and clustering-based methods 

are well-suited for the delineation of uptake regions. Therefore, a simple thresholding was 

often used for segmenting uptake regions pertaining to BAT, allowing the extraction of 

volumetric and SUV (i.e., “standardized uptake value”) based metrics. BAT is considered 

present if there are areas of tissues that are (i) more than 5 mm in diameter, (ii) CT density is 

restricted to −190 to −30 Hounsfield Units (HU), and (iii) have an SUV of 18F-

fluorodeoxyglucose (18F-FDG) of at least 2 g/ml [20], [21] in corresponding PET images. 

Here it is important to note that in [22], authors chose the thresholding value for SUVmax > 3 

g/ml to identify BAT regions. Hence, there is no clear consensus on the choice of SUV for 

BAT regions. In the last step, regions of interest (ROIs) are manually defined to remove false 

positive (FP) regions from consideration. Several manual FP removal steps may be required 

for differentiating uptake between BAT regions and lymph nodes, vessels, bones, and the 

thyroid [23]. All these manual identifications require extensive user knowledge of the 

anatomy. Furthermore, in cases where pathologies are present, segregating pathologies from 

normal variants of 18F-FDG on BAT regions can be extremely challenging [12].

Our contributions:

To the best of our knowledge, the proposed system is the first fully automated method for 

detecting, segmenting, and quantifying SAT, VAT and BAT regions from radiology scans. 

First, we propose an automated abdominal and thorax region detection algorithm, based on 

deep learning features. Second, we develop an unsupervised learning method for separating 

VAT from SAT using appearance (via Local Outlier Scores) and geometric (via Median 

Absolute Deviation) cues. For volumetric quantification, we integrate contextual information 

via a sparse 3D Conditional Random Fields (CRF) based label fusion algorithm. Our work 

can be considered as the largest central obesity quantification study (151 CT scans) to date, 

validating accurate region and abdominal fat detection algorithms.

For our contributions in BAT detection and segmentation, we first use a fixed HU interval to 

identify total adipose tissue (TAT) from CT images. Next, we devise a seed sampling scheme 

for extracting foreground and background cues from high uptake regions of PET images in 

head-neck and thorax regions only. The identified seeds are propagated into the 

corresponding CT scans as well. This is followed by a PET-guided image co-segmentation 

on the hyper-graph (PET/CT) to delineate potential BAT regions. Lastly, for FP rejection, we 

propose a novel probabilistic metric that combines Total Variation and Cramér-von Mises 
distances to differentiate BAT regions from non-BAT regions. Figure 2 shows the overview 

of the proposed system.

III. Region Detection in Whole Body CT Volumes

The input to our region detection algorithm is a whole body CT volume ℐ ∈ ℝX × Y × Z. 

Since it is difficult to get a large amount of annotated data for training in medical imaging 

applications, one should resort to as few training examples as possible. Therefore, we 

propose a new region detection method based on the concept of one-shot learning, as the 

learners are trained only on one image to make predictions for the remaining images. The 

proposed region detection framework locates two slices in the CT volume, i.e., top and 
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bottom of the region of interest (yellow box in Figure 3). Detecting these two slices is 

challenging since they can easily be confused with similarly appearing slices. Therefore, 

there is a need for a better feature representation. In this regard, deep learning has recently 

adapted quite successfully for computer vision and medical imaging applications [24], [25]. 

To benefit from this rich representation of image features, we use Convolutional Neural 

Network (CNN) features (i.e., deep learning features) as image attributes extracted from the 

first fully-connected layer of the pre-trained Fast-VGG Network [26]. The network 

comprises 5 convolution layers and 3 fully connected layers. The first, second, and fifth 

convolution layers are followed by a max-pooling layer by convention. In order to have 

faster operations, 4-pixels stride is used in the first convolution layer. The dimension of the 

feature vector generated for each slice is equal to 4096. Given the reference annotations of 

the body regions for one subject’s volumetric image, we find its Euclidean distance with the 

testing subjects’ images using deep learning features. For training, we use two sets of 

learners: positive (Dp) and negative (Dn). The testing slice I ∈ ℐ corresponding to the 

smallest distance with the positive set and largest distance with the negative set is selected as 

the desired result. In order to combine the probabilities pertaining to Dp and Dn learners, we 

use logarithmic opinion pooling [27] as:

P(I) = 1
Z P(I |Dp)wP(I |Dn)1 − w, (1)

where Z = ∑I ∈ ℐP(I |Dp)wP(I |Dn)1 − w is the normalizing constant and w is the weight 

parameter.

IV. SAT-VAT Separation and Quantification

The proposed SAT-VAT separation framework consists of 4 steps as illustrated in Figure 3. 

Since the HU interval for certain substances such as fat, water, and air in CT remains 

relatively constant, it is straightforward to identify TAT using a clinically validated 

thresholding interval on the HU space (step 1). In step 2, we identify the initial boundary 

between VAT and SAT regions by conducting a sparse search over a line connecting the 

abdominal region center with the skin boundary (white dotted line in Figure 4). For step 3, 

two refinement methods are presented to remove FP boundary contour points: Median 

Absolute Deviation (MAD) coefficient and Local Outlier Scores (LoOS). In the final step, 

we develop a sparse 3D CRF formulation to perform the finest SAT-VAT separation utilizing 

shape, anatomy, and appearance cues.

Data for Central Obesity Quantification:

With IRB approval, we retrospectively collected imaging data from 151 subjects who 

underwent PET/CT scanning (67 men, 84 female, mean age: 57.4). Since CT images are 

from whole body PET/CT scans (64-slice Gemini TF, Philips Medical Systems); they have 

low resolution, and no contrast agent was used for scanning. In-plane spacing (xy-plane) of 

CT image was recorded as 1.17 mm by 1.17 mm, and slice thickness was 5 mm. The scanner 

parameters for the CT were as follows: 120–140 kV and 33–100 mA (based on BMI), 0.5 s 

Hussein et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



per CT rotation, pitch of 0.9 and 512 × 512 data matrix was used for image fusion. The field 

of view (FOV) was from the top of the head to the bottom of the feet. The CT reconstruction 

process was based on filtered back-projection algorithm. No oral or intravenous contrast was 

administered.

Subjects were selected to have a roughly equal distribution of varying BMIs in order to have 

an unbiased evaluation. Our evaluation set comprised underweight subjects (N = 20), normal 

subjects (N = 50), overweight subjects (N= 46), obese subjects (N = 35). UB (>10 years of 

experience in body imaging with CT and PET/CT interpretation) and GZP (>10 years of 

experience as a nuclear medicine physician and body imaging fellowship in radiology and 

imaging sciences) segmented fat regions by separating SAT and VAT boundary and using 

appropriate image post-processing such as edge-aware smoothing. Complementary to this 

interpretation, the participating radiologist BW (>20 years of experience in general 

radiology, body imaging, interventional radiology, and oncology imaging) evaluated SAT 

and VAT separating boundary qualitatively for both interpreters, and their segmentations 

were accepted at the clinical level of evaluations. This process is currently the most common 

procedure in creating a reference standard for segmentation evaluation [28]–[31]. Above 

99% of agreement over Dice Similarity Coefficient (i.e. overlap ratio) was found between 

observers’ evaluations with no statistical difference (t-test, p > 0.5).

Step 1: Total Adipose Tissue (TAT) Segmentation

The input to our fat quantification pipeline is the abdominal volume. By following the 

clinical convention, we threshold the abdominal CT volume by −190 to −30 HU interval to 

obtain TAT [32]. We also perform a morphological closing on the input image using a disk 

with a fixed radius of r followed by a median filtering in an m × m neighborhood. This 

preprocessing is conducted to perform noise suppression and make the volume smooth for 

the next phase.

Step 2: Initial Boundary Estimation

We roughly identify the skin boundary of the abdominal region by selecting the longest 

isoline in the thresholded image (obtained from Step 1). For each point on the skin boundary 

contour S = {s1, …, sn}, we generate a set of hypotheses H = {h1, …, hu} along the radii 

connecting S with its centroid C (Figure 4). Each hypothesis (candidate boundary location) 

is next verified for the possibility of being a boundary location by assessing image gradient 

information on the line connecting its location to the centroid C (white arrows in Figure 4). 

The SAT-VAT separation boundary, B = {b1, …, bn}, should satisfy the following condition: 

hj ≠ hj−1 for hj ∈ B, and bi ∈ H, ∀i. As illustrated in Figure 4, hypothesis points change their 

gradients in close vicinity of boundary B. These boundary points can still be noisy and may 

get stuck inside the small cavities of the subcutaneous fat. To alleviate such instabilities, the 

next step proposes a two-stage refinement methodology.

Step 3: Outlier Rejection

Geometric MAD: In the first stage of the outlier removal, we apply MAD on the distances 

between B and S. The intuition behind this idea is that the SAT-VAT separation boundary 

should maintain a smoothly varying distance from the skin boundary. However, the outliers 
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in subcutaneous and visceral cavities usually violate this smooth transition; therefore, we 

apply MAD on the points between B and S to remove outliers based on the geometric 

information. The higher outlier sensitivity of MAD in comparison with mean-based method 

and other methods were studied in [33]. The resulting MAD coefficient Φi, for each 

boundary point, indicates a score for being an outlier:

Φi = |di − med(d)|  med  |di −  med (d)| −1, (2)

where d is the Euclidean distance between S and B, di = ∥si − bi∥2, and med is the median 

operator. Boundary locations with high MAD coefficients Φ > t (Section VI–A) are labeled 

as outliers and subsequently removed from B.

Local Outlier Scores: Although MAD can be quite effective in outlier rejection, there 

may still be some boundary locations that potentially lead to the drift of SAT-VAT separation 

due to the limitations of shape/geometry based attributes. To mitigate the influence of those 

boundary points, we apply the second stage of the outlier rejection, integrating appearance 

information through Histogram of Oriented Gradients (HOG) features [34]. For each 

candidate boundary point, we attach its appearance attributes (HOG) computed in a c × c 
cell. Since candidate boundary points lie on a high dimensional manifold (non-Euclidean), 

the normalized correlation distance computes similarities of those points.

Points not mapped together to denser regions in high dimensional feature space are 

considered as outliers. By following this intuition, we obtain local outlier scores (LoOS) Π, 

indicating the confidence measure for each point being an outlier [35]:

Π(x) =  er f   PLOF(x)
2 . nPLOF

, (3)

where er f is the Gaussian Error Function, and PLOF is the probabilistic local outlier factor 

based on the ratio of the density around point x and the mean value of estimated densities 

around all the remaining points. nPLOF is the λ standard deviation of the PLOF.

Step 4: Context Driven Label Fusion Using Sparse 3D CRF

In order to fuse the labels of the boundary candidates across different slices of an image 

volume and create a fine SAT-VAT separating surface, we use sparse 3D Conditional 

Random Fields (CRF). In our CRF formulation, a set of N slices is selected to construct a 

graph G = (V, E), where the nodes (V) consist of only the hypothesis boundary points (not 

the image pixels) and the edges (E) join neighboring boundary points in a high dimensional 

feature space. The labels, i.e., outlier and SAT-VAT boundary, are considered as source and 

sink in the context of our work. We define unary potentials of the CRF as the probabilities 

obtained after applying k-means clustering to the normalized outlier scores of the third 

stage:
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Θ ki |vi = − log P ki vi . (4)

We define the pairwise potentials between the neighboring points vi and v j as:

Ψ ki, k j |vi, v j = 1
1 + |ϕi − ϕ j|

ki ≠ k j , (5)

where |.| is the L1 distance, [.] is the indicator function, and ϕ is the concatenated vectorized 

appearance and geometric features. Once unary and pairwise potentials are defined, we seek 

to minimize the negative logarithm of P(k| G; w) with k labels (k ∈ {0,1}) and weights w as:

k* = argmin
k, w

−log P k |G; w

= argmin
k, w

∑
vi ∈ V

Θ ki |vi + w ∑
vi, v j ∈ E

Ψ ki, k j |vi, v j

(6)

Equation 6 is solved using graph-cut based energy minimization [36]. Graph-cut for more 

than two labels is an NP-hard problem and solved using approximate solutions. We have 

chosen graph-cut for minimizing the energy function defined to solve 3D sparse CRF. In 

contrast to level sets and loopy belief propagation methods, the graph-cut for two labels 

returns the global optimum in polynomial time. Additionally, graph cut formulation with a 

discrete binary solution space of [0, 1] after linear programming relaxation (as in equation 6) 

is a convex problem. After solving equation 6, we fit a convex-hull around the obtained 

visceral boundaries and the segment inside the convex-hull is masked as VAT.

V. Brown Fat Detection and Segmentation

The proposed BAT detection and delineation algorithm initiates with the segmentation of fat 

tissue from CT, followed by an automatic seed selection for BAT. We then perform PET 

guided CT co-segmentation and lastly propose a false positive rejection method. These 4 

steps are depicted in Figure 5.

Data for Quantification of BAT:

This retrospective study was institutional review board (IRB) approved and the need for 

written informed consent was waived. Thirty-seven adult (>21 years) oncology patients with 

FDG BAT uptake were identified from PET/CT studies from 2011–2013. The control cohort 

consisted of 74 adult oncology patients without detectable FDG BAT uptake matched for 

BMI/gender/season. The oncology patients have malignant tumors which were all biopsy 

proven. From the 4,458 FDG PET/CT reports in our database, there were 46 unique adult 

patients whose PET/CT reports specified the presence of BAT. Eight patients were excluded 
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for only negligible PET/CT evidence of BAT reported in the paravertebral region. Another 

patient was excluded since FDG uptake was associated with interatrial lipomatous 

hypertrophy. Apart from these, the final selection of PET/CT scans was confirmed based on 

the consenskus agreement of the participating nuclear medicine physicians, radiologist, and 

clinician. A total of 37 cases of adult BAT patients without FDG avid liver lesions were 

included in this study.

An intravenous injection of 5.18 MBq/kg (0.14 mCi/kg) 18F-FDG was administered to 

patients with a blood glucose level ≤ 200 mg/dL after fasting for at least four hours. Patients 

sat in a quiet room during the 60 minute uptake phase and were instructed to remain quiet 

and refrain from physical activity. All scans were acquired using a Gemini TF (Philips 

Medical Systems) PET/CT scanner. There were no statistically significant differences 

between the two cohorts in gender, race, BMI, height, and weight (p > 0.05). The voxel 

dimensions in PET scans were 4 mm ×4 mm ×4 mm. The PET component of the PET/CT 

scanner was composed of lutetium-yttrium oxyorthosilicate (LYSO)-based crystal. Emission 

scans were acquired at 1–2 min per bed position. The FOV was from the top of the head to 

the bottom of the feet. The three-dimensional (3D) whole-body acquisition parameters were 

144 × 144 matrix and 18 cm FOV with a 50% overlap. The reconstruction process in the 

scanner was based on the 3D Row Action Maximum Likelihood Algorithm (RAMLA) [37].

To develop the reference standard, we used the manual delineation from three experts. First, 

the participating nuclear medicine physicians (MO: >20 years of experience, GZP: >10 

years of experience, and AG: >10 years of experience), agreed on the predetermined SUV 

cut-off. GZP segmented the BAT regions, blind to consensus segmentation of MO and AG. 

Therefore, two delineations were considered in the evaluation, although three experts 

worked for the segmentation of BAT regions. When segmenting the BAT area, interpreters 

were provided viewer/fusion software, as well as manual, automated, and semi-automated 

contouring methods. The interpreters used both CT images (to define anatomical sites and 

fat tissue with the predefined HU interval) and PET images (with 2.0 g/ml of cut-off 

SUVmax) when delineating BAT regions. The fusion of PET with thresholded CT images 

provided uptake only in fat regions, removing most of the false positive uptake regions from 

consideration. Next, the interpreters used thresholding on PET uptake within an ROI 

(roughly drawn by the experts using manual contouring tool) for each detected BAT region. 

Finally, expert interpreters performed necessary corrections on the segmented PET uptake 

using manual contouring tools guaranteeing that the segmentations do not overlap with 

muscle, lymph nodes, and tumors.

Step 1: Segmenting Fat Tissue from CT Scans

Standard reference for estimating fat tissues in CT is by means of the computed planimetric 

method or with a fixed attenuation range from −190 to −30 HU (Section IV-Step 1). In our 

implementation, we extend this range into [−250, −10] HU to be more inclusive. Prior to this 

operation, we employ a 3D median filtering to smooth the images. Resulting segmentations 

will form the basis for differentiating BAT from non-BAT regions.
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Step 2: Automatic Seed Selection

BAT regions are metabolically active, and studies reported that at least an SUVmax = 2 g/ml 

was observed in BAT regions [20], [21]. However, it is important to note that 18F-FDG 

doesn’t only attach to BAT but to tumor regions as well; hence, high SUVmax does not 

necessarily indicate BAT presence. To accurately characterize BAT, the anatomical/structural 

counterpart of the PET images is required. Since the BAT regions have SUVmax ≥ 2 g/ml, 

we threshold the head/neck and thorax regions accordingly by following the automated 

seeding module of the joint segmentation method proposed in [38]. The resulting 

thresholded PET images most likely include numerous disconnected regions since many 

pixels may have SUV larger than 2 g/ml due to high metabolic activities. For each 

disconnected region, pixels with maximum SUVs are defined as foreground seeds. In order 

to set background pixels, we explore the neighborhood of foreground pixels by searching in 

8-directions. We find background locations by marking the first pixel with less than or equal 

to 40% of the SUVmax (i.e., conventional percentage for clinical PET thresholding). Those 

pixels are set as background seeds. The final step is to insert additional background seeds 

into the pixels lying in the spline connecting background seeds as explained in [38]. Once 

the background and foreground seeds are identified, Random Walk (RW) co-segmentation is 

employed by solving equation 8 for the unknown labels of the pixels (nodes).

Step 3: PET-Guided Random Walk Image Co-Segmentation

It is reasonable to consider the BAT boundary determination process as a co-segmentation 
problem where the contributions of PET and CT in segmentation procedure are unequal. 

Based on our co-segmentation algorithm proposed in [38], herein we introduce a PET-

guided RW co-segmentation algorithm with asymmetric weights. This is based on the fact 

that the influence of PET on BAT segmentation results is higher than that of CT.

PET and CT images are in registration owing to PET/CT scanner’s hybrid reconstruction 

properties. Any inconsistencies due to breathing and different timing of PET and CT 

imaging in the PET/CT scanner are minimized using deformable image registration as a 

post-processing step. Considering this fact, two graphs pertaining to CT and PET, GCT = 

(VCT, ECT) and GPET = (VPET, EPET), can be combined to define a hyper-graph GH = (VH, 

E H), on which the co-segmentation algorithm is applied. Note that for each image, we 

define a connected undirected graph G with nodes v ∈ V and edges e ∈ E ⊆ V × V. Since 

performing a random walk on the product graph GH is equivalent to performing a 

simultaneous random walk on the graphs GCT and GPET, we define the nodes and edges as 

follows:

VH = vi
CT , vi

PET : vi
CT ∈ VCT ∧ vi

PET ∈ VPET ,

EH = vi
CT, vi

PET , v j
CT, v j

PET :
vi

CT, v j
CT ∈ ECT ∧ vi

PET, v j
PET ∈ EPET .

(7)
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Similarly, the combinatorial Laplacian matrix definition LH (that includes labeled and 

unlabeled nodes as well as weight parameters w of the imaging data) of the product graph 

GH is updated from conventional RW formulation to co-segmentation as LH = (LCT)α ⊗ 
(LPET)θ, where α and θ are constants, 0 ≤ α < θ ≤ 1, and ⊗ denotes direct product. Lastly, 

the probability distribution of intensity values for the product lattice xH is defined as the 

direct multiplication of the initial probability distributions of xCT and xPET as xH = (xCT)ζ ⊗ 
(xPET)η, where ζ and η are used to optimize initial probability distributions subject to the 

constraint 0 ≤ ζ < η ≤ 1. The desired random walk probabilities are equivalent to the 

solution of the combinatorial Dirichlet problem [40] as:

D xH = 1
2 xH TLHxH = 1

2 ∑
ei j ∈ EH

wi j
H xi

H − x j
H 2, (8)

where a combinatorial harmonic function of x H, satisfying the Laplace equation ∇2xH = 0, 

minimizes equation 8. To emphasize the effect of PET more than that of CT for BAT region 

delineation, we select combination of (α, θ) as (0.05, 0.95) and (ζ, η) as (0.3, 0.7) after 

various empirical evaluations.

Step 4: Differentiating BAT From Non-BAT Regions

BAT regions are not easily separable from other fat regions in CT because WAT and BAT 

follow the same intensity patterns (fixed HU interval). Conventionally, intensity values of fat 

regions can be considered to follow a normal distribution with a known mean μ and variance 

σ (i.e.,𝒞 = 𝒩(μ, σ)). Since the PET and CT images are co-registered, the segmented regions 

in both PET and CT are equivalent: rPET = rCT. We next formulate the problem of 

differentiating BAT from non-BAT regions as follows. The intensity distribution p, obtained 

from rCT correspondence of each segmented uptake region rPET, should be in a close vicinity 

of 𝒞, such that, d p, 𝒞 < ϵ, where d ∈ [0, 1] is a distance metric measuring whether p 
belongs to some class of distribution 𝒞 or not. We postulate that p is sufficiently far from 𝒞
when lymph nodes, tumor regions, or other non-fat tissues are involved in rCT.

For the probabilistic distance metric in our framework (d), we use two complementary 

distance measures: total distance variation (dTV) and Cramér-von Mises distance (dCM). dTV 

is equivalent to the L1-norm and can be formulated as half of the L1-distance:

dTV = 1
2 ∑

x ∈ Ω
| p(x) − 𝒞(x) | , (9)

where Ω is a measurable space on which p and 𝒞 are defined. Complementary to dTV, we 

also use dCM to judge the goodness of fit between the two distributions by emphasizing L2-

distance. In other words, dCM is effective in situations where two distributions under 

comparison have dissimilar shapes (although similar mean and variance can still be captured 

with dTV). The Cramér-von Mises statistics is defined as:
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dCM = min
x

|P(x) − ψ(x)|, (10)

where ψ(x) and P(x) are cumulative distribution functions of 𝒞 x  and p(x), respectively. 

The proposed distance d is simply formed by integrating dCM and dTV as:

d = dCM
2 + dTV

2 . (11)

If d < ϵ, our differentiation system accepts the BAT proposal/hypothesis. Note also that d is a 

distance-metric because (i) it is symmetric d 𝒞, p = d p, 𝒞 , (ii) non-negative (as it spans 

from 0 to 1, d ≥ 0), (iii) d p, 𝒞 = 0 only when p = 𝒞 , and (iv) it satisfies the 

triangleequality as:

d(p, 𝒞) ≤ d(p, 𝒟) + d(𝒟, 𝒞) . (12)

VI. Results

A. SAT-VAT Separation

Parameters and evaluations metrics: The following parameters were noted for 

reproducible research in our experiments: r = 10, m = λ = 3, t = 2.5, c = 14, w = 0.5, and N 
= 5. For evaluation of region detection, we used Intersection over Union (IoU) [43] given by: 
Overlap RG, RS
max |RG|, |RD|

, where RG and RD were reference standard and automatically detected 

abdominal region, respectively. We also reported region detection results using the absolute 

difference in slices between RG and RD. For segmentation evaluation, we used widely 

accepted Dice Similarity Coefficient (DSC): 
2|IG ∩ IS|
|IG| + |IS| , where IG and IS were reference 

standard and automatically segmented fat region, respectively. Moreover, we measured the 

volumetric fat difference (in milliliters, mL) between true and segmented fat regions with 

Mean Absolute Error (MAE) metric.

Comparisons: For abdominal region detection, the upper boundary of the region was 

defined by the superior aspect of the liver, whereas the lower boundary was defined by the 

bifurcation of the abdominal aorta into the common iliac arteries [44]. As can be seen in 

Table I, the proposed region detection method significantly outperformed registration based 

methods such as Scale Invariant Feature Transform (SIFT) flow [39]. Moreover, the 

proposed combination of positive and negative learners (Equation 1) provided percentage 

improvement of 7.9% in IoU and 6.5% reduction in average absolute slice difference, 

compared to only a positive learner with deep learning features.

We also performed extensive evaluations for SAT-VAT segmentation and quantification. We 

compared our method with One-class SVM, Zhao et al. [13], Random Sample Consensus 
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(RANSAC) [41], and the state-of-the-art outlier detection method by Mahito et al. [42], 

which was based on iterative data sampling. In addition, we showed the results of our 

proposed framework’s individual steps to provide progressive improvement in accuracy, i.e., 

Geometric MAD, Appearance LoOS, and the final context driven fusion using sparse 3D 

CRF. As mentioned in Section IV, two delineations from expert interpreters were considered 

for the segmentation evaluation of SAT and VAT.

Figure 6 shows the volume rendering of subjects along with VAT and SAT delineations for 

qualitative evaluation. Highly accumulated VAT (shown in red) in obese subjects is 

observed. DSC and MAE results for SAT and VAT are shown in Table II where significant 

improvements were obtained compared to other methods. The proposed method achieved 

around 40% lesser MAE, compared to [13] and other methods.

Computation time: The computation time for SAT-VAT segmentation method was less 

than 2s/slice in our case, and less than 2.5s/slice in other methods that we compared. The 

unoptimized MATLAB implementation of Geometric MAD took approximately 0.45s/slice, 

that of appearance LoOS ran on average in 0.71s/slice, followed by an average of 1.96s/slice 

for 3D CRF on Intel Xeon Quad Core CPU @ 2.80 GHz and 24.0 GB RAM. Note also that 

none of the methods (in the comparison experiments) required any manual intervention.

B. Brown Fat Detection and Delineation

Evaluation of Head-Neck and Thorax Region Detection: Anatomically, head-neck/

thorax region was defined from the superior aspect of the globes to 5 mm below the base of 

the lungs [44]. We employed IoU as our region detection evaluation metric. Table III shows 

comparative evaluations of different methods with the proposed combination of positive and 

negative learners. The percentage improvement of 22.4% in IoU was observed over SIFT 

Flow [39]. Moreover, the combination of positive and negative learners using logarithmic 

opinion pooling led to the percentage improvement of further 3% over the instance when 

only a positive learner was used.

Evaluation of BAT Delineation: For quantitative evaluation of the delineation 

component of the proposed system, we compared True Positive (TP) and False Positive (FP) 

volume fractions of the segmented tissues with the manual delineation of the experts 

(mentioned in Section V).

We computed the average performance over the two delineations (Sensitivity (TP): 92.3 +/

− 10.1%, Specificity (100-FP): 82.2+/−18.9 %). Metabolic volumes derived by the proposed 

segmentation were correlated with expert-derived volumes, and the resulting correlation 

coefficient, after linear regression, was found to be R2 = 0.97 (p < 0.01). Example 

segmentation results at three different anatomical locations are shown in Figure 7 A–F for 

qualitative evaluations. In the ROI based methods, ROIs were drawn by the user (expert 

annotator) to “roughly” include BAT regions, while excluding the rest (Figure 7–C and E).

Comparisons With Other Approaches: We compared our method with the 

conventional thresholding approaches for both CT and PET (for SUV ≥ 2 g/ml) and then 

applied the logical AND operation to the two masks followed by a manual FP removal step. 
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These were the methods used in previous studies to measure BAT boundary and volume 

[20]. Figure 7–G compares DSC of the proposed method with respect to the baseline 

methods. Our proposed system outperformed other methods by a significant margin.

Evaluation of BAT Region Proposals: We computed TP and FP ratios over 111 

PET/CT scans, each labeled as either BAT-positive or BAT-negative. Our results show that in 

110 out of 111 scans (99.1%), BAT proposals’ acceptance/rejection worked quite well. In 

only one scan, our system identified one region as non-BAT while the region was originally 

BAT. This false identification was due to significantly smaller size of the BAT region (<4 

mm), potentially due to the partial volume effect.

VII. Discussion and Concluding Remarks

With obesity being one of the most prevalent health conditions in the world, its 

quantification especially in the abdominal region is vital. In this regard, the quantification of 

visceral fat is significant. In parallel, since BAT is found to be negatively correlated with 

BMI [12], its quantification is essential for many clinical evaluations including obesity and 

metabolic syndromes. For central obesity quantification, we presented an unsupervised 

method for the separation of visceral and subcutaneous fat at the whole-body and body-

region levels. In order to keep the proposed method fully automated, we also proposed a 

minimally supervised body region detection method where training was performed on a 

single subject. We ascribe the improved performance of our method to robust outlier 

rejection using geometric and appearance attributes followed by context driven label fusion. 

Evaluations were performed on non-contrast CT volumes from 151 subjects. Experimental 

results indicate that the proposed system has a great potential to aid in detecting and 

quantifying central obesity in routine clinical evaluations.

For brown fat quantification, we offered a fully automated image analysis pipeline using 

PET/CT scans. Specifically, we proposed a novel approach to automatically detect and 

quantify BAT from PET/CT scans involving PET guided CT co-segmentation, and a new 

probabilistic distance metric combining Total Variation and Cramér-von Mises distances. 

The proposed approach has a potential to assist in the clinical efforts to counteract obesity in 

the most natural way. We performed extensive evaluations and our methods achieved state-

of-the-art performances.

Since PET imaging provides biochemical and physiological activity, it remains the most 

accepted and preferred modality to study metabolically active BAT regardless of the 

radiation exposure. It is important to note that most of the BAT examples are obtained from 

the clinical trials or routine examination of different diseases. Moreover, there are a limited 

number of clinical trials solely focusing on BAT detection, quantification, and its role in 

metabolic syndrome, obesity, and other diseases. In order to reduce concerns regarding the 

ionizing radiation induced by PET/CT, one may consider reducing the radiation exposure of 

PET/CT scans. There are studies that show that low-dose CT scans have similar tissue HU 

levels as those in routine CT scans with no diagnostic differences noted, suggesting the use 

of low(er) dose CT scans in routine examinations [45]. On the other hand, lowering radiation 

dose in PET equipment is more difficult and expensive than its CT counterpart [46], [47]. 
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Furthermore, the choice of a radiotracer is another concern while reducing the radiation 

dose. This is because the half-life of the most commonly used tracers is short and the patient 

size can affect image quality considerably [47]. Despite all the financial and logistical 

disadvantages, lowering the dose in the PET scans is a priority for the manufacturers, 

radiologists, and nuclear medicine physicians [46], [47]. With low dose PET/CT imaging, 

the cost-benefit ratio can be significantly improved for studies related to obesity and 

metabolic syndromes.

Other imaging modalities are also being explored for BAT detection and quantification. The 

application of MRI in human subjects is promising due to the lack of ionizing radiation and 

its excellent soft tissue contrast feature. However, current MR sequences do not have high 

sensitivity and specificity in identifying and quantifying BAT regions. Among a few works 

considering MR as a potential imaging modality for studying BAT, the use of Multi-point 

Dixon and multi-echo T2 spin MRI had been explored in mice [48]. Fuzzy c-means 

clustering was used for initial segmentation of BAT followed by a two-layer feed-forward 

neural network for the separation of BAT from WAT. However, high-field MRI is required 

for better separation of metabolically active fat regions from the rest and there is no optimal 

sequence developed yet to do this task. Precise evaluation of BAT with MRI is not feasible 

in clinical routines and the current standards are still in favor of PET/CT.

Another alternative imaging modality to PET/CT for detection of BAT activation is contrast-

enhanced ultra-sound (CEUS) [49], a non-invasive and non-ionizing imaging modality. As 

the BAT activation was associated with an increased blood flow to the tissue, it can be 

measured by assessing the BAT perfusion. CEUS was found to detect increased BAT blood 

flow during cold exposure relative to warmer conditions. Although the reported experiments 

were preliminary with evaluations restricted to young and healthy males (mean age, 24.0 

± 2.4 years; mean body mass index, 23.4 ± 3.5 kg/m2), BAT assessment may potentially be 

performed using CEUS in the future.

It should also be noted that the respiratory motion can be a potential source of error in co-

segmentation. It is well known that the respiratory motion can affect PET and CT scans 

differently due to the possible differences in scan duration. This may induce residual 

registration mismatch between the two systems and eventually can lead to errors in BAT 

delineation. In such cases, motion correction algorithms as well as additional deformable 

registration methods can be employed to minimize registration errors prior to BAT 

segmentation.

Our study has some limitations to be noted. First, when young(er) subjects are scanned with 

their arms down, muscle may be observed as fat tissue due to photon depletion caused by 

high bone density. Although we did not observe this issue in the data set presented in this 

study, it may be a pressing issue that must be addressed when generalizing the quantification 

software into a larger cohort of studies such as clinical trials. Second, the partial volume 

effect can degrade the detection of small BAT deposits such as para-spinal BAT, particularly 

when slice thickness in PET is large. Based on our recent findings in [50], [51], our future 

study will address these two limitations by integrating partial volume correction and 

denoising methods into the proposed system. Inspired by a recent study [52], another step 
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will be to design a fuzzy object modeling approach for the correction of incorrectly 

separated muscle and fat tissues due to photon depletion.

Appendix

Abbreviations used in this paper in alphabetical order:

BAT: Brown Adipose Tissue, BMI: Body Mass Index, CAD: Computer Aided Detection, 

CNN: Convolutional Neural Network, CRF: Conditional Random Fields, CT: Computed 

Tomography, DSC: Dice Similarity Coefficient, FDG: Fluorodeoxyglucose, FP: False 

Positive, HOG: Histogram of Oriented Gradients, HU: Hounsfield unit, IoU: Intersection 

over Union, IRB: Institutional Review Board, LoOS: Local Outlier Scores, MAD: Median 

Absolute Deviation, MAE: Mean Absolute Error, MRI: Magnetic Resonance Imaging, 

PET: Positron Emission Tomography, RANSAC: Random Sample Consensus, ROI: 
Region of Interest, RW: Random Walk, SAT: Subcutaneous Adipose Tissue, SEmml: 
Standard Error of the Mean, SIFT: Scale Invariant Feature Transform, SUV: Standardized 

Uptake Value, TAT: Total Adipose Tissue, TP: True Positive, VAT: Visceral Adipose Tissue, 

WAT: White Adipose Tissue
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Fig. 1. 
An illustration of different types of adipose tissues in Positron Emission Tomography (PET) 

and Computed Tomography (CT) scans. (A) signifies the difference at cellular level between 

Brown Adipose Tissue (BAT) and White Adipose Tissue (WAT). In contrast to WAT, BAT is 

metabolically active and consumes energy. (B) shows Subcutaneous Adipose Tissue (SAT) 

and Visceral Adipose Tissue (VAT) in a coronal view of CT. The red boundary illustrates the 

thin muscular wall separating these two sub-types. The wall remains mostly discontinuous, 

making SAT-VAT separation significantly challenging. (C) depicts metabolically active BAT 

in PET (left/middle) and PET/CT fusion (right).
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Fig. 2. 
A flow diagram of the proposed system for whole-body adiposity analysis. The input to the 

system comprises PET/CT images. Thorax and abdominal regions are detected using deep 

learning features in the first stage (Section III), followed by Subcutaneous-Visceral adipose 

tissue segmentation (Section IV) using CT images, and Brown Adipose Tissue detection and 

quantification (Section V) using PET images.
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Fig. 3. 
An overview of the proposed SAT-VAT separation method. Once the abdominal region is 

detected, Total Adipose Tissue (TAT) is segmented using CT intensity interval known for fat 

tissue. Initial Subcutaneous-Visceral adipose tissue boundary is estimated by evaluating 

multiple hypothesis points. Geometric Median Absolute Deviation (MAD) and appearance 

based Local Outlier Scores (LoOS) are then combined within the 3D Conditional Random 

Field (CRF) based label fusion.
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Fig. 4. 
An illustration of skin boundary and hypothesis points along the radii connecting S with its 

centroid C. For each point (yellow) in S, a set of hypotheses (blue) is generated which is 

along the line connecting the skin boundary point with the centroid C.
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Fig. 5. 
An overview of the proposed Brown Adipose Tissue (BAT) detection and segmentation 

system. Given the head-neck and thorax regions, adipose tissue is identified using CT 

thresholding intervals (Step 1). Using the corresponding PET scans, segmentation seeds are 

sampled in accordance with high uptake regions (Step 2). PET-CT co-segmentation is 

performed using Random Walk (Step 3) followed by false positive removal (Step 4) using 

Total Variation and Cramér-von Mises distances.
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Fig. 6. 
Visceral Adipose Tissue (red) and Subcutaneous Adipose Tissue (green) segmentations are 

illustrated for two subjects (one with BMI<25, another with BMI>30) at the chosen 

abdominal slice level along with their volume renderings. Several abdominal slices are also 

shown for central adiposity accumulation.
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Fig. 7. 
For three different anatomical levels (columns), row (A) shows reference standards (white); 

row (B) demonstrates the results from CT thresholding where pink (inner) and blue (outer) 

contours show brown fat delineation (blue contour shows fat region near skin boundary 

which leaks into the body cavity and also overlaps with pink contour as in the first column); 

row (C) comprises the results from ROI (Region of Interest) based CT thresholding, where 

orange boxes show user drawn ROIs and blue contours are the brown fat delineation results; 

row (D) shows the results from conventional PET thresholding, where green contours show 

output BAT delineations; row (E) depicts the ROI based PET thresholding; and row (F) 

demonstrates the proposed algorithm’s delineation results using PET and CT jointly. (G) 

Dice Similarity Coefficients (DSC) of the proposed method in comparison with ROI based 

PET thresholding, PET thresholding, ROI based CT thresholding, and CT thresholding 

methods are shown.
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