
3D auto-context-based locality adaptive multi-modality GANs for 
PET synthesis

Yan Wang,
School of Computer Science, Sichuan University, China

Luping Zhou* [Senior Member, IEEE],
School of Electrical and Information Engineering, University of Sydney, Australia

Biting Yu,
School of Computing and Information Technology, University of Wollongong, Australia

Lei Wang [Senior Member, IEEE],
School of Computing and Information Technology, University of Wollongong, Australia

Chen Zu,
School of Computing and Information Technology, University of Wollongong, Australia

David S. Lalush,
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North 
Carolina State University, USA.

Weili Lin,
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.

Xi Wu,
School of Computer Science, Chengdu University of Information Technology, China.

Jiliu Zhou, and
School of Computer Science, Chengdu University of Information Technology, China.

Dinggang Shen* [Fellow, IEEE]
IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA

Department of Brain and Cognitive Engineering, Korea University, Republic of Korea

Abstract

Positron emission tomography (PET) has been substantially used recently. To minimize the 

potential health risk caused by the tracer radiation inherent to PET scans, it is of great interest to 

synthesize the high-quality PET image from the low-dose one to reduce the radiation exposure. In 

this paper, we propose a 3D auto-context-based locality adaptive multi-modality generative 

adversarial networks model (LA-GANs) to synthesize the high-quality FDG PET image from the 

low-dose one with the accompanying MRI images that provide anatomical information. Our work 

has four contributions. First, different from the traditional methods that treat each image modality 

*Co-Corresponding Authors. luping.zhou.jane@googlemail.com, dgshen@med.unc.edu. 

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 06.

Published in final edited form as:
IEEE Trans Med Imaging. 2019 June ; 38(6): 1328–1339. doi:10.1109/TMI.2018.2884053.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as an input channel and apply the same kernel to convolve the whole image, we argue that the 

contributions of different modalities could vary at different image locations, and therefore a 

unified kernel for a whole image is not optimal. To address this issue, we propose a locality 

adaptive strategy for multi-modality fusion. Second, we utilize 1×1×1 kernel to learn this locality 

adaptive fusion so that the number of additional parameters incurred by our method is kept 

minimum. Third, the proposed locality adaptive fusion mechanism is learned jointly with the PET 

image synthesis in a 3D conditional GANs model, which generates high-quality PET images by 

employing large-sized image patches and hierarchical features. Fourth, we apply the auto-context 

strategy to our scheme and propose an auto-context LA-GANs model to further refine the quality 

of synthesized images. Experimental results show that our method outperforms the traditional 

multi-modality fusion methods used in deep networks, as well as the state-of-the-art PET 

estimation approaches.
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I. Introduction

AS a nuclear imaging technology, positron emission tomography (PET) enables the 

visualization of metabolic processes of human body, and has been increasingly used in 

clinics for disease diagnosis and intervention [1]. By detecting pairs of gamma rays emitted 

indirectly from the radioactive tracer injected into the human body, the PET system usually 

uses manufacturer-provided software to do the triangulation of the source of the emissions, 

thus reconstructing 3D PET images of the tracer concentrations within the human body. 

Usually, a full-dose tracer is required to obtain PET images of diagnostic quality. However, 

the radioactive exposure inevitably raises concerns of potential health hazards. The risks are 

accumulated for patients who experience multiple PET scans as part of their treatments. To 

tackle the radiation problem, some researchers have tried to reduce the tracer dose (e.g., 

using half of the full dose) during the PET scans [2]. Since the PET imaging is a quantum 

accumulation process, lowering the tracer dose inevitably involves unnecessary noises and 

artifacts, thus degrading the PET image quality to a certain extent. This work targets on the 

[18F]FDG PET images. As shown in Fig. 1, the quality of the low-dose [18F]FDG PET (L-

PET) image is obviously worse than that of the full-dose [18F]FDG PET image (F-PET), 

involving more noise and less functional details. This kind of L-PET images may not satisfy 

the diagnostic requirements. Therefore, it is of great interest to synthesize the high-quality F-

PET image from the low-dose one to reduce the radiation exposure while maintaining the 

image quality.

Modern PET scans are usually accompanied with other modalities, such as computed 

tomography (CT) and magnetic resonance image (MRI). By combining functional and 

morphological information, PET/CT and PET/MRI systems could increase diagnostic 

accuracy in a variety of malignancies [3–5]. Previous research also indicates the benefit 

brought by multi-modality data for medical image quality enhancement [6, 7]. In this paper, 
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to incorporate anatomical information into PET synthesis, we propose to synthesize the 

high-quality F-PET image from both the L-PET image and the accompanying MRI 

including T1-weighted MRI (T1-MRI) and diffusion tensor image (DTI).

There have been several works for F-PET image synthesis. Most of them, however, are 

based on voxel-wise estimation methods, e.g., random forest based regression method [8], 

mapping based sparse representation method [9], semi-supervised tripled dictionary learning 

method [10], and multi-level canonical correlation analysis framework [11]. Although these 

methods present good performance for PET image quality enhancement at low dose, there 

are two major disadvantages that limit the potential clinical usability. The first one is that 

they are all based on small patches, and the final estimation of each voxel is determined by 

averaging the overlapping patches. This strategy inevitably results in over-smoothed images 

that lack the texture of a typical F-PET image, thus limiting the quantification of small 

structures in the synthesized images. Another disadvantage is that these voxel-wise based 

estimation methods usually need to solve plenty of optimization problems online, and thus 

are quite time-consuming when tested on new subjects. That is, the estimation procedure is 

quite burdensome.

In recent years, deep learning has shown an explosive popularity in computer vision and 

medical imaging fields [12–16]. In the particular case of image synthesis, Dong et al. [17] 

proposed a convolutional neural networks (CNNs) method for image super-resolution. Using 

similar deep architecture, Li et al. [18] estimated the missing PET image from the MRI for 

the same subject. By integrating multiple CNN modules following the auto-context strategy, 

Xiang et al. [19] proposed an auto-context CNN method for F-PET image estimation. 

However, CNNs using small patches tend to ignore the neighborhood information in the 

synthesized image [20]. To preserve structural information for the entire image, Long et al. 

[21] first proposed a fully-convolutional-networks (FCNs) architecture for semantic 

segmentation; note that FCNs have been widely utilized for image segmentation and 

synthesis [22–24]. Particularly, Ronneberger et al. [25] proposed a special FCNs 

architecture, namely U-net, for neuronal structures segmentation. Using the idea of skip 

connection, the U-net has been successfully applied to many tasks [26, 27].

More recently, as one of the advancement of deep learning techniques, generative adversarial 

networks (GANs) have been extensively applied to many unsupervised and semi-supervised 

learning tasks [28] as well as image synthesis tasks [29]. GANs consider a two-player min-

max adversarial game between two agents, i.e., a generator network and a discriminator 

network. The goal of the discriminator is to tell the real inputs from the generated ones by 

the generator, while the generator is optimized to synthesize samples that are not 

distinguishable by the discriminator. Subsequently, some variations of traditional GANs 

have been developed [30–33]. Particularly, the conditional GANs facilitate the training of a 

deep model to generate images conditioned on particular auxiliary information. Wang et al. 

[34] proposed to synthesize the F-PET image from the low-dose PET using a conditional 

GANs model. To address the problem of multi-modality inputs, Bi et al. [35] proposed a 

multi-channel GANs method to synthesize PET images from CT images and their 

corresponding label images. In their method, they treated each image modality as an input 

channel and simply applied the same kernel to convolve the whole image. However, the 
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contributions of different modalities could vary at different image locations, and therefore a 

unified kernel for a whole image is not appropriate. On the other hand, Nie et al. [36] 

proposed a fully convolutional networks model for multi-modality infant brain 

segmentation. Different from the multi-channel method which stacks multi-modality data 

from the low-level feature maps, they proposed to train one network for each modality and 

then fuse their high-level information using a fusion layer. However, they did not consider 

the various contributions of different image locations as well. In addition, training one 

network for each modality would significantly increase the number of training parameters, 

making it quite challenging when the training sample size is relatively small, which is quite 

common in medical image analysis field.

In this paper, inspired by the appealing success of GANs and also motivated to tackle the 

limitation of the current multi-channel deep architectures for modality fusion, we propose an 

auto-context-based “locality adaptive” multi-modality GANs (LA-GANs) model to 

synthesize the F-PET image from both the L-PET and the accompanying multimodal MRI 

images including T1-MRI and DTI. Note that the common DTI measures include fractional 

anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), etc. Here, we compute FA 

and MD images from diffusion images for F-PET image synthesis. The contributions of our 

method are as follows. 1) We propose a new mechanism to fuse multi-modality information 

in deep neural networks. The weight of each imaging modality varies with image locations 

for better serving the synthesis of F-PET. 2) Using multi-modality (especially making it 

locality-adaptive) may induce many additional parameters to learn. We therefore propose to 

utilize 1×1×1 kernel to learn such locality-adaptive fusion mechanism to minimize the 

increase of the number of parameters. Doing so also naturally leads to a fused image that 

acts as a pseudo input for the subsequent learning stages. 3) We develop a 3D conditional 

GANs model for PET image synthesis, and jointly learn the proposed locality-adaptive 

fusion with the synthesis process in an end-to-end training manner. Our 3D GANs model 

generates high-quality PET images by employing large-sized image patches and hierarchical 

features. 4) Auto-context model can effectively leverage the context information which plays 

a vital role in interpreting image content. Therefore, we apply the auto-context strategy on 

our scheme and propose an auto-context LA-GANs model to further refine the quality of 

synthesized images. Compared with the traditional multi-modality fusion methods used in 

deep networks [19, 34], our method can achieve better performance while incurring less 

number of additional parameters.

II. Methodology

Our proposed LA-GANs model is illustrated in Fig. 2, which consists of three parts: 1) the 

locality-adaptive fusion network, 2) the generator network, and 3) the discriminator network. 

Concretely, the locality-adaptive fusion network takes an L-PET, a T1-MRI, an FA-DTI and 

an MD-DTI images as inputs, and generates a fused image by learning different 

convolutional kernels at different image locations. After that, the generator network is 

trained to produce a synthesized F-PET from the fused image, while the discriminator 

network subsequently takes a pair of images as input, i.e., the L-PET and the real or 

synthetic F-PET, aiming to distinguish between the real and synthetic pairs. If the 

discriminator can easily distinguish between them, which means the synthesized PET image 
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has not well resembled the real one, and also that the fusion network and the generator 

network should be further improved to produce more realistic synthesis. Otherwise, the 

discriminator should be enhanced instead. Therefore, the three networks are trained 

simultaneously with discriminator trying to correctly distinguish between the real and 

synthetic data, while the fusion and generator networks trying to produce realistic images 

that can fool the discriminator. Please note that, we use 3D operations for all the networks to 

better model the 3D spatial information and thus could alleviate the discontinuity problem 

across slices of 2D networks. The details of the architecture as well as the objective function 

are described in the following sections.

A. Architecture

Locality-adaptive fusion network—This is a module for multi-modality information 

fusion. As mentioned before, in most multi-channel based networks, image convolution is 

performed in a global manner, i.e., for each modality the same filter is applied to all image 

locations for generating the feature maps that will be combined in higher layers. This could 

not effectively handle the location-varying contributions from different imaging modalities. 

To tackle this problem, locality-adaptive convolution should be enforced. However, if the 

locality-adaptive convolution is simply conducted in the multi-channel framework, many 

additional parameters will have to be learned due to inclusion of new imaging modalities. 

This is not favorable for medical applications where the number of the training samples is 

often limited. Therefore, we propose to add a module that produces a fused image from 

multi-modality images and use the fused image as the pseudo input to the generator network. 

In this way, the increase of the number of modalities will not cause any increase on the 

number of parameters in the generator. Moreover, we propose to utilize 1×1×1 kernel for 

locality-adaptive convolution to minimize the number of necessary parameters to learn in 

this fusion module. The fusion network will be jointly learned with the generator and the 

discriminator to ensure that they can effectively negotiate with each other to achieve the best 

possible performance on image synthesis. Specifically, the entire L-PET and multimodal 

MR images are partitioned, respectively, into N non-overlapping small regions, i.e., Pi
L, Pi

T1, 

Pi
FA and Pi

MD (i = 1, …, N) as indicated by the regions in different colors in Fig. 2. Then, the 

regions at the same location (indicated by the same color) from the four modalities, i.e., Pi
L, 

Pi
T1, Pi

FA and Pi
MD, are convolved, respectively, using four different 1×1×1 filters with 

parameters wi
L, wi

T1, wi
FA and wi

MD. For instance, in the fusion block in Fig. 2, the four gray 

filters are respectively operated on the four gray regions of the L-PET, T1-MRI, FA-DTI and 

MD-DTI images to generate their corresponding combined region. Formally, the combined 

region Pi
C is obtained as follows:

Pi
C = wi

LPi
L + wi

T1Pi
T1 + wi

FAPi
FA + wi

MDPi
MD,

s.t. wi
L + wi

T1 + wi
FA + wi

MD = 1,
wi

L, wi
T1, wi

FA, wi
MD > 0, i = 1, …, N .

(1)
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In this way, we will learn N groups of different convolution kernels for N local regions. The 

outputs of the fusion are further assembled to form an entire fused image as the input of the 

following generator network.

Generator network—In our generator network, we adopt both the convolutional layers 

and de-convolutional layers to ensure the same size of the input and output images. Since the 

low-dose and full-dose PET images belong to the same modality, there are lots of low-level 

information shared between them. As such, we follow the U-net and add skip connections 

between the convolutional and de-convolutional layers, thus combining hierarchical features 

for better synthesis [25]. Also, the skip connection strategy mitigates the vanishing gradient 

problem, allowing the network architecture to be possibly much deeper. The advantage of 

using skip connections over traditional CNN has been well demonstrated in the U-net related 

literature [36]. Fig. 3 illustrates the architecture of our 3D U-net-like generator network, 

including a contracting encoder part to analyze the input fused image and an expansive 

decoder part to generate an output of synthetic F-PET image. Since the pooling layers could 

reduce the spatial resolution of feature maps, we do not employ any pooling layers in our 

generator architecture.

We follow the basic network architecture in [37] to build layers with multiple Convolution-

BatchNormalizaion-Leaky Relu components. Specifically, the entire network constitutes 12 

convolutional layers. In the encoder part which includes the first 6 convolutional layers, we 

use 4×4×4 filters and a stride of 2 for convolution, and 0.2 negative slope for the leaky 

ReLu. The number of feature maps increases from 64 in the 1st layer to 512 in the 6th layer. 

The number of feature maps in each convolutional layer is denoted in Fig. 3 (see the number 

under each blue block). In addition, since we apply zero padding with 1×1×1 kernel, the 

output of each convolutional layer of the encoder part halves the size of the feature maps. In 

the decoder part, we perform up-sampling with a factor of 2. Using the skip connections, the 

feature maps from the encoder part are copied and concatenated with the feature maps of the 

decoder part, as indicated by the dotted arrows in Fig. 3. The batch normalization is also 

introduced in each convolutional layer to ease the training of deep neural networks. Finally, 

the output of the generator network is considered as the synthetic F-PET image.

Discriminator network—The same Convolutional Batch Normalization Leaky Relu 

blocks are used in our discriminator network. As shown in Fig. 4, the discriminator network 

is a typical CNN architecture consisting of 4 convolutional layers, and each of them uses 

4×4×4 filters with a stride of 2, similar to the encoder structure of the generator. The first 

convolution layer produces 64 feature maps, and this number is doubled at each of the 

following convolutional layers. On top of the convolutional layers, a fully connected layer is 

further applied and followed by a sigmoid activation to determine whether the input is the 

real pair or the synthetic one.

B. Objective functions

Let us denote xL an L-PET image, xT1, xFA and xMD the accompanying multimodal MR 

images, and yF the corresponding real F-PET image (i.e., the ground-truth annotation). In 

this study, we learn three function mappings. The first mapping 
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Fα: xL ∈ ℝLow, xT1 ∈ ℝT1 − MRI, xFA ∈ ℝFA − DTI, xMD ∈ ℝMD − DTI yF ∈ ℝFused is for 

the locality-adaptive fusion network, which produces a fused image yF from xL, xT1, xFA and 

xMD. The second mapping Gβ: yF ∈ ℝFused yF ∈ ℝSynthetic is for the generator network, 

which maps the fused image yF to a synthetic F-PET image yF. The third mapping 

corresponds to the discriminator network function Dγ: (xL ∈ ℝLow, YF ∈ ℝFull) d ∈ 0, 1 , 

whose task is to distinguish the synthetic pair YF : = xL, yF  (ideally d → 0) from the real 

pair YF := (xL, yF) (ideally d → 1). The symbols α, β and γ denote the parameter sets of the 

three networks, respectively, and are automatically learned from a training set 

xL
i , xT1

i , xFA
i , xMD

i , yF
i

i = 1
m

. Formally, we solve the following optimization problem:

min
α

min
β

max
γ

V Fα, Gβ, Dγ

= 𝔼 logDγ xL, yF

+ 𝔼 log 1 − Dγ xL, Gβ Fα xL, xT1, xFA, xMD

+ λVL1 Fα, Gβ ,

(2)

where λ > 0 is a trade-off parameter. The last term is an L1 loss, used to ensure that the 

synthetic F-PET image stays close to its real counterpart. The L1 loss is defined as:

VL1 Fα, Gβ = 𝔼 yF − Gβ Fα xL, xT1,xFA, xMD 1 (3)

Please note that, the fusion network F and the generator network G, in a sense, can be 

regarded as a whole network whose goal is to synthesize realistic-looking F-PET images that 

can fool the discriminator network D. Following the approximation scheme in [38], the 

minimization of term log 1 − Dγ xL, Gβ Fα xL, xT1,xFA, xMD  can be replaced by minimizing 

a simpler form −logDγ xL, Gβ Fα xL, xT1,xFA, xMD . Therefore, training the fusion network F 

and the generator network G equals to minimizing the following problem:

Lℱ, 𝒢 Fα, Gβ =

− ∑i logDγ xL
i , Gβ Fα xL

i , xT1
i , xFA

i , xMD
i

+ λ∑i yF − Gβ Fα xL
i , xT1

i , xFA
i , xMD

i

1
.

(4)

On the other hand, the discriminator network D tries to tell the real pair (xL, yF) from the 

synthetic pair xL, yF  by maximizing Equation (2). Therefore, training the discriminator 

network corresponds to maximizing:
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L𝒟 Dγ =
∑i logDγ xL

i , yF
i

+ ∑i log 1 − Dγ xL
i , Gβ Fα xL

i , xT1
i , xFA

i , xMD
i

(5)

C. Training the LA-GANs

The fusion network F together with the generator network G and the discriminator network 

D are trained in an alternating manner, which is similar to the standard approach of [38]. 

Specifically, we first fix F and G to train D for one step using the gradients computed from 

the loss function, and then fix D to train F and G. As shown in Equation (2), the training of 

F, G and D is just like playing a min-max game: F and G try to minimize the loss function 

while D tries to maximize it. With continuation of the training, the three networks become 

more and more powerful. Finally, the generator will be able to generate the synthetic F-PET 

image that is extremely close to the real one. In the testing stage, only the fusion and 

generator networks are needed for synthesis. The only difference from the usual protocol is 

that we apply batch normalization using the statistics of the testing batch, instead of 

aggregated statistics of the training batch. To balance the contribution of each modality to 

train our LA-GANs model, we initialize the learning parameters of 0.25 for all patches in L-

PET and MR images. All networks are trained by Adam solver with mini-batch stochastic 

gradient descent (SGD), and the mini-batch size is set to 128. The training process runs for 

200 epochs, and the learning rate is set to 0.0002 for the first 100 epochs and then linearly 

decays to 0 in the second 100 epochs. The weight of the estimation error term λ is 

empirically set as 200 in all our experiments.

D. Auto-context LA-GANs

It has been known that the context information plays a crucial role in interpreting image 

content and the auto-context model can effectively leverage the context information [20]. To 

harness the integration of the high-level auto-context information and the low-level image 

appearance, we further propose an auto-context LA-GANs model to improve the quality of 

the synthesized F-PET image generated by the LA-GANs model, as illustrated in Fig. 5. 

Specifically, given the multi-modality training images, we first train a LA-GANs

Algorithm 1

1: Input: A set of training low-dose PET images IL = I1
L, I2

L, …, IN
L

, a set of training multimodal MRI images 

including IT1 = I1
T1, I2

T1, …, IN
T1

, IFA = I1
FA, I2

FA, …, IN
FA

, IMD = I1
MD, I2

MD, …, IN
MD

, and a set 

of training full-dose PET images IF = I1
F, I2

F, …, IN
F

. N is the total number of training samples.

2. Perform the 3D LA-GANs between IL, IT1, IFA, IMD and IS to obtain the fusion network F, the generator network G, 
and the discriminator network D.

3. For each training sample i (i=1,2,...,N), use the above trained fusion network F and generator network G to generate 

the synthetic full-dose PET image I i
F

. Finally, get the estimations for all training subjects IF
.
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4. The synthesis of the training subjects IF
, along with the original low-dose PET IL and multimodal MRI images IT1, 

IFA and IMD, are all input to the subsequent LA-GANs network, namely, auto-context LA-GANs, to obtain the updated 
fusion network F′, the generator network G′ and the discriminator network D′.

5: Output: The trained fusion networks for LA-GANs and auto-context LA-GANs F and F’, as well as the trained 
generator networks G and G’.

model using the original training modalities including L-PET, T1-MRI, FA-DTI and MD-

DTI. Then, for each training subject, we generate a corresponding synthetic F-PET image by 

using the trained model. After that, the synthetic F-PET images for all training samples 

generated from the LA-GANs are used as the context information, together with the original 

modalities (i.e., appearance information), to train a new auto-context LA-GANs model, 

which further refines the synthesized F-PET image. The detailed procedure is summarized in 

Algorithm 1. In the testing stage, given a new L-PET image It
L, together with its 

corresponding multimodal MRI images It
T1, It

FA, It
MD, we can use the trained fusion 

networks F and F’ as well as the trained generator networks G and G’ to obtain the final 

results.

III. Experiments and results

A. Simulated data

We first test our method on the simulated phantom brain dataset to evaluate the effectiveness 

of our proposed method. For data acquisition, twenty simulated subjects were generated 

from the BrainWeb database of twenty normal brains [39, 40]. Specifically, anatomical 

distribution functions were downloaded from BrainWeb to simulate T1-MRI of each subject 

and also used as input for generating PET data. The original brain maps were defined at 1 

mm voxel size with fuzzy segmentation into 11 tissue classes. PET uptake maps were 

created for each of the fuzzy segmentations by assigning typical uptake ratios to each tissue 

class. Models were made for 18F-FDG distributions. PET attenuation maps were also 

determined from typical values of tissue linear attenuation coefficients at 511 keV.

PET acquisition data were simulated to model the acquisition geometry of the Siemens 

Biograph mMR system. The PET uptake maps were blurred with a 4mm FWHM Gaussian 

kernel to model positron range and limited spatial resolution. Line-of-response (LOR) data 

were created by ray-tracing through the blurred PET uptake map with the native geometry 

(3.5×108 LORs) of the scanner system. Similarly, attenuation effects for each LOR were 

applied by ray-tracing through the attenuation maps. The attenuated LORs were collapsed 

into the smaller set typically used by the scanner manufacturer prior to reconstruction 

(7.3×107 LORs). Nonuniformity effects were applied to the collapsed projection data using a 

uniformity correction obtained from scanner data. After all effects were applied, Poisson 

noise was simulated to achieve count levels associated with full dose, based on measurement 

from patient image raw data, and low dose, by simulating at 25% of the normal count level. 

PET reconstructions were created using the Ordered Subsets-Expectation Maximization 

algorithm (OSEM) with 21 subsets and 3 iterations followed by a 3D Gaussian 4mm FWHM 

post-reconstruction filter. The PET reconstruction space was 344×344×127 with voxels of 

size 2.08×2.08×2.03 mm3. Attenuation correction was applied from a uniform attenuation 
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map modeled on the original anatomy, emulating the MR-based map that would be obtained 

from a Dixon sequence. Uniformity correction was also applied in reconstruction. The 

resulting image sets included a T1 anatomical image, an F-PET reconstruction, and an L-

PET reconstruction for each of the twenty simulated subjects.

Considering the small number of the training samples, we cropped and expanded the image 

to size of 128×128×128, and then extracted 125 large 3D image patches of size 64×64×64 

from each image, rather than directly using the entire 3D image, to train the deep model. In 

this way, we can significantly increase the number of samples (i.e., from 20 to 2500 in total). 

In addition, to make full use of available samples, we followed the widely used “Leave-One-

Subject-Out” strategy, i.e., we repeated the training and test for 20 times, and at each time 

reserved one subject in turn for test and trained our model on the patches from the rest 

subjects. To train the proposed locality-adaptive fusion network, we further partitioned each 

large image patch into non-overlapping 8×8×8 regions for fusion. In this manner, we can get 

512 regions for each modality per large image patch. Since the phantom data just include 

T1-MRI and PET images (i.e., without DTI), we initialized the learning parameters of 0.5 

for the fusion network in L-PET and T1-MR images. Our method was implemented by 

PyTorch, and all the experiments were carried out on an NVIDIA GeForce GTX 1080 Ti 

with 11GB memory.

To quantitatively characterize the synthesis accuracy, we use two popular metrics1: 1) peak 

signal-to-noise (PSNR) and 2) structural similarity index measurement (SSIM) [41]:

PSNR = 10log10
UR2

IF − I F
2
2 , (6)

SSIM =
2μ

IFμ
IF + c1 2σ

IFIF + c2

μ
IF
2 + μ

IF
2 + c1 σ

IF
2 + σ

IF
2 + c2

(7)

where in Equation (6), IF is the ground-truth F-PET image, IF the synthesized F-PET image, 

R the maximal intensity value of IF and IF, and U the number of voxels in each image; and 

in Equation (7), μ
IF and μ

IF represent the average of IF and IF, σ
IF and σ

IF the variance of 

IF and IF, and σ
IFIF the covariance of IF and IF. The positive constants c2 and c2 are used to 

avoid a null denominator. SSIM is a ratio between 0 and 1 and it has no unit. Theoretically, 

synthesis result with higher PSNR and higher SSIM means better image quality.

1We also use another metric Mean squared error (MSE), which is close to PSNR, and the results are available in the supplementary 
files.
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Fig. 6 shows three examples of the synthesized F-PET images by our method (the middle 

column). We also give the corresponding L-PET images (the left-most column) and the real 

F-PET images (the right-most column) for comparison. As observed, the image quality of 

the L-PET is obviously worse than that of the F-PET image. The synthetic results by our 

method significantly improve the details over the L-PET image (as indicated by the red 

arrows), and are quite similar to the real F-PET images. The PSNR for each image is also 

given under the corresponding image in Fig. 6, where we can see a significant improvement 

over the L-PET image. To show how the contributions of different input modalities vary at 

different regions, we visualize the weights with color coding for different regions in different 

modalities, with an example given in Fig. 7. As can be clearly seen, the contributions of 

different modalities vary at different image locations.

For quantitative evaluation, we further compare our method with four state-of-the-art 

methods: (1) mapping based sparse representation method (m-SR) [9], (2) tripled dictionary 

learning method (t-DL) [10], (3) multi-level CCA method (m-CCA) [11], and (4) auto-

context CNN method (auto-CNN) [19]. The PSNR and SSIM over the whole brain image 

are showed in Fig. 8. The results show that the synthesis by our auto-context LA-GANs 

model is more accurate than the existing F-PET estimation methods, with the highest PSNR 

and SSIM. To study if our improvement is statistically significant, we perform paired t-tests 

to compare the existing methods against ours. Throughout the t-tests, the p-values of all the 

competing methods are consistently less than 0.05, indicating that the improvement by our 

method is statistically significant.

Both qualitative and quantitative experimental results conducted on the simulated phantom 

data demonstrate that our proposed method can achieve high quality PET synthesis at low 

dose. In the next section, the proposed method will be evaluated on real human brain dataset.

B. Clinical data

We further evaluate our method on the clinical real human brain dataset. The real human 

brain dataset consists of 8 normal control (NC) subjects and 8 mild cognitive impairment 

(MCI) subjects, each with an L-PET image, an F-PET image, a T1-MRI image, an FA-DTI 

image and an MD-DTI image. Specifically, the PET scans were acquired by a Siemens 

Biograph mMR PET-MR scanner, accompanying with the T1-MRI sequences and the DTI 

images. For each subject, the PET images and the DTI image were respectively aligned to 

their T1-MRI to build the voxel-level correspondence via affine transformation [42]. Finally, 

the FA-DTI and MD-DTI images can be computed from the resulting registered DTI image. 

The reconstruction was performed iteratively with the OSEM algorithm (3 iterations, 21 

subsets, and post-reconstruction filtered with a 3D Gaussian with FWHM of 2 mm). Each 

aligned image has the resolution of 2.09×2.09×2.03 mm3 and the image size of 

128×128×128. The clinical data used in this work is the same as our previous work in [34]. 

To train the deep network, we used the similar strategies as for the phantom data: 1) 

extracted 125 large 3D image patches of size 64×64×64 from each image, rather than 

directly using the entire 3D image, 2) used “Leave-One-Subject-Out” strategy to make full 

use of available samples, and 3) used the NC and MCI data together in training to maximally 

utilize the available samples.
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Compared with the simulated phantom data, the clinical data could more realistically reflect 

clinical imaging applications. Therefore, we perform abundant experiments to investigate the 

contributions of our proposed method, including 1) the locality-adaptive fusion network, 2) 

the multimodal MRI images, 3) the adversarial learning, and 4) the auto-context model. We 

also compare our method with the state-of-the-art multi-modality PET synthesis approaches.

1) Comparison between the multi-channel based method and our proposed 
LA-GANs method—To study the contribution of the locality-adaptive fusion network of 

our proposed model, we conduct comparison experiments between the traditional multi-

channel GANs model and our proposed LA-GANs model that does not employ the auto-

context (AC) strategy (denoted as LA-GANs w/o AC). We visualize the comparison results 

in Fig. 9, where the first row images are the input L-PET, T1-MRI, FA-DTI and MD-DTI 

images, and the last image in the second row is the ground-truth F-PET. Note that the PET 

images displayed below share the same grayscale coding as in Fig. 1. We can clearly see that 

the synthesized F-PET image of our proposed model has less artifacts than that of the multi-

channel model, as indicated by the red rectangles. The averaged quantitative comparison in 

terms of PSNR and SSIM are also provided in Table 1 and Table 2, with Table 1 showing the 

performances on the NC subjects and Table 2 showing the performances on the MCI 

subjects, respectively. We can see that, compared with multi-channel GANs method, the 

averaged PSNR of our method increases approximately 0.25 and 0.2 for NC and MCI 

groups, respectively. The standard deviation of our method is also smaller than that of the 

multi-channel GANs, while the median is higher. Also, the paired t-test shows that our 

improvement against the multi-channel one is statistically significant with p<0.05 (p = 

0.0482 for NC subjects and p = 0.0161 for MCI subjects). The SSIM values in the two tables 

indicate the same conclusion. Moreover, the number of additional learning parameters 

incurred by adding multimodal MRI is 2048 for our method and 16384 for the multi-channel 

GANs, suggesting that our model produces better performance with less increase on the 
number of parameters.

2) Contribution of the multimodal MRI images—To study the contributions of the 

multimodal MRI images for F-PET synthesis, we respectively use 1) MRI images (T1+DTI), 

2) L-PET image, 3) L-PET+T1 images, and 4) L-PET+T1+DTI images, for synthesis. Note 

that, the model just using L-PET for F-PET synthesis exactly follows the single modality 

GANs model used in [34]. The detailed quantitative comparison in terms of PSNR and 

SSIM is given in Fig. 10.

From Fig. 10, we can see that, just using the MRI images for PET synthesis obtains the 

lowest PSNR and lowest SSIM. The main reason is that the imaging mechanisms between 

PET and MRI are different. Therefore, just using MRI to estimate F-PET images leads to 

unsatisfactory results. Compared with using single modality of L-PET, employing two 

modalities (L-PET and T1) achieves a better result, with the PSNR improved from 24.29 to 

24.58 and the SSIM increased from 0.982 to 0.985, respectively, for NC dataset. This is 

because the T1-MRI contains abundant anatomical structural information which can help 

synthesize the F-PET image from the L-PET image. When we try to also incorporate the 

DTI information (FA-DTI and MD-DTI) for synthesis, the model further produces an 
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improved estimation, though not as significantly as it does by adding T1-MRI. This indicates 

that the fiber path reflected in DTI may probably be less helpful for PET image synthesis, 

compared with the anatomical information from T1-MRI. Moreover, as demonstrated by 

paired t-test, our locality adaptive multi-modality GANs statistically significantly 

outperforms the single modality GANs in [34], with p-value 0.0089 for NC subjects and 

0.0035 for MCI subjects, respectively. In addition, by analyzing the relevance between the 

distribution of weights and the underlying anatomy of different modalities, we found that, 

compared with the DTI image, the T1-weighted image contributes more in both grey matter 

and white matter for PET synthesis, i.e., with larger weights. This is mainly because the T1-

weighted image can show both white matter and grey matter reasonably well. For the DTI 

image, the weights in the white matter regions are larger than those in the grey matter 

regions, suggesting that the DTI image contributes more in white matter than in grey matter 

for PET synthesis.

3) Contribution of the adversarial network—To investigate the contribution of the 

adversarial network in our proposed model, we conduct comparison experiments between 

the proposed LA-GANs model and the model that removes the discriminator network (i.e., 

just the locality fusion network and the generator network shown in Fig. 2). The PSNR 

values are 24.35(1.84) / 24.61(1.79) for NC subjects, and 24.76(2.12) / 25.19(1.98) for MCI 

subjects, by the models without / with adversarial network, respectively. Note that these 

results provided here do not include the auto-context strategy. From these quantitative 

results, we can clearly see that the generated images using the adversarial training approach 

have better synthesis quality, indicating the essentials of the adversarial training in our 3D 

LA-GANs model.

4) Contribution of the Auto-context model—We now show the contribution of the 

auto-context model. As observed in Fig. 11, the estimation quality of the auto-context LA-

GANs model improves notably compared with the original LA-GANs model, as indicated 

by the red rectangles. This can also be seen from the quantitative comparison results given in 

Fig. 12, where the values of PSNR are improved with the use of context information for both 

multi-channel GANs (M-GANs) model and our LA-GANs model, and the best performance 

is achieved by our auto-context LA-GANs. Actually, we can further iteratively refine the 

generated results as the original auto-context algorithm, however, we found that the 

following iterative refinements give marginal improvement (PSNR<0.08), but bring much 

computational cost. Therefore, to balance the computational time and the synthesis 

performance, we choose the output of auto-context LA-GANs as the final result.

5) Comparison with the state-of-the-art methods—Similar to the experiments on 

the phantom data, we also compare our method with the state-of-the-art multi-modality 

based PET estimation methods, including (1) m-SR[9], (2) t-DL[10], (3) m-CCA[11], and 

(4) auto-CNN[19]. The PSNR and SSIM results are given in Fig. 13, from which we can see 

that our proposed method outperforms all the other competing methods for both image 

quality and structural information preservation, demonstrating its effectiveness and 

advantage. In addition, the small p-values from the t-test further demonstrate the statistical 

significance of the achieved improvement.
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In Fig. 14, we visualize an example result of our method and compared it with those from 

the two methods (m-CCA and auto-CNN) which produce the top two results in the literature. 

As observed, the estimated images by the m-CCA method are over-smoothed compared with 

the real F-PET images due to the averaging of the overlapping patches to construct the final 

output images. Compared with the auto-CNN network, our model tends to better preserve 

the detailed information in the estimated F-PET images, as indicated by the red arrows. We 

argue that this is because the auto-context CNN method does not consider the varying 

contributions across image locations. Also, the adversarial training network used in our 

model constrains the synthesized images to be similar to the real ones.

6) Clinical evaluation on lesions of MCI subjects—In addition to the image quality 

metrics, it is also important that the lesions in the synthetic F-PET image could be well 

preserved in terms of clinical quantification, as compared with the real F-PET image, since 

lesions could suffer reduced contrast. Clinically, the hippocampus is among the first brain 

structures to be affected by MCI pathology. To investigate this aspect, we evaluate the 

contrast recovery (CR) [43] in the hippocampal regions of MCI subjects. Specifically, the 

hippocampi are selected as the ROIs and the cerebellum is chosen as the background. The 

averaged CR bias for MCI subjects are shown in Fig. 15. For comparison, we also provide 

the CR results of both m-CCA and auto-context CNN methods that produce the top two 

performances in the literature.

As can be seen, the CR bias in the original L-PET images is significant. This value is 

reduced in the synthetic F-PET image from m-CCA and auto-context CNN methods. 

Compared to these two state-of-the-art methods, the proposed LA-GANs model further 

mitigates this bias. Through paired t-tests, the small p-values demonstrate the statistically 

significant improvement achieved by our method.

IV. Discussion

Our work aims to reduce the tracer dose in PET scans while maintaining image quality. 

Although the idea of using multiple imaging modalities for F-PET image synthesis has been 

presented in previous work [8–11], however, these methods are based on voxel-wise, which 

have some drawbacks that limit the potential clinical usability (e.g., resulting in over-

smoothed images and the synthesis is very time-consuming).

In this paper, we propose a totally different synthesis method using locality adaptive GANs 

model. Our locality adaptive fusion, learned in an end-to-end trained deep network, has 

never been proposed in the literature (to the best of our knowledge). Different from the 

standard convolutional approach which applies the same kernel to convolve the whole 

image, we argue that the contributions of different modalities could vary at different image 

locations. In our method, the weights at different image locations of each modality are 

automatically learned in the deep neural network to better serve the objective of PET 

synthesis. From the experimental results in Section III-A, we can see that the contributions 

of different modalities vary at different image locations. Also, as shown in Section III-B(1), 

we can see that the our locality adaptive GANs model presents better results than the multi-

channel based GANs model with also much less number of additional parameters to learn. 
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These two experiments fully demonstrate the superiority of our locality adaptive approach, 

which cannot be achieved by a standard convolutional approach. The adversarial training 

network used in our model constrains the synthesized images to be similar to the real ones. 

Such an objective is evaluated via a deep CNN classification network (the discriminator) 

rather than a single cost function used in the conventional approaches without adversarial 

training. Since the generator and discriminator in GANs are competing against each other, 

the improvement on one indicates a higher loss on the other. With the increase of training 

epochs, both the discriminator and the generator losses are converged to certain constant 

numbers, indicating that the GANs model finally finds a Nash equilibrium between the 

generator and discriminator networks. The experimental results in Section III-B(3) 

demonstrate the essentials of the adversarial training in our model.

The idea of using 3D conditional GANs has been presented in our previous work [34]. 

However, there is distinct difference between the two works. Specifically, [34] focuses on 

single-modality GANs. In contrast, this work innovatively explores the fusion of multiple 

imaging modalities to synthesize full-dose PET images via GANs. With tactically fusing 

multi-modalities, our work achieves better performance than that work. Also, our locality 

adaptive fusion provides a general methodology, which can be applied to a variety of deep 

neural networks beyond GANs model.

In addition, the fusion strategy for image synthesis has also been studied in [44, 45], by 

using the mean & variance fusion or the max fusion. However, the fusion strategies used in 

these two papers and in our work are significantly different. First and most importantly, 

either the mean & variance fusion or the max-fusion does not include learnable fusion 

weights. In contrast, in our locality adaptive fusion, the fusion weights are automatically and 

jointly learned with the image synthesis task, therefore being able to better serve the ultimate 

goal of the applications. Second, our locality adaptive fusion network directly takes multi-

modality images as input, and outputs a fused image as the pseudo input to the following 

generator network. In contrast, the two fusion strategies in [44, 45] are implemented on the 

features obtained from the previous encoder network, without considering locality adaption 

as well.

To train reliable deep model with small size of training samples, we employ large 3D image 

patches rather than directly using the entire 3D image as input. In this way, we significantly 

increase the number of training samples. Experimental results show that this strategy 

significantly mitigates the over-smoothed problem of small patches used in previous work. 

Although we can increase the number of training samples by extracting even smaller patches 

from the original images, however, it is found that the results are inferior to our current 

settings. In contrast, using small patches could possibly bring the problems of over-

smoothing as well as additional computational cost.

Moreover, in addition to the image quality metrics, we also explore whether the lesions in 

the synthetic F-PET image could be well preserved in terms of clinical quantification, as 

compared to the real F-PET image. Experimental results indicate an improved clinical 

usability, as compared to the L-PET images and the results by the-state-of-the-art methods.

Wang et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our current work has the following limitations. First, in the current study, only a limited 

number of training images are available to evaluate the proposed method. In our future work, 

we will involve more subjects into the study to further increase the generalization capacity of 

the proposed method. Second, for the phantom data, only healthy brains were simulated. It 

would be interesting to simulate AD-related hypometabolism or tumors since lesions could 

suffer reduced contrast. In our future work, we plan to simulate lesions in some phantom 

cases [40] and use more quantitative metrics (e.g. root mean squared analysis and overlap 

quantification) [46–48] to comprehensively evaluate the algorithm. Third, our current model 

does not deal with missing modalities, e.g., some subjects may not have a complete set of 

image modalities, which will make them excluded from the study and thus reduce the 

number of applicable cases. Therefore, making use of all available data to achieve enhanced 

synthesis performance is one of our research focuses in future. Fourth, the proposed method 

is evaluated on the [18F]FDG PET images. We expect our method, as a general 

methodology, could be applied to other PET tracers, but its performance has to be 

consolidated by acquiring different training sets for different types of tracers. Also, it is not 

yet clear how the performance of the method relates to the distributions of tracers. For 

example, there are likely differences for tracers that distribute widely and uniformly across 

regions (such as amyloid tracers) versus those with very specific focal targets (dopamine, 

serotonin). In the future, it would be beneficial to train and evaluate our method for each 

specific tracer and tailor it according to specific applications in PET. In addition, the affine 

transformation of different modalities, which is a common step in multi-modality fusion, 

may change image quality due to the use of image intensity interpolation during the 

transformation. Although multi-modality images could complement to each other to some 

extent, this cannot completely remedy the image quality loss caused by the transformation. 

Our future work will target at integrating image transformation and multi-modality fusion 

procedures into deep neural networks, in order to further alleviate the influence of 

transformation/alignment of different image modalities.

V. Conclusion

In this work, we proposed a 3D auto-context locality-adaptive GANs model for synthesizing 

high-quality PET images from the low-dose PET and multimodal MRI images. Different 

from traditional multi-channel networks which often directly use multiple channels of low-

dose PET and MRI as the inputs for the deep model, we proposed a locality adaptive fusion 

network to identify local patches that are useful for PET synthesis. Also, the auto-context 

strategy is adopted to make our LA-GANs model context-aware. Experiments conducted on 

both phantom and real human brain datasets show that our method can effectively synthesize 

F-PET images. Both qualitative and quantitative results also demonstrate that our method 

significantly outperforms the traditional multi-modality fusion methods used in deep 

networks, as well as the state-of-the-art PET estimation approaches. In addition, please note 

that, our proposed model can be used in wider applications where a mapping from one or 

multiple modalities to another modality is needed. Our model can also potentially boost the 

training data for deep learning algorithms that depend on large PET data collections. In the 

future, we will further investigate the potential of our model for general image synthesis 

tasks.
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Fig. 1. 
Comparison between the low-dose PET (L-PET) image and the corresponding full-dose PET 

(F-PET).
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Fig. 2. 
Overview of our proposed pipeline for full-dose PET synthesis from low-dose counterpart 

and the accompanying multimodal MR images.
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Fig. 3. 
Architecture of the U-net-like generator network. Blue boxes represent feature maps while 

the brown boxes represent the copied feature maps. The number of feature maps is denoted 

under each feature map. The black solid arrows denote convolutional operations while the 

blue dotted arrows mean the copy and concatenate operations.
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Fig. 4. 
Architecture of the discriminator network. The number of feature maps is denoted under 

each feature map. The green block means sigmoid activation.

Wang et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Illustration of the auto-context LA-GANs architecture.
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Fig. 6. 
Examples of the synthetic F-PET image by our auto-context LA-GANs method from three 

subjects. (a) L-PET (b) Synthesized F-PET (c) real F-PET. The values under the images 

denote the PSNR of the corresponding image.
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Fig. 7. 
Locality adaptive weights of different regions in different modalities.
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Fig. 8. 
Quantitative comparison with the state-of-the-art PET estimation methods on the phantom 

dataset.
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Fig. 9. 
Visual comparison with multi-channel GANs method.
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Fig.10. 
Comparison results of our LA-GANs model using different modalities in terms of PSNR and 

SSIM.

Wang et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Visual comparison between the LA-GANs model and auto-context LA-GANs model. (a) 

results produced by the proposed LA-GANs, (b) results produced by the proposed auto-

context LA-GANs model, (c) real full-dose PET images.
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Fig. 12. 
Qualitative comparison between the LA-GANs model and auto-context LA-GANs model.
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Fig. 13. 
Qualitative comparison with the state-of-the-art PET estimation methods in terms of PSNR 

and SSIM. † indicates p<0.01 in the t-test while * means p<0.05.
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Fig. 14. 
Qualitative comparison with the state-of-the-art PET estimation methods.
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Fig. 15. 
CR bias for MCI subjects. * indicates p<0.05 in the t-test.

Wang et al. Page 34

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 35

Ta
b

le
 1

.

Q
ua

nt
ita

tiv
e 

co
m

pa
ri

so
n 

w
ith

 th
e 

m
ul

ti-
ch

an
ne

l G
A

N
s 

m
et

ho
d 

on
 N

C
 s

ub
je

ct
s.

 M
ed

. m
ea

ns
 m

ed
ia

n.

M
et

ho
d

P
SN

R
(d

B
)

SS
IM

M
ea

n 
(s

td
.)

M
ed

.
M

ea
n 

(s
td

.)
M

ed
.

L
-P

E
T

19
.8

8(
2.

34
)

20
.6

8
0.

97
9(

0.
00

76
)

0.
98

0

M
ul

ti-
ch

an
ne

l
24

.3
6(

1.
93

)
24

.7
8

0.
98

1(
0.

00
65

)
0.

98
3

L
A

-G
A

N
s 

(w
/o

 A
C

)
24

.6
1(

1.
79

)
25

.3
2

0.
98

6(
0.

00
53

)
0.

98
7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 36

Table 2.

Quantitative comparison with the multi-channel GANs method on MCI subjects. Med. means median.

Method
PSNR(dB) SSIM

Mean (std.) Med. Mean (std.) Med.

L-PET 21.33(2.53) 21.62 0.976(0.0102) 0.979

Multi-channel 24.99(2.03) 25.36 0.9795(0.0098) 0.982

LA-GANs (w/o AC) 25.19(1.98) 25.54 0.9843(0.0097) 0.988
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