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Abstract

Despite the rapid developments of x-ray cone-beam CT (CBCT), image noise still remains a major 

issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for 

low dose CBCT image, in this work, a sparse constraint based on the 3D dictionary is incorporated 

into a regularized iterative reconstruction framework, defining the 3DDL method. In addition, by 

analyzing the sparsity level curve associated with different regularization parameters, a new 

adaptive parameter selection strategy is proposed to facilitate our 3DDL method. To justify the 

proposed method, we first analyze the distributions of the representation coefficients associated 

with the 3D dictionary and the conventional 2D dictionary to compare their efficiencies in 

representing volumetric images. Then, multiple real data experiments are conducted for 

performance validation. Based on these results, we found: (1) the 3D dictionary based sparse 

coefficients have three orders narrower Laplacian distribution compared to the 2D dictionary, 

suggesting the higher representation efficiencies of the 3D dictionary; (2) the sparsity level curve 

demonstrates a clear Z-shape, and hence referred to as Z-curve in this paper; (3) the parameter 

associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, 

which could be adaptively located with the proposed Z-index parameterization (ZIP) method; (4) 

the proposed 3DDL algorithm equipped with the ZIP method could deliver reconstructions with 
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the lowest root mean squared errors (RMSE) and the highest structural similarity (SSIM) index 

compared to the competing methods; (5) similar noise performance as the regular dose FDK 

reconstruction regarding the standard deviation metric could be achieved with the proposed 

method using  dose level projections. The contrast-noise ratio (CNR) is improved by ~ 

2.5/3.5 times with respect to two different cases under the  dose level compared to the low dose 

FDK reconstruction. The proposed method is expected to reduce the radiation dose by a factor of 8 

for CBCT, considering the voted strongly discriminated low contrast tissues.

Index Terms

Dictionary learning; sparse representation; cone-beam CT; noise suppression; regularization 
parameter

I. Introduction

As a powerful tool to visualize internal structures of an object in a non-invasive fashion, 

cone-beam CT (CBCT) [1] has been applied in many scenarios, such as patient setup in 

radiation therapy [2], intraoperative imaging [3], and maxillo-facial visualization [4].

Despite the rapid developments, image noise still remains a major issue in low dose CBCT. 

One of the reasons comes from the demands for radiation dose reduction as low as 

reasonably achievable (ALARA) due to the potential radiation damage to the human body. 

Basically, low dose CBCT can be achieved by either collecting fewer projections (few-view 

protocol) or reducing the exposure level (low-exposure protocol). In this work, we will focus 

on the low-exposure protocol, as it can be simply implemented by reducing the tube current 

and is advantageous sampling-wise. Low-exposure protocol, however, would inevitably 

result in noisy projection data. And data noise would be propagated into reconstructed 

images, possibly rendering the images less useful or useless.

A great effort has been devoted to image noise reduction. Specifically, by accommodating 

measurement statistics, modeling data acquisition geometry, and enforcing physical 

constraints, regularized iterative reconstruction algorithms often produce superior image 

quality with highly noisy measurements, and hence having become increasingly popular. In 

the context of iterative reconstruction, an appropriate physical constraint about the 

underlying image, i.e., the regularizer, is regarded as being of primary importance (e.g., 

references [5], [6], [7], [8]). Thanks to the rapid development of compressive sensing theory 

[9], the sparsity-promotion regularizers have been successful, most of which could be 

applied on both the few-view and low-exposure protocols. For example, Sidky et al. and Yu 

et al. proposed an iterative reconstruction algorithm by minimizing the total variation (TV) 

of the image [10], [11]. Tang et al. [12] compared the TV based reconstruction method with 

the well-accepted penalized weighted least squares method [13] and the q-Generalized 

Gaussian Markov Random Field (g-GGMRF) method [14]. Yan et al. proposed an adaptive-

weighted TV regularizer for better edge reservation performance [15]. Provided a high-

quality image which resembles the image under reconstruction, Chen et al. developed a 

method referred to as prior image constrained compressive sensing (PICCS) for accurate 
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reconstruction of dynamic CT images [6]. In low dose CBCT domain, many iterative 

reconstruction algorithms were published, with an emphasis on the design of the regularizer 

[16], [17]. Sidky et al. developed a 3D-TV minimization method for volumetric image 

reconstruction from a circular CBCT scan, which is referred to as adaptive-steepest-descent-

projection-onto-convex sets (ASD-POCS) algorithm [5]. Jia et al. constructed an iterative 

CBCT reconstruction framework regularized by the tight frame (TF) based sparse 

representation [16], attaining competitive performance as the TV minimization method. 

Considering the correlations of the images in different energy channels, Gao et al. enforced a 

low rank constraint among the images so as to enable high-quality reconstructions [18].

Recently, learning based image processing techniques gained significant interest, with a 

primary example known as dictionary learning[7], [19], [20]. The basic idea is a well-

accepted assumption that in natural scene images, there exist abundant structures which 

could be sparsely represented with a redundant dictionary. Xu et al. incorporated a 

dictionary learning based sparse constraint into the statistical x-ray CT iterative 

reconstruction framework [7]. Li et al. combined dictionary learning and TV minimization 

based sparse constraints together to facilitate dual-energy CT reconstruction [21].

Currently, most of the dictionary learning based sparse representation techniques are for 2D 

cases. Intuitively, 3D structures in volumetric images should be directly targeted by training 

a 3D dictionary, which consists of 3D atoms. It is expected that the trained 3D dictionary 

could represent the structures more efficiently by exploiting the spatial correlations in all the 

three dimensions simultaneously. And consequently, this higher representation efficiency 

could also facilitate the later denoising task better. Motivated by this, in 2014, we reported a 

3D dictionary learning (3DDL) based reconstruction framework for low dose volumetric CT 

in the 56th AAPM Annual Meeting & Exhibition [22]. In this paper, we will expand our 

previous idea. Besides, we will also further analyze the representation efficiency differences 

between the 2D/3D dictionaries. This could be used to justify the potential denoising 

performance of the proposed 3DDL method.

Regularization parameter is another critical issue in the regularized iterative reconstruction 

framework. It is well-accepted that the noise and resolution properties highly depend on the 

selection of the regularization parameter. Numerous selection strategies have been proposed, 

such as the discrepancy principle [23], generalized cross-validation [24], Stein’s unbiased 

risk estimate [25], and L-curve [26]. Specifically, under the spirit of the discrepancy 

principle, by enforcing the fidelity error to be compatible with a predetermined tolerance, an 

accelerated barrier optimization compressed sensing (ABOCS) reconstruction method was 

proposed to facilitate CBCT reconstruction with adaptive parameter selection [8], [17]. In 

fact, the above reviewed ASD-POCS algorithm also employed similar idea to adaptively 

select the step size of the steepest descent. On the other hand, in intensity-modulated 

radiation therapy, Zhu et al. used the Pareto frontier to make a balanced trade-off between 

the dose performance and the segment number, where the Pareto frontier is constructed 

based on the solutions of two different objective functions [27]. The idea of the L-curve rule 

is similar as the above Pareto frontier strategy. Basically, in the iterative reconstruction 

context, the L-curve is shaped by the fidelity terms and the regularization terms associated 

with different regularization parameter choices. And the desired parameter is considered as 
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the one corresponding to the “corner” of the L-curve. However, there are two disadvantages 

in the L-curve method. First, in order to visualize and locate the “corner” better, one often 

needs to plot the L-curve in a different scale, such as log-log/sqrt-sqrt scales, and the scale 

function is also case-dependent [28]. Second, the resultant L-curve is implicitly correlated 

with the regularization parameter, making it inconvenient to develop an adaptive selection 

strategy. Realizing that our trained 3D dictionary may be an efficient feature descriptor, it 

could be used to construct an informative regularizer which can indicate the potential image 

qualities independently. Therefore, in this work, based on our constructed 3DDL based 

sparse regularizer, we will also propose an adaptive regularization parameter selection rule, 

which is explicitly correlated with the regularization parameter.

In summary, in this paper, in order to justify the proposed 3DDL method, we will first 

evaluate the representation efficiencies of the 2D/3D dictionaries for spatial structures. Then, 

a new adaptive regularization parameter selection method would be described. Based on 

these two results, we will qualitatively and quantitatively compare the performance of the 

proposed 3DDL method to other competing algorithms, such as the previous 2D dictionary 

learning method and the TF method. And we will also explore the dose reduction potential 

of our 3DDL method. Moreover, to make the proposed method clinically practical, we 

parallelize the whole program on the graphic processing units (GPU) using several 

algorithmic tricks.

II. Methods and Materials

A. Formulation

For presentation, we will first formulate the iterative reconstruction and introduce related 

notations. Basically, the objective of an image reconstruction is to find the unknown true 

image x̂ ∈ ℝN×1 from observed measurements y ∈ ℝM×1 (the transmission data through log 

transform) defined by y = Ax̂ + ξ, where A ∈ ℝM×N is the system matrix, ξ ∈ ℝM×1 denotes 

the noise which can be modeled as a zero-mean Gaussian distribution with ray-dependent 

variances [29], M and N are the amount of the rays and pixels, respectively. By 

incorporating certain physical constraints, the regularized statistical iterative reconstruction 

is formulated as

(1)

where β denotes the regularization parameter controlling the relative weight between the 

fidelity term ϕ(x) and the regularization term R(x). A common choice about the fidelity term 

is , where , T represents the transpose operator, W = 

diag{wii} ∈ ℝM×M is a diagonal matrix consisting of the statistical weights that are inversely 

proportional to the measurements’ variances [29].

Specifically, the dictionary learning based statistical iterative reconstruction [7] can be 

written as

Bai et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2)

where Es denotes the extraction operator for the sth data block which can be sparsely 

represented by a learned dictionary D, and the associated coefficients are αs, ε denotes the 

tolerance. Note that each column of the dictionary D is a vector rearranging of an atom.

B. Optimization algorithm

The solution of problem (2) could be obtained by alternatively iteratively solving the 

following two sub-problems:

(3)

(4)

Sub-problem (3) is of simple quadratic form, which can be optimized by the order subsets 

based separable quadratic surrogate (OS-SQS) method [30]:

(5)

where V is the number of the subsets, subscript C denotes one subset of the projections, 

superscript j denotes the jth iteration, I is the unity vector. In this work, to accelerate the 

above algorithm, two additional algorithmic tricks are employed, i.e., Nesterov!/s weighting 

strategy [31] and double surrogates strategy [32].

Sub-problem (4) is a typical sparse coding task. Here, the Cholesky decomposition based 

orthogonal matching pursuit (OMP) algorithm is considered as the solver [33]. For the OMP 

algorithm, in this work, the maximum amount of atoms used for sparse coding is set to be 8, 

which is a good and robust choice according to our experience. Specifically, to address the 

bottleneck that the DL based sparse coding stage is much slower than the conventional 

regularizers such as TV minimization, an optimized GPU computing strategy is 

implemented by assigning each thread block to be in charge of the sparse coding for the 

corresponding data block. In our implementation, the data block and the dictionary are 

stored in the shared memory and global memory, respectively. This could dramatically 

decrease computational cost associated with data access. Detailed GPU implementations 

could be found in the supplemental material1.

1Please see the supplemental material for the detailed GPU implementation.
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C. 3D dictionary learning

Basically, even for the 3D case, the involved sparse regularizer for the volumetric image still 

could be constructed based on a 2D dictionary D ∈ ℝK×L in a slicewise method, where L 
denotes the number of the 2D atoms of size P ×Q, and K = P × Q. However, intuitively, the 

3D structures in the volumetric images should be directly targeted by training a 3D 

dictionary D ∈ ℝK×L comprising of L 3D atoms of P × Q × R, and K = P × Q × R.

In fact, the motivation we construct a 3D dictionary learning based regularizer for the 

volumetric image reconstruction is that, we expect our 3D dictionary could represent the 3D 

structures more efficiently by capturing the spatial correlations in all the three dimensions 

simultaneously. On the other hand, in the field of neuroscience, it has been found that the 

more efficiently the trained dictionary could represent the structures, the sparser the 

representation coefficients are, and also the more the atoms like the characteristics of the 

simple cells’ receptive fields in human primary visual cortex [34]. Therefore, we also expect 

our 3D dictionary could result in sparser coefficients, and hence facilitate the later denoising 

stages better. This assumption would be validated in the following results section.

In this work, based on a number of existing CBCT images, a 3D dictionary D directly 

targeted by training a 3D dictionary D ∈ ℝ64×256 containing 256 4×4×4 atoms is trained 

with the open source optimization toolbox sparse modeling software (SPAMS) [35]. This 

dictionary has the same size as the commonly used 2D dictionary D directly targeted by 

training a 3D dictionary D ∈ ℝ64×256 containing 256 8 × 8 atoms [7]. A simple illustration 

about the 2D/3D dictionary learning based sparse representation is given in Fig. 1.

D. Regularization parameter selection

We first give a brief description about the L-curve method, and then present our selection 

strategy. Mathematically, an L-curve [26] in g-scale could be expressed as

(6)

where xβ is the solution of problem (1) equipped with a regularization parameter β. In the L-

curve method, the L-shape “corner” location of the above plot is used to determine the 

desired regularization parameter [26].

As shown in (6), in practice, in order to visualize and locate the “corner” better, one always 

needs to scale the original L-curve with a positive, monotone increasing function, such as 

the log-log/sqrt-sqrt scales, and this choice is also case-dependent [28]. Moreover, from (6), 

it is found that L-curve is implicitly correlated with β, and hence is not convenient to 

develop an adaptive selection strategy.

In this work, we aim to construct a new curve which is explicitly correlated with β by 

devising a new scale function, so as to adaptively guide its selection. Firstly, it has been 

proven that ϕ(xβ) ≜ f(β) is monotone increasing with respect to β [36]. Therefore, we could 

inverse ϕ(xβ) as f−1(ϕ(xβ)) = β. Secondly, we assume that the trained dictionary is an 
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excellent feature descriptor for the spatial structures. As a consequence, it is expected that 

the constructed dictionary learning based sparse regularizer R(xβ) = Σs ||αs||0 itself could be 

very informative about the image quality of the reconstructions without any scale function. 

Note that R(xβ) represents the total non-zero elements in the sparse coefficient matrix. In 

order to further highlight its physical meaning, one could normalize it as , where 

ψ(β) means the averaged sparsity level among all the data blocks under sparse coding, 

whose total amount is B. Therefore, unlike the conventional log-log/sqrt-sqrt scales, our 

scale function is selected to be f−1−B−1, which is adaptive to the data. Applying our scale 

function on (6), one could formulate the new curve as:

(7)

Because our newly constructed curve could be divided into the following three stages, 

exhibiting a clear Z-shape, therefore it is referred to as “Z-curve” hereafter in this work. 

Basically, a small β would result in a highly noisy reconstruction with low dose projections, 

for whom, one needs to use almost the maximum allowed amount of atoms to well represent 

the extracted noisy data blocks.

steady-descent stage: Considering one gradually increases β from a small value, due to the 

existing high noise, the required amount of atoms may be still around the maximum amount 

or slightly less. This process would shape a level-up or steady-descent stage in the Z-curve.

steep-descent stage: When the noise of the data block is reduced to a certain level under a 

relative large β, such as slightly less than the tolerance ε, if one continues to increase β, the 

required amount of atoms would be less than the maximum amount and decreased rapidly, 

this would shape a steep-descent stage.

steady-descent stage: Until most of the noise is removed effectively, due to the high 

representation efficiency of our 3D dictionary, only 1 ~ 2 atoms are required for sparse 

coding according to our experience. From now, if one continues to increase β, the structures 

begin to be blurred, but the required amount of atoms would keep steady because the 

minimum amount of atoms is 1 even for the oversmoothed structures. This would shape 

another level-up or steady-descent stage.

As described above, we could consider the desired β as the value associated with the second 

“corner” of the Z-curve which is the transition point between the second and the third stages, 

where the noise has been effectively-removed while the structures are still well-retained.

Similar as the L-curve method, this “corner” could be located as the point having the 

maximum curvature [26], or the maximum second derivative. Considering the shape of our 

Z-curve (as will be demonstrated in Fig. 4, 11 and 14), from the first stage (steady-descent) 

to the second stage (steep-descent), the Z-curve is concave with negative second derivative, 

while from the second stage (steep-descent) to the third stage (steady-descent), the Z-curve 

is convex with positive second derivative. Regarding this property, we further develop an 

adaptive strategy to locate the second “corner” of the Z-curve, and hence adaptively select 
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the regularization parameter β. This strategy is referred to as Z-index parameterization (ZIP) 

method in this work. Workflow could be found in Fig. 2.

Basically, both initial parameter β0 and ratio r only affect the converge speed of the program. 

And we only need r to be slightly larger than 1 for a fine tuning of the parameter. Starting 

from four β, we iteratively estimate the associated curvatures based on the resultant 

. In this work, the curvature C(βk) is approximated with the second order 

difference, as in Line 4 of the initialization step in Fig. 2, where k is the iterator. Basically, if 

the condition C(β1) ≥ C(β2) > 0 is satisfied, it indicates that the initial parameter is too large, 

and hence, one needs to decrease the parameter gradually. If the new curvature C(βk) is 

larger than the old curvature C(βk+1), it suggests that one may decrease the parameter further 

for a larger curvature; otherwise, βk+1 could be regarded as the desired parameter having the 

maximum curvature, and output the corresponding reconstruction xβk+1. In contrast, if the 

condition C(β1) ≥ C(β2) > 0 cannot be satisfied, it indicates that the initial parameter is too 

small, and hence, one needs to increase the parameter gradually. The same logic as the 

described above for the other branch can be used for updating the parameter in this branch. 

When C(βk) < 0, the current βk belongs to the concave part of the Z-curve, we should 

increase β further.

In this work, we empirically set β0 = 0.1 and r = 1.2, which works well among all the 

involved cases in this work.

E. Experiments

1) Experimental data—Two realistic datasets were collected, including one head-neck 

(HN) full-fan scan and one prostate half-fan scan. Both datasets were collected from an on 

board imager integrated in a TrueBeam medical accelerator (Varian Medical System, Palo 

Alto, CA), where the source-to-axis and source-to-detector distances are 1000mm and 

1500mm, respectively. The collected projection data were deidentified in the Radon space. 

They were rebinned using a 2×2 mode, resulting an imager of 512 × 384 with a detector size 

of 0.776mm × 0.776mm. To be specific, the HN patient was scanned in a full-fan mode to 

acquire 363 projections in a 200 degrees arc, the tube voltage was 100kVp, and the exposure 

levels were 0.4 mAs per projection, respectively. The prostate patient (referred to as prostate 

patient 1 hereafter) was scanned in a half-fan mode with a 160mm lateral shift, acquiring 

656 projections in 360 degrees with an exposure level of 1.25 mAs per projection, and the 

tube voltage was 125kVp. To demonstrate the performance of the proposed 3DDL method in 

the low dose configurations, Poisson noise for 1×104 and 3×104 photon incidents per ray 

was superimposed into the above HN and prostate patient 1 raw datasets (before log 

transform), respectively. To further consider the electronic noise which cannot be ignored in 

the low dose configurations, extra zero-mean Gaussian noise was also added to the above 

generated noisy projections. For both datasets, the standard deviation of the Gaussian noise 

was set to be 10. Then, the above noisy datasets were truncated by 1 × 104 (for the HN 

patient case) or 3 × 104 (for the prostate patient 1 case) from above, and by 1 from below, to 

ensure the non-negative projection value and avoid the numeric overflow from the log 

transform. Finally, the log transform was performed to simulate projection data. The 

reconstructed images were of 512 × 512 × 512 and 512×512×256 with voxel sizes of 
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0.6mm×0.6mm×0.6mm and 1.0mm×1.0mm×1.0mm, corresponding to the HN and prostate 

patient 1 cases, respectively.

Moreover, to explore the dose reduction potential of the proposed 3DDL method, two 

groups of realistic datasets were collected based on two different patients receiving image 

guided radiation therapy (IGRT). One of the them is a female patient suffering from 

gynecological disease (referred to as GYN patient hereafter), and the other is a male patient 

suffering from prostate cancer (referred to as prostate patient 2 hereafter). Each group of 

datasets contains 6 different datasets. Specifically, in each group, these 6 realistic datasets 

were collected in three consecutive fractions (denote as FX 1, FX 2 and FX 3 hereafter) 

which were conducted every week. And in each fraction, during image guiding, a low dose 

protocol scan was followed by a regular dose protocol scan. For all the three different 

regular dose protocol scans, the exposure level settings were 80mA × 13ms, while for the 

three low dose protocol scans, the exposure level settings were 40mA × 13ms, 20mA × 

13ms and 10mA × 13ms, corresponding to FX 1, FX 2 and FX 3, respectively. For both 

cases, 618 projections were acquired in 360 degrees with the same geometry parameters as 

the above prostate patient 1 case, except that the lateral half-fan shift was 148mm. And also, 

the reconstructed images were of 512×512×256 with voxel sizes of 1.0mm×1.0mm×1.0mm 

for both cases. Therefore, based on these datasets, we could evaluate the performance of the 

proposed 3DDL method under  dose level situations.

2) Analysis for the representation efficiencies of the 2D/3D dictionaries—As 

described in Section II-C, it is important to explore the representation efficiencies of the 

2D/3D dictionaries for the spatial structures. The result can be used to justify the 3DDL 

method in a natural scene statistical viewpoint. Specifically, it is well-accepted that the 

representation coefficients of the natural scene images shall follow a zero-mean Laplacian 

distribution that is highly peaked around zero with heavy tails [37]. Therefore, we conduct 

the representation efficiency analysis by investigating the resultant Laplacian distributions. It 

is expected that the narrower the Laplacian distribution is, the more efficient the trained 

dictionary can represent the structures, and hence facilitate the later processing stages better, 

such as the denoising task in our context.

In this study, the regular dose FDK reconstructions [38] of the HN and prostate patient 1 are 

employed to explore the representation efficiencies. In details, for the HN patient case, a 

group of 1×105 3D data samples of 4×4×4 are randomly extracted from the volumetric 

images. Then, three groups of 1×105 2D data samples of 8×8×1, 8×1×8 and 1×8×8 are 

randomly extracted from the transversal, coronal and sagittal views, respectively. The same 

rules are also applied on the prostate patient 1 case. The above data samples are fed into the 

following equation to obtain the corresponding representation coefficients

(8)

where each column of X is a vector stacking representation of the 2D/3D data sample, D is 

the 2D/3D dictionary, α denotes the resultant representation coefficients, and γ is a 
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Lagrangian multiplier. Equation (8) is a typical least absolute shrinkage and selection 

operator (LASSO) problem[39], which could be solved equivalently with the following 

constraint problem:

(9)

where X:,i denotes the ith sample (column) of X whose sparse coefficients are α:,i, i.e., the 

ith column of α. In the practical implementation, we employ the SPAMS software package 

as the solver, and set the tolerance τ = 0 for all the 2D/3D cases to fully explore the 

sparseness of the resultant coefficients. We will analyze the distributions of the resultant 

coefficients and calculate the associated variance of each distribution to quantify the 

representation efficiencies.

3) Regularization parameter selection strategy—All the data cases are used to 

illustrate the introduced Z-curve in Section II-D. Specifically, 21 different parameters β are 

fed into problem (2). For the prostate patient 1 case, β ranges from 2.5 × 1.2−10 to 2.5 × 

1.210. For all the other cases, β ranges from 0.5×1.2−10 to 0.5×1.210. Ratio between different 

β is 1.2. During reconstruction, the OS setting for the HN patient case is 11 subsets with 33 

projections per subset, denoted as 11(×33) OS protocol hereafter. They are 8(×82) and 

6(×103) OS protocols for the prostate patient 1 and the GYN/prostate patient 2 cases, 

respectively. The whole optimization program is terminated after 10 iterations for all the 

cases. Consequently, 21 different images ranging from over-noisy to over-smooth are 

reconstructed. Based on these reconstructions, our Z-curve {β, ψ(β)} as well as the 

associated curvatures are plotted.

Moreover, to compare with our 3DDL based sparse regularizer, we also perform the TV 

minimization based CBCT reconstruction for the HN and prostate patient 1 cases with 21 

different β. They range from 6.25×1.2−10 to 6.25×1.210 and from 6.0×1.2−10 to 6.0×1.210, 

corresponding to the HN and prostate patient 1 cases, respectively, ratio between different β 
is 1.2. Based on these reconstructions, curve {β,R(xβ)} is plotted, where R(xβ) is calculated 

to be the value of the total variation of the image.

4) Comparison studies among different regularizers—In this study, based on the 

HN and prostate patient 1 datasets, we qualitatively and quantitatively compare the proposed 

3DDL method with two existing methods, namely, 2D dictionary learning based method [7] 

and TF method [16]. Specifically, for the 2D dictionary learning based method, three 2D 

dictionary learning based sparse constraints are consecutively applied on the transversal, 

coronal and sagittal views for a fair comparison, though this strategy suffers from heavy 

computation burden. Furthermore, to illustrate the inherent 2D property of the 2D dictionary 

learning based method for volumetric image reconstruction, three additional strategies are 

employed to utilize the 2D dictionary learning based regularizer, i.e., in a slicewise fashion 

for each of the three different views. The employed 2D dictionary contains 256 atoms of 8 × 

8. For fair comparison, and also taking the isotropic voxel resolution of volumetric image 

into account, in the 3DDL method, the employed 3D dictionary also contains 256 3D atoms 
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of 4 × 4 × 4. Besides, both the 2D and 3D dictionary training processes employ the same 

high-quality CBCT images as the sample source. For brevity, we will use the following 

abbreviations to represent the different methods:

3DDL: the proposed 3DDL method.

2DDL: three 2D dictionary learning based sparse constraints are consecutively 

enforced on all the three views.

TF: the TF method.

881DL: the 2D dictionary learning based sparse constraint is only enforced on the 

transversal view in a slicewise method.

818DL: the 2D dictionary learning based sparse constraint is only enforced on the 

coronal view in a slicewise method.

188DL: the 2D dictionary learning based sparse constraint is only enforced on the 

sagittal view in a slicewise method.

For all the iterative methods, the OS settings and the iteration number are the same as 

Section II-E3. For all the dictionary learning based methods, the sparsity level (maximum 

amount of atoms allowed while sparse coding) is selected to 8, the tolerance parameter ε is 

selected to be 1 × 10−3, the stride is 1 during image patch/block extraction. It is noted that a 

same pretrained 2D dictionary is used among all the 2DDL/881DL/818DL/188DL methods 

for all the experiments in this paper. And also, a same pretrained 3D dictionary is used for 

the 3DDL method in all the experiments in this paper. Both datasets are also reconstructed 

by the FDK algorithm to benchmark the regularized iterative reconstructions.

In this study, for the proposed 3DDL method, β is selected according to our ZIP method as 

presented in Fig. 2. For the other methods, β is manually selected for the best visual quality.

For both cases, because the regular dose reconstructions are available, the results are 

quantified with the root mean squared errors (RMSE) and the structure similarity (SSIM) 

index (the closer to 1, the better the image is) [40].

The RMSE is calculated based on the whole 3D volume as follows:

(10)

where Nt denotes that number of voxels along the t dimension, x(x, y, z)and x̂(x, y, z) 

represent the voxel values at spatial location (x, y, z) of the low dose reconstruction and the 

regular dose FDK reconstruction, respectively.

Since the SSIM index is devised for the 2D images, in this work, the SSIM index is 

calculated based on a single presented transversal slice, as follws:
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(11)

where x and x̂ represent the transversal slices for the low dose reconstruction and the regular 

dose FDK reconstruction, whose mean values/standard deviations are μx/σx and μx̂/σx̂, 

respectively. σx,x̂ denotes the covariance between x and x̂. c1 = 3 × 10−5 and c2 = 3 × 10−4 

are two small positive constants to stabilize the division. The transversal images used for 

SSIM calculation could be found in the full image of Fig. 5 and 7.

To further demonstrate the noise textures of different methods, we also calculate the 3D 

noise power spectrums (NPS) of the reconstructions with respect to the above 6 regularized 

iterative reconstruction methods. To be specific, same as the above low dose protocol 

simulations both for the HN and prostate patient 1 cases, 20 independent low dose projection 

data simulations for each case are firstly conducted. Then, the above 6 regularized iterative 

reconstruction methods are used to perform reconstruction for each of the simulated noisy 

data. In each reconstruction, the parameter β is absolutely the same as the above selected β 
used in the comparison studies. A cubic volume of interest (VOI) around the center of the 

field of view is used to measure the 3D NPS. The physical dimensions of the VOI are 60mm 

× 60mm × 60mm (HN patient case) and 100mm×100mm×100mm (prostate patient 1 case). 

The 3D NPS is calculated using

(12)

where Δt and Nt denote the voxel size and the number of voxels along the t dimension. 

DFT3D represents the 3D discrete Fourier transform. And x̄(x, y, z) is calculated as the 

averaged image of all the 20 individual reconstructions xi(x, y, z), defined as

(13)

In both data cases, the NPS will be calculated and displayed in the frequency ranges within 

±Nyquist frequency, which are 0.83mm−1 (HN patient case) and 0.5mm−1 (prostate patient 1 

case).

5) Low dose potential exploration—The GYN patient and the prostate patient 2 cases 

are employed to explore the low dose potential of the proposed 3DDL method. In details, for 

both cases, each of the 6 datasets collected in different fractions and different dose levels is 

firstly FDK reconstructed. And then for the three low dose projection datasets, the proposed 

3DDL method is also employed for the volumetric image reconstruction, where 6(×103) OS 

Bai et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protocol and 10 iterations are used. The sparsity level and the tolerance while sparse coding 

are still set to be 8 and 1×10−3 in both cases. It is noted that the reconstructed images are not 

absolutely the same despite that they are from the same patient, because the associated 

projections are collected in different time, even when they belong to a same fraction. 

Specifically, based on a selected region-of-interest (ROI), we measure the contrast-to-noise 

ratio (CNR) for different reconstructions. The CNR is calculated as , where S 

and Sb represent the mean intensities of the ROI and the background, σ and σb are the 

associated standard deviations, respectively. Besides, we also evaluate the noise performance 

based on a selected flat area by calculating the standard deviation (STD). In addition, in 

order to assess the low contrast tissue discrimination ability of different reconstructions, 

three radiologists are asked to vote the reconstructions in three different levels: strongly 

discriminated, weakly discriminated and unclear. The level with the most votes will be 

regarded as the level of the reconstruction. For example, if one reconstruction has two votes 

for strongly discriminated and one vote for weakly discriminated, then the low contrast 

tissue of the reconstruction could be regarded as strongly discriminated. Specifically, if one 

reconstruction has one vote for each level, then it will be regarded as unclear. In this subject 

experiments, we employ the presented coronal views for the radiologists’ evaluation. In this 

study, β is also selected based on our ZIP method as presented in Fig. 2.

6) Computational overhead comparison—Without loss of generality, we will take the 

HN and prostate patient 1 cases as examples to conduct the computational overhead 

comparison. It is believed that similar observations can be also achieved from the other 

cases. Specifically, for all the involved methods in this work, we separately calculate the 

computational consumptions from the data fidelity term update and the regularization term 

update. The computational overhead for these two parts are calculated as the averaged time 

consumptions among all the 10 iterations. All the algorithms are implemented in the CUDA 

7.0 programming environment on a NVIDIA GeForce GTX 980 video card which is 

installed on a personal computer (Intel i5-4460 CPU and 8GB RAM).

III. Results

A. Representation efficiency results

Fig. 3 plots the distributions of the representation coefficients among different dictionaries. 

Note that the y-axis is set to be the logarithmic probabilities to show the Laplacian nature of 

these probability distributions more clearly [37]. It is obvious that for both cases, the 3D 

dictionary based sparse coefficients consistently have three orders narrower Laplacian 

distributions compared to the 2D dictionary based sparse coefficients, suggesting the higher 

representation efficiencies of the 3D dictionary. The variances of these distributions are 

summarized in Table S2 2 in the supplemental material. It is shown that the variances 

associated with the 3D dictionary are much smaller compared to those with respect to the 2D 

dictionaries. Additional two experiments involving a dental patient case and a small animal 

case are conducted for a further validation, see Fig. S3 3 in the supplemental material.

2Please see the supplemental material for the results of the variances of the distributions.
3Please see the supplemental material for the distributions of the other two cases.
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B. Regularization parameter selection results

Fig. 4 presents the Z-curve results of the HN and prostate patient 1 cases. From Fig. 4 (a) 

and (b), it could be found that the trends of both our curves {β, ψ(β)} could be divided into 

three stages, i.e., firstly steady-descent stage, then steep-descent stage, finally steady-descent 

stage, demonstrating a clear Z-shape, matching well with our analysis in Section II-D. 

Regarding the curvature curve {β,C(β)}, it shows that the point with maximum curvature 

corresponds to the second corner of the Z-curve, as indicated by the arrows. Moreover, the 

curvature of the left-most part is negative, indicating the concave part of the Z-curve. As for 

the TV based regularizer, the “potential corner” is less apparent compared to our 3DDL 

based sparse regularizer, especially in the prostate patient 1 case, as illustrated in Fig. 4 (c) 

and (d). It is noted that to fully illustrate the Z-shape of the curves, the starting parameters in 

Fig. 4 (a) and (b) are different from the initial parameter β0 = 0.1 used in our ZIP method.

C. Performance comparison among different regularizers

Fig. 5 are the transversal views of the reconstructed images for the HN patient case. It is 

observed that the low dose FDK reconstruction is overwhelmed by the noise, while the noise 

is substantially suppressed by the regularized iterative reconstruction algorithms. As 

indicated by the zoomed-in ROIs in Fig. 5, if the 2D dictionary learning based sparse 

constraint is enforced on only one view, the unprocessed views exhibit directional streak 

artifacts, such as the horizontal and vertical streak artifacts corresponding to the 818DL and 

188DL sub-figures, respectively. Similar directional streak artifacts could be also observed 

from the coronal and sagittal views, see Fig. S4 and S5 4 in the supplemental material, 

respectively. Regarding the processed views, the structures are distorted, and there also 

induce some fake structures that should not exist. For example, as indicated by the arrows in 

the 881DL zoomed-in ROI of Fig. 5, part of the soft bone is missing and replaced with a flat 

region compared to the regular dose FDK reconstruction. The fake structures could be 

further observed from the soft tissue part of the other two views, such as the 818DL sub-

figure in Fig. 4S and the 188DL sub-figure in Fig. S5 in the supplemental material 5. The 

directional streak artifacts can be alleviated if the 2D dictionary learning based sparse 

constraint is enforced on all the three views consecutively, i.e., the 2DDL method. However, 

compared to the 3DDL method, the 2DDL method exhibits lower spatial resolution and 

higher image noise, as indicated by 2DDL images in Fig. 5. Another disadvantage of the 

2DDL method is the inherent high computational cost, considering that three individual 

sparse coding stages are required for regularization. Regarding the TF method, one cannot 

well distinguish the subtle structures which are blurred due to the reduced resolution and the 

remained noise in the high contrast region, as indicated by the TF sub-figure in Fig. 5. On 

the other hand, from these results, it can be seen that the 3DDL method achieves promising 

results in enhancing the anatomical structures and in removing the noise effectively, and 

hence validates its efficacy. Quantitatively, with the regular dose FDK reconstruction as the 

reference, the RMSE and SSIM values are listed in Table S3 6 in the supplemental material. 

4Please see the supplemental material for the results of the coronal and sagittal views of the HN patient case.
5Please see the supplemental material for the results of the coronal and sagittal views of the HN patient case.
6Please see the supplemental material for the RMSE and SSIM results of the HN patient case.
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The lowest RMSE and the highest SSIM further verify that the 3DDL method outperforms 

other algorithms.

Fig. 6 presents the NPS of the HN patient images reconstructed with different methods. It is 

noted that the NPS slightly loses its radial symmetry due to the different x-ray pathes length. 

Considering this radial symmetry losses, to better visualize the NPS, the representative cuts 

of the fx − fz and fy − fz plans are selected to be the  Nyquist frequency, i.e., 0.08mm−1. 

From the first column, one could find that the noise powers of the 2DDL/TF reconstructions 

are stronger than the 3DDL reconstructions by comparing their NPS. On the other hand, the 

NPS of the 881DL/818DL/188DL reconstructions clearly suggest the above directional 

streak artifacts. For example, if the sparse constraint is only enforced on the transversal 

view, i.e., the 881DL method, there will induce many directional streak artifacts in the other 

two views. These will result in large frequency magnitudes along the Z direction of the NPS, 

as shown in the 881DL sub-figures in Fig. 6. Similar phenomena could also observed from 

the 818DL/188DL NPS.

Fig. 7 illustrates the transversal views of the prostate patient 1 case with different methods. It 

is shown that the 3DDL method efficiently suppresses noise and well retains anatomical 

structures both for the low contrast and high contrast regions. Regarding the TF method, the 

structures are contaminated by the remained pepper-like noise, as shown by the TF sub-

figure in Fig. 7. It can be seen that the 2DDL method exhibits stronger noise with 

comparable resolution, if not inferior, compared to the 3DDL method. On the other hand, 

directional streak artifacts are observed from the reconstructions, as demonstrated by the 

818DL/188DL sub-figures in Fig. 7, while the structures are distorted for the processed 

view. These distorted structures could be further observed from the other two views, as 

indicated by the 818DL sub-figure in Fig. S6 and the 188DL sub-figure in Fig. S7 in the 

supplemental material 7. The calculated RMSE/SSIM values are in Table S4 8 in the 

supplemental material. As expected, the 3DDL method quantitatively outperforms the other 

competitors in terms of the lowest RMSE and the highest SSIM measures, which are 

consistent with the visual observations that the 3DDL method leads to more naturally and 

visually pleasant denoising results by better preserving the image texture areas.

Fig. 8 presents the NPS of the prostate patient 1 images reconstructed with different 

methods. In this case, due to the longer pathes along the lateral direction, the NPS shows 

severe radial symmetry loss. Besides, the NPS with respect to the 2DDL method appears to 

be ”redder” compared to the 3DDL method, considering the stronger noise appearance in the 

spatial domain of the 2DDL reconstruction, as indicated by sub-figures in Fig. 7. The NPS 

associated with the TF method indicates the noisier reconstruction compared to the 3DDL 

reconstruction. Once again, the NPS associated with the 881DL/818DL/188DL methods 

suggest the directional streak artifacts for the unprocessed views.

It is noted that for both cases, the regularization parameter β in the 3DDL method is 

adaptively selected according to our ZIP method in Fig. 2. It turns out to be 0.430 and 1.070, 

7Please see the supplemental material for the results of the coronal and sagittal views of the prostate patient 1 case.
8Please see the supplemental material for the RMSE and SSIM results of the prostate patient 1 case.
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matching well with the suggested β based on the maximum curvature of our Z-curve, which 

are 0.417and 1.005 (see Fig. 4 (a) and (b)), corresponding to the HN and prostate patient 1 

cases, respectively. Regarding the nice image qualities delivered by our 3DDL method, the 

efficacy of our ZIP method is validated.

D. Low-dose potential exploration

Fig. 9 presents the transversal view of the reconstructed images associated with the GYN 

patient case in three different fractions. From the second column, it is observed that as the 

dose decreases from  dose level (row 1 in the second column) to  dose level (row 3 in the 

second column), the FDK reconstructions become noisier and noisier. This phenomena 

could be observed more clearly from the coronal views in Fig. 10. The associated zoomed-in 

ROI and the sagittal view are presented in Fig. S10 and S8 in the supplemental material 9, 

respectively. In contrast, for all the dose levels, the proposed 3DDL method always could 

produce comparable image qualities, and one could consistently tell the ROIs apart from the 

background due to the efficiently suppressed noise and fine reserved structures, as indicated 

by the zoomed-in ROIs. Quantitative evaluations in terms of STD and CNR also validate the 

above observations, as indicated by the corresponding STD and CNR values in Fig. 9 and 

10, respectively. Specifically, regarding the noise performance, the STDs of the FDK 

reconstructions increase from ~ 35HU to ~ 100HU as the dose levels decrease from the 

regular dose to the  dose level. With the proposed method, the noise is suppressed 

effectively in terms of that the STD with respect to the 3DDL method is comparable to that 

of the regular dose FDK reconstruction. As for the CNR metric, the proposed method could 

improve the CNR values by ~ 1.6/2.1/2.5 times associated with  dose levels, 

comparing to the low dose FDK reconstructions, even higher than the regular dose cases. 

Moreover, in our method, one could also find that the CNRs are comparable among all the 

three low dose protocols. These quantitative results further validate the efficacy of the 

proposed 3DDL method. It is noted that during the CNR calculation, the ROI with slightly 

higher intensities is chosen as the the foreground (marked as circle), and the region with 

lower intensities near the ROI is randomly chosen as the background (marked as box) 

despite manually. In addition, because the images are slightly different across different 

fractions and different dose protocols, slightly different ROIs used for the STD and CNR 

calculations are employed for the regular dose protocols and the low dose protocols, while in 

the same fraction, the low dose FDK reconstruction and the 3DDL reconstruction share the 

same ROI for their calculations. As for the clinical subjective evaluations of the low contrast 

tissue discrimination ability based on the presented coronal view (Fig. 10), from Table I, it is 

found that the reconstructions associated with our method are voted as strongly 

discriminated among different dose levels, while the  dose level FDK reconstructions are 

voted as unclear, which further validates our method.

Fig. 11 presents the Z-curve results of the three GYN patient cases in three different low 

dose levels. Again, in Fig. 11 (b) and (c), the {β, ψ(β)} curves exhibit obvious Z-shapes. If 

one uses more smaller β, a clear Z-shape for the  dose level case in Fig. 11 (a) is also 

9Please see the supplemental material for the results of the zoomed-in ROI and sagittal views of the GYN patient case.
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expected. As indicated by the arrows, the β with respect to the maximum curvature points 

are 0.201/0.347/0.6, corresponding to the  dose level cases, respectively.

On the other hand, the low dose 3DDL images in Fig. 9 and 10 are reconstructed based on 

the adaptively selected β with our ZIP method, which turns out to be 0.207/0.358/0.619, 

corresponding to  dose level cases, respectively. These matches well with the indicated 

β based on the maximum curvature points in Fig. 11.

Fig. 12 and 13 demonstrate the transversal and coronal views of the reconstructed images 

associated with the prostate patient 2 cases in three different fractions. Similarly, it is found 

that as the dose level decreases from regular dose to  dose level, the FDK reconstructions 

become noisier and noisier. Quantitatively, the STDs increase from ~ 40HU (regular dose) to 

~ 120HU (  dose). With the proposed method, the noise are removed effectively and even 

weaker than the regular dose FDK reconstructions regarding the smaller STDs. It should be 

noted that despite of the reduced noise, the resolution of the 3DDL reconstructions is still 

kept well and comparable with the low dose FDK reconstruction. This could be observed 

from Fig. 12, considering that both the low dose FDK reconstruction and the 3DDL 

reconstruction give clear metal markers with comparable visual resolutions which is relevant 

for the patient positioning during the clinical IGRT. From Fig. 13, one could see that with 

the proposed method, the CNRs are improved by ~ 1.5/2.5/3.5 times compared to the low 

dose FDK reconstructions with respect to the  dose levels. Due to the effectively-

suppressed noise with the proposed method, the soft tissues could be clearly distinguished 

for all the low dose cases, as indicated by the zoomed-in ROIs in Fig. S11 in the 

supplemental material 10. The sagittal views are also presented in Fig. S9 in the 

supplemental material 11. Regarding the clinical evaluation results (Table I) based on the 

coronal view in Fig. 13, one could find that the reconstructions associated with our method 

are voted as strongly discriminated and weakly discriminated in the  and  dose levels, 

respectively, while the low dose FDK reconstructions in all the three different dose levels are 

voted as unclear. It is noted that both in Fig. 9 and 12, there exist slight ring artifacts in the 

center of the transversal image, which is supposed to be caused by the inconsistent detector 

response.

Fig. 14 presents the z-curve results of the three prostate patient 2 cases in three different low 

dose levels. Clear Z-curves as well as the corners could be observed. The parameters 

associated with the point having maximum curvature and selected by our ZIP method are 

0.241/0.417/0.720 and 0.249/0.430/0.743, corresponding to the  dose level cases, 

respectively, matching well with each other.

E. computational overhead

Table II lists the computational overheads for all the methods considered in this work. It is 

observed that the time consumption for the fidelity term update is quite stable among 

different methods, however, for the regularization term update, the time consumption is 

10Please see the supplemental material for the results of the zoomed-in ROI of the prostate patient 2 case.
11Please see the supplemental material for the results of the sagittal views of the prostate patient 2 case.
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highly correlated with the choice of the regularizer. Specifically, similar computational 

overheads are required for the 3DDL method and the 881DL/818DL/188DL methods, while 

the 2DDL method suffers from significantly higher computational overhead. Be sides, one of 

the biggest advantages of the TF method is its low computation complexity.

IV. Discussions and Conclusions

In this study, a 3D dictionary learning based sparse regularizer has been constructed for low 

dose CBCT reconstruction, being validated in multiple realistic data experiments. A 

statistical analysis on the representation efficiencies of the 2D/3D dictionary were carried 

out, suggesting the higher representation efficiency of the 3D dictionary. This observation 

could be used to justify the performance of the proposed 3DDL method. Realizing that the 

constructed dictionary is an excellent feature descriptor, a new adaptive regularization 

parameter selection strategy, i.e., ZIP method, was proposed. Based on the suggested β with 

the ZIP method, our 3DDL method can deliver superior image quality in terms of well-

preserved structures and effectively-suppressed noise, and outperforms the competing 

methods, such as 2DDL/881DL/818DL/188DL/TF methods. Moreover, the whole program 

was well parallelized by employing several algorithmic tricks, attaining a high 

computational efficiency.

The higher representation efficiency of the 3D dictionary over the 2D dictionary may be 

explained by the fact that the 3D dictionary could sufficiently capture spatial correlations in 

all the three dimensions simultaneously, while the 2D dictionary could only make use of the 

planar spatial correlations. As mentioned in Section II-C, a more efficient representation 

could facilitate the later denoising stage. Indeed, this has been experimentally validated to a 

certain extent in our comparison studies as described in Section III-C.

Considering that the dictionary is an excellent feature descriptor, we realize that the 

associated averaged sparsity level ψ(β) while sparse coding may be a good image quality 

indicator. Motivated by this, in this work, an adaptive regularization parameter selection 

strategy based on the constructed Z-curve {β, ψ(β)}, i.e., ZIP method, was proposed to 

facilitate our 3DDL method, as described in Section II-D. It is believed that same strategy 

also applies on the 2D dictionary learning based slice CT reconstruction. However, we did 

not use this strategy for the 2DDL method in our comparison study. This is because one 

could not determine a concrete value for the sparsity level ψ(β) in the 2DDL method, 

considering the fact that the sparse constraint was applied on all the three views 

consecutively. The reason why the TV value curve with respect to β doesn’t work may be 

that the TV value is sensitive to the noise power. In other words, the noisier the image is, the 

larger the TV value is, as indicated in Fig. 4. By contrast, our 3DDL based averaged sparsity 

level counts the averaged amount of the used atoms while sparse coding, and hence, is 

truncated from above and below, which is 8 and 1 in this work. This property could help 

produce a well Z-curve shape. Despite the promising performance of our ZIP method, one of 

the main drawbacks is that multiple iterations are required so as to find the desired β. A fast 

ZIP method is our ongoing research, quick estimation based on a subset of image and then 

extension to the original data may be a direction. Moreover, the proposed ZIP method is 

Bai et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heuristic, a more comprehensive analysis about the image qualities of the associated 

reconstruction is required for a better understanding.

The cause of the directional streak artifacts is that the noise in the processed view is 

smoothened out when the 2D dictionary based processing is applied on only one view. As a 

result, the intersections of the unprocessed views with the processed view would exhibit 

directional streak artifacts, such as the horizontal/vertical streak artifacts in the transversal 

views if the coronal/sagittal views are processed, as illustrated by the 818DL/188DL sub-

figures in Fig. 5. The reason of the distorted structures in the processed view may be 

explained by the fact that the directional streak artifacts are spread out through the cone 

beam forward projection. If the sparse constraint are applied on all the three views 

consecutively, i.e., the 2DDL method, the directional streak artifacts could be alleviated. 

However, the 2DDL method may incorrectly interpret the directional streak artifacts from 

the previous steps as the potential structures. To avoid this side effect, a large tolerance 

maybe required. Moreover, one may need to carefully select the suitable tolerance for each 

of the three sparse coding steps in the 2DDL method. In this work, the tolerances were set to 

be the same for all the three steps and also same as the 881DL/818DL/188DL methods. 

Another disadvantage of the 2DDL method is the high computational cost, as indicated by 

Table II. This is mainly because that three individual sparse coding stages are required in 

each iteration for the 2DDL method. The TF method employs a group of piecewise linear TF 

basis functions consisting of low pass filters for low frequency components, as well band 

pass and high pass filters for edges. As a consequence, in processing high contrast regions, 

the high pass filters are required to represent the structures, and may result in the pepper-like 

noise artifacts.

It should be noted that in this work, a same 3D dictionary is employed for all the cases, i.e., 

containing 256 3D atoms of size 4×4×4. From the results presented in Section III, it is found 

that the proposed method could consistently deliver high-quality reconstructions despite the 

different voxel size settings in the HN patient case (0.5mm×0.5mm×0.5mm) and the 

prostate/GYN patient cases (1.0mm × 1.0mm × 1.0mm). Therefore, it is expected that under 

typical isotropic voxel size settings for CBCT reconstruction, the performance of the 

proposed method will not heavily depend on the voxel sizes. However, if one prefers 

anisotropic resolution, which often occurs with helical single/multi-slice CT scans at large 

pitches, a 3D dictionary with anisotropic 3D atoms and different atom sizes should be 

considered in reference to the thickness in the longitudinal direction.

In this work, 12 realistic datasets, divided into two groups based on a GYN patient and a 

prostate patient and collected from different fractions and different dose levels, were 

employed to investigate the dose reduction potential of the proposed 3DDL method. And the 

experimental results indicated that when the dose level was decreased to one-eighth of the 

regular dose, our method still could achieve comparable or even higher image qualities as 

the clinical-used regular dose FDK reconstructions. Despite the insightful results, it still 

should be noted that the practical dose reduction performance is site-specific, patient-

specific and task-oriented, which still needs a thorough investigation. In the future, we 

would conduct more detailed studies to explore the extent to which the proposed 3DDL 

method can be applied in various clinical data.
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In summary, the constructed 3D dictionary has exhibited a higher representation efficiency 

over the 2D dictionary, demonstrating a potential of enhancing the image quality of CBCT 

reconstruction. A new adaptive regularization parameter selection method, i.e., ZIP method, 

has been proposed to facilitate our 3DDL method. Based on two real data experiments, it is 

expected that by using the proposed method, the dose could be reduced to  regular dose 

levels without obvious image quality degradations, considering that comparable STD and 

CNR values as the regular dose FDK reconstructions could be achieved.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of 2D (first row) and 3D (second row) dictionary learning based sparse 

representations.
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Fig. 2. 
The workflow for the ZIP method.
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Fig. 3. 
Distributions of the representation coefficients among different dictionaries for the HN 

patient (a) and prostate patient 1 (b). The x-axis is the values of the coefficients, the y-axis is 

the logarithmic probabilities. 3D-444 denotes the distributions of the coefficients for the 3D 

data samples represented by the 3D dictionary of dimension 4×4×4. 2D-881/2D-818/2D-188 

denote the distributions of the coefficients with the 2D dictionary for the 2D data samples 

extracted from the transversal/coronal/sagittal views, respectively.
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Fig. 4. 
Z-curve results for the HN and prostate patient 1 cases. The first and the second rows 

correspond to the 3DDL and TV based sparse regularizers, respectively. The first and the 

second columns correspond to the HN and prostate patient 1 cases, respectively. The arrows 

indicate the corresponding β having maximum curvature.
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Fig. 5. 
Transversal views of the HN patient images reconstructed by different methods. From left to 

right in the first row, the images are regular dose FDK reconstruction, reconstructions from 

the 3DDL, 2DDL and TF methods, respectively. From left to right in the second row, the 

images are reconstructed by the FDK, 881DL, 818DL and 188DL methods, respectively. 

The last two rows show the corresponding zoomed-in ROIs of the box in the first two rows. 

The display window is [−750 750] HU.
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Fig. 6. 
The NPS of the HN patient images reconstructed by different methods. From top to bottom 

in the first column, the images are the NPS with respect to the 3DDL/2DDL/TF 

reconstructions. From top to bottom in the second column, the images are the NPS with 

respect to the 881DL/818DL/188DL reconstructions. The display range is the same for all 

the cases ([0 3000] HU2mm3).
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Fig. 7. 
Transversal views of the prostate patient 1 images reconstructed by different methods. From 

top to bottom in the first column, the images are regular dose FDK reconstruction, 

reconstructions from the 3DDL, 2DDL and TF methods, respectively. From top to bottom in 

the second column, the images are reconstructed by the FDK, 881DL, 818DL and 188DL 

methods, respectively. The last two columns show the corresponding zoomed-in ROIs of the 

box in the first two rows. The display window is [−300 150] HU.
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Fig. 8. 
The NPS of the prostate patient 1 images reconstructed by different methods. The sub-

figures are in the same arrangement as those in Fig. 6. The display range is the same for all 

the cases ([0 3000] HU2mm3).
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Fig. 9. 
Transversal view of the reconstructed images of the GYN patient case in different fractions 

and different dose protocols. From top to bottom, the images correspond to FX 1, FX 2 and 

FX 3, respectively. From left to right, the images are regular dose FDK reconstructions, low 

dose FDK reconstructions and low dose 3DDL reconstructions, respectively. In the second 

column, from top to bottom, the dose levels are  compared to the regular dose levels in 

the first column. The region in the box is selected for the STD calculation, whose values are 

displayed in the lower-left corner of each reconstruction, the unit is HU. The display 

window is [−400 350] HU.
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Fig. 10. 
Coronal view of the reconstructed images of the GYN patient case in different fractions and 

different dose protocols. The full image are in the same arrangement as those in Fig. 9. The 

insets are the associated zoomed-in ROIs of the box, indicating the region used for CNR 

calculation, where the contents inside the circle and the box of the insets are regarded as the 

foreground and the background, respectively. The calculated CNR value is shown in the 

lower-left corner. The third column shares the same ROIs as the second column for the CNR 

calculation. The display windows is [−400 350] HU.
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Fig. 11. 

Z-curve results for the GYN patient cases. (a) ~ (c) correspond to the  dose level cases, 

respectively. The values of βa ~ βe are 0.5 × 1.2−10, 0.5 × 1.2−5, 0.5, 0.5 × 1.25 and 0.5 × 

1.210, respectively. The arrows indicate the suggested β of the maximum curvature points.
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Fig. 12. 
Transversal view of the reconstructed images of the prostate patient 2 case in different 

fractions and different dose protocols. The sub-figures are in the same arrangement as those 

in Fig. 9. The display window is [−400 350] HU.
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Fig. 13. 
Coronal view of the reconstructed images of the prostate patient 2 case in different fractions 

and different dose protocols. The sub-figures are in the same arrangement as those in Fig. 

10. The display window is [−400 350] HU.
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Fig. 14. 
Z-curve results for the prostate patient 2 case. The sub-figures are in the same arrangements 

as those in Fig. 11.
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