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Uncertainty Estimation for Heatmap-based
Landmark Localization

Lawrence Schöbs, Andrew J. Swift, and Haiping Lu, Senior Member, IEEE

Abstract— Automatic anatomical landmark localization
has made great strides by leveraging deep learning meth-
ods in recent years. The ability to quantify the uncertainty
of these predictions is a vital component needed for these
methods to be adopted in clinical settings, where it is
imperative that erroneous predictions are caught and cor-
rected. We propose Quantile Binning, a data-driven method
to categorize predictions by uncertainty with estimated
error bounds. Our framework can be applied to any contin-
uous uncertainty measure, allowing straightforward identi-
fication of the best subset of predictions with accompany-
ing estimated error bounds. We facilitate easy comparison
between uncertainty measures by constructing two evalu-
ation metrics derived from Quantile Binning. We compare
and contrast three epistemic uncertainty measures (two
baselines, and a proposed method combining aspects of
the two), derived from two heatmap-based landmark local-
ization model paradigms (U-Net and patch-based). We show
results across three datasets, including a publicly available
Cephalometric dataset. We illustrate how filtering out gross
mispredictions caught in our Quantile Bins significantly
improves the proportion of predictions under an accept-
able error threshold. Finally, we demonstrate that Quantile
Binning remains effective on landmarks with high aleatoric
uncertainty caused by inherent landmark ambiguity, and
offer recommendations on which uncertainty measure to
use and how to use it. The code and data are available at
https://github.com/schobs/qbin.

Index Terms— Uncertainty estimation, landmark localiza-
tion, confidence, heatmaps, U-Net

I. INTRODUCTION

A
UTOMATIC landmark localization is an important step

in many medical image analysis methods, such as image

segmentation [1] and image registration [2], [3]. An erroneous

landmark prediction at an early stage of analysis will flow

downstream and compromise the validity of final conclu-

sions. Therefore, the ability to quantify the uncertainty of a

prediction is a vital requirement in a clinical setting where

explainability is crucial and there is a human in-the-loop to

correct highly uncertain predictions [4].

In this study we propose Quantile Binning, a data-driven

framework to estimate a prediction’s quality by learning the

relationship between any continuous uncertainty measure and
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localization error. Using the framework, we place predictions

into bins of increasing subject-level, epistemic uncertainty and

assign each bin a pair of estimated localization error bounds.

These bins can be used to identify the subsets of predictions

with expected high or low localization errors, allowing the user

to make a choice of which subset of predictions to review and

reannotate based on their expected error bounds. Our method

is agnostic to the particular uncertainty metric used, as long as

it is continuous and the true function between the uncertainty

metric and localization error is monotonically increasing. We

showcase our method using three uncertainty measures: a

baseline derived from predicted heatmap activations, a strong

baseline of ensemble model prediction variance [5], as well as

introducing our own measure based on ensemble heatmap acti-

vations. Furthermore, we introduce two uncertainty evaluation

methods, measuring how well an uncertainty measure truly

predicts localization error and the accuracy of our predicted

error bounds.

We explore the efficacy of our three uncertainty metrics on

two paradigms of localization models: an encoder-decoder U-

Net that regresses Gaussian heatmaps [6], and a patch-based

network that generates a heatmap from patch voting, PHD-Net

[7]. We compare how the same uncertainty measures perform

under the two different approaches to landmark localization

on two Cardiac Magnetic Resonance Imaging (CMR) datasets

of varying difficulty and a publicly available Cephalometric

dataset [8], finding promising results for both paradigms.

Furthermore, we explore the effect of aleatoric uncertainty

caused by landmark ambiguity on Quantile Binning and

our uncertainty measures. Our Quantile Binning method is

generalizable to any continuous uncertainty measure, and the

examples we investigate in this study can be applied as a post-

processing step to any heatmap-based landmark localization

method. We aspire that this work can be used as a framework

to build, evaluate and compare uncertainty metrics in landmark

localization beyond those demonstrated in this paper.

II. RELATED WORK

A. Landmark Localization

The recent advancement in machine learning has led to

convolutional neural networks (CNNs) dominating the task

of landmark localization. Encoder-decoder methods, origi-

nally proposed for the task of image segmentation [6], have

cemented themselves as one of the leading approaches for

landmark localization in both the medical domain [9]–[12]

and computer vision [13], [14]. The architecture of these

methods allow the analysis of images at multiple resolutions,
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learning to predict a Gaussian heatmap centred around the

predicted landmark location. The activation of each pixel in

the heatmap can be interpreted as the pseudo-probability of the

pixel being the target landmark. The network learns to generate

a high response near the landmark, smoothly attenuating the

responses in a small, predefined radius around it. Regressing

heatmaps proves more effective than regressing coordinates

[15], as the heatmap image offers smoother supervision than

direct coordinate values, and also models some uncertainty in

the prediction.

However, in medical imaging the number of available train-

ing samples is often small so the encoder-decoder network is

forced to be shallow, compromising its performance [15]. One

method to overcome this is via a patch-based approach; allevi-

ating the problem by sampling many small “patches’ from an

image, learning the relationship between each patch and the

target landmark [16], [17]. This approach can generate orders

of magnitude more training samples from a single image

compared to the encoder-decoder style methods. Furthermore,

patch-based models that use Fully Convolutional Networks

(FCN) have fewer parameters than encoder-decoder archi-

tectures, decreasing computational requirements and training

times [7].

Noothout et al. [18] implemented a patch-based network

using an FCN to jointly perform classification and regression

on each patch. The coarse binary classification task determines

whether a patch contains the landmark, and the more precise

regression task estimates the displacement from the patch to

the landmark. This multi-task, joint learning leads to a light-

weight network and enhanced localization performance, with

the two tasks sharing a feature representation that improves

the performance of both [19]. However, the resulting network

has a strong local focus and is also susceptible to failure if the

predicted patch from the classification task is incorrect. In a

follow-up work, Noothout et al. [20] extended their work [18]

into a two-stage method: they first train a CNN to provide

global estimates for the landmarks, then employ specialised

CNNs for each landmark for the final prediction. This method

improves upon the first in terms of localization error, but has

the drawback of requiring multiple training stages.

To mitigate the inherent local focus of the patch-based

methods, we extended the patch-based network [18] by bor-

rowing heatmap regression from the encoder-decoder net-

works; reforming the binary classification task as a Gaussian

heatmap regression task [7]. Named PHD-Net (Patch Heatmap

& Displacement regression), this smoother supervision im-

proved performance, reducing misidentifications compared to

using the classification branch from the prior work [18].

Furthermore, we introduced the method Candidate Smoothing,

combining the features from the two branches to output more

accurate predictions along with an uncertainty measure.

B. Uncertainty Estimation

Estimating the uncertainty of machine learning predictions

is a topic of growing interest, particularly relevant in the

domain of medical imaging where there is often a human in the

loop to manually correct flagged predictions. A concentrated

effort in uncertainty estimation has been applied to image

segmentation by the community, a task similar to landmark

localization that instead aims to predict a mask for an entire

structure rather than a single point.

Segmentation aims to produce a binary map, with pixels

activated on the structure of interest and inactive elsewhere.

In traditional heatmap-based landmark localization, only the

landmark coordinate has a magnitude of 1, smoothly attenu-

ating to 0 in a set radius. The loss function used by landmark

localization is the Mean Squared Error (MSE) between the

target and predicted heatmap, whereas segmentation uses

pixel-wise classification-based losses [21]. Nevertheless, the

tasks are similar in that the magnitude of the activation of any

given pixel in each image can be leveraged for information

on the epistemic “confidence” (inverse of uncertainty) of the

model. Jungo et al. [21] use pixel activation to measure

the uncertainty of each pixel segmentation class, including

using the average activation of an ensemble. They found

that this naive approach was surprisingly well calibrated and

that ensembling 5+ identical but randomly initialized models

significantly improved calibration. These results have been

corroborated by Mehrtash et al. who also used pixel activation

for confidence as well as an ensemble of 5 identical, randomly

initialized networks to convincing effect [22].

Other successful approaches for epistemic uncertainty esti-

mation use Bayesian Neural Networks [23] or Bayesian ap-

proximation methods like Monte-Carlo dropout [24]. However,

the prevailing approach is an ensemble of identical, randomly

initialized networks. This method affords better performance

[22] and a more accurate mechanism for Bayesian marginal-

ization [25] compared to a single model using Monte-Carlo

dropout. Fort et al.’s study suggests this behaviour is due to

random initializations exploring entirely different modes of

the loss landscape, facilitating a powerful decorrelation effect

between models [26]. We see extensive use of ensembles of

identical models with random initializations in the domain of

medical image segmentation to improve accuracy and estimate

uncertainty [21], [22], [27], [28].

In landmark localization we are ultimately predicting a sin-

gle coordinate point rather than a mask, but similar uncertainty

estimation approaches can be utilized. However, there are

limited works exploring uncertainty in landmark localization.

Payer et al. [9] directly modeled aleatoric uncertainty during

training by learning the isotropic Gaussian covariances of tar-

get heatmaps, and predicting the distribution of likely locations

of the landmark at test time. Thaler et al. took this approach

further, learning anisotropic (directionally skewed) Gaussian

heatmaps for each landmark, demonstrating that the learned

heatmap shapes correspond to inter-observer variability from

multiple annotators [12]. In terms of epistemic uncertainty,

Lee et al. [29] borrowed from image segmentation approaches

by proposing a Bayesian CNN that utilized Monte-Carlo

dropout to predict the location and subject-level uncertainty

of cephalometric landmarks.

Another method to measure the subject-level, epistemic

uncertainty of a heatmap-based landmark prediction is to

measure the maximum heatmap activation (MHA) of the

predicted heatmap. Since the activation of a Gaussian heatmap

at a particular pixel represents the pseudo-probability of the
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Fig. 1: Overview of our general Quantile Binning framework. a) We make a prediction using a heatmap-based landmark

localization model, and b) extract a continuous uncertainty measure. c) We learn thresholds to categorize predictions into bins

of increasing uncertainty, estimating error bounds for each bin. d) We filter out predictions from high uncertainty bins to

improve the proportion of acceptable predictions. e) Finally, we evaluate each uncertainty measure’s ability to capture the true

error quantiles and the accuracy of the estimated error bounds.

pixel being the landmark, we can use this pseudo-probability

as an uncertainty measure: the higher the activation, the more

certain the prediction. Drevicky et al. [5] compared MHA with

ensemble and Monte-Carlo dropout methods, finding MHA

surprisingly effective given its simplicity. However, similarly

to image segmentation, they found using an ensemble of

models was best at predicting uncertainty. They calculated

the coordinate prediction variance between an ensemble of

models, and found this method performed best at estimating

prediction uncertainty.

In our earlier work utilising the patch-based model PHD-

Net, MHA was also used as the uncertainty metric [7].

However, the heatmap analysed is distinctly different from

the heatmaps predicted by encoder-decoder networks. Rather

than explicitly learning a Gaussian function centred around

the landmark, the approach combined patch-wise heatmap and

displacement predictions. We produced a new non-Gaussian

heatmap, where the activation of each pixel is defined by the

number of patches that voted for it, regularized by the coarse

global likelihood prediction. Therefore, the resulting heatmap

represents patch-wise ensemble votes rather than a Gaussian

function, where the MHA is the pixel with the most “patch

votes”.

To the best of our knowledge, no study has investigated how

heatmap-based uncertainty estimation measures can be used to

filter out poor predictions in landmark localization. Further-

more, no general framework has been proposed to compare

how well uncertainty measures can predict localization error

- an important practical application in clinical settings.

III. CONTRIBUTIONS

In this paper, we propose a general framework to compare

and evaluate uncertainty measures for landmark localization.

This work extends the analysis of MHA in [7], with more

in depth experiments and comparisons. Our contributions,

depicted in Fig. 1, are threefold:

• We propose Quantile Binning, a method to categorize

predictions by any continuous uncertainty measure, and

estimate error bounds for each bin (Fig. 1c, Sec. IV-C).

• We construct two evaluation metrics for uncertainty es-

timation methods from Quantile Binning: 1) Similarity

between predicted bins and true error quantiles; 2) Ac-

curacy of estimated error bounds (Fig. 1e, Sec. IV-D).

• We evaluate three heatmap-derived uncertainty measures

and recommend our proposed method Ensemble Maxi-

mum Heatmap Activation (E-MHA) to extract landmark

coordinates from an ensemble of heatmaps and estimate

uncertainty (Fig. 1a, 1b, Sec. IV-B).

We demonstrate the impact of our contributions by using

our proposed Quantile Binning to compare E-MHA to two

existing coordinate extraction and uncertainty estimation meth-

ods: a weak baseline of Single Maximum Heatmap Activation

(S-MHA), and a stronger baseline of Ensemble Coordinate

Prediction Variance (E-CPV). In Sec. VI-B, we compare the

baseline coordinate extraction performance of the three ap-

proaches, followed by the uncertainty estimation performance

in Sec. VI-C. We explore the reach of heatmap-based uncer-

tainty measures by demonstrating they are applicable to both

U-Net regressed Gaussian heatmaps and patch-based voting

heatmaps. We show each uncertainty measure can identify a

subset of predictions with significantly lower mean error than

the full set by filtering out predictions from high uncertainty

bins (Fig. 1c). In Sec. VI-E we demonstrate the generalizabil-

ity of our method by applying Quantile Binning to a publicly

available Cephalometric dataset [8], with significantly more

annotated landmarks and images containing some repetitive

structures. We show the flexibility of our method by reporting

results over a range of binning resolutions in Sec. VI-F.

Furthermore, in Sec. VI-G we select a subset of landmarks



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

from the Cephalometric dataset with multiple annotations

(provided by [12]) to explore the effect of aleatoric uncertainty

caused by landmark ambiguity on Quantile Binning using our

three uncertainty measures. Finally, in Sec. VII-B we make

recommendations for which uncertainty measure to use, and

how to use it.

We provide an open source implementation of this work and

the tabular data obtained from the landmark localization mod-

els to reproduce our results, alongside extensive experimental

results at https://github.com/schobs/qbin.

IV. METHODS

A. Landmark Localization Models

First, we briefly review the two models we use for landmark

localization, allowing us to compare the generalizability of

our uncertainty measures across different heatmap generation

approaches. We implement a variation of the popular encoder-

decoder networks that regresses Gaussian heatmaps, U-Net [6].

We also implement a patch-based method, PHD-Net [7], which

produces a heatmap from patch votes.

1) Encoder-Decoder Model (U-Net): The vast majority of

state-of-the-art landmark localization approaches are based on

the foundation of a U-Net style encoder-decoder architecture.

The architecture of U-Net follows a “U” shape, first extracting

features at several downsampled resolutions, before rebuilding

to the original dimensionality in a symmetrical upsampling

path. Skip connections are employed between each level,

preserving spatial information. The rationale behind the archi-

tecture design is to inject some inductive bias into the model

architecture itself, helping it learn the local characteristics of

each landmark, while preserving the global context.

Rather than regressing coordinates directly, the objective

of the model is to learn a Gaussian heatmap image for

each landmark, with the centre of the heatmap on the target

landmark. For each landmark Li with 2D coordinate position

x̃i, the 2D heatmap image is defined as the 2D Gaussian

function:

gi (x || µ = x̃i;σ) =
1

(2π)σ2
exp

(
−∥x− µ∥2

2

2σ2

)
, (1)

where x is the 2D coordinate vector of each pixel and σ is

a user-defined standard deviation. The network learns weights

w and biases b to predict the heatmap hi(x;w,b). During

inference, we can interpret the activation of each pixel in the

predicted heatmap as the pseudo-probability of that pixel being

the landmark. We will exploit this in our uncertainty estimation

methods.

2) Patch-based Model (PHD-Net): Patch-based models use

a Fully Convolutional Network (FCN), with the architecture

resembling the first half of an encoder-decoder architecture.

Therefore, they are more light-weight than encoder-decoder

networks, with significantly less parameters leading to faster

training.

In our earlier work, we proposed PHD-Net: a multi-task

patch-based network [7], building on the work by Noothout

et al. [18]. We incorporate a variant of the heatmap ob-

jective function from encoder-decoder networks into the ob-

jective function, predicting the 2D displacement from each

patch to the landmark alongside the coarse Gaussian pseudo-

probability of each patch.

PHD-Net aggregates the patch-wise predictions to obtain a

heatmap by plotting candidate predictions from the displace-

ment branch as small Gaussian blobs, then regularising the

map by the upsampled Gaussian from the heatmap branch.

Again, we can consider the activation of each pixel in

heatmap as an indicator for uncertainty, where instead of the

pseudo-probability, the activation represents the amount of

“patch votes”.

3) Ensemble Models: Using an ensemble of identical but

randomly initialized models is more robust than using a single

model, as it reduces the effect of a single model becoming

stuck in a local minima during training. Furthermore, random

initializations explore different modes of the loss landscape,

facilitating a powerful decorrelation effect between models

[26]. We use the variance in the predictions of each model

to estimate the uncertainty of the prediction, using an use an

ensemble of T models.

B. Estimating Uncertainty and Coordinate Extraction

Although generated differently, we hypothesize both U-Net

and PHD-Net produce heatmaps containing useful information

to quantify a prediction’s uncertainty - but are they equally

effective? To this end, we compare the performance of both

models under three uncertainty estimation methods: two base-

line approaches, and a proposed approach extending one of the

baselines to an ensemble of networks. Each method extracts

coordinate values from the predicted heatmap, and estimates

the prediction’s uncertainty.

1) Single Maximum Heatmap Activation (S-MHA): We in-

troduce the baseline coordinate extraction and uncertainty

measure. We use the standard method to obtain the pre-

dicted landmark’s coordinates x̂i from the predicted heatmap

hi(x;w,b), by finding the pixel with the highest activation:

x̂i = argmax
x

hi(x;w,b). (2)

We hypothesize that the pixel activation at the coordinates

x̂i can describe the model’s uncertainty: the higher the acti-

vation, the lower the uncertainty, and the lower the prediction

error. However, due to this inverse relationship, this measures

“confidence”, not uncertainty.

We transform our confidence metric to an “uncertainty”

metric ŷi, by applying the following transformation to the pixel

activation at the predicted landmark location:

ŷi =
1

max
x

hi(x;w,b) + ϵ
, (3)

where ϵ is a small constant scalar that prevents 1

0
. Now, as the

pixel activation at x̂i increases, ŷi decreases.

We call the transformed activation of this peak pixel Single

Maximum Heatmap Activation (S-MHA). This is a continuous

value bounded between [ 1
ϵ
, 1

1+ϵ
] for U-Net, and bounded

between [ 1
ϵ
, 1

N+ϵ
] for PHD-Net, where N is the number of

patches. The lower the S-MHA, the lower the uncertainty.
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2) Ensemble Maximum Heatmap Activation (E-MHA): In this

work we extend the S-MHA uncertainty measure to ensemble

models. We hypothesize that E-MHA should hold a stronger

correlation with error than S-MHA due to the additional

robustness an ensemble of models affords. We generate the

mean heatmap of the T models in the ensemble, and obtain the

predicted landmark coordinates as the pixel with the highest

activation:

x̂i = argmax
x

1

T

T∑

t=1

ht
i(x;w,b). (4)

Using the average prediction of an ensemble is the simplest,

low-cost, standard form of ensemble fusion [21], [22], [27],

[28]. Again, we hypothesize the activation of the pixel x̂i

correlates with model confidence. Similar to S-MHA, we

inverse the pixel activation and add a small ϵ to the activation

of x̂i to give us our uncertainty measure, ŷi:

ŷi =
1(

max
x

1

T

∑T

t=1
ht
i(x;w,b)

)
+ ϵ

. (5)

E-MHA is a continuous value constrained to the same

bounds as S-MHA. This is a form of late feature fusion,

combining features from all models before a decision is made.

3) Ensemble Coordinate Prediction Variance (E-CPV): We

also implement an additional strong baseline for uncertainty

estimation: Ensemble Coordinate Prediction Variance (E-CPV)

[5]. The more the models disagree on where the landmark is,

the higher the uncertainty.

To extract a landmark’s coordinates we first use the tra-

ditional S-MHA coordinate extraction method on each of

the T models’ predicted heatmaps. Then, we use decision-

level fusion to calculate the mean coordinate of the individual

predictions to compute the final coordinate predictions x̂i:

x̂i =
1

T

T∑

t=1

argmax
x

ht
i(x;w,b). (6)

We generate the E-CPV by calculating the mean absolute

difference between the T model predictions
(
x̂
1
i to x̂

T
i

)
and

x̂i:

ŷi =
1

T

T∑

t=1

∥∥x̂t
i − x̂i

∥∥ . (7)

This is a continuous value bounded between

[0,
√
H2 +W 2], where H and W are the height and

width of the original image, respectively. The more the

models disagree on the landmark location, the higher the

coordinate prediction variance, and the higher the uncertainty.

Unlike S-MHA and E-MHA, this metric completely ignores

the value of the heatmap activations. Therefore, it potentially

loses useful uncertainty information but avoids possible bias

caused by model miscalibration [30] or the Gaussian assump-

tions of the target heatmap.

C. Quantile Binning: Categorising Predictions by

Uncertainty and Estimating Error Bounds

We leverage the described uncertainty measures to inform

the epistemic, subject-level uncertainty of any given predic-

tion, i.e. is the model’s prediction likely to be accurate,

or inaccurate based on this uncertainty value? We propose

a data-driven approach, Quantile Binning, using a hold-out

validation set to establish thresholds delineating varying levels

of uncertainty specific to each trained model. We use these

learned thresholds to categorize our predictions into bins and

estimate error bounds for each bin. We opt for a data-driven

approach over using static, pre-defined thresholds to increase

robustness. For example, two identical models with randomly

initialized weights trained on the same training set will con-

verge to different modes [26], with a different distribution of

MHA on the same test set. Furthermore, the difficulty of the

landmark will also influence the characteristics of the resulting

localization model as well as the distribution of the uncertainty

measures. Therefore, establishing a set of thresholds for each

model is more invariant to training differences compared to

using the same thresholds for all models.

Quantile Binning is application agnostic; applicable to

any data as long as it consists of continuous tuples of

<Uncertainty Measure, Evaluation Metric>. In this

context, a continuous tuple is a pair of continuous variables

output by the prediction model, relating to a single sample.

In this paper, we generate these pairings after the landmark

localization model is trained. We use a hold-out validation

set and make coordinate predictions and uncertainty estimates

using each of our three uncertainty measures described in

Section IV-B. Since we have the ground truth annotations of

the validation set we can produce continuous <Uncertainty

Measure, Localization Error> tuples for each uncer-

tainty measure.

1) Establishing Quantile Thresholds: We aim to categorize

predictions using our continuous uncertainty metrics into Q

bins. We make the following assumption: The true function

between a good uncertainty measure and localization error is

monotonically increasing (i.e. the higher the uncertainty, the

higher the error).

Quantile binning is a non-parametric method that fits well

with these assumptions - a variant of histogram binning which

is commonly used for calibration of predictive models [30],

[31]. By considering the data in quantiles rather than intervals,

we can better capture a skewed distribution as the outliers in

the tail of the distribution can be grouped into the same group.

In other words, quantiles divide the probability distribution

into areas of approximately equal probability.

This property allows us to interrogate model-specific (epis-

temic) uncertainties. Rather than compute uncertainty thresh-

olds based on predefined error thresholds for each bin, we use

Quantile Binning to create thresholds that group our samples

in relative terms. This enables the user to flag the worst X%
of predictions. We describe the steps below.

First, for any given uncertainty measure we sort our

validation set <Uncertainty Measure, Localization

Error> tuples in ascending order of their uncertainty

value and sequentially group them into Q equal-sized bins

B1, ..., BQ. We assign each bin Bq a pair of boundaries defined

by the uncertainty values of the tuples at the edges of the bin

to create an interval: [αq−1, αq). To capture all predictions at

the tail ends of the distribution, we set α0 = 0, and αQ = ∞.

During inference, we use these boundaries to bin our
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predictions into Q bins (B1...BQ), with uncertainty increasing

with each bin. For each predicted landmark x̂i with uncertainty

ŷi where αq−1 ≤ ŷi < αq , x̂i is binned into Bq . As long as

the validation set is representative of the true distribution, the

distribution of samples should be uniform across the bins due

to the quantile method we used to obtain thresholds.

The higher the value of Q, the more fine-grained we can

categorize our uncertainty estimates. However, as Q increases

the method becomes more sensitive to any noise present in

the uncertainty measure, leading to less accurate prediction

binnings. We demonstrate this trade-off in Sec. VI-F.

Since the uncertainty boundaries are defined by the density

of the validation set distribution, the method is agnostic to

the absolute range of the uncertainty measure. Therefore it is

applicable to any continuous uncertainty measure.

2) Estimating Error Bounds using Isotonic Regression: Es-

tablishing thresholds has allowed us to filter predictions by

uncertainty in relative terms, but we lack a method to estimate

absolute localization error for each bin. For example, for an

easy landmark, the samples in B1 may have a very low

localization error in absolute terms, but for a more difficult

landmark even the lowest relative uncertainty samples in B1

may have a high error. Therefore, in order to offer users

information about the expected error for each group, we

present a data-driven approach to predict error bounds.

A simple approach would be to observe the localization

error of the tuple at the quantile boundaries [αq−1 and αq).
However, observing a single sample from the validation set

is subject to noise and may produce a poor estimate for an

error bound. Therefore, on our hold-out validation set, we first

use Isotonic Regression to approximate the function between

uncertainty and error, constraining it to be monotonically

increasing. Isotonic regression is a method to fit a free-form,

non-decreasing line to a set of observations, also commonly

used for predictive model calibration [30], [32]. It is non-

parametric, so can learn the true distribution if given enough

i.i.d. data. The regression seeks a weighted least squares fit

β̂i ≈ βi subject to the constraint that β̂i ≤ β̂j whenever ηi ≤
ηj :

min
n∑

i=1

(
β̂i − βi

)2
s.t. β̂i ≤ β̂j for all (i, j) ∈ E, (8)

where E = {(i, j) : ηi ≤ ηj} and n is the number of (ηi, βi)
pairs. In our case, the observations (η1, β1) , . . . , (ηn, βn), are

the (UncertaintyMeasure, LocalizationError) tuples.

Next, we use our isotonically regressed line to estimate error

bounds for each of our quantile bins. We input each bin’s

threshold intervals [αq−1, αq) into our fitted Isotonic Regres-

sion function, obtaining error predictions for each threshold,

[γq−1, γq). We use these values as the estimated lower and

upper error bounds, respectively, of the predictions in bin Bq .

Note, that for B1 we only estimate an upper bound, and for

BQ we only estimate a lower bound.

In summary, we use a data-driven approach to learn thresh-

olds to progressively filter predictions at inference into Q bins

of increasing uncertainty, and assign each bin estimated error

bounds.

(a) SA CMR. (b) 4CH CMR.
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(c) Cephalometric.

Fig. 2: (a) Landmarks for Short Axis (SA) CMR: Magenta =

superior right ventricle insertion point valve; Yellow = inferior

right ventricle insertion point; Red = inferior lateral reflection

of right ventricle free wall. (b) Landmarks for 4 chamber

(4CH) CMR: Magenta = tricuspid valve; Yellow = mitral

valve; Red = apex of left ventricle. (c) Subset of Landmarks in-

cluded in the Cephalometric dataset [8]. Displayed landmarks

are used in the aleatoric uncertainty analysis (Sec. VI-G).

D. Evaluation Metrics for Uncertainty Measures

Next, we construct methods to evaluate how well an un-

certainty measure’s predicted bins represent the true error

quantiles, and how accurate each bin’s estimated error bounds

are.

1) Evaluating the Predicted Bins: A good uncertainty mea-

sure will have a strong correlation with localization error.

Therefore, it should provide quantile thresholds that corre-

spond to the true error quantiles. For example, since Bin B1

contains the predictions with the uncertainties at the lowest
1

Q
quantile, the localization errors of the predictions in B1

should be the lowest 1

Q
quantile of the test set. This can be

generalized to each group, until BQ, which should contain the

errors in the Q−1

Q
quantile.

To evaluate this desired property, we propose to measure

the similarity between each predicted bin and its respective

theoretically perfect bin.

We create the ground truth (GT) bins by ordering the test

set samples in ascending order of error. Then, we sequentially

bin them into Q equally sized bins: B̂1...B̂Q.

For each predicted and GT bin pair Bq & B̂q , we calculate

the Jaccard Index (JI) between them and report the mean

measure of each bin across all folds:

Jq(Bq, B̂q) =
|Bq ∩ B̂q|
|Bq ∪ B̂q|

. (9)

The higher the JI, the better the uncertainty measure has
binned predictions by localization error. Therefore, it follows

that the higher the JI, the better the uncertainty measure

predicts localization error.

2) Accuracy of Estimated Error bounds: A good uncertainty

measure will have a monotonically increasing relationship

with localization error. Therefore, estimating the true function

using isotonic regression should provide accurate error bound

estimations.

To measure this, for each bin Bq , we calculate the percent-

age of predictions whose error falls between the estimated

error bound interval, [γq−1, γq). The higher the percentage,

the higher the accuracy of our estimated upper error bounds.



SCHÖBS et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 7

V. DATASETS

We perform our experiments using three datasets. The first

two datasets are from the ASPIRE Registry [33], containing

Cardiac Magnetic Resonance Imaging (CMR) sequences, from

a 1.5 Tesla GE HDx (GE Healthcare, Milwaukee, USA)

system using an eight-channel cardiac coil. Images were

acquired using a cardiac-gated multislice balanced steady-

state free precession sequence (20 frames per cardiac cycle,

slice thickness 10mm, 0mm inter-slice gap, field of view

480mm, acquisition matrix 256 × 200, flip angle 60°, BW

125 KHz/pixel, TR/TE 3.7/1.6 ms). Each subject has a four

chamber (4CH) view and/or a short axis view (SA). Each CMR

sequence has a spatial resolution of 512 × 512 pixels, where

each pixel represents 0.9375mm of the organ, and the first

frame was used for landmark localization in this study. There

are 303 SA images, each with three annotated landmarks: the

inferior right ventricle insertion point (infSA), the superior

right ventricle insertion point (supSA), and the inferior lateral

reflection of the right ventricle free wall (RVSA). There are

422 4CH images, each with three annotated landmarks: the

apex of the left ventricle at end diastole (LVDEV Apex), the

mitral valve (mitral), and tricuspid valve (tricuspid). The 4CH

dataset represents a more challenging landmark localization

task as the images have much higher variability than the SA

dataset. The landmarks were decided and manually labelled

by a radiologist, as shown in Figs. 2a & 2b. For this study,

we consider the SA images the EASY dataset, and the 4CH

images the HARD dataset.

To test generalizablity across imaging modalities, we use

a third dataset consisting of Cephalometric Radiographs, in

which the images contain repetitive structures [8]. The dataset

has a total of 19 annotated landmarks, where we use the junior

annotator as the ground truth (following the convention of

[10], [12], [34]). For our study of aleatoric uncertainty in Sec.

VI-G, we use subset of 5 landmarks which have a total of

11 annotations provided by [12]. The images have a spatial

resolution of 512 × 512 pixels, where each pixel represents

0.1mm of the structure. Fig. 2c shows an example image

annotated with the aleatoric uncertainty landmark subset.

VI. EXPERIMENTS AND RESULTS

First, in Sec. VI-B we present the baseline landmark local-

ization performance of PHD-Net and U-Net over both SA and

4CH datasets using the S-MHA, E-CPV, and E-MHA methods

to extract coordinates. This gives us a comparison of the

coordinate extraction performance from each of our methods,

and a baseline to measure the effectiveness of each method’s

uncertainty estimation. Second, in Sec. VI-C we interrogate

how using Quantile Binning with our uncertainty measures

delineates predictions in terms of their localization error, and

compare the predicted bins to the ground truth error quantiles.

We show a practical example of how filtering out highly

uncertain predictions can dramatically increase the proportion

of acceptable localization predictions. In Sec. VI-D we assess

how well the uncertainty measures can predict error bounds for

each bin. Next, we demonstrate the generalizability of Quantile

Binning in Sec. VI-E on the more diverse Cephalometric

dataset. In Sec. VI-F, we highlight the flexibility of the method

TABLE I: Localization errors (mm) for the uncertainty meth-

ods outlined. All indicates entire set of predictions; B1 in-

dicates subset with the lowest uncertainties. Mean error and

standard deviation are reported across all folds & all land-

marks. Bold indicates best results in row for the given dataset.

4 Chamber Images Short Axis Images

Method U-Net PHD-Net U-Net PHD-Net

S-MHA All 10.00 ± 18.99 11.07 ± 21.33 5.86 ± 14.19 3.58 ± 3.52

S-MHA B1 6.79 ± 6.09 5.80 ± 9.03 3.62 ± 2.45 2.78 ± 1.99

E-MHA All 6.36 ± 8.01 9.14 ± 18.11 4.37 ± 8.86 3.36 ± 3.50

E-MHA B1 4.93 ± 2.85 4.70 ± 3.21 2.98 ± 2.09 2.39 ± 1.90

E-CPV All 8.13 ± 10.16 9.42 ± 13.07 4.97 ± 7.51 3.22 ± 2.93

E-CPV B1 5.34 ± 3.00 5.10 ± 6.76 3.75 ± 2.13 2.47 ± 2.08

by quantifying the effects of varying the number of quantile

bins (Q) used. Finally, in Sec. VI-G we explore aleatoric

uncertainty, demonstrating Quantile Binning’s effectiveness on

landmarks with high ambiguity, as well as sharing insights on

our studied uncertainty measure’s relationship with aleatoric

uncertainty. When comparing between B1, B2−4, B5 we use

an unpaired t-test (p ≤ 0.05) to test for significance. When

comparing uncertainty metrics among the same Bin category

and model, we use a paired t-test (p ≤ 0.05) to test for

significance.

A. Experimental Setup

We split both CMR datasets into 8 folds, and perform 8-

fold cross validation for both U-Net and PHD-Net. For each of

the eight iterations, we select one fold as our testing set, one

our hold-out validation set and the remaining 6 as our training

set. For the Cephalometric dataset we follow previous work

([10], [12], [34]) and perform 4-fold cross validation using

junior annotations, setting aside a random 20% of each fold’s

training set as our hold-out validation-set. We select T = 5
for the ensemble methods, training 5 identical, randomly

initialized models at each iteration. We chose T = 5 to

compromise with computational constraints, asserting that 5

models are representative to compare the uncertainty methods

for our purposes. We randomly select a model from our

trained ensemble for our S-MHA uncertainty measure. For our

Quantile Binning method, we select Q = 5 for 5 bins, striking

a balance between the resolution of separation of the data and

the limited size of our hold-out validation set (∼30 samples

for the CMR datasets, ∼60 samples for the Cephalometric

dataset). We explore the effect of changing Q in Sec. VI-F.

We implement a vanilla U-Net model [6]. We design the

architecture with 5 encoding-decoding levels, creating 1.63M

learnable parameters. Each level contains 2 residual units,

where each residual unit applies a 3× 3 convolution, instance

normalization, and ReLU to the input, before concatenating the

resulting output with the unit input. As we descend down the

five levels of the encoder we use (16, 32, 64, 128, 256) input

channels respective to each layer, mirroring this in the decoder

path. On the encoder path we use maxpooling after each level

to reduce spatial dimensions, and on the decoder path we use

transposed convolutions to upsample the spatial resolution.

We modify the objective function from image segmentation

to simultaneous landmark localization, minimising the mean

squared error between the target and predicted heatmaps. We
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use the full 512×512 pixel image as input, and learn heatmaps

of the same size. We train for 1000 epochs with a batch size

of 2, and a learning rate of 0.001 using the Adam Optimizer

(settings from [7]). We generate target heatmaps using Eq. (1)

with a standard deviation of 8 for our CMR datasets and 2 for

our Cephalometric dataset (chosen experimentally using the

first fold of each dataset). We do not use data augmentation.

We implement our PHD-Net model following [7], creating

a model with 0.06M learnable parameters. For all experiments

we trained PHD-Net for 1000 epochs using a batch size of 32

and a learning rate of 0.001, using the Adam Optimizer. We

train one landmark at a time. Note, the only difference in setup

from [7] in this work is different fold splits and training for an

additional 500 epochs (same as U-Net) with no early stopping,

since we now use our validation set for Quantile Binning. We

do not use data augmentation.

B. Baseline Landmark Localization Performance

Table I show the baseline performance for U-Net and PHD-

Net at localizing landmarks in our 4CH and SA datasets. We

make the following observations:

• When considering localization error for the entire set

of landmarks (All), performance is better on the SA

dataset for both models, with PHD-Net outperforming

U-Net. On the 4CH dataset, U-Net outperforms PHD-

Net in terms of fewer gross mispredictions, suggesting

the higher capacity model of U-Net is more robust to

datasets with large variations.

• Simply using a single model with our S-MHA strategy

is predictably less robust than ensemble approaches.

• E-MHA outperforms the previous strong baseline of E-

CPV for coordinate extraction. However, does it out-

perform E-CPV in terms of uncertainty estimation? We

explore this in Section VI-C.

• The standard deviation in the error for the baseline All

results in Table I is high for all models. We aspire to catch

these bad predictions using Quantile Binning in Sec. VI-

C.

C. Analysis of the Predicted Quantile Bins

We apply quantile binning to each uncertainty measure: S-

MHA, E-MHA and E-CPV. We compare results over U-Net

and PHD-Net for both the SA and 4CH datasets.

First, we test our assumption that our uncertainty measures

correlate with localization error. We report the Spearman’s

Rank Correlation Coefficient (ρ) since we are measuring a

monotonic correlation which is not necessarily linear. All

correlations are reported from the aggregated test sets across

all eight folds of our CMR datasets, using a significance

level of p < 0.001. For our 4CH dataset, S-MHA achieves

correlations of 0.33 (weak-moderate) & 0.47 (moderate), E-

MHA shows weak-moderate correlations of 0.39 & 0.39, and

E-CPV shows moderate correlations of 0.42 & 0.53; for U-

Net and PHD-Net respectively. For our SA dataset, S-MHA

achieves correlations of 0.27 (weak) & 0.33 (weak-moderate),

E-MHA weak-moderate correlations of 0.38 & 0.38, and E-

CPV correlations of 0.27 (weak), 0.36 (weak-moderate); for

U-Net and PHD-Net, respectively. The correlation strength

of S-MHA has high variance, whereas E-MHA shows a

stable correlation across datasets and localization models. E-

CPV achieves the strongest correlation with error across both

models for our harder 4CH dataset, but a weaker correlation

than E-MHA for our easier SA dataset. Overall, these results

show that MHA and E-CPV contain information that can be

exploited to estimate the uncertainty of our predictions.

Next, we compare how our uncertainty measures can predict

the true error quantiles. We found the most useful information

is at the tail ends of the uncertainty distributions. Figs. 3c &

3d plot the Jaccard Index between ground truth error quantiles

and predicted error quantiles. We notice a parabolic trend,

where the outer bins are closer to the true error quantiles

than the middle bins. The highest uncertainty quantile bin

(B5) is significantly better at capturing the correct subset of

predictions than the intermediate bins (B2−B4). Similarly, in

some cases the bin representing the lowest uncertainties (B1)

had a significantly higher Jaccard Index than the intermediate

bins, but still lower than B5. Figs. 3a & 3b show the mean

error (▲) of the samples of each quantile bin over both

datasets. The most significant reduction in localization error

is from B5 to B4 for all uncertainty measures. The sample

distribution over the bins, indicated by the red dots, confirms

that B5 captures more gross mispredictions than the remaining

bins, particularly for the 4CH dataset. These findings suggest

that most of the utility in the uncertainty measures investigated

can be found at the tail ends of the scale. This is an intuitive

finding, as the predictions in B5 are certainly uncertain, and

the predictions in B1 are certainly certain. Figs. 3a & 3b show

that each bin contains ∼20% of the predictions, confirming

our data-driven approach to setting uncertainty thresholds

successfully approximates the true uncertainty distribution.

The worse trained the landmark localization model, the

more useful the uncertainty measure. Table I shows the local-

ization error of all methods, models and datasets for the entire

set (All) and lowest uncertainty subset (B1) of predictions.

PHD-Net’s baseline localization performance on the 4CH

dataset was worse than U-Net. However, when we consider the

lowest uncertainty subset of predictions (B1), PHD-Net sees

a 47% average reduction in error from all predictions (All),

compared to U-Net’s average reduction of 30%. Similarly, U-

Net performed worse than PHD-Net for the SA dataset, but

saw an average error reduction of 31% compared to PHD-Net’s

25%. This suggests that all investigated uncertainty measures

are more effective at identifying gross mispredictions when

models are poorly trained.

Using heatmap-based uncertainty measures is generalizable

across heatmap generation approaches. The bin similarities in

Figs. 3c & 3d show that using S-MHA and E-MHA yields

similar performance with PHD-Net and U-Net, despite their

different heatmap derivations. Surprisingly using E-MHA does

not give a significant increase in bin similarity compared to S-

MHA, suggesting the thresholds remain relatively stable across

models.

No investigated method is conclusively best for estimating

uncertainty in all scenarios. For the more challenging 4CH

data, Fig. 3c shows E-CPV is significantly better than S-

MHA and E-MHA for both models at capturing the true
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(a) Localization error for each Bin - 4CH dataset (Lower is better). (b) Localization error for each Bin - SA dataset (Lower is better).
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(c) Jaccard Index for each Bin - 4CH dataset (Higher is better).
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(d) Jaccard Index for each Bin - SA dataset (Higher is better).
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(e) Estimated Error Bound Accuracies- 4CH dataset (Higher is better).
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(f) Estimated Error Bound Accuracies- SA dataset (Higher is better).

Fig. 3: Results from Quantile Binning for U-Net and PHD-Net across all landmarks & folds, using our three coordinate

extraction & uncertainty estimation methods. Bins are in descending order of uncertainty (B5 highest uncertainty, B1 lowest

uncertainty). (a) and (b) show the mean localization error of each bin, with error decreasing as we move towards the bins with

lower uncertainty. (c) and (d) present the Jaccard Index, showing how similar the predicted bins are to the ground truth error

quantiles. (e) and (f) visualize the estimated error bound accuracy, showing the percentage of predictions within the estimated

error bounds for each bin. Best viewed on screen.

error quantiles, corroborating the findings of [5]. E-CPV is

particularly good at identifying the worst predictions (B5).

For the easier SA data, no method has a significantly higher

Jaccard Index. Therefore, when we generalize across both

models and datasets, all uncertainty measures fared broadly

similar on average in terms of error reduction between the

entire set and the B1 subset of predictions. S-MHA had an

average error reduction of 35.07%, E-MHA 32.94% and E-

CPV 32%.

Despite similar performances in uncertainty estimation, we

found E-MHA yields the greatest localization performance

overall. Table I shows E-MHA offers the best localization

performance for B1 across both datasets and models. This is

due to the combination of offering the most robust coordinate

extraction on average (Table. I), and similar uncertainty esti-

mation performance (Fig. 3c, Fig. 3d). We more concretely

demonstrate Quantile Binning’s ability to identify low uncer-

tainty predictions in Fig. 4. We clearly observe a significant

increase in the percentage of images below the acceptable error

threshold of 5mm when considering only predictions in B1

- with E-MHA giving the greatest proportion of acceptable

predictions.

D. Analysis of Error Bound Estimation

We analyse how accurate the isotonically regressed esti-

mated error bounds are for our quantile bins. Figs. 3e & 3f

show the percentage of samples in each bin that fall between

the estimated error bounds.

We found we can predict the error bounds for the two

extreme bins better than the intermediate bins. Figs. 3e &

3f show a similar parabolic pattern to the Jaccard Index Figs.

3c & 3d, with the two extreme bins B5 and B1 predicting

error bounds significantly more accurately than the inner bins.

Again, this indicates the most useful uncertainty information

is present at the extremes of the uncertainty distribution, with

the predicted uncertainty-error function unable to capture a

consistent relationship for the inner quantiles. Further, the

increased accuracy of the outer bins can be explained by the

fact that it is easier to predict a single lower/upper bound than
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(a) PHD-Net - 4CH Images.
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(b) U-Net - 4CH Images.
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(c) PHD-Net - SA Images.
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(d) U-Net - SA Images.

Fig. 4: Cumulative distribution of localization errors showing the % of predictions under a given error threshold, comparing all

predictions (All) to the lowest uncertainty subset (B1) for the uncertainty methods across all folds & landmarks. The vertical

line is the acceptable error threshold, chosen by a radiologist. Higher percentage is better.

a pair of tighter bounds for the middling bins.

We also found that a well defined upper bound for heatmap

activations is important for error bound estimates. For both the

4CH and SA datasets, S-MHA for PHD-Net is significantly

more accurate at predicting error bounds for the highest

uncertainty quantile B5 compared to the lowest uncertainty

quantile B1 (56% & 72% compared to 30% & 27% for

4CH & SA, respectively), correlating with S-MHA capturing

a greater proportion of those bins (Jaccard Indexes of 32% &

24% compared to 16% & 15%). On the other hand, U-Net

using S-MHA predicts error bounds for low uncertainty bins

better than high uncertainty bins. This suggests that although

PHD-Net’s heatmap activation is a robust predictor of gross

mispredictions, the less tight upper bound of its heatmap

activations make it hard to make an accurate prediction for the

lowest uncertainty quantile (B1). This is alleviated by using

an ensemble of networks in E-MHA, where the B1 bound

accuracy is improved to 62%.

E-MHA and E-CPV are more consistent than S-MHA.

Overall, there is no significant difference between the error

bound estimation accuracy of E-MHA and S-MHA, but Figs.

3e & 3f show E-MHA has less variation in performance

between U-Net and PHD-Net compared to S-MHA, suggesting

an ensemble of models is more robust. For the 4CH dataset,

PHD-Net using E-CPV is on average significantly more ac-

curate at predicting error bounds than S-MHA and E-MHA.

However, there are no significant differences for PHD-Net on

the easier SA dataset, nor U-Net on either dataset. There are

also no significant differences between U-Net and PHD-Net

in error bound estimation accuracy, with each method broadly

equally effective for both models.

E. Generalizability

We train U-Net on the Cephalometric dataset, applying

Quantile Binning to E-MHA and E-CPV to test their gen-

eralizability across imaging modalities. For Q = 5, Figs.

5c & 5d show a predictive power of true error quantiles

comparable with the CMR datasets. The mean Jaccard Index

(JI) for B5 is 22% for E-MHA and 34% for E-CPV on the

Cephalometric dataset, compared to 22% & 32% for U-Net

on the 4CH dataset. B1 shows a better result than the CMR

datasets, achieving a JI of 18% for E-MHA and 19% for E-

CPV, compared to 15% & 14% for U-Net on the 4CH dataset.

E-CPV more effectively identifies the extreme mis-predictions

compared to E-MHA, as evidenced by a higher JI for B5 (left-

most bin) in Figs. 5c & 5d, supporting the results from the

challenging 4CH dataset. For Q = 5, Figs. 5a and 5b show a

gradual reduction in error from B5 (left-most) to B1. Overall,

the larger Cephalometric dataset (19 landmarks) shows a more

consistent downward trend in error across bins compared to

our smaller CMR datasets (3 landmarks).

Next, to test the robustness of using MHA as an uncertainty

measure across target heatmaps of varying sizes, we repeated

these experiments changing the standard deviation of the target

heatmap from Eq. (1) to 2, 4, 8 and 12. We found the trends of

our Quantile Binning results hold, with only the localization

error deteriorating as we increased the size of the Gaussian.

We conclude that as long as the standard deviation leads to

a learnable heatmap, similar uncertainty estimation properties

are exhibited by MHA.

F. Varying Quantile Binning Resolution

We vary the number of Quantile Bins (Q = {2, 3, 5, 10, 20})

for the larger Cephalometric dataset to gain deeper insights

on the flexibility of Quantile Binning. Figs. 5a & 5b show the

localization error quantiles across Q for the Cephalometric

dataset, with a gradual reduction in mean localization error

(▲) from BQ to B1 for all values of Q. We find that the edge

bins are most useful for all values of Q, with the Jaccard

Indexes in Figs. 5c & 5d and error bound accuracies in Figs.

5e & 5f showing parabolic trends, confirming our results from

the CMR datasets.

Further, Quantile Binning provides utility for a range of Q

values. First, consider the extreme case of Q = 2, where the

threshold is the median uncertainty of the validation set. Here,

B2 (the high uncertainty bin, left) captures the majority of the

gross mispredictions and B1 (the low uncertainty bin, right)

captures the majority of the best predictions. Now, consider

the effect of increasing Q, shown in Figs. 5a & 5b. As we

increase the number of Quantile Bins, the mean error (▲) of

BQ (far left bin of each set) increases. This is because as

Q increases, BQ is pushed farther towards the edge of the

uncertainty measure distribution, capturing progressively more

extreme outliers. Therefore, as Q increases, we observe an

increasingly logarithmic trend of the mean error across the

bins as poor predictions are filtered out more gradually.

In practice, the higher the value of Q, the greater the

resolution of separation of the data. For example, consider
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(a) Localization error - E-MHA (Lower is better). (b) Localization error - E-CPV (Lower is better).

2 3 5 10 20
Q (# Bins)

0

10

20

30

40

50

60

70

Ja
cc

ar
d 

In
de

x 
(%

)

U-NET E-MHA Mean Median

(c) Jaccard Index - E-MHA (Higher is better).
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(d) Jaccard Index - E-CPV (Higher is better).
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(e) Estimated Error Bound Accuracies - E-MHA (Higher is better).
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(f) Estimated Error Bound Accuracies - E-CPV (Higher is better).

Fig. 5: Quantile Binning varying Q (Number of Quantile Bins) on the Cephalometric dataset. We show results for the uncertainty

measures E-MHA and E-CPV, over all landmarks from a 4-fold CV, trained on the U-Net model. Red dots represent the errors

of individual samples, best viewed on screen.

the task of flagging up uncertain landmark predictions for

manual review. Using Q = 2 and flagging predictions from

the highest uncertainty bin will lead to 50% of predictions

requiring review and re-annotation. On the other hand, filtering

out the highest uncertainty bin using Q = 10 leaves only 10%

of predictions to be reviewed. In each case, the user will have

an upper error bound estimate for the remaining predictions

with reasonable accuracy (∼50% for E-MHA and ∼60% for

E-CPV, the left-most bins, BQ, in Figs. 5e & 5f). However,

the contents of BQ are more accurate when Q is small, with

a Jaccard Index of 50% for Q = 2 compared to 40% for

Q = 10 for E-CPV (Fig. 5d). Therefore, this trade-off between

true error quantile accuracy and binning resolution means Q

is a subjective choice that depends on the specificity of the

downstream task and the resources available for reannotation.

Similar trends are present for our 4CH dataset and SA

dataset, but we note that results are poor for Q >= 10

compared to the Cephalometric dataset. This is because when

fitting the data for Quantile Binning, our CMR datasets had

access to a much smaller validation set compared to the

Cephalometric dataset (∼30 samples compared to ∼60 sam-

ples) and could not accurately estimate the quantile uncertainty

distribution for large values of Q. Therefore, the larger the

available validation set, the larger Q can be set.

G. Relationship with Aleatoric Uncertainty

Lastly, we study aleatoric uncertainty, which refers to un-

certainty caused by internal randomness in the data. Using

Quantile Binning, we explore how our epistemic uncertainty

measures deal with landmarks of varying levels of aleatoric

uncertainty. In landmark localization, one way to measure

aleatoric uncertainty is from the inherent ambiguity of the

landmark, quantified by the inter-observer variability of mul-

tiple annotators. We can infer that the higher the variation in

annotator opinion, the greater the ambiguity of the landmark.
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Fig. 6: Column Annotator Dist. shows the individual offsets from each of the 11 annotators to the mean annotation of each

landmark [12]. The larger the fitted Gaussian, the more variance between annotators and the higher the aleatoric uncertainty.

Quantile Errors column shows the boxplots of localization errors for each quantile bin, showing the landmarks across all folds.

The Jaccard Index column shows the similarity between the predicted Quantiles and the true error quantiles.

We can observe the directional ambiguity of the landmark by

fitting an anistotropic (directionally skewed) Gaussian function

to the distribution of the annotations, seen in the Annotator

Dist. column of Fig. 6. Thaler et al. [12] provide this ground

truth measure of the aleatoric uncertainty, using a total of

11 annotators to label a subset of five landmarks (Fig. 2c)

from 100 images of the Cephalometric dataset. We assume the

landmark-specific ambiguities hold for the full Cephalometric

dataset.

Fig. 6 shows that all studied coordinate extraction methods

are best for landmarks with low aleatoric uncertainty. The

mean errors (▲) over the boxplots in the Quantile Errors
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rows in Fig. 6 confirm that landmarks with higher aleatoric

uncertainty (L3, L2) had worse localization performance than

landmarks with low aleatoric uncertainty (L4, L1). However,

the distribution of individual samples (represented by red dots,

best seen on screen) show that E-MHA and E-CPV reliably

capture the majority of gross mispredictions (B5) regardless

of landmark ambiguity. S-MHA performs poorly on some

landmarks (L5, L2) due to the reliance on a single model

capacity. In terms of filtering out poor predictions, we see

the best results for all uncertainty methods for the landmark

with the tightest annotation distribution (L4), with B5 Jaccard

Index’s showing a mean of 40% and 45% similarity with the

true quantile bin for E-MHA and E-CPV, respectively.

However, MHA methods falter for landmarks with direc-

tional ambiguity, whereas E-CPV estimates uncertainty well

for all types of ambiguity. The Annotator Dist. column of

Fig. 6 shows that the annotation distribution of landmarks L1

and L2 have a distinct directional skew. The Jaccard Indexes

of E-MHA for these landmarks (L1 = 16%, L2 = 20% for

B5) are lower than the other landmarks with more isotropic

annotation distributions (L4 = 40%, L5 = 24%, L3 = 23%
for B5). Furthermore, the mean and median localization errors

do not consistently trend down across bins for E-MHA for the

anisotropic landmarks (L1, L2).

On the other hand, Quantile Binning shows E-CPV is

consistently effective regardless of directional ambiguity, with

mean Jaccard Indexes for B5 no less than 28% across all land-

marks. This is likely because the objective function (Eq. (1))

encourages the model to predict isotropic Gaussian Heatmaps,

which better match isotropic annotator distributions. When we

calculate the mean heatmap to extract the peak pixel using

E-MHA, the resulting map will still be constrained to the

isotropic properties defined by the objective function. This

explains why E-MHA even performs well on the ambigu-

ous yet isotropic landmarks L3 and L5, but poorly on the

directionally ambiguous, anisotropic landmarks L1 and L2. In

contrast, E-CPV calculates the variance between peak pixel

activations of a group of individual models, where sampling

enough independent predictions of an ensemble can effectively

approximate the anisotropic distribution. In practice, if the

Quantile Error bins for E-MHA show uniformity as they do in

L1 and L2, this is an indication to the user that the landmark

may contain some directional ambiguity.

VII. DISCUSSION AND CONCLUSION

A. Summary of Findings

This paper presented a general framework to assess any

continuous uncertainty measure in landmark localization,

demonstrating its use on three uncertainty metrics and two

paradigms of landmark localization model. We introduced a

new coordinate extraction and uncertainty estimation method,

E-MHA, offering the best baseline localization performance

and competitive uncertainty estimation.

Our experiments indicate that both heatmap-based uncer-

tainty metrics (S-MHA, E-MHA), as well as the strong base-

line of coordinate variance uncertainty metric (E-CPV) are

applicable to both U-Net and PHD-Net. Despite the two mod-

els’ distinctly different approaches to generating heatmaps,

using the maximum heatmap activation as an indicator for

uncertainty is effective for both models. We showed that all

investigated uncertainty metrics were effective at filtering out

the gross mispredictions (BQ) and identifying the most certain

predictions (B1), but struggled to capture useful information

for the intermediate uncertainty bins (B2-BQ−1).

Our experiments also showed that E-MHA and S-MHA

had a surprisingly similar ability to capture the true error

quantiles of the best and worst 20% of predictions (Figs. 3c

& 3d), but E-MHA was more consistent with its performance

predicting the error bounds of those bins across models (Figs.

3e & 3f). This suggests that the correlation with localization

error at the head and tail ends of the heatmap distributions

are stable across our ensemble of models, but susceptible to

variance when fitting our isotonically regressed line to predict

error bounds. On the more challenging 4CH dataset, E-CPV

broadly remained the strongest method for filtering out the

worst predictions, but this trend did not continue in the easier

SA dataset (Fig 4).

In terms of error bound estimation, we found bins BQ

and B1 could offer good error bound estimates, but the

intermediate bins could not (Figs. 3e & 3f). We found all

uncertainty methods performed broadly the same: effective at

predicting error bounds for B1 and BQ, but poor at predicting

error bounds for B2-BQ−1. The one exception was PHD-Net

using S-MHA, which could not accurately predict error bounds

for B1 due to the high variance in pixel activations of highly

certain predictions.

We demonstrated our Quantile Binning and the three uncer-

tainty metrics are generalizable across imaging modalities by

reporting effective results on the Cephalometric dataset in Fig.

5. Here, we also showed the flexibility of Quantile Binning

by varying the number of bins (Q), illustrating the trade-off

between true error quantile accuracy and binning resolution as

Q increases.

Finally, in Sec. VI-G we explored the effect of aleatoric

uncertainty on our chosen epistemic uncertainty measures,

using Quantile Binning to uncover weaknesses of E-MHA

when dealing with landmarks with high directional ambiguity

under conventional isotropic heatmap regression.

B. Recommendations

We offer the following recommendations:

• When resources are available, E-MHA should be used

as the coordinate extraction and uncertainty estimation

method since it offers the best baseline localization per-

formance with a sufficient ability to filter out the gross

mispredictions.

• If the definition of the landmark is known to be direction-

ally ambiguous, use E-CPV over E-MHA for uncertainty

estimation. If this is unknown, uniformity in the E-

MHA Quantile Bins can be an indication of directional

ambiguity in the landmark.

• When resources are constrained, S-MHA is surprisingly

effective at capturing the true error quantiles for bins B1

and BQ, but note that when using a patch-based voting

heatmap that is not strictly bounded, the error bound

estimation for B1 is not robust.
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• The number of Quantile Bins used (Q) is a trade-off,

with a larger Q offering a finer binning resolution at the

cost of less accurate bins. Q is constrained by the size of

the hold-out validation set and can perform poorly when

Q > 10 and the validation set is smaller than 60 samples.

C. Conclusion

Beyond the above recommendations, we hope the frame-

work described in this paper can be used to assess refined or

novel uncertainty metrics for landmark localization, and act

as a baseline for future work. Furthermore, we have shown

that both the voting derived heatmap of PHD-Net, and the

regressed Gaussian heatmap of U-Net can be exploited for

uncertainty estimation. In this paper, we only explored the ac-

tivation of the peak pixel, but it is likely that more informative

measures can be extracted from the broader structure of the

heatmap, promising greater potential for uncertainty estimation

in landmark localization waiting to be uncovered.
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