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Probing surface-to-volume ratio of an anisotropic
medium by diffusion NMR with general gradient

encoding
Nicolas Moutal, Ivan I. Maximov, and Denis S. Grebenkov

Abstract—Since the seminal paper by Mitra et al., diffu-
sion MR has been widely used in order to estimate surface-
to-volume ratios. In the present work we generalize Mitra’s
formula for arbitrary diffusion encoding waveforms, includ-
ing recently developed q-space trajectory encoding se-
quences. We show that surface-to-volume ratio can be sig-
nificantly misestimated using the original Mitra’s formula
without taking into account the applied gradient profile.
In order to obtain more accurate estimation in anisotropic
samples we propose an efficient and robust optimization
algorithm to design diffusion gradient waveforms with pre-
scribed features. Our results are supported by Monte Carlo
simulations.

Index Terms— Time-dependent diffusion coefficient,
NMR, MRI, Mitra’s formula, Surface-to-volume ratio, Spheri-
cal encoding, Anisotropy

I. INTRODUCTION

I
N a seminal paper, Mitra et al. have derived the short-

time asymptotic behavior of the time-dependent diffusion

coefficient in restricted geometries [1]:

DMSD(t) = D0

(
1− 1

d

4

3
√
π

S

V

√
D0t+O(t)

)
, (1)

where D0 is the intrinsic diffusion coefficient, d is the space

dimensionality, S/V is the surface-to-volume ratio of the

medium, and O(t) means that the next term is at most

of order of t. Mitra’s formula describes the decrease of

the time-dependent diffusion coefficient due to restriction of

spin-carrying molecules by the boundaries of the medium at

short diffusion times. Higher-order terms of Mitra’s formula

expansion were analyzed as well and provided additional in-

formation about the medium structure such as mean curvature,

permeability and surface relaxation [2]–[8].
The diffusion coefficient DMSD(t) is defined as the ratio be-

tween the mean-squared displacement of the diffusing particles
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and time 2dt. Using pulsed-gradient spin-echo (PGSE) exper-

iments [9] DMSD(t) could be estimated from the diffusion

signal attenuation if the gradient pulses were infinitely short.

Despite the practical limitations on the gradient pulse duration,

this protocol was often applied to estimate the surface-to-

volume ratio of porous media [5], [10]–[14]. However, such

sequences typically require high gradients and do not take

advantage of the experimental variety of gradient encoding

schemes.

Mitra’s formula (1) was extended to constant field gradient

[15] which received experimental validation in [5]. An exten-

sion to an arbitrary linear gradient waveform was later derived

in [8]. The particular case of oscillating gradients was con-

sidered in [16]. It was recently experimentally demonstrated

that such sequences make the estimation of S/V accessible

to small-gradient hardware, such as clinical scanners [17]. In

these settings, one measures an effective diffusion coefficient

d(t) that depends on the NMR sequence and in general can no

longer be directly interpreted as a measure of mean-squared

displacement. Frølich et al. obtained in [18] a general formula

where d(t) is expressed in terms of the diffusion propagator

at the boundary of the pore.

In the article by Mitra et al., the factor 1/d was claimed to

be valid for any medium of dimensionality d, by extrapolating

results obtained with a sphere (d = 3), a cylinder (d = 2), and

a slab (d = 1). It was pointed out in the review [8] that an

anisotropic medium should yield different S/V ratios depend-

ing on the gradient orientation with respect to the medium.

As the structure of the medium is probed by diffusion, the

diffusion length (typically of the order of microns for water)

naturally distinguishes three types of anisotropy:

• The microscopic anisotropy on much smaller scales than

the diffusion length (e.g., intracellular structure with

submicron-sized organelles);

• The mesoscopic anisotropy on scales comparable to the

the diffusion length (this is typically the size of pores,

cells, or other confining domains);

• The macroscopic anisotropy on much larger scales than

the diffusion length, that can be sensed over the size of

an imaging voxel.

The microscopic anisotropy is usually modeled via a non-

isotropic diffusion tensor D [19]–[22]. Mesoscopic anisotropy,

on the other hand, manifests itself in the shape of individ-
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ual compartments or pores whereas macroscopic anisotropy

is related to orientation dispersion of these compartments.

For instance, diffusion tensor imaging typically characterizes

macroscopic anisotropy via order parameter (OP), and micro-

scopic anisotropy via micro-fractional anisotropy (µFA) [23]–

[25]. The anisotropy of the medium is often described by the

fractional anisotropy (FA) that depends on macro- and micro-

anisotropy and can be expressed in terms of OP and µFA [23].

Despite its importance, little work was devoted to mesoscopic

anisotropy of confining media [26]. The purpose of this article

is to show that it generally makes the time dependence of d(t)
anisotropic, i.e. dependent on the relative orientation of the

gradient sequence and the medium.

Since short-time experiments deal with small diffusion

length scales (a few microns for liquids), anisotropy tends to be

relevant at the mesoscopic and macroscopic scales rather than

at the microscopic one. For this reason, throughout this article

we focus on mesoscopic and macroscopic anisotropy of the

confining medium by considering a scalar diffusion coefficient

in the sample (see extensions in Sec. VI-B). We extend previ-

ously obtained results to arbitrary gradient encoding schemes

and obtain a generalization of Mitra’s formula to gradient

profiles that can change their amplitude in all directions. This

is particularly important for the analysis of diffusion signals

acquired by using q-space trajectory encoding schemes [25],

including, e.g., multiple pulsed-gradient sequences [27]–[29]

and isotropic diffusion weighting [30]–[37].

The paper is organized as follows: in Sec. II, we introduce

some notations and present our generalization of Mitra’s

formula. Technical computations are detailed in Appendix

I. The proposed formula differs from the classical one (1)

by a dimensionless factor η which is shown to depend on

the structure of the medium and on the applied gradient

waveform. In Sec. III, we study the effect of structure, in

particular, of the anisotropy of the confining domains. We

first consider a single domain and then evaluate the influence

of orientation dispersion on the scale of a voxel. Exact

computations for spheroids and perturbative computations for

slightly non-spherical domains are provided in Appendix II.

Section IV is devoted to a design of gradient waveforms and

their influence on the estimated parameters. We start with the

simpler case of linear encoding, for which we recover and

extend earlier results. In particular, we show that the diffusion

encoding waveform significantly influences the factor η, and

its ignorance may lead to substantial errors on the estimated

S/V ratio. The minimal and maximal achievable values of

η are explained in Appendix III. After that, we turn to 3D

gradient encoding schemes, with a focus on spherical encoding

techniques. We show that typical spherical encoding sequences

do not perfectly average out the mesoscopic anisotropy of the

medium in the generalized Mitra’s formula. Then we present

a simple algorithm to design various 3D gradient sequences

with prescribed properties that allows to perform a reliable

estimation of the S/V ratio. At the same time, we show in

Appendix IV that it is mathematically impossible to design a

sequence that makes the time dependence of d(t) isotropic to

all orders in (D0t)
1/2. In Sec. V, we present the results of

Monte Carlo simulations demonstrating a very good agreement

with our theory. Finally, Sec. VI presents several extensions

of our results: study of the next order (D0t) term, effect

of microscopic anisotropy, generalization to multiple isolated

compartments with different intrinsic diffusivities, shapes, etc.

II. RESULTS

We consider spin-carrying molecules diffusing with scalar

intrinsic diffusivity D0 in a restricted domain Ω, in the

presence of a magnetic field gradient g(t), with t ∈ [0, T ].
Here, t = 0 corresponds to the beginning of the gradient

sequence after the 90◦ radio-frequency (rf) pulse and t = T
corresponds to the echo time at which the signal is acquired

(see Fig. 1). We presume that there are no magnetic impurities

near the domain boundaries, so that the gradient is uniform in

the domain. We also assume that the intrinsic diffusivity D0 is

constant throughout the domain Ω. An extension to multiple

isolated compartments with different intrinsic diffusivities and

shapes is discussed in Sec. VI-C. We define

q(t) = γ

∫ t

0

g(t′) dt′ , (2)

where γ is the nuclear gyromagnetic ratio, and

b =

∫ T

0

|q(t)|2 dt (3)

is the conventional b-value. The gradient profile is supposed

to obey the usual refocusing condition

q(T ) = γ

∫ T

0

g(t) dt = 0. (4)

From an experimental point of view, this means that g(t) is

the “effective” gradient which takes into account the effect of

refocusing rf-pulses on the spins (for example, the gradient is

effectively reversed by a 180◦ rf pulse) [38]. This convention

allows us to treat spin echo, gradient echo, stimulated echo,

and other techniques, with the same formalism.

At small b-values (that is, bD0 ≪ 1), the MR signal

attenuation E can be written as

E ≈ exp(−bD(T )) , (5)

where d(T ) is the effective (or apparent) diffusion coefficient

probed by diffusion MR. We generalize the Mitra’s formula

(1) as

d(T ) = D0

(
1− η

4

3
√
π

S

V

√
D0T +O(T )

)
(6)

by introducing the dimensionless prefactor η that depends both

on the structure of the medium and on the gradient waveform.

We stress that dependence on the waveform implies that one

cannot, strictly speaking, interpret d(T ) as a measure of mean-

squared displacement of randomly diffusing molecules, except

for the theoretical case of two infinitely narrow gradient pulses.

Using mathematical methods discussed in reviews [8], [39],

[40], we derived in Appendix I that

η = Tr(S(3)T (3)) , (7)
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Fig. 1. Illustration of some gradient profiles for spin echo experiments.
We stress that these gradient profiles are “effective” in the sense that
the gradients are reversed after T/2 to include the effect of the 180◦

rf pulse. The corresponding values of τ (3) introduced in Sec. IV-A are
given for each profile. Note that τ (3) = 1 for the narrow pulses-case
(first panel), which corresponds to Mitra’s formula (1) with t = T .

where Tr(·) is the trace. Here we introduced the “temporal”

matrix T (3) which is a particular case of the general T (m)

matrices,

T (m) = −γ2T

2b

∫ T

0

∫ T

0

g(t1)⊗ g(t2)

∣∣∣∣
t2 − t1

T

∣∣∣∣
m/2

dt1 dt2 ,

(8)

and the “structural” matrix

S(3) =
1

S

∫

∂Ω

n⊗ n dS , (9)

where the integration is performed over the boundary ∂Ω of

the domain Ω and n is the unit outward normal vector to the

boundary. In the above formulas, ⊗ is the outer product: if a

and b are vectors, then a⊗ b is a matrix with components

(a ⊗ b)ij = aibj . (10)

Note that S(3) and T (m) are tensors in the sense that under

a spatial rotation or symmetry described by a matrix R, S(3)

and T (m) are transformed according to S(3) → RS(3)R−1

and T (m) → RT (m)R−1. We note that, with these notations,

T (2) is actually the conventional b-matrix renormalized by the

b-value [19]–[21] so that (see Appendix I from Eq. (66) to Eq.

(68) for a detailed computation)

Tr(T (2)) = 1 . (11)

The correction factor η in Eq. (6) is the result of an intricate

coupling between the medium structure and the gradient

sequence, which is expressed through the simple mathematical

relation (7) between S(3) and T (3). Note that S(3) and all

T (m) matrices, in particular T (3), are dimensionless. As a

consequence, η is invariant under dilatation of the gradient

waveform, dilatation of the time interval [0, T ] and dilatation

of the domain Ω. The higher-order terms in the asymptotic

expansion (6) involve increasing powers of
√
D0T associated

with the temporal matrices T (m) with increasing integer m.

These matrices are coupled to structural matrices S(m) (such

as in Eq. (7)) that characterize the medium structure and prop-

erties such as curvature, permeability or surface relaxation.

However, these properties do not affect the first-order term

in (6), on which we focus in this paper. As an example, the

second-order, D0T , term and the associated matrix S(4) are

discussed in Sec. VI-A.

Mitra’s formula (1) was derived for PGSE experiments with

(infinitely) short gradient pulses, where t = ∆ is the inter-

pulse time. We emphasize that for general gradient profiles,

∆ is not defined anymore, and we use instead the echo time

T in our generalized formula (6). If we compare the two

formulas by setting t = T (which corresponds to the profile

shown on the first panel in Fig. 1), we see that Mitra’s formula

corresponds to the simple expression

ηMitra = 1/d . (12)

Below we generalize this relation to arbitrary medium struc-

tures (Sec. III) and gradient profiles (Sec. IV).

III. DEPENDENCE ON THE STRUCTURE

A. Simple shapes

For any bounded domain Ω, the matrix S(3) is symmetric,

positive-definite, and one has Tr(S(3)) = 1. For example, if Ω

is a sphere, one gets S(3)
sphere = I/3, which is invariant under

any spatial rotations of the medium, as expected. Throughout

the article, we call such matrices, that are proportional to the

3 × 3 unit matrix I, “isotropic”. However, the same result

holds if Ω is a cube, i.e. the cube is also qualified as isotropic

by the S(3) matrix. Clearly, the matrix S(3) does not uniquely

characterize the shape of Ω.

Let us now consider the example of a rectangular paral-

lelepiped. We choose its sides along the axes (ex, ey, ez) and

denote their lengths by a, b, c. Then the normal vector n

is either ±ex, ±ey, or ±ez depending on the facet of the

parallelepiped, and by integrating over each facet we get

S(3) =
1

bc+ ca+ ab



bc 0 0
0 ca 0
0 0 ab


 . (13)

This simple example shows that, by varying a, b, c, and

applying rotations, the matrix S(3) can be any symmetric

positive-definite matrix with unit trace.

In the limit when one side of the parallelepiped (say, c)
tends to infinity (or is much bigger than the other two), the
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rectangular parallelepiped transforms into a cylindrical domain

with a rectangular cross-section and the S(3) matrix becomes

S(3) =
1

a+ b



b 0 0
0 a 0
0 0 0


 . (14)

Note that in the special case a = b (cylindrical domain with

square cross-section), one obtains the same result as for a

circular cylinder of axis ez: S(3)
cyl = (I − ez ⊗ ez)/2. In the

opposite limit where a and b are much bigger than c, the

parallelepiped transforms into a slab perpendicular to ez and

the S(3) matrix becomes S(3)
slab = ez ⊗ ez .

One recognizes in the previous examples the factor 1/d
of Mitra’s formula (1): 1/3 for a sphere, 1/2 for a circular

cylinder, and 1 for a slab. However, even in these basic cases,

the factor η remains affected by the gradient waveform, as

discussed in Sec. IV. In Appendix II, we provide additional

computations of S(3) for slightly non-spherical domains (per-

turbative computation) and for spheroids (exact computation).

Such domains may be more accurate models of anisotropic

pores in pathological tissues such as prostate tumor [41] than

cylinders.

B. The effect of orientation dispersion

Now we consider a random medium consisting of infinite

circular cylinders with random orientations and random radii.

Cylinders are archetypical anisotropic domains and we choose

them to illustrate in an explicit way the effect of orientation

dispersion of the domains. They can also serve as a model

for alveolary ducts in lungs [42] or muscle fibers [43]–[45].

For the sake of simplicity, we assume the radius of each

cylinder to be independent from its orientation. Equations

(5) and (6) describe the signal on the mesoscopic scale (one

cylinder). Within the scope of small b-values (bD0 ≪ 1), the

macroscopic signal formed by many cylinders is:

E ≈ 〈exp(−bD(T ))〉 ≈ exp(−b〈d(T )〉) , (15)

where 〈· · · 〉 denotes the average over the voxel. Coming back

to Eqs. (6) and (7), we see that the average of d(T ) is obtained

through the average of the S(3) matrices of the cylinders, that

we now compute.

From the previous section, the S(3) matrix of a cylinder

oriented along any direction u (where u is a unit vector) is

S(3)
cyl (u) =

1

2
(I − u⊗ u) . (16)

Moreover, for one cylinder of radius R, one has S/V = 2/R,

thus the voxel-averaged effective diffusion coefficient reads

〈d(T )〉 = D0

(
1− 4

√
D0T

3
√
π

〈
2

R

〉
Tr(〈S(3)〉T (3)) +O(T )

)
.

The averaged matrix 〈S(3)〉 depends on the angular distribu-

tion of the cylinder orientations. For example, a distribution

with a rotation symmetry around the z-axis yields

〈S(3)〉 = 1

6



2 + p 0 0
0 2 + p 0
0 0 2− 2p


 , (17)

where p is the orientation order parameter (OP) of the medium

that is defined as

p = 〈3 cos2 θ − 1〉/2 = 〈3u2
z − 1〉/2 , (18)

where θ is the random angle between the axis of the cylinder

u and the symmetry axis ez . The parameter p can take any

value from −1/2 (for θ = π/2, i.e. all the cylinders are in the

x− y plane) to 1 (for θ = 0, i.e. all the cylinders are aligned

with ez). The special value p = 0 corresponds to an isotropic

matrix S(3) = I/3 and can be obtained, for example, with a

uniform distribution [23]–[25].

The orientation order parameter has direct analogies with

other diffusion models describing the water diffusion in

strongly anisotropic medium. For instance, if randomly ori-

ented fibers obey a Watson distribution of parameter κ [46],

then one can compute [47]

p =
3

2
√
πκ e−κ erfi(

√
κ)

− 3

4κ
− 1

2
, (19)

where erfi is the imaginary error function. In the limits of κ
going to −∞, 0, and +∞, we obtain p = −1/2, 0, and 1,

respectively.

An important consequence of the above computations is that

experiments at short diffusion times and small-amplitude gra-

dients are unable to distinguish the mesoscopic anisotropy (the

anisotropy of each cylinder) inside a macroscopically isotropic

medium (uniform distribution of the cylinders). Therefore,

regimes with longer diffusion times or higher gradients are

needed for extracting mesoscopic diffusion information [23],

[24], [48], [49].

IV. DEPENDENCE ON THE GRADIENT WAVEFORM

In this section we investigate the dependence of the cor-

rection factor η (and of higher-order terms) on the gradient

waveform captured via the T (m) matrices. We begin with the

simpler case, the so-called linear gradient encoding, where

the gradient g(t) has a fixed direction and each T (m) matrix

is reduced to a scalar. We show that significant deviations

from the classical formula (1) arise depending on the chosen

waveform.

Next, in Sec. IV-B, we study how the correction factor is

affected in the most general case when both gradient amplitude

and direction are time dependent. In particular, we show that

recently invented spherical encoding sequences [34], [35] do

not provide the full mixing effect in the sense that η still

depends on the orientation of the (anisotropic) medium. In

order to resolve this problem we describe in Sec. IV-C a simple

and robust algorithm to design diffusion gradient profiles with

desired features and constraints.

A. Linear encoding

If we set g(t) = g(t)e, with a constant unit vector e, the

T (m) matrices become

T (m) = τ (m) e⊗ e , (20)
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with the scalar

τ (m) = −γ2T

2b

∫ T

0

∫ T

0

g(t1)g(t2)

∣∣∣∣
t2 − t1

T

∣∣∣∣
m/2

dt1 dt2 .

(21)

The correction factor η becomes

η = τ (3)
(
e†S(3)e

)
, (22)

where e† denotes the transpose of e. By keeping the same pro-

file g(t) and only changing the direction of the applied gradient

e, the factor τ (3) is unchanged and the factor (e†S(3)e) allows

one to probe the whole S(3) matrix, and thus microstructural

information on the domain. For this purpose, one can transpose

standard diffusion tensor imaging reconstruction techniques

[19] to our case: by choosing multiple non-coplanar direc-

tions for e, one obtains a system of linear equations on the

coefficients of S(3) that can be solved numerically. Bearing

in mind that S(3) is symmetric positive-definite matrix with

trace one, one needs at least 6 diffusion directions to estimate

5 independent coefficients of the S(3) matrix and the S/V
ratio.

For a S(3) matrix such as the one of a parallelepiped in

Eq. (13), the factor η takes different values depending on

the gradient direction e. Note that the extremal values of

(e†S(3)e) are given by the minimal and maximal eigenvalue

of S(3). In other words, the relative difference between the

extremal eigenvalues of S(3) indicates the magnitude of the

induced error on the estimation of S/V . For instance, if one

applies the gradient in a direction perpendicular to the smallest

facets of parallelepiped, one probes the S/V ratio of these

facets, not of the whole structure (see Eq. (13)). Although this

example is specific, the conclusion is general: the mesoscopic

anisotropy of a confining domain, captured via the matrix S(3),

can significantly bias the estimation of the surface-to-volume

ratio. This circumstance was ignored in some former studies

with application of the classical Mitra’s formula, which is

only valid for isotropic domains. While spherical encoding

scheme aims to resolve this issue by mixing contributions

from different directions, we will see in Sec. IV-B that this

mixing is not perfect for formerly proposed spherical encoding

sequences.

In the remaining part of this subsection, we consider the

particular case of isotropic (e.g., spherical) domains with

S(3) = I/3 so that the structural aspect is fully decoupled

from the temporal one. In this case, Eq. (7) yields

η =
τ (3)

3
, (23)

and we can focus on the temporal aspect (gradient waveform)

captured via the factor τ (3). Note that the original Mitra’s

formula corresponds to τ (3) = 1 (see Eq. (12)).

Figure 1 shows several examples of temporal profiles and

the corresponding values of τ (3). The maximum attainable

value of τ (3) is slightly over 1 (around 1.006), see Appendix

III for more details. Counter-intuitively, the maximal value of

τ (3) is not 1 while the profile with infinitely narrow pulses

does not provide its maximum. The infimum of τ (3) is 0;

in fact, one can achieve very small values of τ (3) by using

very fast oscillating gradients. Indeed, for sinusoidal gradient

waveforms of angular frequency ω, one has τ (3) ∼ ω−1/2, in

the limit ωT ≫ 1 (see Appendix III and Refs. [16], [17]).

This finding has an important practical consequence: if one

ignores the factor τ (3) and uses the original Mitra’s formula

(for which τ (3) = 1), one can significantly underestimate

the surface-to-volume ratio (by a factor 1/τ (3)) and, thus,

overestimate the typical size of compartments.

B. Isotropy and spherical encoding

Microscopic anisotropy is usually modeled via a non-

isotropic diffusion tensor D, and the expression (5) for the

diffusion signal becomes

E≈ exp
(
−bTr

(
T (2)D

))
. (24)

Typical spherical encoding sequences [27], [30]–[35] aim to

average out the microscopic anisotropy of the medium by

applying an encoding gradient with time-changing direction.

Mathematically, the goal is to obtain an isotropic T (2) matrix,

T (2) = I/3, so that the signal in Eq. (24) depends only on the

trace Tr(D) and thus yields the same result for any orientation

of the medium. We recall that throughout the paper, we call

a matrix isotropic if it is proportional to the unit matrix I (in

other words, its eigenvalues are equal to each other).
Mesoscopic anisotropy manifests itself in the S(3) matrix of

individual compartments, as we explained in Sec. III. Thus,

from Eq. (6) we can deduce that mesoscopic anisotropy is

averaged out (at the order
√
D0T ) by the gradient sequence

only if T (3) is isotropic. In this case, the factor η does not

depend on the orientation of the mesoscopically anisotropic

medium nor on its actual shape, and one can estimate precisely

the surface-to-volume ratio of the medium. Moreover, from

Eq. (7) we see that in this case, η can be read directly from

the expression of T (3):

T (3)
iso = η I . (25)

Similarly, the isotropy condition for the matrices

T (4), T (5), . . . would be needed if the higher-order terms of

expansion (6) were considered.
Hence, the natural question arises: “Do the former spherical

encoding sequences that were designed to get an isotropic T (2)

(or b) matrix [25], produce isotropic T (m) matrices (or at least

T (3))?”. For instance, for the q-Space Magic-Angle-Spinning

(q-MAS) sequence [34], [35] we obtain

T (3) =



0.14 0 0
0 0.28 0.10
0 0.10 0.17


 . (26)

This matrix has eigenvalues 0.11, 0.14, 0.33 and is thus not

isotropic. Similarly, a triple diffusion encoding (TDE) se-

quence [30] (where three identical PGSE sequences are ap-

plied along three orthogonal direction in space) yields

T (3) =



0.19 0.08 0.05
0.08 0.19 0.08
0.05 0.08 0.19


 , (27)

with eigenvalues 0.10, 0.14, 0.34. Note that, although the di-

agonal elements of the matrix are identical, it is not isotropic
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Fig. 2. Plot of q(t) for the q-MAS sequence. The color encoding of
the trajectory represents time, from t = 0 (blue) to t = T (red). The
additional axes are directed along the eigenvectors (e1, e2, e3) of the
T (3) matrix (26) of the sequence.

because of the off-diagonal elements. The above matrix cor-

responds to a TDE sequence where each PGSE sequence is

made of infinitely narrow pulses with spacing ∆ = T/3. One

could also consider the FAMEDcos sequence [50], for which

we get

T (3) =



0.13 0 0.012
0 0.11 0

0.012 0 0.10


 , (28)

which is also not isotropic (with eigenvalues: 0.09, 0.11, 0.13).

All spherical encoding schemes that we could find in the

literature produce anisotropic T (3) matrices.

In order to illustrate the errors induced by such sequences in

the estimation of the surface-to-volume ratio, let us apply the

q-MAS sequence for the case of an infinite circular cylinder.

We denote by (e1, e2, e3) the orthogonal basis of eigenvectors

and by (λ1, λ2, λ3) = (0.11, 0.14, 0.33) the corresponding

eigenvalues of the T (3) matrix in Eq. (26) (see Fig. 2 for

the orientation of these axes with respect to the q-space plot

of the sequence). If the cylinder is oriented along e3, one

obtains η = (λ1 + λ2)/2 = 0.13. However, if the cylinder

is oriented along e1, then η = (λ2 + λ3)/2 = 0.24, which

is nearly twice as large. In other words, the estimated S/V
ratio is twice as large in the second situation than in the first

one. This artifact is a direct consequence of the differences

between the eigenvalues of the T (3) matrix, i.e. its anisotropy.

C. How to obtain isotropic matrices?

The question in the subsection title can be restated

in an algebraic language: how to find three functions

gx(t), gy(t), gz(t) with zero mean (see Eq. (4)) that are mu-

tually “orthogonal” and have the same “norm” for a given set

of symmetric bilinear forms ϕm,m = 2, 3, . . ., with

ϕm(f1, f2) = −γ2T

2b

∫ T

0

∫ T

0

f1(t1)f2(t2)

∣∣∣∣
t1 − t2

T

∣∣∣∣
m/2

dt1 dt2 .

(29)

Since the space of functions with zero mean is infinite-

dimensional, we can be confident in finding such three func-

tions. However, Eq. (29) involves a non-integer power of

time that prevents us from getting analytical solution for this

problem. Thus, we design a simple algorithm for generating

the gradient sequences that satisfy these conditions.

The idea is to choose a family of functions (f1, f2, . . . , fk)
(for example, sines or polynomials, possibly with phase

jumps at T/2) and to search for gx(t), gy(t), gz(t) as linear

combinations of the basis functions. This is a generalization

of the classical sine and cosine decomposition which was

already used in the context of waveform optimization [35].

Mathematically, this means that



gx(t)
gy(t)
gz(t)


 = X




f1(t)
f2(t)

...

fk(t)


 , (30)

where X is a 3 × k matrix of coefficients to be found. Now

we define the k × k matrices Φ(m) by

Φ
(m)
i,j = ϕm(fi, fj) , m = 2, 3, . . . (31)

In this way, one can compute directly the T (m) matrices

according to

T (m) = XΦ(m)X† . (32)

The problem is then reduced to an optimization problem for

the matrix X , which can be easily done numerically. In other

words, one searches for a matrix X that ensures the isotropy of

the matrix T (3). In the same way, one can generate a sequence

with both isotropic T (2) and T (3) matrices, or any other

combination of isotropic T (m) matrices. At the same time,

we prove in Appendix IV that there is no gradient sequence

that produces isotropic T (m) matrices simultaneously for all

integers m ≥ 2.

The optimization algorithm can include various additional

constraints. On one hand, one has a freedom to choose an

appropriate family (f1, f2, . . . , fk), for example, to ensure

smoothness of the resulting gradient profile. Similarly, the

refocusing condition can be achieved by choosing zero-mean

functions. On the other hand, it is also possible to add some

constraints as a part of the optimization problem. This is

especially easy if the constraints can be expressed as linear

or bilinear forms of the gradient profile g(t). For instance,

each T (m) matrix in (8) is a bilinear form of the gradient

profile allowing one to express them as the simple matrix

multiplication (32). Another example of additional conditions

consists in imposing zeros to the designed gradient profiles.

Indeed, for practical reasons, it is often easier to manipulate

with the gradients that satisfy to

g(0) = g(T/2) = g(T ) = 0 . (33)

This is a linear condition on the gradient profile. If one denotes

by V the k × 3 matrix

V =




f1(0) f1(T/2) f1(T )
f2(0) f2(T/2) f2(T )

...
...

...

fk(0) fk(T/2) fk(T )


 , (34)
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then Eq. (33) becomes

XV =



0 0 0
0 0 0
0 0 0


 . (35)

In the following, we impose the above condition to produce

our gradient waveforms.

It is worth to note that one can also generate flow-

compensated gradients, or more generally, motion artifacts

suppression techniques, by imposing linear conditions on the

gradient profile
∫ T

0

tpg(t) dt = 0 , p = 1, 2, . . . , P , (36)

where p = 1 corresponds to the flow compensation, and higher

values of p account for acceleration, pulsatility, etc. [51], [52].

This condition can be rewritten in the matrix form XM = 0,

where the k × P matrix M is defined by

Mi,p =

∫ T

0

tpfi(t) dt , p = 1, 2, . . . , P . (37)

Another type of optimizaton constraints can be based

on hardware limitations such as a need to minimize heat

generation during the sequence execution which amounts to

minimizing the following quantity

〈g, g〉 =
∫ T

0

|g(t)|2 dt , (38)

which is a bilinear form of the gradient profile. Similar to

representation (32) for T (3), one can define a matrix Hi,j =
〈fi, fj〉 to write Eq. (38) as 〈g, g〉 = Tr

(
XHXT

)
, and then

to include it into the optimization procedure.

The previous examples showed how linear and bilinear

forms of the gradient profile can be simply expressed in terms

of the weights matrix X , which allows one to perform very

fast computations. The matrix corresponding to each condition

(for example, Φ(3), V , H) has to be computed only once, then

optimization is reduced to matrix multiplications. The size of

the matrices involved in the computations is defined by the

size of the chosen set of functions (f1, . . . , fk). Note that the

set size is independent of the numerical sampling of the time

interval [0, T ] that controls accuracy of the computations.

Some properties of the designed gradients do not fall

into the category of aforementioned linear or bilinear forms,

e.g., “max” amplitude-function (i.e., one cannot impose the

maximal gradient constraint in this way). They can be included

in the optimization, however one cannot apply the previous

techniques in order to speed up the computation.

We have to emphasize that the “optimal” solution is not

unique and it depends on the choice of the set f1, . . . , fk.

Moreover, if the set is sufficiently large and the number of

degrees of freedom is greater than the number of constraints,

then the algorithm will likely yield different solutions depend-

ing on the initial choice of X for an iterative solver. This

property can be advantageous in practice, as one can design

many optimal solutions. The described optimization algorithm

was implemented in Matlab (The MathWorks, Natick, MA

USA) and is available upon request. It concatenates all the

chosen constraints in a single matrix-valued function f(X) of

the weight matrix X , in such a way that the constraints are

expressed by the condition f(X) = 0. This equation is then

solved numerically with the Levenberg-Marquardt algorithm.

0 T/2 T 0 T/2 T

x
y

z
z

y
x

Fig. 3. Two examples of gradient waveforms that produce an isotropic
T (3) matrix and that satisfy Eq. (33). Note that the gradients are
“effective” gradients in the sense that we reversed them after the 180◦

rf pulse at T/2. The bottom figure shows the corresponding q(t). The
color encoding of the trajectory represents time, from t = 0 (blue) to
t = T (red). (left) the profiles are combination of 9 piecewise sine and
cosine functions with frequencies up to 6/T , and in addition they satisfy
isotropy of T (2); (right) the profiles are piecewise polynomials of order
5, and they satisfy T (4) = 0.

Figure 3 shows two examples of gradient waveforms that

produce an isotropic T (3) matrix. These profiles were obtained

from two sets with k = 9 functions. The first set was composed

of cos(πjt/T ) with j = 1, . . . , 5; sin(πjt/T ) with j =
2, 4, 6; and ε(t) sin(4πt/T ) where ǫ(t) is a piecewise constant

function that is equal to 1 on [0, T/2] and −1 on (T/2, T ]. We

also imposed the condition of isotropy of T (2). The second set

was composed of a mixture of monomials, symmetrized odd

monomials and antisymmetrized even monomials, with zero

mean: (t − T/2), (t − T/2)2 − T 2/12, (t − T/2)|t − T/2|,
(t − T/2)3, |t − T/2|3 − T 3/32, (t − T/2)4 − T 4/80, (t −
T/2)3|t−T/2|, (t−T/2)5, |t−T/2|5−T 5/192. In this case,

we imposed the condition of vanishing T (4). Although the

combination of symmetric and antisymmetric functions helped

us to increase the number of basis functions while keeping

low degree monomials or slowly oscillating sines, one could

alternatively use just monomials, polynomials, or other basis

functions as well. Note that there is no need to impose the

orthogonality of the basis functions f1, . . . fk.

Let us consider the waveform obtained in the left panel

of Fig. 3. The condition of isotropy for both matrices T (2)

and T (3) yields 5+ 5 equations on the components of matrix

X . Besides of matrices T (2,3), condition (33) adds another 9
equations on the components of X . Moreover, we imposed

the b-value so that the algorithm satisfied 20 conditions with
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Fig. 4. Effective diffusion coefficient d(T )/D0 plotted against S

V

√
D0T inside a prolate spheroid with semi-axes 10µm and 5µm for two

gradient sequences and two orientations of the spheroid. The intrinsic diffusivity is D0 = 1µm2/ms. The simulation results are shown as
symbols and the generalized Mitra formula is plotted as line. (left) q-MAS sequence: different orientations of the domain produce different d(T )
curves. (right) Optimized sequence with isotropic T (3) and zero T (4): the d(T ) curves are the same for different orientations of the domain
because of the condition on T (3). Moreover, the condition on T (4) extends the range of validity of the theoretical formula to about 20ms.

3k = 27 degrees of freedom.
The gradient waveform corresponds to η ≈ 0.1 and the

dimensionless b-value is b/(γ2G2
maxT

3) ≈ 0.006 (with Gmax

being the maximum gradient amplitude). Hence the b-value

is about three times smaller than what one can achieve with

only the condition on the isotropy of T (2) [35]. Instead of only

constraining T (3) to be isotropic, one can in addition impose

a precise value of η by using Eq. (25). However we observed

that the algorithm could not produce gradient waveforms with

arbitrary values of η: there were bounds for η-values outside

of which the optimization process did not converge. This

behavior was expected, because even in the linear encoding

case, there were mathematical limitations for the parameter

η (see Sec. IV-A and Appendix III). These bounds can be

extended by adding more basis functions (i.e., by increasing

the size k of their set). Another way to extend the bounds is

to reduce the number of constraints, for example, by dropping

out the condition of isotropic T (2) matrix and only keeping

the condition on T (3). Indeed, the isotropy of T (2) is only

required in the case of a microscopically anisotropic medium,

which we did not assume here (see Appendix VI-B).

Interestingly, the T (4) matrix presents a special case: inte-

grating by parts in Eq. (8) one can show that

T (4) =

(∫ T

0

q(t) dt

)
⊗
(∫ T

0

q(t) dt

)
. (39)

This implies that the matrix has rank one, so it cannot be

proportional to the unit matrix unless it is null, that occurs

under the simple condition
∫ T

0

q(t) dt = 0 . (40)

This condition can be easily included in our optimization

algorithm. This is the case for the designed profile shown on

the right panel in Fig. 3. As a consequence, the corresponding

term (of the order of D0T ) vanishes in the expansion (6).

Note that in the presence of permeation or surface relaxation,

an additional term of the order of D0T would be present in the

expansion (6) and would not necessarily vanish if T (4) = 0.

We do not consider these effects in the paper.

The property of vanishing D0T -order term is well-known

for cosine-based waveforms with an integer number of periods

[53], and, indeed, such functions automatically satisfy to Eq.

(40). However, this property is not exclusive to cosine func-

tions (for example, the right panel of Fig. 3 was obtained with

polynomial functions). It is also easy to show that Eq. (40) is

equivalent to condition (36) for p = 1. In other words, flow-

compensated gradient profiles automatically cancel the D0T -

order correction term in the generalized Mitra’s expansion, as

it was pointed out earlier in [52].

V. MONTE CARLO SIMULATIONS

We performed Monte Carlo simulations to illustrate our the-

oretical results. The confining domain Ω is a prolate spheroid

with major and minor semi-axes equal to 10µm and 5µm. The

intrinsic diffusion coefficient D0 is 1µm2/ms and the echo

time T ranges from 0 to 25ms. Reflecting conditions were

implemented at the boundary of the domain and the interval

[0, T ] was divided into 200 time steps of equal duration. For

each value of T , we generated about 5·106 trajectories, applied

the gradient sequence and computed the effective diffusion

coefficient d(T ) from the second moment of the random

dephasing φ of the particles: d(T ) = 〈φ2〉/(2b). In order

to generate random initial positions for the particles inside

the spheroid, we generated random positions inside a larger

parallelepiped then discarded the particles that were outside

the spheroid. We checked that the randomness in the effective

number of particles was very small relatively to the number

of particles (less than 0.1%).
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We chose two different gradient sequences: the q-MAS

sequence [34], [35] and an optimized sequence with isotropic

T (3) and zero T (4) such as the one in the right panel of Fig. 3.

Note that we could have replaced the q-MAS sequence by any

other 3D gradient sequence from the present literature, such as

triple diffusion encoding (TDE) [30]. For each sequence, we

chose two different orientations of the spheroid that yielded

maximal and minimal value of η. This can be done by

finding numerically the eigenvectors (e1, e2, e3) of the T (3)

matrix (sorted by increasing eigenvalue) and then orienting the

spheroid along e1 and e3, respectively (see for example Fig.

2). The d(T ) curves are presented on Fig. 4. The S(3) matrix

of a spheroid can be computed exactly (see Appendix II) and

we plotted simulation results alongside analytical results.

The comparison between the two graphs reveals several

important features. First, as we argued in the previous sec-

tion, the q-MAS sequence is not isotropic with respect to

mesoscopic anisotropy studied with short-time experiments.

Different orientations of the spheroid yield different values of

η (0.15 and 0.22, respectively) and thus, different d(T ) curves.

In turn, if one does not know a priori what is the orientation

of the spheroid, then it is impossible to recover its S/V ratio

from one d(T ) curve, as η depends on this orientation. In

this case, one may estimate η from its average over different

orientations of the domain: η ≈ Tr
(
T (3)

)
/3. For the q-MAS

sequence this would yield η ≈ 0.20.

On the other hand, sequences with isotropic T (3) produce

the same coefficient η independently of the shape or orienta-

tion of the domain. Thus, one obtains the same d(T ) curve for

the two orientations of the spheroid that allows one to recover

its S/V ratio from a single measurement.

Another important point lies in the range of validity of the

first-order generalized Mitra formula (6). One can clearly see

the effect of zero T (4) matrix that extends the range of validity

from about 5ms to about 20ms. This comes at the price of a

lower η (here, η = 0.11), meaning a slower decay of d(T ),
which is however compensated by the extension of the range

of T . Note that this extension of the range of T may also

compensate for a smaller b-value. In all these cases, the η
values are significantly different from 1/3 given by Mitra’s

original formula (see Eq. (12)).

VI. EXTENSIONS

In this section we examine several extensions of our results.

First we investigate in more details the next order, D0T , term

of expansion (6). Then we turn to the case where the medium

is microscopically anisotropic, i.e. the diffusivity is a tensor

D. Finally we discuss the effects of multiple compartments

with different pore shapes and/or intrinsic diffusivities D0.

A. Order D0T term

From the short-time expansion of heat kernels [54]–[56] one

can compute the next-order term of d(T ) as

d(T )

D0
=1− η

4

3
√
π

S

V

√
D0T − η(4)

C0S

2V
D0T +O(T 3/2),

(41)

where η(4) is a dimensionless parameter defined as

η(4) = Tr
(
S(4)T (4)

)
. (42)

In the above formula, the structural matrix S(4) is

S(4) =
1

C0S

∫

∂Ω

C n⊗ n dS , (43)

where C is the local mean curvature of the surface, i.e. C =
(R−1

1 + R−1
2 )/2, where R1 and R2 are the local principal

radii of curvature of the boundary ∂Ω of the domain. The

integral is normalized by S and by the average curvature of

∂Ω: C0 = (1/S)
∫
∂Ω

CS. . Note that this normalization ensures

that the matrix S(4) has unit trace.

Thus, one can potentially probe the curvature of the bound-

ary of the domain by measuring the D0T correction term in

the short-time expansion of d(T ). Note that, as we mentioned

in Sec. IV-C, the T (4) matrix has rank one so that one would

need at least three measurements (for example, the same linear

gradient sequence in three orthogonal directions) in order to

average out the anisotropy of S(4) and recover C0. We recall

that we ignore permeation and surface relaxation that manifest

in the D0T term as well.

B. Tensor diffusivity

In this work, we specifically focused on mesoscopic

anisotropy and excluded the effect of microscopic anisotropy

by choosing a scalar diffusivity D0. However, some of our

results may be extended to a tensor diffusivity D. Let us

assume that the eigenvectors of D are directed along ex, ey ,

ez , with Dxx, Dyy , Dzz being the corresponding eigenvalues.

The mean diffusivity is D0 = Tr(D)/3. Let us denote by S(2)

the matrix defined by S(2) = D/D0.

By applying the affine mapping of matrix L =
√
S(2)

−1
, i.e.

a spatial dilatation by the factor
√
D0/Dii for each direction

i = x, y, z, one transforms the anisotropic diffusion tensor

D into the isotropic diffusion tensor D0I. The domain and

the gradient are also affected by this transformation and we

denote by prime the new quantities. For instance, spheres

are transformed in ellipsoids by this transformation. As the

gradient is also affected by the matrix L−1, one has T (m)′ =
L−1T (m)L−1. While the new volume is V ′ = det(L)V , there

is no simple formula for the surface S′ and the S(3)′ matrix.

Applying our results on isotropic diffusivity to this new case,

we get for the effective diffusion coefficient in the original

system

d(T ) = D0

(
Tr(S(2)T (2))− η′

4

3
√
π

S′

V ′

√
D0T +O(T )

)
,

(44)

where

η′ = Tr(S(3)′T (3)′) = Tr(L−1S(3)′L−1T (3)) . (45)

From the above equation we obtain that d(T ) does not

depend (to the order
√
D0T ) on the orientation of the gradient

sequence with respect to the medium if T (2) and T (3) are

isotropic. As we mentioned before, the condition of isotropy
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of the temporal matrix T (2) is equivalent to the isotropy of

the b-matrix that is achieved by spherical encoding techniques

[27], [30]–[35].

C. Multiple compartments

Our results were derived under the assumption of a spatially

homogeneous intrinsic diffusivity. Moreover, except in Sec.

III-B where we investigated the effect of orientation dispersion

of the confining pores, we implicitly assumed that all confining

pores are identical. Here we present an extension to a medium

that is composed of two or more non-communicating (isolated)

compartments (for example, intra- and extra-cellular spaces)

with different diffusion coefficients and/or different confining

pores .

Inside each compartment, the diffusivity is constant and the

pore shapes are identical, so that our formula (6) for d(T )
is valid, with parameters D0, η, S/V that depend on the

compartment. The signal can be computed as a voxel-average

of signals from individual compartments, and in the regime of

small b-values (bD0 ≪ 1), one has, in analogy to Eq. (15),

E ≈ 〈exp(−bD(T ))〉 ≈ exp(−b〈d(T )〉) , (46)

where the average is weighted by the relative volume of each

compartment, and

〈d(T )〉 = 〈D0〉 −
4

3
√
π

〈
η
S

V
D0

3/2

〉√
T +O(T ) . (47)

We keep this general form of the voxel average which depends

on the specific configuration of compartments, pore shapes,

diffusivities, etc.

In the above reasoning, the hypothesis of non-

communicating compartments is crucial and further

modifications would be needed in order to include exchange

between compartments when a nucleus can experience

different diffusion coefficients during the measurement.

VII. CONCLUSION

We presented a generalization of Mitra’s formula that is

applicable to any gradient waveform and any geometrical

structure. This generalized formula differs from the classical

one by a correction factor in front of S/V . In the case of linear

encoding schemes, we showed that this factor can significantly

affect the estimation of S/V and lead to overestimated size of

compartments.

We also discussed in detail the effect of anisotropy of

the medium and the use of spherical encoding schemes. In

particular, we showed that in order to estimate the surface-

to-volume ratio of a mesoscopically anisotropic medium, the

gradient should satisfy the isotropy condition (T (3) ∝ I) that

is different from the usual one (T (2) ∝ I). In particular,

typical spherical encoding schemes do not satisfy this new

condition. We presented a simple and flexible algorithm that

allows fast optimization of gradient waveforms and is well-

suited for design of diffusion weighted sequences with specific

features such as isotropy of T (3), flow compensation, heat

limitation, and others.

The developed extension of Mitra’s formula is expected to

have a significant practical impact due to temporal diffusion

encoding parametrization [17], [50], in particular, in medical

applications [12], [57], [58]. The proposed approach charac-

terizes the underlying microstructure via novel quantitative

metrics such as S(3)-tensor and more accurate surface-to-

volume ratio. The quantitative scalar maps based on those

metrics possess a high potential as a novel set of biomarkers

and allow one to apply both well-known diffusion tensor for-

malism and further improvement of diffusion models based on

compartmentization. The practical advantages of the developed

approach for designing new gradient encoding schemes for in

vivo brain imaging on clinical scanners will be demonstrated

in a separate publication.

APPENDIX I

THEORETICAL COMPUTATIONS

The signal is proportional to the expectation of the trans-

verse magnetization which has a form of the characteristic

function of the random dephasing φ acquired by diffusing

spin-carrying molecules:

E = E{e−iφ}, φ = γ

T∫

0

B(r(t), t) dt , (48)

where T is the echo time, r(t) is the random trajectory of

the nucleus, γ is the gyromagnetic ratio, and γB(r, t) is the

Larmor frequency corresponding to the magnetic field. In this

work, we consider the most general form of the linear gradient

g(t):

B(r, t) = g(t) · r = gx(t)x + gy(t)y + gz(t)z. (49)

In particular, the dephasing can be decomposed as

φ = φx+φy+φz , φi = γ

T∫

0

dt gi(t)(ei·r(t)) (i = x, y, z),

(50)

where ex, ey and ez are the units vectors in three directions,

and (ei · r(t)) is the projection of the molecule position at

time t onto the direction ei.

The effective diffusion coefficient is related to the second

moment of the dephasing, i.e., we need to evaluate

E{φ2} =
∑

i,j=x,y,z

E{φiφj}. (51)

We emphasize that the three components φx, φy and φz

are independent only for free diffusion, whereas confinement

would typically make them correlated. In other words, one

cannot a priori ignore the cross terms such as E{φxφy}.

In order to compute these terms, we use the following

representation [8]:

E{φiφj} = γ2

∫ T

0

dt1

∫ T

t1

dt2

∫

Ω

dr0

∫

Ω

dr1

∫

Ω

dr2

∫

Ω

dr3

× ρ(r0)Pt1(r0, r1)Pt2−t1(r1, r2)PT−t2 (r2, r3)

× [Bi(r1, t1)Bj(r2, t2) +Bj(r1, t1)Bi(r2, t2)] (52)
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where Pt(r, r
′) is the propagator in the domain Ω, and ρ(r0)

is the initial density of particles (the initial magnetization after

the 90◦ rf pulse). If the boundary is fully reflecting and ρ(r0)
is uniform, then the integrals over r0 and r3 yield 1, so that

E{φiφj} =
γ2

V

∫ T

0

dt1

∫ T

t1

dt2

∫

Ω

dr1

∫

Ω

dr2Pt2−t1(r1, r2)

× [Bi(r1, t1)Bj(r2, t2) +Bj(r1, t1)Bi(r2, t2)] , (53)

where V is the volume of the domain. We get thus

E{φiφj} = γ2

∫ T

0

dt1 gi(t1)

∫ T

t1

dt2 gj(t2)Kij(t2 − t1)

+

∫ T

0

dt1 gj(t1)

∫ T

t1

dt2 gi(t2)Kji(t2 − t1), (54)

where

Kij(t) =
1

V

∫

Ω

∫

Ω

pi(r1)Pt(r1, r2)pj(r2) dr1 dr2, (55)

with pi(r) = (ei · r). Since Kij(t) = Kji(t) due to the

symmetry of the propagator, we can rewrite the moment as

E{φiφj} = γ2

∫ T

0

gi(t1)

∫ T

0

gj(t2)Kij(|t2 − t1|) dt1 dt2.
(56)

We rely on the general short-time expansion for the heat

kernels (see [54]–[56] and references therein)

Kij(t) =
∑

m≥0

cm(pi, pj) (D0t)
m/2, (57)

with

c0(f, h) =
1

V

∫

Ω

f(r)h(r) dr , (58a)

c1(f, h) = 0 , (58b)

c2(f, h) = − 1

V

∫

Ω

∇f(r) · ∇h(r) dr , (58c)

c3(f, h) =
4

3
√
π

1

V

∫

∂Ω

∂f(r)

∂n

∂h(r)

∂n
dS , (58d)

where ∂/∂n = (n·∇) is the normal derivative at the boundary,

and n is the unit normal vector at the boundary oriented

outward the domain. We note that the expansion (57) is an

asymptotic series which has to be truncated. In our case, we

get

c0(pi, pj) =
1

V

∫

Ω

(ei · r)(ej · r) dr , (59a)

c1(pi, pj) = 0 , (59b)

c2(pi, pj) = −δij , (59c)

c3(pi, pj) =
4

3
√
π

1

V

∫

∂Ω

(ei · n)(ej · n) dS (59d)

(in the last integral, the normal vector n depends on the

boundary point). Combining these results, we get

E{φiφj} = γ2

∫ T

0

dt1 gi(t1)

∫ T

0

dt2 gj(t2)

×
(
−δijD0|t2 − t1|+

4

3
√
π

S

V
S(3)
ij (D0|t2 − t1|)3/2 + · · ·

)
,

(60)

where S is the surface area, the “structural” matrix S(3) is

defined by

S(3) =
1

S

∫

∂Ω

n⊗ n dS , (61)

and the zeroth order term (with c0) vanished due to the

rephasing condition

∫ T

0

gi(t) dt = 0 (i = x, y, z). (62)

We can write this result more compactly as

E{φiφj/2} = bD0

(
δijT (2)

ij − 4(D0T )
1/2

3
√
π

S

V
S(3)
ij T (3)

ij + · · ·
)
,

(63)

where we introduced the “temporal” matrices

T (m) = −γ2T

2b

∫ T

0

∫ T

0

g(t1)⊗ g(t2)

∣∣∣∣
t2 − t1

T

∣∣∣∣
m/2

dt1 dt2 .

(64)

As a consequence, we compute the second moment as

E{φ2/2}
bD0

= Tr(T (2))− 4(D0T )
1/2

3
√
π

S

V
Tr(S(3)T (3)) + · · · .

(65)

Note that this formula can also be obtained from the results

of Frølich et al [18]. They compute the effective diffusion

coefficient from the velocity auto-correlation function that is

then expressed in terms of a double-surface integral of the

diffusion propagator. By performing two integration by parts,

this integral is essentially identical to our Eq. (55). The first-

order approximation (65) can then be deduced by locally

approximating the boundary by a flat surface and using the

method of images.

Let us introduce the auxiliary function

h(t1) =

∫ T

0

g(t2)|t2 − t1| dt2 . (66)

We split the above integral and perform an integration by parts

h(t1) =
1

γ

∫ t1

0

q(t2) dt2 −
1

γ

∫ T

t1

q(t2) dt2 ,

where we used the conditions q(0) = 0 and q(T ) = 0, with

q(t) being defined in Eq. (2). Now we note that

∫ T

0

dt1

∫ t1

0

g(t1)⊗ q(t2) dt2 =

∫ T

0

dt2

∫ T

t2

g(t1)⊗ q(t2) dt1

= − 1

γ

∫ T

0

q(t2)⊗ q(t2) dt2 ,

where we used again q(T ) = 0. In the same way one gets

∫ T

0

dt1

∫ T

t1

g(t1)⊗ q(t2) dt2 =
1

γ

∫ T

0

q(t2)⊗ q(t2) dt2 .

Putting all the pieces together, one finally obtains

T (2) =
1

b

∫ T

0

q(t)⊗ q(t) dt , (67)
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so that T (2) is actually the b-matrix renormalized by the b-
value [19]–[21]. Since

Tr(T (2)) =
1

b

∫ T

0

|q(t)|2 dt = 1 , (68)

we recover the signal attenuation for free diffusion E =
e−E{φ2/2} = e−bD0 in the absence of confinement. In turn,

the effective diffusion coefficient, which is experimentally

determined from the dependence of − lnE on b at small b-

value, is expressed through the second moment as

d(T ) = lim
b→0

− lnE

b
= lim

b→0

E{φ2/2}
b

, (69)

from which, using (65) we obtain Eq. (6).

APPENDIX II

COMPUTATION OF S(3) FOR A WEAKLY PERTURBED

SPHERE AND A SPHEROID.

In this appendix we show an approximate computation of

the surface area S and the S(3) matrix of a domain that is

a small perturbation of a sphere. Then we provide an exact

computation for a spheroid (i.e., an ellipsoid of revolution).

A. Approximate computation

Let us write the equation of the surface of the domain

Ω in spherical coordinates: r(θ, φ), where r is the radius, θ
is the colatitude and φ the longitude along the surface. We

recall that with these conventions, we have an orthogonal basis

(er, eθ, eφ), where er is the outward unit radial vector, eθ is

directed South along the meridian, and eφ is directed East,

perpendicular to er and eθ . We also introduce the spherical

gradient:

∇sf =
1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ , (70)

for a function f(θ, φ).
We now write r(θ, φ) = R(1 + ε(θ, φ)), where ε(θ, φ) is a

small perturbation. The surface element can then be expressed

as

dS = r2(1 + ‖∇sr‖2)1/2 sin θ dθ dφ
= R2(1 + 2ε(θ, φ)) sin θ dθ dφ+O(ε2) . (71)

In the same way, one computes the outward normal vector as

n = (1 + ‖∇sr‖2)−1/2 (er −∇sr)

= er −∇sr +O(ε2) . (72)

Then the surface area of the domain Ω can be approximated

as

S ≈ 4πR2

(
1 +

1

2π

∫ π

0

dθ

∫ 2π

0

dφ ε(θ, φ) sin θ

)
. (73)

In the special case of a domain with a symmetry of revolution,

we choose the axis of revolution as the polar axis of the

spherical coordinates and get the simpler formula

S ≈ 4πR2

(
1 +

∫ π

0

ε(θ) sin θ dθ

)
. (74)

Now we turn to the S(3) matrix. As we already obtained S,

what remains to compute is the following matrix

S̃(3) =

∫

∂Ω

n⊗ n dS , (75)

and then S(3) = S̃(3)/S. In order to compute the S̃(3) matrix,

we choose a fixed basis (ex, ey, ez), where ez is directed

along the polar axis, ex corresponds to the direction φ = 0
and ey to the direction φ = π/2. We also introduce the vector

eρ, which is the normalized projection of er on the equatorial

plane. In other words, eρ = cos(φ)ex+sin(φ)ey . Furthermore,

we assume that Ω has a symmetry of revolution around ez .

Thus ε only depends on θ and we denote derivative by a prime:

ε′(θ) = ∂ε
∂θ . First we compute the following integral over φ:

I(θ) =
1

2π

∫ 2π

0

(er − ε′(θ)eθ)⊗ (er − ε′(θ)eθ) dφ . (76)

Writing

er = cos(θ)ez + sin(θ)eρ , (77a)

eθ = cos(θ)eρ − sin(θ)ez , (77b)

we compute:

1

2π

∫ 2π

0

eρ dφ = 0 , (78a)

1

2π

∫ 2π

0

eρ ⊗ eρ dφ =
1

2
(ex ⊗ ex + ey ⊗ ey) . (78b)

From the above relations we get

I(θ) ≈
(
cos2θ + sin(2θ)ε′(θ)

)
ez ⊗ ez (79)

+
1

2

(
sin2θ − sin(2θ)ε′(θ)

)
(ex ⊗ ex + ey ⊗ ey) .

The S̃(3) matrix is then computed from

S̃(3) = 2π

∫ π

0

r2(θ)I(θ) sin θ dθ , (80)

which yields (up to O(ε2))

S̃(3)
xx

4πR2
=

1

3
+

1

2

∫ π

0

(ε sin3θ − ε′(θ) sin2θ cos θ) dθ , (81a)

S̃(3)
yy = S̃(3)

xx , (81b)

S̃(3)
zz

4πR2
=

1

3
+

∫ π

0

(ε cos2θ sin θ + ε′(θ) sin2θ cos θ) dθ ,

(81c)

and the off-diagonal terms are null. Integrating the second

terms by part and using (74), we finally get:

S(3)
xx =

1

3
+

∫ π

0

ε(θ)
(
cos2θ − 1/3

)
sin θ dθ +O(ε2) , (82a)

S(3)
yy = S(3)

xx , (82b)

S(3)
zz = 1− 2S(3)

xx . (82c)
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In the case of linear gradient encoding with the gradient

oriented either along ex or along ez , the relative variation of

η is given by (see Eq. (22))

S(3)
xx − S(3)

zz

S(3)
zz

≈ 9

∫ π

0

ε(θ)
(
cos2θ − 1/3

)
sin θ dθ . (83)

B. Exact computation for a spheroid

Let us consider a spheroid (ellipsoid with a symmetry of

revolution) with axis ez . Here we do not consider a small

perturbation from a sphere anymore, so that we switch to

cylindrical coordinates (ρ, φ, z) that are more convenient for

this computation. Let us recall that ρ is the distance to the

revolution axis. The vectors of the basis (eρ, eφ, ez) have

all been defined in the previous section. We denote by a the

equatorial radius of the spheroid and by c the distance from

the center to the poles (see Fig. 5). In other words, a and

c are the two semi-axes of the spheroid. Two cases will be

treated separately: the prolate spheroid (a ≤ c) and the oblate

spheroid (c ≤ a). More precisely, we detail the computations

for the prolate case and only give the results for the oblate

case, as the computations are very similar.

Fig. 5. A spheroid (ellipsoid of revolution) is defined by two semi-axes:
its equatorial radius a and the distance from the center to the poles c.
Two situations can occur: (left) the prolate spheroid, with a ≤ c; (right)
the oblate spheroid, with c ≤ a.

For the prolate spheroid, we introduce the eccentricity e as

e =
√
1− (a/c)2. Note that e = 0 corresponds to a sphere of

radius a = c and e = 1 to a stick of length 2c, oriented along

ez . We have

ρ(z) = a
√
1− (z/c)2 , (84)

and the surface area of the spheroid is readily computed from

Sprol = 2π

∫ c

−c

ρ(z)

√
1 + [ρ′(z)]

2
dz

= 2πac

∫ 1

−1

√
1− e2x2 dx , (85)

which yields

Sprol = 2πac

(
arcsin(e)

e
+
√
1− e2

)
. (86)

For an oblate spheroid, the eccentricity is defined as e =√
1− (c/a)2 and the formula for the surface area becomes

Sobl = 2π

(
a2 + c2

artanh(e)

e

)
. (87)

Now we turn to the computation of S̃(3). The outward

normal vector is given by

(1 + [ρ′(z)]
2
)−1/2(eρ + ρ′(z)ez) . (88)

First we compute the integral over φ:

I(z) =
1

2π

∫ 2π

0

(eρ + ρ′(z)ez)⊗ (eρ + ρ′(z)ez) dφ

=
1

2
ex ⊗ ex +

1

2
ey ⊗ ey + [ρ′(z)]

2
ez ⊗ ez . (89)

The S̃(3) matrix is then given by

S̃(3) = 2π

∫ c

−c

ρ(z)(1 + ρ′(z)2)−1/2I(z) dz . (90)

The following computations assume the prolate case.

Thanks to the relations

S̃(3)
prol

xx = S̃(3)
prol

yy = (Sprol − S̃(3)
prol

zz )/2 , (91)

we only have to compute S̃(3)
prol

xx in order to have the full

S̃(3)
prol

matrix. We have

S̃(3)
prol

xx = πac

∫ 1

−1

1− x2

√
1− e2x2

dx (92)

= 2πac

(
arcsin e

e
− 1

2e2

(
arcsin e

e
−
√

1− e2
))

,

and then deduce

S̃(3)
prol

zz = 2πac

(
arcsin e

e
−
√
1− e2

)
1− e2

e2
. (93)

Using (86), we come to the matrix S(3) for the prolate

spheroid.

In the oblate case, one gets

S̃(3)
obl

xx = πc2
(
artanh e

e
+

1

e2

(
artanh e

e
− 1

))
, (94a)

S̃(3)
obl

zz = 2π

(
a2 − c2

e2

(
artanh e

e
− 1

))
, (94b)

from which the matrix S(3) is deduced using (87).

APPENDIX III

MAXIMAL VALUE OF τ (3)

In the case of linear gradient encoding in a spherical

domain, we obtained that Mitra’s formula is corrected by

a factor τ (3) which is computed from the gradient profile

according to Eq. (21). In this section, we investigate the

maximum and the minimum values of τ (3). Integrating by

parts (following the same procedure as in Eqs. (66)-(68)), one

obtains

τ (3) =
3γ2

8bT

∫ T

0

∫ T

0

q(t1)q(t2)

∣∣∣∣
t1 − t2

T

∣∣∣∣
−1/2

dt1 dt2 . (95)

Note that despite its singularity at 0, the function 1/
√
|t| is

integrable, hence the above integral is well-defined. Next, we
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apply a change of variables from t ∈ [0, T ] to t/T ∈ [0, 1]
and q(t) to Q(t/T ), which gives

τ (3) =
3

8‖Q‖2
∫ 1

0

∫ 1

0

Q(t1)Q(t2)|t1 − t2|−1/2 dt1 dt2 ,

(96)

with the usual L2 norm. One can understand the above

expression as a scalar product

τ (3) =
3

8

〈Q,KQ〉
〈Q,Q〉 , (97)

with an integral operator K with the kernel |t1 − t2|−1/2

(KQ)(t1) =

∫ 1

0

Q(t2)|t1 − t2|−1/2 dt2 . (98)

One can see that K is a weakly singular convolution operator

because the kernel can be expressed as K(t1 − t2) (with

K(t) = 1/
√
|t|). Denoting by Q̃(ω) the Fourier transform

of Q(t) and by K̃(ω) the Fourier transform of K(t), one gets

〈Q,KQ〉 = 1

2π

∫ ∞

−∞

|Q̃(ω)|2K̃(ω) dω , (99)

with K̃(ω) =
√
2π/|ω|. This shows that τ (3) is always

positive (in other words, the operator K is positive-definite).

This result is expected from a physical point of view: if τ (3)

were negative, then the effective diffusion coefficient would

increase with time that is nonphysical. The minimum value

0 can be asymptotically obtained, for example, with very

fast oscillating gradients. It is, indeed, clear from Eq. (99)

that if g(t) is a cosine function with angular frequency ω0

such that the number of periods N0 = ω0T/(2π) ≫ 1,

then |Q̃(ω)|2 is concentrated around ±ω0, and we obtain

τ (3) ≈ 3/(8
√
N0)∼ ω

−1/2
0 , a result that was obtained as well

in [16] (see also Fig. 1).

Now we turn to the maximum value of τ (3). The condition

that Q(t) is null outside of [0, 1] is difficult to take into account

in Fourier space and we could not extract further information

from Eq. (99). In order to bound the maximum value of τ (3),
one can use the Cauchy inequality:

|(KQ)(t1)| =
∣∣∣∣
∫ 1

0

√
K(t1 − t2)Q(t2)

√
K(t1 − t2) dt2

∣∣∣∣

≤
(∫ 1

0

K(t1 − t2) dt2

) 1

2
(∫ 1

0

Q2(t2)K(t1 − t2) dt2

) 1

2

.

One can easily compute the function

∫ 1

0

K(t1 − t2) dt2 = 2
√
t1 + 2

√
1− t1 , (100)

whose maximum is 2
√
2. Thus, one gets

|(KQ)(t1)| ≤
(
2
√
2

∫ 1

0

Q2(t2)K(t1 − t2) dt2

) 1

2

. (101)

Using again the Cauchy inequality, one obtains

〈Q,KQ〉 ≤ 23/4‖Q‖
(∫ 1

0

∫ 1

0

Q2(t2)K(t1 − t2) dt2 dt1

) 1

2

.

The same reasoning about the maximum value of the integral

of K yields

〈Q,KQ〉 ≤ 23/2‖Q‖2 , (102)

and finally

τ (3) ≤ 3
√
2

4
≈ 1.06 . (103)

We also know from the examples in Fig. 1 that τ (3) = 1 can

be achieved for Q ≡ 1, which implies that the maximum value

of τ (3) is in the interval [1, 1.06].
The problem can be considered from another point of

view. Due to the symmetry of the operator K, it is well-

known that the function Q maximizing 〈Q,KQ〉/‖Q‖2 is

the eigenfunction of K with the highest eigenvalue. As a

consequence, if one searches for a good estimation of the

maximum τ (3) as well as the corresponding “optimal” gradient

profile, then one can use the following procedure: (i) to choose

an initial profile Q0 which is sufficiently general or sufficiently

close to a guessed optimal profile; (ii) to apply iteratively the

operator K and to renormalize the result; (iii) to stop when

the sequence has converged.

For example, the initial profile Q0(t/T ) = 1, which

corresponds to two infinitely narrow gradient pulses at time

0 and T , yields τ (3) = 1, which is close to the optimal value.

Thus, it is a good initial condition for the iterative process.

The result of such a procedure is shown in Fig. 6. This yields

Fig. 6. The result of the iterative procedure in order to obtain the optimal
profile that maximizes the value of τ (3).

an optimum value of τ (3) of about 1.006, thus very close to 1.

It is worth to note, however, that the optimal profile Q(t/T )
differs clearly from Q0(t/T ) = 1 (note also that Q0 is not an

eigenfunction of K).

APPENDIX IV

FULLY ISOTROPIC SEQUENCE

The conventional condition T (2) ∝ I removes the mi-

croscopic anisotropy in the diffusion tensor, whereas the

new isotropy condition T (3) ∝ I eliminates the mesoscopic
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anisotropy in the leading order of the short-time expansion.

One can thus naturally ask whether it is possible to design a

“fully isotropic” sequence that removes anisotropy in all order

of (D0T )
1/2? In this appendix we show that it is impossible

to find a gradient sequence such that T (m) is isotropic for

all integer values m = 2, 3, 4, . . .. In other words, one cannot

find a sequence which produces an isotropic time-dependence

of d(T ) to every order in (D0T )
1/2. To show this we restrict

ourselves to the values of m that are multiple of 4, m = 4l,
with l = 1, 2, . . ..

T (4l)
ij = −γ2T 1−2l

2b

∫ T

0

∫ T

0

gi(t1)gj(t2)(t2 − t1)
2l dt1dt2

= −γ2T 1−2l

2b

2l∑

k=0

(−1)k
(
2l

k

)
α
(k)
i α

(2l−k)
j , (104)

where

α
(k)
i =

∫ T

0

gi(t)t
k dt . (105)

We will now prove that the isotropy of T (4l) for any integer

l implies that α
(k)
i = 0 for all i = x, y, z and all integer k.

Note that the property for k = 0 corresponds to the refocusing

condition (4) that we assumed throughout the paper. We prove

our statement by recurrence on l and k. First, let us consider

l = 1 and prove the k = 1 case. One has

T (4)
ij = −γ2T−1

2b

(
−2α

(1)
i α

(1)
j

)
. (106)

If i 6= j, then T (4)
ii = T (4)

jj and T (4)
ij = 0 so that α

(1)
i =

α
(1)
j = 0.

Now we assume that α
(k)
i = 0 for all i = x, y, z and for all

k < k′ up to a given rank k′. Then almost all the terms in the

expression of T (4k′)
ij vanish and we are left with

T (4k′)
ij = −γ2T 1−2k′

2b

(
(−1)k

′

(
2k′

k′

)
α
(k′)
i α

(k′)
j

)
, (107)

and with the same reasoning as in the previous case, we deduce

that α
(k′)
i = 0 for any i. By recurrence, we have proven that

α
(k)
i = 0 for all i and k.

What remains to prove is that the only continuous function

f(t) that satisfies
∫ T

0 f(t)tkt. = 0 for all integer values of k is

the null function f = 0. Let us assume that f is nonzero, i.e.,

there exists an interval (a, b) with a < b such that f(t) 6= 0
for any t ∈ (a, b) (e.g., f(t) > 0 on this interval). Since

polynomials form a dense subset of continuous functions on

[0, T ], one can build a sequence of polynomials that converges

to a continuous function that would be zero outside (a, b) and

positive inside (a, b). Thus there would exist a polynomial

P (t) such that
∫ T

0
f(t)P (t) dt > 0, which is incompatible

with the statement: for all k = 0, 1, 2, . . .
∫ T

0 f(t)tk dt = 0.

Note that this argument can be easily extended to functions

with a finite number of jumps.
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