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Abstract—Supporting ultra-high data rates and flexible re-
configurability, Terahertz (THz) mesh networks are attractive
for next-generation wireless backhaul systems that empower the
integrated access and backhaul (IAB). In THz mesh backhaul
networks, the efficient cross-layer routing and long-term resource
allocation is yet an open problem due to dynamic traffic demands
as well as possible link failures caused by the high directivity
and high non-line-of-sight (NLoS) path loss of THz spectrum. In
addition, unpredictable data traffic and the mixed integer pro-
gramming property with the NP-hard nature further challenge
the effective routing and long-term resource allocation design.
In this paper, a deep reinforcement learning (DRL) based cross-
layer design in THz mesh backhaul networks (DEFLECT) is
proposed, by considering dynamic traffic demands and possible
sudden link failures. In DEFLECT, a heuristic routing metric is
first devised to facilitate resource efficiency (RE) enhancement
regarding energy and sub-array usages. Furthermore, a DRL
based resource allocation algorithm is developed to realize long-
term RE maximization and fast recovery from broken links.
Specifically in the DRL method, the exploited multi-task structure
cooperatively benefits joint power and sub-array allocation.
Additionally, the leveraged hierarchical architecture realizes
tailored resource allocation for each base station and learned
knowledge transfer for fast recovery. Simulation results show
that DEFLECT routing consumes less resource, compared to the
minimal hop-count metric. Moreover, unlike conventional DRL
methods causing packet loss and second-level latency, DEFLECT
DRL realizes the long-term RE maximization with no packet
loss and millisecond-level latency, and recovers resource-efficient
backhaul from broken links within 1s.

Index Terms—Terahertz (THz) networks, Mesh networks,
Backhaul networks, Deep Reinforcement Learning (DRL).

I. INTRODUCTION

With the explosive growth of mobile devices accompanied
by unprecedented high demands of data rates, a dramatic traffic
volume is foreseen that challenges current backhaul systems,
i.e., links among base stations (BSs). Despite the ability to
provide high capacity, traditional fiber-based wired backhaul
is prohibitively costly and geographically inflexible [1]–[4].
Instead, wireless backhaul is a feasible alternative to guarantee
cost-efficient communications everywhere, following the trend
of integrated access and backhaul (IAB). More specifically,
only a few BSs (i.e., IAB donors) connect to the backbone
network in a fiber-based wired manner, while the rest BSs
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(i.e., IAB nodes) rely on wireless communications only [5]–
[7]. Unlike the conventional wired backhaul networks, similar
to the access, the backhaul in IAB networks deploys the
air interface as well, which is a crucial feature enabling
self-adjusting topology management and plug-and-play in-
stallation [8]. To unleash the flexibility and reconfigurability
of wireless backhaul for IAB in 6G and beyond systems,
Terahertz (THz) band (0.1-10 THz) with ultra-broad available
bandwidths is envisioned as a promising technology to support
efficient yet practical deployment [9]–[11].

THz mesh wireless backhaul networks have the follow-
ing three-fold advantages. First, over 20 GHz continuous
bandwidth could be supplied to support multi-Gigabit-per-
second IAB traffic demands [12]. Second, benefiting from
large arrays of sub-millimeter-long antennas, THz line-of-
sight (LoS) multiple-input and multiple-output (MIMO) and
hybrid beamforming are capable of enhancing spectral effi-
ciency and multiplex gain, as well as alleviating interference
among concurrent access and backhaul signals due to the
ultra-high directivity [13]–[15]. Third, by allowing a BS to
be connected with neighboring BSs, the mesh architecture
enables flexible and reconfigurable backhaul topology, which
makes the backhaul resilient to the changes in wireless link
status [16], [17].

Even though THz mesh networks are potential to realize
effective and efficient wireless backhaul systems, there are
several challenges. First, financial implications of the power
consumption and the efficient sub-array management of THz
hybrid beamforming are concerns [18], [19]. Second, the
cross-layer routing and resource allocation design in a long-
term period for resource-efficient THz backhaul is nonlin-
ear, non-convex, and NP-hard, which is thus yet an open
problem [12]. Third, high loss of non-line-of-sight (NLoS)
paths and high directivity of THz communications might incur
link degradation or failures, requiring timely recovery to meet
dynamic traffic demands [20].

Recently, there are efforts spent in maximizing resource
efficiency (RE), defined as data rate per unit resource usage,
in wireless backhaul networks. A solution that achieves the
energy efficiency maximization in backhaul with endurable
complexity is proposed in [21], by solving a beamforming
and power allocation under an approximate convex problem.
However, this method works only in a downlink, where the
adopted time-division half-duplex mechanism can result in
extra latency. Another solution decomposes the NP-hard non-
convex problem to separately optimize sub-array and power
allocations in a convex manner, to realize the resource effi-
ciency in terms of the number of sub-arrays as well as en-
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ergy [19]. Unfortunately, the assumptions that equal numbers
of transmitting and receiving sub-arrays, together with highly
predictable traffic demands are impractical.

Apart from aforementioned non-learning methods, fueled
by the recent advancement of deep reinforcement learning
(DRL), learning-based solutions that can efficiently solve non-
convex and NP-hard long-term resource allocation problems
have drawn much research attention recently [22], [23]. Never-
theless, existing DRL solutions only focus on energy efficiency
in a downlink, whereas the potential of DRL is not fully
unleashed yet in low-latency bidirectional backhaul transmis-
sions. In particular, the data rate requirement of the uplink
is usually different from that of the downlink in backhaul
networks. In addition, since multiple BSs can utilize the same
BS as the relay on the path to the IAB donor, the antenna allo-
cation to receive signals from multiple BSs is more complex in
the uplink. In contrast, in the downlink, to transmit downlink
data to multiple BSs, the allocations of transmitting antennas
and transmit power are more intricate. In addition, the remain-
ing resources (e.g., antennas) under the downlink resource
allocation optimization may not be sufficient to support the
optimization of uplink resource allocation, and cannot ensure
the overall bidirectional resource efficiency as well. Therefore,
by considering power and antenna allocations for both the
uplink and downlink, as well as the different requirements
of uplink and downlink data rates, the resource allocation of
bidirectional transmission is much more sophisticated than the
single-directional transmission. As a result, specific designs
of resource-efficient allocation strategies for the bidirectional
backhaul transmission are motivated.

In addition, existing non-learning and learning schemes lack
the consideration of the limited storage of buffers compared
to large traffic volumes, dynamic traffic demands, as well as
possible link failures in THz backhaul. These factors nullify
existing non-learning convexification tricks and learning ar-
chitectures, limiting the pragmatic viability of resource allo-
cation solutions in previous works for THz backhaul networks.
Moreover, besides resource allocation considered in existing
solutions, to further improve the ability of RE maximization,
cross-layer design including routing should be taken into
account as well.

In this paper, aiming at solving the aforementioned chal-
lenges, we propose a DRL based cross-layer design in a
frequency-division THz backhaul network (DEFLECT) where
partial sub-bands serve the uplink, while the remainder serve
the downlink. Concretely, a heuristic solution is designed for
mesh routing, by accounting for RE in terms of power and sub-
array usage. One step further, we develop a novel DRL based
resource allocation algorithm to reach long-term power and
sub-array RE maximization by jointly allocating power and
sub-arrays, as well as realizing fast recovery from the broken
links. The main contributions of this paper are summarized as
follows.

• In a THz mesh backhaul network, pertaining to the unique
attributes of THz communications, we formulate a cross-
layer routing and resource allocation problem that aims at
RE maximization in terms of power and sub-array usage.
For ease of the low computational burden for routing and

handling dynamic traffic demand on a small time scale,
the problem is decomposed into the routing problem
and resource allocation problem. Physical constraints
are considered, including limited power and sub-array
resources, low latency, as well as packet loss mitigation.

• We devise a DEFLECT routing algorithm with the tar-
get of RE maximization. Unlike commonly-used routing
schemes that achieve the minimal hop-count [24], an
effective heuristic metric related to RE is proposed to
empower the legacy Dijkstra algorithm to facilitate and
expedite the RE maximization in THz backhaul networks.
The low complexity of the proposed DEFLECT routing
algorithm can realize fast recovery when link failures
occur.

• We transform the joint resource allocation problem into
an equivalent DRL problem, to achieve long-term RE
maximization while satisfying physical constraints. In
the proposed DRL framework, the multi-task architecture
facilitates cooperative training for power and sub-array
allocations. Moreover, the hierarchical structure enables
the customized resource allocation for different BSs with
various numbers of links, and supports learned informa-
tion transfer for ease of fast recovery from broken links.
To avoid the catastrophe of severe latency and packet
loss during DRL training, we further devise novel safe
initialization and action exploration mechanisms in the
training process.

• We evaluate the performance of DEFLECT heuristic
routing solution and DRL based resource allocation al-
gorithm. Under different requirements of signal-to-noise-
ratios (SINRs), DEFLECT routing outperforms the min-
imal hop-count metric in terms of lower resource usage.
In addition, DEFLECT DRL achieves the long-term RE
maximization with no packet loss and millisecond-level
latency, while conventional methods fail to avoid packet
loss or second-level latency. With sudden broken links,
DEFLECT DRL rapidly recovers resource-efficient back-
haul transmissions within 1s.

The remainder of this paper is organized as follows. We
present a THz mesh backhaul network model and formulate
the cross-layer routing and joint resource allocation problem
in Sec. II. In Sec. III, we elaborate heuristic DEFLECT
routing algorithm. DEFLECT DRL resource allocation method
is detailed in Sec. IV. Extensive experimental results are
presented in Sec. V. Lastly, we conclude this paper in Sec. VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we consider a THz mesh wireless back-
haul network consisting of multiple BSs that communicate
in the THz band. On the basis of this backhaul network
model, we formulate a cross-layer routing and joint power
and beamforming resource allocation problem for long-term
RE maximization.

A. THz Mesh Backhaul Network Model

As depicted in Fig. 1, a THz multi-hop mesh IAB network
topology is adopted in this work. In particular, the backhaul



3

Figure 1: THz mesh IAB network.

links and access links are separated in the frequency domain
by using different frequency bands. This paper is dedicated to
realizing the RE maximization in the mesh backhaul model,
which is described as follows. Specifically, N BS nodes com-
prise the backhaul network of the IAB system, in which each
BS serves a cell with multiple user equipments (UEs). To avoid
inter-cell interference, the minimal distance between every pair
of BS nodes is set as dmin. For any node i ∈ {1, 2, . . . , N}, the
nodes in the proximity (i.e., within the distance of dmax, where
dmax > dmin) form the neighboring set Ni. As a result, each
BS node can communicate with other nodes in its neighboring
set, i.e., within the distance in the range [dmin, dmax].

In addition, by considering possible LoS blockage or sudden
equipment failures, some links might become inaccessible. In
this case, the failure status of this link can be quickly detected
by continuously sending bidirectional probing messages [25],
and the neighboring set thereby updates immediately by delet-
ing the neighbor with which the node cannot communicate.

In the mesh backhaul network, the BS node labeled as index
1 can access the gateway via fiber, which is the IAB donor,
bridging the backbone network and the backhaul network. In
contrast, other BS nodes that work as IAB nodes are assigned
indices from 2 to N , which connect to the backbone network
via wireless multi-hop links through the IAB donor. In light
of this, the backhaul topology of the IAB network is further
formulated as a directed acyclic graph (DAG) to construct the
link between any node from 2 to N and node 1. The BS
node 1 is therefore the root node of the DAG. Consequently,
this DAG can be represented by an N ×N adjacency matrix
A, which is expressed as

Ai,j =

{
1, if node j is the parent node of node i,
0, otherwise,

(1)

where i, j ∈ {1, 2, . . . , N}. According to the definition of
DAG in (1), when Ai,j = 1, i, j ∈ {1, 2, . . . , N}, BS node i
transmits the uplink data to its parent node j, while receiving
the downlink data from node j.

In the frequency-division THz backhaul network, the uplink
and downlink traffic demands for each BS follow the fractional

Brownian motion processes, which could accurately simulate
the aggregated data traffic as commonly adopted in [5], [26].
In addition, at each BS node, a first-in-first-out (FIFO) output
buffer is considered. If the buffer is full and the channel
capacity cannot support transmitting more packets, any new
packet arrival is dropped, which hence leads to a packet loss.

B. THz Transmission Model

For ease of high time efficiency and low latency, mul-
tiple sub-bands in the THz band are used by each link
in a frequency-division fashion. In particular, K sub-bands
are considered, where half serves for downlink transmission,
and the other half takes charge of the uplink transmission
simultaneously. For each link between a pair of nodes, hybrid
beamforming is adopted to magnify the signal strength as well
as alleviate the interference from other links [27]. Specifi-
cally for THz backhaul systems, widely-spaced multi-subarray
(WSMS) architecture with enlarged inter-subarray spacing is
deployed to enhance spatial multiplex gains as well as provide
accurate beam alignment [13]. At every BS node, the total
number of sub-arrays is Smax, and each sub-array contains
Mx ×My planar antennas. By considering d0 as the spacing
of neighboring antennas in the WSMS system, array steering
vector towards direction θ is given by

a(θ) =
1√

MxMy

[
1, . . . , ej

2πd0
λ (mx+my) sin(θ), . . . ,

ej
2πd0

λ (Mx−1+My−1) sin(θ)
]
,

(2)

where λ describes the signal wavelength, 0 ≤ mx ≤Mx − 1,
and 0 ≤ my ≤My − 1.

The MIMO channel response for the transmission from node
i to j is

H(i, j) =
√
(St(i, j)MxMy)(Sr(j, i)MxMy)

·GtGrar(θr)a
∗
t(θt)|α(i, j)|2,

(3)

where St(i, j) and Sr(j, i) denote the numbers of sub-arrays
for node i to transmit and node j to receive. Additionally,
Gt and Gr represent the gains of the transmitter and receiver
antenna. Based on (2), at and ar compute the steering vectors
of nodes i and j. Moreover, (·)∗ refers to the conjugate
transpose operator, θt and θr symbolize angles of departure
and arrival (AoD/AoA). In addition, to capture the unique
attributes in the THz channel including molecular absorption,
the path gain α(i, j) is computed as

|α(i, j)|2 =

(
c

4πfd(i, j)

)2

e−gabs(f)d(i,j), (4)

where c stands for the speed of light, d(i, j) means the distance
between node i and j, f symbolizes the carrier frequency,
gabs represents the medium absorption coefficient of THz
signals [28].

In the end-to-end WSMS model, the equivalent single-
input and single-output (SISO) channel response of (3) for
the transmission from node i to j can be computed as

h(i, j) = C∗
D(j, i)C∗

A(j, i)H(i, j)WA(i, j)WD(i, j), (5)
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where WA(i, j) and WD(i, j) denote the analog and digital
precoding matrices, C∗

A(j, i) and C∗
D(j, i) refer to the analog

and digital combining matrices.
As a result, the expression on SINR for this link with the

kth sub-band is

γ(i, j, k) =
P (i, j, k)|h(i, j)|2

|a∗(θr)|2 (Is(i, j, k) + σ2)
, (6)

where P (i, j, k) is the transmit power assigned to the kth sub-
band from node i, Is(i, j, k) indicates the interference after
the self-interference cancellation and beamforming, which can
be modeled as a Gaussian distribution [29], [30], and σ2

represents the noise.
The channel capacity of the kth sub-band is thereby ex-

pressed as

R(i, j, k) = ψ(i, j, k)B log2(1 + γ(i, j, k)), (7)

where ψ(i, j, k) is 1 or 0, indicating if the kth sub-band is
utilized for the transmission from node i to j, B denotes
the bandwidth for each sub-band. Under the WSMS physical
layer design [13], the optimal precoding and combining for
WA(i, j), WD(i, j), C∗

A(j, i), and C∗
D(j, i) are achievable,

the channel capacity in (7) can be reformulated as

R(i, j, k) =

Υ∑
υ=1

[
log2

(
1 +

Pυ(i, j, k)

Is(i, j, k) + σ2
κ2
υ[H(i, j)]

)]
· ψ(i, j, k)B,

(8)
where Υ = min [St(i, j), Sr(j, i)] represents the multiplexing
gain brought by the WSMS technique, κυ[H(i, j)] refers to the
κth largest singular value of H(i, j), corresponding transmit
power Pυ(i, j, k) that satisfies

∑Υ
υ=1 Pυ(i, j, k) = P (i, j, k)

is determined by WSMS physical layer design.

C. Cross-Layer Routing and Resource Allocation Problem
Formulation

In the THz mesh backhaul network, our goal is to find
the optimal policy πp of routing (i.e., adjacency matrix A)
and joint resource allocation (i.e., the power and sub-array
allocation denoted by P and S, respectively) to realize the
long-term RE maximization. Since the traffic demands are
dynamic and unpredictable, while the mean values of traffic
needs are given, RE is hence defined as the additive reverse
of power and sub-array resource occupation. In particular, the
power occupation for node i ∈ {1, 2, . . . , N} is defined as

UP (i) =
∑

j∈{1,2,...,N}\{i}

∑
k∈{1,2,...,K}

ψ(i, j, k)P (i, j, k)

Pmax
, (9)

where Pmax is the maximal power a BS node can provide.
The ratio of sub-array occupation among the total number of
sub-arrays of Smax is expressed as

US(i) =
∑

j∈{1,2,...,N}\{i}

St(i, j) + Sr(i, j)

Smax
, (10)

where Sr(i, j) represents the number of receiving sub-arrays
for the transmission from node j to i. Under the certain

values of Pmax and Smax, lower occupation ratios suggest lower
resource usage (i.e., higher RE) while achieving the same
rate. Taking into account the trade-off between RE for power
and sub-array resources, the overall resource occupation is the
mean of the power and sub-array occupation [31], given by

U(i) =
UP (i) + US(i)

2
. (11)

To formulate the RE maximization problem, the objective is
to minimize the expected resource occupation averaged over
all BSs of the THz mesh backhaul network for a long-term
period, i.e., spanning over multiple time slots τ starting from
any time instant t, as

argmin
πp(Aτ ,Sτ ,Pτ )

∞∑
τ=t

N∑
i=1

κτ−tEπp

[
Uτ (i)

N

]
, (12a)

s.t.
∑

j∈{1,2,...,N}

Ai,j,τ =

{
0, i = 1

1, ∀i ∈ {2, . . . , N}
, (12b)

tr
(
eAτ◦Aτ

)
−N = 0, ∀τ ≥ t, (12c)

UP,τ (i) ≤ 1, ∀i ∈ {1, 2, . . . , N}, (12d)
US,τ (i) ≤ 1, ∀i ∈ {1, 2, . . . , N}, (12e)
Tu
τ ≤ Tu

max, ∀τ ≥ t, (12f)

T d
τ ≤ T d

max, ∀τ ≥ t, (12g)
lτ ≤ lmax, ∀τ ≥ t. (12h)

In (12a), κ represents the extent to which future rewards are
attenuated. Specifically, a larger κ highlights the weighted
contribution of future rewards, while a smaller κ intensifies
the proportion of the current reward. E[·] denotes the expected
value. Since every BS node needs access to the backbone
network, DAG structure of IAB networks requires IAB nodes
(i.e., nodes except BS 1) to own one parent node, while IAB
donor (i.e., BS 1) directly links to the backbone network
without a parent node, formulated as (12b). Moreover, in (12c)
(where tr(·) refers to the trace of a matrix, and ◦ represents the
Hadamard product), the acyclicity is guaranteed, ensuring that
the topology is a DAG [32]. In (12d) and (12e), the allocated
power and the number of sub-arrays cannot exceed Pmax and
Smax, which represent the maximal power and the maximal
number of sub-arrays equipped at the BS.

The latency of an uplink packet measures the time from
the origin BS to arrive at BS node 1. Reversely, the latency
of a downlink packet is the time transmitted from BS node
1 to the destination BS node. The uplink latency Tu

τ and
downlink latency T d

τ averaged on the arrived packets cannot
exceed the threshold Tu

max and T d
max, as shown in (12f) and

(12g), respectively. Moreover, the total number of lost packets
lτ cannot exceed the constraint lmax, as illustrated in (12h).

The packet loss and latency for the LoS transmission from
node i to node j rely on the data rate, the number of incoming
packets, and the buffer occupation state. More specifically,
in time slot τ with duration ∆τ , the data rate Rτ (i, j) is
the summation of the rates over all sub-bands, which is
calculated as Rτ (i, j) =

∑K
k=1Rτ (i, j, k). The number of

the transmitted packets can be given by
⌊
Rτ (i,j)∆τ

ω

⌋
, where

ω is the packet size. Furthermore, for the buffer with a
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lτ (i, j) =

Γτ (i, j)− Ω(1−Oτ (i, j))−
⌊
Rτ (i, j)∆τ

ω

⌋
,

⌊
Rτ (i, j)∆τ

ω

⌋
− Γτ (i, j) < Ω(1−Oτ (i, j))

0, otherwise
. (13)

storage size of Ω packets, the buffer can at most receive
Ω(1 − Oτ (i, j)) +

⌊
Rτ (i,j)∆τ

ω

⌋
packets without packet loss,

where Oτ (i, j) measures the ratio of buffer occupation. There-
fore, with Γτ (i, j) packets arriving at node i, whose next hop
is node j, the packet loss of the transmission from node i and
j is given by (13). The total number of lost packets in time
slot τ is therefore expressed as

lτ =

N∑
i=1

∑
j∈{j′|Ai,j′,τ+Aj′,i,τ=1}

lτ (i, j). (14)

In addition, in time slot τ , when an uplink or downlink
packet with index ϖ is received by the BS node i at time
instant τ + ∆τ ′ (where ∆τ ′ < ∆τ ) with Γ′

τ,ϖ(i, j) packets

stored in the buffer before this packet, if
⌊
Rτ (i,j)(∆τ−∆τ ′)

ω

⌋
≥

Γ′
τ,ϖ(i, j) + 1, the latency of packet ϖ from node i to node
j is

Tϖ(i, j) =
(Γ′

τ,ϖ(i, j) + 1)ω

Rτ (i, j)
+
d(i, j)

c
. (15)

In contrast, if
⌊
Rτ (i,j)(∆τ−∆τ ′)

ω

⌋
< Γ′

τ,ϖ(i, j) + 1 and
Γ′′
τ,ϖ(i, j) < Ω (where Γ′′

τ,ϖ(i, j) is the number of incoming
packets after packet ϖ in time slot τ ), packet ϖ is not lost in
time slot τ , and its latency from node i to node j is expressed
as

Tϖ(i, j) =(0+ 1)∆τ −∆τ ′ +
(Γ′

τ+0+1,ϖ(i, j) + 1)ω

Rτ+0+1(i, j)

+
d(i, j)

c
,

(16)
where 0 satisfies that for any time slot τ ′ ∈
{τ + 1, τ + 2, · · · , τ + 0},

⌊
Rτ′ (i,j)∆τ

ω

⌋
< Γ′

τ ′,ϖ(i, j) + 1,

while
⌊
Rτ+0+1(i,j)∆τ

ω

⌋
≥ Γ′

τ+0+1,ϖ(i, j) + 1. Moreover,
to ensure packet ϖ is not lost in any time slot τ ′,
Γ′′
τ,ϖ(i, j) +

∑τ+0

τ ′=τ+1 Γτ ′(i, j) < Ω. The total latency of
uplink or downlink packet ϖ is the summation of Tϖ(i, j)
along its entire propagation path in the backhaul network. On
the contrary, the latency of packet ϖ cannot be acquired if it
is lost.

Unlike providing throughput requirements in [19], we con-
strain the latency and packet loss in (12f), (12g), and (12h),
owing to the consideration of limited buffer storage and un-
predictable dynamic traffic demands. In particular, the latency
and packet loss for a packet at any time instant depend on the
routing, resource allocation, buffer occupation, as well as data
traffic of all BS nodes during the entire transmission time of
every packet. Hence, the latency and packet loss constraints in-
cur prohibitively high complexity for traditional non-learning
algorithms, including exhaustive search. In addition, to ensure
that non-learning algorithms satisfy constraints (12f), (12g),
and (12h), exact values of incoming data traffic (i.e., Γτ (i, j),

Γ′
τ (i, j), and Γ′′

τ,ϖ(i, j)) are required to be obtained before
routing and resource allocation solutions for every time slot.
However, this requirement is unrealistic for the unknown
and unpredictable data traffic in practical backhaul networks,
resulting in the infeasibility of non-learning algorithms. There-
fore, aiming at solving the above issues, DRL is adopted in our
backhaul design, which can leverage powerful learning ability
to support an effective solution.

III. HEURISTIC THZ BACKHAUL ROUTING SOLUTION

Since traffic demands for each BS node follow a random
process, as mentioned in Sec. II-A, the buffer occupation ratios
as well as the minimal resources required to maintain efficient
transmissions are dynamic. In contrast to the dynamic traffic
demands of BSs, in light of stable backhaul transmissions
and small computational and operational burdens, the mesh
network topology is static and only changes when a link failure
occurs with low probability. Hence, the problem in (12) is
decomposed into the routing problem and resource allocation
problem based on the following justifications:

• First, the dynamic nature of traffic demands motivates the
solution for the long-term optimization of joint power
and sub-array resource allocation. Considering that this
problem is NP-hard in mesh backhaul networks, due to
the mixed integer programming nature [19], DRL can be
leveraged to allocate resources adaptively on a small time
scale for the long-term objective. Furthermore, the static
topology enables the computation of routing once on a
large time scale, for ease of the computational burden
reduction.

• Second, to benefit the convergence of learning, the DRL
architecture requires fixed numbers of input and output
for power and sub-array resource allocations. Indeed,
these numbers depend on the number of links decided
by routing. If routing is simultaneously updated with
the resource allocation, the DRL architecture changes
per training step and lacks experience in training un-
fortunately. Consequently, the routing solution needs to
be firstly determined so that it can provide adequate
experience for the DRL method to acquire an efficient
resource allocation policy.

After the problem decomposition, the routing problem be-
comes

argmin
Aτ

∞∑
τ=t

N∑
i=1

κτ−tEπp

[
Uτ (i)

N

]
,

s.t. (12b), (12c).

(17)

Since the routing algorithm cannot predict dynamic traffic
demands and corresponding resource allocation policy, routing
algorithms independent of traffic demand prediction and re-
source allocation are motivated. For this purpose, based on the
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classical Dijkstra algorithm, a heuristic scheme is leveraged to
derive the solutions tailored to our routing problem in (17).
Specifically, under the DAG structure presented in Sec. II-A,
the uplink and downlink share the same routing path due
to the channel reciprocity. The aforementioned frequency-
division mechanism in Sec. II-B can alleviate the interference
between the uplink and downlink signals. In light of RE
maximization problem, the routing paths should incur to utilize
less power and sub-array resources, while satisfying both
the uplink and downlink traffic demands. According to the
relationship among power, sub-array, and distance described
in (3), (4), (5), (6), and (7), for a certain traffic demand of
a link, the consumption of the power and sub-array resources
is roughly inversely proportional to the quadratic form of the
distance of the link. Furthermore, the number of hops of each
path should be small as well, since the traffic demands of each
node can result in an extra transmission burden on every relay.
Consequently, unlike the hop-count metric with cost 1 for the
LoS link directly connecting node i to node j, the proposed
cost metric further takes into account the factor of the distance
in addition to the number of hops, which is devised as

ςi,j = ι

[
d(i, j)

dmin

]2
+ 1,∀i, j ∈ {1, 2, . . . , N}, (18)

where ι measures the weight of the factor of distance. The
solution is therefore to find the path from each node to
the gateway with the smallest cost in (18). Although the
problem in (17) is an integer programming problem, the
low-complexity Dijkstra algorithm can be directly applied as
presented Algorithm 1, since the metric in (18) satisfies the
prerequisite for a positive path cost.

IV. DEEP REINFORCEMENT LEARNING BASED JOINT
POWER AND BEAMFORMING ALLOCATION

Based on the routing results provided in Sec. III, the
joint power and sub-array resource allocation problem can be
rearranged as

argmin
πp(Sτ ,Pτ |Aτ )

∞∑
τ=t

N∑
i=1

κτ−tEπp

[
Uτ (i)

N

]
,

s.t. (12d), (12e), (12f), (12g), (12h).

(19)

This problem is still NP-hard with the mixed integer pro-
gramming property. In addition, as discussed in Sec. II-C,
non-learning algorithms are incapable of solving this problem
under the consideration of latency, packet loss, as well as
unpredictable data traffic. Hence, we design a DRL architec-
ture to solve the joint power and sub-array allocation in THz
backhaul networks with dynamic traffic demands.

A. Deep Reinforcement Learning Framework

In the context of THz mesh backhaul networks, resource
allocation policy is generated by BS nodes, which perform as
the DRL agent. In particular, each BS node perceives estimated
SINRs and buffer occupation status of all links connected with
neighboring nodes.

As an overview, the DRL algorithm operates in the THz
mesh backhaul network as follows. Based on the current

Algorithm 1: DEFLECT Routing.
Input: The neighboring set for all node:

N = {Ni|i ∈ {1, 2, . . . , N}} with the cost of the
route between each pair of neighboring nodes
ςi,j ,∀i, j ∈ {1, 2, . . . , N} in (18)

Output: Adjacency matrix: A
1 Initialize an all zeros default adjacency matrix: A
2 Initialize an vertex set V ← {1, 2, . . . , N}
3 for each v ∈ V do
4 if v = 1 then
5 Set cost to the node 1: Cv ← 0
6 end if
7 else
8 Cv ←∞
9 end if

10 end for
11 while V is not empty do
12 v ← vertex in V with minimal Cv

13 Remove v from V
14 for each neighbor u ∈ Nv where u ∈ V do
15 if Cu > Cv + ςv,u then
16 Cu ← Cv + ςv,u
17 Au,v ← 1
18 end if
19 end for
20 end while

allocation policy πp of the actor inside each BS in each
training step, each BS node processes SINRs and buffer
occupation ratios observed from current state sτ of the THz
mesh backhaul environment. Then, an action Ξτ is provided
to allocate the transmitting sub-arrays, receiving sub-arrays,
and transmit power for both the uplink and downlink. As a
result, the instant reward rτ related to RE in (19) can be
obtained by BS nodes. By learning the experience of allocation
actions and RE rewards, BS nodes intelligently adjust the
resource allocation action for reward maximization, which
is tantamount to overall resource occupation minimization.
Specifically, key components of the leveraged DRL framework
for THz mesh backhaul networks, i.e., state, action, and
reward, are detailed as follows.

1) State: According to (7), the channel capacity, which
determines if the traffic demands can be satisfied, depends
on SINRs. In addition, empty buffer occupation ratios reveal
that previously allocated resources are sufficient to meet traffic
demands. In contrast, when buffer occupation is not 0, more
resources should be assigned to avoid the packet loss and
latency caused by waiting in buffers. To meet traffic demands,
we thereby deploy the current observed SINRs for all backhaul
links γτ as well as the buffer occupation ratios for all BS nodes
Oτ as the state strategy [33], which is expressed as

sτ = {γτ ,Oτ} . (20)

2) Action: We devise action Ξτ = {Sτ ,P τ} as follows.
• Sτ is a set whose elements represent

the quotients of occupied sub-arrays as
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{Sτ (1),Sτ (2), . . . ,Sτ (N)}. Specifically, Sτ (i) =
{St,τ (i, j), Sr,τ (i, j)|j ∈ {1, 2, . . . , N}, Ai,j,τ = 1}
denotes occupied sub-array ratios for node
i ∈ {1, 2, . . . , N} for the transmission with all connected
nodes i. To ensure the sub-array constraint in (12e),∑

j∈{1,2,...,N},Ai,j,τ=1 (St,τ (i, j) + Sr,τ (i, j)) ≤ 1,∀i ∈
{1, 2, . . . , N}, where St,τ (i, j) ≥ 0, Sr,τ (i, j) ≥ 0.
In addition, at least one sub-array is required for the
backhaul transmission. Hence, one sub-array is pre-
allocated to each link. The products of the ratios and the
rest numbers of sub-arrays are rounded down to yield
the final sub-array allocation result.

• In the set P τ , entry P τ (i) =
{Pτ (i, j)|j ∈ {1, 2, . . . , N}, Ai,j,τ = 1} refers to the ra-
tios of utilized transmit power for node i ∈ {1, 2, . . . , N}.
Similarly, to guarantee the power constraint in (12d),∑

j∈{1,2,...,N},Ai,j,τ=1 Pτ (i, j) ≤ 1,∀i ∈ {1, 2, . . . , N},
where Pτ (i, j) ≥ 0.

3) Reward: Aiming at the long-term RE maximization
(i.e., resource occupation minimization), the instant reward
rt is proportional to the additive inverse of current resource
occupation (i.e., RE). Moreover, in addition to the power and
sub-arrays constraints in (12d) and (12e) guaranteed via the
action designs in Sec. IV-A2, the latency and packet loss
constraints in (12f), (12g), and (12h) should be taken into
consideration as well. Hence, the penalty terms pertaining to
latency as well as the number of packet loss are introduced
into the reward. As a result, the reward is expressed as

rτ = −

[
χ1

N∑
i=1

Uτ (i)

N
+ χ2T

u
τ + χ3T

d
τ + χ4lτ

]
, (21)

where χ1 is a scaling factor to regulate the range of the output
of the neural network for ease of the convergence. χ2, χ3,
and χ4 symbolize the weights of the penalties for the uplink
latency, downlink latency, and packet loss, respectively. For
the purpose of practical implementation, the DRL training
is strictly required to avoid large latency and packet loss in
case of intolerable quality of service in the entire training
process. However, the state-of-the-art constraint reinforcement
learning solutions require a large number of episodes to reduce
the actions with constraint violations [34]–[37]. Furthermore,
experimental results demonstrate that these solutions cannot
strictly ensure zero constraint violation after convergence.
Therefore, instead of applying constrained DRL solutions,
χ2, χ3, and χ4 can be set as large values to encourage
DRL to strictly avoid the large latency or a large amount of
packet loss (i.e., DRL immediately stops to explore the action
with constraint violation when it encounters any constraint
violation) during the entire training process on the fly.

Consequently, in DRL context, the long-term resource-
efficient resource allocation problem is equivalent to the long-
term reward maximization problem in (19), expressed as

argmin
πp(Ξτ |Aτ )

∞∑
τ=t

κτ−tEπp [rτ ] . (22)

B. Deep Reinforcement Learning Based Backhaul Resource
Allocation Algorithm

To handle the long-term backhaul resource allocation prob-
lem in (22), we propose a DEFLECT DRL algorithm on the
basis of the aforementioned framework. By considering the
action of allocation for continuous power and sub-array ratios,
as mentioned in Sec. IV-A2, DEFLECT DRL evolves from
the deep deterministic policy gradient (DDPG) algorithm that
is a classical actor-critic DRL method generating continuous
actions [38]. In the proposed DEFLECT DRL, a multi-task
and hierarchical architecture is employed in each node to
intelligently assign the ratios of power and sub-array usage
for all links connected with neighboring BS nodes, as well as
realize fast resource-efficient backhaul transmission recovery
when a link failure occurs. The detailed implementation of the
DEFLECT DRL framework, actor, critic, as well as algorithm
are elaborated in the following.

1) Overall DEFLECT DRL Framework: As depicted in
Fig. 2, DEFLECT DRL works by cooperatively training the
actor and critic. Particularly, given the SINRs of all sub-
channels and buffer occupation ratios of all links, the actor
takes charge of the allocation of power and sub-array ratios
for each BS node in the THz backhaul network. In contrast, the
critic outputs the Q value to evaluate the allocation generated
by the actor. Based on the resource allocation actions as well
as the ceaseless uplink and downlink traffic demands, the state
of SINRs and buffer occupation ratios are updated with THz
backhaul traffic in Sec. II-A.

To reduce the resource waste during training, fast conver-
gence is needed. Furthermore, dynamic traffic demands require
DEFLECT DRL to update the resource allocation policy in
time. To this end, each BS deploys a customized actor, while
the citric is employed in the data center in the backbone
network. To cooperatively train multiple actors in all BS
agents, the framework of the proposed DEFLECT DRL is
based on the multi-agent DDPG [39] which is designed for
continuous action generation in multi-agent scenarios. Since
we only need to utilize a single Q value to evaluate the system
reward in (21), the central critic has one output neuron for
the Q value. Consequently, the backhaul network is able to
train the actors and critic simultaneously. Instead of the sum
of training time, the allocation policy given by the actor can
be updated after the training time for just an actor, which
expedites the training time. In addition, each BS node should
deliver the state (i.e., SINRs and buffer occupation ratios), the
actions (i.e., resource allocation for all nodes), as well as the
instant reward (i.e., RE) defined in the Sec. IV-A to the critic
in the data center, in each training time slot. For a BS node
with Nc child nodes, at most 72(Nc + 1) bytes should be
transmitted for these data under the float32 data type, which
is quite low. Hence, narrow-band feedback links [40] can be
applied to handle the very low feedback load. The critic hence
can be trained to give a more accurate assessment of long-term
RE. Moreover, the backpropagation information of the critic
is fed back to the actor in every training step to adjust the
action of allocation to achieve a higher Q value (i.e., higher
long-term RE).
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Figure 2: DEFLECT DRL framework.

Aiming at feasibly implementing DRL algorithm in THz
backhaul networks, the learning algorithm should provide the
resource allocation result, collect the instant reward, as well as
update the allocation policy on the fly. To be practical, since
only one sample experience of resource allocation actions,
SINR and buffer states, as well as the reward of RE can
be collected in every allocation step, rare experience can be
collected during training, especially when fast convergence
is required. To solve this requirement, on-policy training
is adopted, to make the algorithm focus on the resource
allocation optimization according to the current state in the
THz backhaul environment with dynamic traffic demands.
Particularly, at every time slot, the previous state, actions,
reward, and current state are fed into DEFLECT DRL for
training. Then, based on the current parameters, DEFLECT
DRL generates the resource allocation actions by processing
the current state, which are directly applied to the THz mesh
backhaul network. In addition, these actions, state, reward, as
well as next state are utilized as the training data in the next
time slot.

2) Actor: At each BS node, an actor observes SINRs and
buffer occupation status of each link connected with parent and
child BS nodes. By processing the partially observed state via
neural networks, this actor determines the continuous ratios of
transmitting and receiving sub-arrays for the links connected
with other nodes, as well as the transmit power ratio for
each sub-band. As illustrated in Fig. 3, the actor leverages the
multi-task and hierarchical architecture to synchronously train
the joint power and sub-array resource allocation and rapidly
recover the backhaul transmission when any link failure hap-
pens, respectively. In particular, shared and task-specific layers
comprise the multi-task structure that divides the action of
joint allocation into power allocation and sub-array allocation.
Since both the power and sub-array allocation rely on the input
state of SINRs and buffer occupation ratios, the shared layer
first explores the input state and extracts features. Additionally,
the shared layers can be trained by the backpropagation of both
power and sub-array allocations, which prompts the actor to
find vital features in observed states. The relationship between
different allocation tasks can be jointly learned and utilized as
well. Then, the task-specific layers process these features and

exploit the valuable information for each task. The power and
sub-array allocation tasks are generated by the task-specific
layers simultaneously according to the attributes of power and
sub-array allocation defined in Sec. IV-A2, aiming at the long-
term RE maximization.

Furthermore, for ease of fast resource-efficient THz back-
haul transmission recovery, the hierarchical structure exploited
in DEFLECT DRL contains a uniform unit and a customized
unit. Specifically, on account of the fast recovery of backhaul
transmissions, the uniform units for the actors in different
BS nodes own identical sizes of input and output. This
brings convenience in transferring learned parameters, when
a link failure occurs and the routing changes. In addition, the
uniform units determine the ratios of idle power and sub-array
resources, which are directly related to RE in (21). Moreover,
to ensure that the power and sub-arrays constraint in (12d)
and (12e) are satisfied, the output layers of the uniform units
utilize the softMax as the activation function. Particularly, for
any input numbers {z1, z2, . . . , zρ}, the output of softMax
function is given by

softMax(zρ′) =
ezρ′∑

ρ′′∈{1,2,...,ρ} e
zρ′′

,∀ρ′ ∈ {1, 2, . . . , ρ}.

(23)
As a result, the summation of occupied and idle sub-arrays
or power ratios is 1. Hence, by subtracting the idle ratios,
the output values of utilized sub-array or power ratios are
upper bounded by 1. On the contrary, the numbers of input and
output of the customized unit for each BS node depend on the
number of links of this BS node. Through the customized unit,
the utilized power and sub-array ratios given by the uniform
unit are further distributed to each sub-channel and each link
via softMax function, respectively. As illustrated in Fig. 3,
unlike BS nodes called leaf nodes without child nodes, other
BS nodes called branch nodes also relay packets for some
other nodes. Hence, the allocation actions take into account
the power and sub-arrays used for communicating with not
only the parent nodes but the child nodes for branch nodes.
To compare, for leaf nodes, only the resources for the links
with the parent nodes are considered.

3) Critic: Apart from the actor in each BS node that assigns
power and sub-array resources, the critic located at the data
center provides Q values to jointly assess the actions of power
and sub-array allocation given by the actor. Similar to the
actor, the critic also utilizes a hierarchical architecture to ex-
plore the observed SINR and buffer states as well as resource
allocation actions, as depicted in Fig. 4. More specifically,
for each node, the observed SINR and buffer states, as well
as resource allocation actions, are processed by a customized
unit into features with the identical sizes similar to that in
the actor. Then, these features are concatenated and fed to
the uniform unit, which generates the Q value measuring the
potential maximal accumulated reward (i.e., RE) as

Q(st,Ξt) = max
{Ξτ |τ>t}

E

[ ∞∑
τ=t

κτ−trτ |st,Ξt

]
, (24)

for any SINR and buffer state st and allocation action Ξt.
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Figure 3: Architecture of the DEFLECT DRL actor.

Figure 4: Architecture of the DEFLECT DRL critic.

4) DEFLECT DRL Algorithm: The DEFLECT DRL train-
ing process is summarized in Algorithm 2, and described here.
In the context of DEFLECT DRL framework, the actions
of resource allocation to realize the resource-efficient THz
backhaul transmission is tantamount to reaching the maximal
Q values. In light of this, the Q values of the critic should be
accurate. Particularly, the optimal Q value, Q∗, satisfies the
Bellman equation, which is defined as

Q∗(sτ ,Ξτ ) = E[rt + κQ∗(sτ+1,Ξ
′
τ+1)|sτ ,Ξτ ], (25)

where Ξ′
τ+1 is the action to realize the highest

Q∗(sτ+1,Ξ
′
τ+1). Hence, the loss function of the critic

with parameters θc should minimize the temporal difference
(TD) error of Q values, as

Loss(θc) = E
[(
rτ + κQ(sτ+1,Ξτ+1|θc)−Q(sτ ,Ξτ |θc)

)2]
,

(26)
where Ξτ+1 is the action of the next time slot given by the
current policy of the actor, on the basis of the next state sτ+1.
According to gradient descent, θc is updated with the learning
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rate λc for the i′th training step as

θi
′+1
c =θi

′

c − λc∇θcLoss(θ
i′

c )

=θi
′

c − 2λcE
[(
rτ + κQ

(
sτ+1,Ξτ+1|θc

)
−Q(sτ ,Ξτ |θc)

)
∇θcQ(sτ ,Ξτ |θc)

]
.

(27)

Based on the accurate Q values, the objective function of the
actor with parameters θa is to select actions achieving the Q
value maximization, which is expressed as

J(θa) = Q(sτ ,Ξτ |θc). (28)

By applying gradient ascent with learning rate λa, the update
of the actor is therefore attainable as

θi
′+1
a =θi

′

a + λa∇θaJ(θa)

=θi
′

a + λa∇θaQ(sτ ,Ξτ |θc)
=θi

′

a + λa∇Ξτ
Q(sτ ,Ξτ |θc)∇θaΞτ .

(29)

In addition, since DEFLECT DRL is trained on the fly for
practical deployment, the allocation that triggers large latency
or a large amount of packet loss might jeopardize the backhaul
transmission. In addition, DRL learns from collected experi-
ence. DRL might not timely adjust the actions of allocation
well before it thoroughly learns all the actions causing such
latency and packet loss problems, which leads to a catastrophe
in the THz backhaul network. To preclude these issues, novel
safe initialization and safe exploration mechanisms are devised
in the proposed DEFLECT DRL as follows.

• To avoid that DEFLECT DRL learns from experience
with latency and packet loss problems in the beginning, in
which case DEFLECT DRL cannot know which actions
are good, initial resource allocation should utilize almost
all resources. To this end, in the actor of DEFLECT
DRL, weights for generating the ratios of idle resources
are initially modified to produce values close to 0. In
particular, this modification is feasible due to the specific
architecture of the proposed uniform unit in each actor,
which uses the softMax function in (23) to determine
the amount of utilized and idle resources. When we
initialize the output layer of each actor neural network,
the weights are set as zero, while the biases are set
as negative numbers. Consequently, actor networks of
DEFLECT DRL are guaranteed to provide near-zero idle
resources with the Softmax activation function. Different
from conventional neural networks without safe initializa-
tion, as well as the aforementioned state-of-the-art safe
mechanisms [34]–[37] that require a large number of
episodes to avoid any constraint violation, DEFLECT can
ensure low latency and no packet loss from the beginning.

• Aiming at enabling the actor to explore actions beyond
local optimum, Gaussian random noises are adopted when
the allocation actions generated by the actor are deployed
on the THz backhaul BS nodes. Specifically, the noises
are added to every element of allocated power and sub-
array ratios, as well as the ratios of idle resources. Since
the ratios of idle resources are critical for RE, to realize
efficient action exploration, the variance of the Gaussian

Algorithm 2: DEFLECT DRL Training.
Input: Actor network parameters: θa; Critic network

parameters: θc
Output: Well trained network parameters

1 Initialize SINR and buffer state st
2 Initialize θa to allocate all the resources
3 for τ = t, t+ 1, . . . do
4 Select action Ξτ with random action noise according

to the state st and the policy πp generated by actor
5 Calculate reward rτ with sτ and Ξτ

6 Update sτ+1

7 Calculate Ξ′
τ+1 = πp(sτ+1|θa)

8 Calculate yτ = rτ +Q(sτ+1,Ξ
′
τ+1|θc)

9 θa ← Adam gradient ascent Q(sτ ,Ξτ |θc)
10 θc ← Adam gradient descent [yτ −Q(sτ ,Ξτ |θc)]2
11 end for

noise for the ratios of idle resources is 5 times larger. In
addition, to assure the power and sub-array constraints
in (12d) and (12e), the means of the sum of noise are
forced into zero. When the random noise might cause
any allocated ratios to be negative ratios, the risk that
some links are incompetent in satisfying traffic demands
arises. In that case, the action noises are withdrawn, and
the action generated by the actor is directly employed.

To move one step forward, the proposed DEFLECT DRL
can recover RE when broken links suddenly arise. Owing to
the design of uniform units of the actor and critic, whose
input and output sizes are fixed, the learned information can be
transferred into the new actor and critic that are designed for
the changed numbers of links of some BS nodes. Particularly,
the uniform unit of the actor takes charge of determining the
ratios of idle resources by exploring the features of observed
SINR and buffer state. This directly relates to RE and hence
reserves the important information for the training of RE
maximization. Moreover, the uniform unit of the critic directly
outputs the Q value by processing the state and action features.
Consequently, the proposed DEFLECT DRL is able to realize
fast resource-efficient THz backhaul transmission recovery
via the following process, and the corresponding process is
illustrated in Algorithm 3.

When a link is suddenly broken, the routing is recomputed
first as Algorithm 1. Then, according to the updated routing,
the actor of each BS and critic reinitialize their customized
units. Meanwhile, the critic, as well as each actor of BS nodes
that maintain the node type (i.e., branch or leaf node), reserves
the parameters of the uniform unit. By contrast, each actor
of BS nodes that change types updates its uniform unit by
utilizing well trained parameters average on uniform units of
all the nodes with the corresponding node type.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we conduct experiments to assess the perfor-
mance of DEFLECT regarding the factors considered in DRL
rewards in (21), including RE, latency, and packet loss. In
comparison, the benchmark schemes are the classical minimal
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Algorithm 3: DEFLECT Recovery.
Input: Original actor network parameters: θa; Original

critic network parameters: θc; Detecting broken
link in the original routing result

Output: Actor network parameters after the link failure
1 Recompute the routing as Algorithm 1
2 for Node i = 1, 2, . . . , N do
3 Reinitialize the customized unit of actor
4 if Node i changes types (including branch node and

leaf node) from ϱ1 to ϱ2 then
5 Transfer parameters of original uniform units

average on nodes of ϱ2 to the uniform unit of
actor

6 end if
7 else
8 Reserve original parameters of the uniform unit

of actor
9 end if

10 end for
11 Reinitialize the customized unit of critic
12 Reserve original uniform unit of the critic
13 Conduct DRL training as Algorithm 2

TABLE I: Hyperparameters in DEFLECT DRL.

Hyperparameter Value

Attenuating factor for future rewards κ 0.5
Training slots 200
Variance of action noises 5%× maximal allocated ratios
Learning rate λa = 0.03, λc = 0.1
Scaling factor χ1 100
Penalty weight for uplink latency χ2 5000
Penalty weight for downlink latency χ3 5000
Penalty weight for packet loss χ4 0.1

hop-count routing metric and conventional DRL methods (i.e.,
deep Q-learning (DQN) and actor-critic (AC) algorithms).

A. Simulation Parameters of THz Mesh Backhaul Networks

We conduct experiments on the basis of Pytorch 1.8.2 and
Python 3.6.13 running on AMD Ryzen ThreadRipper 3990X
CPU. The experiments are established on a classical regular
hexagonal THz mesh backhaul network, as shown in Fig. 5.
In particular, each BS can communicate with neighboring BSs
within a distance range of [dmin, dmin] = [100 m, 200 m]. In
addition, each BS deploys pmax = 30 dBm transmit power
and Smax = 64 sub-arrays, where each sub-array consists of
Mx×My = 4×4 planar antennas. Specifically, the omnidirec-
tional antennas are adopted with Gt = Gr = 0 dB. According
to penalties of latency and packet loss constraints in DRL
problem in (21) and (22), the latency and number of packet
loss should be minimized together with power and sub-array
usage. Five nonoverlapping sub-bands with 5 GHz bandwidth
within 275–300 GHz are allocated for uplink transmissions.
Similarly, five sub-bands selected from 300–325 GHz are used
for downlink transmissions.

By considering the maximal running time for each training
step and resource allocation decision as 0.13s in the mea-

Figure 5: Hexagonal backhaul topology for THz mesh IAB
network.

Figure 6: Resource consumption with different weight ι.

surement of our experiments, the time interval between two
consecutive DRL actions is set as ∆τ = 0.15s. Moreover, ∆τ
is adopted as the time for a training slot, in which DEFLECT
DRL is trained once. For each BS, the means for uplink and
downlink traffic are µup = 2×104 and µdn = 5×104 packets
in each training slot, respectively. In particular, each packet of
backhaul transmission contains ω = 2000 bytes of data [41].
Consequently, the mean uplink and downlink traffic demands
for each BS are 5.33 Gbps and 2.13 Gbps. Furthermore, each
output buffer can store at most Ω = 2× 105 packets.

B. DEFLECT Routing Performance Evaluation

We evaluate the performance of our heuristic routing algo-
rithm. Since the routing results are static unless broken links
occur, we ideally assume that all BS nodes own the same
static traffic demands in the analysis. As shown in (3), (5), (6),
and (7), the data rate directly relates to the product of the
transmit power P , the number of transmitting sub-arrays St,
and the number of receiving sub-arrays Sr. Hence, we analyze
the resource consumption in terms of PStSr of downlink
transmission. Noticeably, uplink transmission has the same
results as the downlink transmission due to the same relation-
ship between data rate and resource occupations. Intuitively,
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Figure 7: Routing results. (a) before sudden link failure, (b)
after sudden link failure.

the routing result with lower PStSr is more likely to realize
lower resource consumption in (11) and hence higher RE.

With bandwidth of B0, the downlink traffic demand for each
BS node can be expressed as R0 = B0 log2 (1 + γ0), where γ0
is SINR required for leaf BS nodes without relaying packets
from other BS nodes. We demonstrate PStSr averaged on
each BS node under different γ0 in Fig. 6, by considering that
a leaf BS node consumes P0 transmit power, St,0 transmitting
sub-arrays, and Sr,0 receiving sub-arrays to support traffic
demand R0 with distance dmin. As depicted, different weights
of distance ι in the path cost metric in (18) result in different
routing paths. When γ0 < 0 dB, less consumption of PStSr

is reached if ι > 1. On the contrary, ι ∈ (0, 1) results
in less consumption for γ0 > 0 dB. Interestingly, when
γ0 = 0 dB, any ι > 1 realizes the same PStSr. Moreover,
when ι = 0, the metric is equivalent to the hop-count metric
without considering the distance, which never provides the
highest RE for any value of γ0. In particular, taking γ0 = 0 dB
as an example, the optimal ι realizes 15.4% less resource
usage, compared to the hop-count metric.

To enable timely recovery from the link failure, routing for
THz mesh backhaul networks is required to run fast. With
the assistance of the Fibonacci heap, our routing algorithm
inherits the low complexity of Dijkstra algorithm, which is
O (|E|+ |N | log |N |) [42], where E represents the number of
available wireless links in the backhaul network with N BSs.
Specifically, E and N depend on the network topology, and
E is in the range of

[
N − 1,

(
N
2

)]
. In particular, our routing

algorithm spends 2.1 × 10−2ms in the hexagonal topology,
revealing its high time efficiency.

C. DEFLECT DRL Performance Evaluation

To evaluate DEFLECT DRL performance, we choose the
routing metric with ι = 1. The routing results before and
after the broken link are shown as Fig. 7(a) and Fig. 7(b),
respectively. The hyperparameters of DELFELCT DRL are
summarized in Table I, which are tuned to guarantee the
convergence of training. Based on these hyperparameters, we
evaluate the performance of the proposed DEFLECT DRL
during training and after the link failure, compared with results

Figure 8: Resource occupation comparison.

Figure 9: Packet loss comparison.

of unsafe DEFLECT DRL, DQN, and AC. Specifically, the
benchmark algorithms are designed as follows.

• Unsafe DEFLECT DRLs have three types, all of which
keep the same architecture as the DEFLECT DRL, while
type I lacks the safe exploration mechanism described in
Sec. IV-B4, type II lacks the safe initialization mecha-
nism, and type III lacks both safe exploration and safe
initialization.

• DQN [43] is a conventional DRL scheme generating
discrete actions deterministically by directly estimat-
ing Q-values for all actions without critic. In light of
this, to avoid violating power and sub-array constraints
in (12d) and (12e), ratios of sub-arrays are picked from{
0, S̄9 ,

2S̄
9 , . . . , S̄

}
, where S̄ is the ratio of sub-array

usage when sub-arrays are uniformly assigned to each
link. Similarly, each BS assigns transmit power for each
sub-channel from

{
0, P̄9 ,

2P̄
9 , . . . , P̄

}
, where P̄ is the

allocated ratio for uniform power allocation. In our
experiments, DQN exploits the same structure as the
DEFLECT actor, except for its unique output layer.

• By exploiting the actor-critic structure, AC [44] is another
conventional DRL method. Specifically, AC leverages
both the actor generating the probabilities to choose each
action and the critic assessing the chosen action. Since the
number of output neurons is discrete, the architecture of
the actor can only provide discrete actions. In light of this,
the action space of power and sub-array allocation is the
same as DQN. In addition, AC adopts the same structure
as the DEFLECT DRL, except for the customized output
layer of the actor.
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Figure 10: Uplink latency comparison.

Figure 11: Downlink latency comparison.

Fig. 8 demonstrates the resource occupation in (11) aver-
aged on all BSs in training. As depicted, all the algorithms
reduce the resource occupation and converge within 10s dur-
ing training. More specifically, DEFLECT DRL diminishes
the overall power and sub-array resource usage from 100%
and converges at 75% usage after 3s. By contrast, unsafe
DEFLECT DRLs type I, type II, and type III converge at 73%,
55%, and 52% resource occupation after 5s, respectively. DQN
incurs to allocate no power and sub-array at convergence,
and AC fluctuates in the range of [46%, 54%] resource usage.
However, although all the schemes are trained to obtain lower
resource usage, low latency and package loss before and after
training convergence are significant to guarantee the quality
of service. As illustrated in Fig. 9, the three benchmark
algorithms reduce resource usage at the expense of severe
packet loss. In particular, unsafe DEFLECT DRLs type I,
type II, and type III cause up to 1.0 × 105, 2.1 × 105, and
3.0×105 lost packets per training slot, respectively. Therefore,
safe initialization and safe exploration can both alleviate the
packet loss. Additionally, AC incurs up to 2.4 × 105 lost
packets per training slot, while DQN leads to more than
4.4 × 105 lost packets per training slot after convergence.
Hence, they are infeasible to support practical THz mesh
backhaul networks. Interestingly, DQN prefers to send no
packers with zero resource usage. Intuitively, one major reason
is that compared to AC and DEFLECT DRL, the architecture
of DQN lacks a central critic, which enables cooperative
training with multiple agents (i.e., BS nodes). In particular,
in the beginning (i.e., within 1s), the penalty brought by the
packet loss is zero. Hence, since the DQN has no shared critic,
every agent (i.e., BS node) greedily inclines to reduce resource

usage for higher rewards. In addition, unlike stochastic AC,
DQN chooses action deterministically, which may limit its
exploration of discrete actions with higher rewards as well.
As a result, each agent greedily utilizes zero resources without
cooperative training. On the contrary, DEFLECT DRL never
triggers any packet loss before and after the link failure. This
is owing to the assistance of safe exploration and safe initial-
ization in combination, enabling DEFLECT DRL to avoid the
exploration of actions leading to packet loss. Unfortunately,
even AC outperforms the unsafe DEFLECT DRL as illustrated
in Fig. 8 and Fig. 9, it cannot deploy safe initialization and
safe exploration to further improve its performance due to
the following two reasons. First, AC is designed to select
the actions for each BS node in a random way [44], since it
can only output the probabilities of action selections. Hence,
it is impossible to exploit safe initialization to force AC to
utilize all resources initially. Second, unlike DDPG, which
adds noises to explore actions, AC is designed to explore
the action space by selecting the random resource allocation
action for each BS node. The proposed safe exploration
mechanism specifically designed for DDPG hence cannot be
used for AC. Additionally, the aforementioned discrete action
spaces for AC already ensure that the power and sub-array
constraints in (12d) and (12e) are satisfied, and the values of
allocated power and subarrays are non-negative. Therefore, the
exploration for AC is already safe.

The latency averaged on successfully arrived uplink and
downlink packets are shown in Fig. 10 and Fig. 11, re-
spectively. As illustrated, the uplink latency for DEFLECT
DRL is very low, suggesting that no uplink packet is delayed
in buffers. Since the downlink traffic is larger, DEFLECT
DRL with limited buffer storage leads to millisecond-level
downlink latency. However, DEFLECT DRL timely adjusts
the allocation actions, precluding packet loss and additional
latency in the next training slot. For example, DEFLECT DRL
firstly encounters millisecond-level downlink latency in around
3s, in line with when it converges and stops reducing resource
usage. In comparison, AC and unsafe DEFLECT DRL type
III frequently bring second-level uplink and downlink latency,
which is much larger than DEFLECT DRL. Unfortunately,
since all types of unsafe DEFLECT DRL and DQN cause
significant packet loss, the numbers of successfully arrived
packets are small or even 0. Hence, the latency of these
algorithms cannot be acquired in some training slots without
successfully arrived packets, while the latency of remaining
successfully arrived packets might be low in some slots.

With occurrence of a broken link, DEFLECT DRL rapidly
converges at 75% within 1s thanks to the heuristic structure
transferring learned information before the link failure. Fur-
thermore, zero packet loss and low latency before the link
failure can still be maintained, illustrating the efficiency and
reliability of proposed DEFLECT DRL algorithm.

VI. CONCLUSION

In this paper, we proposed DEFLECT for the long-term RE
maximization in a THz mesh backhaul network in a cross-
layer manner. Specifically, the RE maximization problem is
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decomposed into a routing problem and a joint power and
sub-array allocation problem, by considering practical traffic
demands and possible link failures. On one hand, a heuristic
metric was proposed to enable resource-efficient DEFLECT
routing. On the other hand, we devised DEFLECT DRL to
intelligently allocate power and sub-arrays in each BS for the
target of long-term RE maximization. In particular, DEFLECT
DRL employs a multi-task structure to assign power and
sub-arrays cooperatively. Additionally, a hierarchical structure
enables both tailored resource allocation for each BS and rapid
transmission recovery from broken links.

Experimental evaluation demonstrates that DEFLECT rout-
ing can provide routing results with lower expected resource
usage than the minimal hop-count metric, according to dif-
ferent requirements of SINRs. In addition, DEFLECT DRL
realizes long-term RE maximization with no packet loss and
millisecond-level latency on the fly. The heuristic architecture
of DEFLECT DRL achieves the fast recovery of resource-
efficient backhaul transmissions from broken links within 1s
as well.

Furthermore, the proposed DEFLECT is promising to be im-
plemented on backhaul networks with a large amount of BSs,
due to the low-complexity Dijkstra-based routing and DRL
algorithms. Specifically, since all actors of DEFLECT DRL
are trained and provide results simultaneously, the complexity
of the actors can be approximately regarded as a constant if
the number of BSs increases. By contrast, the critic receives
the actions and states of the actor in each BS that are linearly
related to the number of parameters of the critic. Hence, the
complexity of the critic increases linearly with the increase in
the number of BSs, if the hyperparameters of hidden layers are
fixed. Therefore, as future work, rigorous evaluations on the
practical deployment in large-scale mesh backhaul networks
with possibly low-complexity algorithms will be studied.
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