
1

UNMAS: Multi-Agent Reinforcement Learning for
Unshaped Cooperative Scenarios

Jiajun Chai, Student Member, IEEE, Weifan Li, Student Member, IEEE, Yuanheng Zhu, Senior Member, IEEE,
and Dongbin Zhao, Fellow, IEEE Zhe Ma, Kewu Sun, Jishiyu Ding

Abstract—Multi-agent reinforcement learning methods such
as VDN, QMIX, and QTRAN that adopt centralized training
with decentralized execution (CTDE) framework have shown
promising results in cooperation and competition. However, in
some multi-agent scenarios, the number of agents and the size
of action set actually vary over time. We call these unshaped
scenarios, and the methods mentioned above fail in performing
satisfyingly. In this paper, we propose a new method called
Unshaped Networks for Multi-Agent Systems (UNMAS) that
adapts to the number and size changes in multi-agent systems.
We propose the self-weighting mixing network to factorize the
joint action-value. Its adaption to the change in agent number is
attributed to the nonlinear mapping from each-agent Q value
to the joint action-value with individual weights. Besides, in
order to address the change in action set, each agent constructs
an individual action-value network that is composed of two
streams to evaluate the constant environment-oriented subset
and the varying unit-oriented subset. We evaluate UNMAS on
various StarCraft II micro-management scenarios and compare
the results with several state-of-the-art MARL algorithms. The
superiority of UNMAS is demonstrated by its highest winning
rates especially on the most difficult scenario 3s5z vs 3s6z. The
agents learn to perform effectively cooperative behaviors while
other MARL algorithms fail in. Animated demonstrations and
source code are provided in https://sites.google.com/view/unmas.

Index Terms—multi-agent, reinforcement learning, StarCraft
II, centralized training with decentralized execution.

I. INTRODUCTION

MULTI-AGENT reinforcement learning (MARL) em-
ploys reinforcement learning to solve the multi-agent

system problems. With cooperative multi-agent systems play-
ing an increasingly important role, such as controlling robot
swarms with limited sensing capabilities [1], [2], mastering
build order production [3] and micro-management task in real-
time strategy (RTS) games [4]–[6], dispatching ride requests
[7], autonomous driving [8]–[10], and so on, MARL attracts
the attention of many researchers. MARL algorithms face the
problem of huge action space, non-stationary environment,
and global exploration. Although many algorithms have been
proposed to solve these problems, it is still an open problem.

To address cooperative tasks, one class of MARL meth-
ods is independent learning that allows the agents to learn

J. Chai, W. Li, Y. Zhu, and D. Zhao are with the State Key Laboratory
of Management and Control for Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China, and are also with the
School of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing 100049, China. Z. Ma, K. Sun, and J. Ding are with Xlab, the second
academy of CASIC, Beijing 100854, China.

J. Chai and W. Li contribute equally to this paper.

independently [11]–[13]. Independent learning suffers from
the non-stationarity because other agents are also impacting
the environment. Another class is centralized learning that
takes the multi-agent system as a whole [14]–[16]. Centralized
training with decentralized execution (CTDE) is a compromise
between independent and centralized learning [5], [17], [18]. It
provides local autonomy to agents by decentralized execution
and mitigates the problem of the non-stationary environment
by centralized training. There are many methods adopting
CTDE framework [19]–[22], including QMIX [5], VDN [18],
QTRAN [23], and so on.

Unshaped scenario is defined as the scenario where the
number of units and the size of action set change over time,
which is a common multi-agent scenario. [24] solves the
problem of formation control in face of an uncertain number
of obstacles. DyAN [25] reconstructs the agent observation
into information related to environment and units, and ASN
[26] categorizes the agent action set considering the semantics
between actions. Although the mentioned methods adapt to
unshaped scenarios, there is still room for improvement.

StarCraft II micro-management is a widely used experimen-
tal environment to test MARL methods [6]. It is actually an
unshaped scenario, in which the death of agents in combat
leads to the change in their number. In addition, since the
enemy can also be killed, the size of attack action subset of
each unit changes as well. However, the existing methods [5],
[23] ignore the variation of action set and still provide action-
values for invalid actions. This may cause miscalculation of the
action-value among all agents. In addition, as their joint action-
value functions still collect the meaningless action-values of
dead agents, the joint action-value may also be miscalculated.

A. Contribution

In this paper, we focus on the unshaped cooperative multi-
agent scenarios, in which the number of agents and the
size of action set change over time. Our contribution to
the uncertain challenge of MARL is twofold. (i) The self-
weighting mixing network is proposed with the network input
dimension adapting with the number of agents, so that the joint
action-value is estimated more accurately. (ii) The action set
of an agent is divided into two subsets: environment-oriented
subset and unit-oriented subset. We use two network streams,
the environment-oriented stream and unit-oriented stream, to
calculate the Q values of corresponding actions. Finally, we
introduce the training algorithm of UNMAS and conduct
experiments to compare with several other MARL algorithms

ar
X

iv
:2

20
3.

14
47

7v
1

 [
cs

.M
A

]
 2

8
M

ar
 2

02
2

2

in the StarCraft II micro-management scenarios. The results
show that UNMAS achieves the highest winning rates on a
wide variety of StarCraft II micro-management maps.

B. Related Work

Research on independent learning begins with the work of
[27], in which the author tries to execute Q-learning indepen-
dently for each agent to achieve cooperation. With the use of
deep learning, IQL [12] introduces Deep Q-Network (DQN)
[28] into MARL to cope with high-dimensional observations.
Some other research that tackles the multi-agent problem
with independent learning can be found in [11], [13], [29],
[30]. DyAN [25] divides the observation of the agents into
environment-oriented and unit-oriented subsets, and employs
a GNN to adapt to the change in the number of agents
in the expansion from small-scale scenarios to large-scale
scenarios. However, independent learning suffers from the
non-stationarity of environment, which leads to the difficulty
of learning convergence [20].

Centralized learning treats the multi-agent system as a
whole. Grid-Net [31] employs an encoder-decoder architecture
to generate actions for each grid agent. [32] and [33] propose
methods for the multi-agent system in the framework of actor-
critic. [34] formulates the problem of multitask into a multi-
agent system. However, the centralized learning method is
hard to be scaled to larger scenarios, so the CTDE framework
becomes popular as a compromise between independent and
centralized learning. One spectrum of the CTDE method is the
actor-critic method. MADDPG [35], which is developed from
DDPG [36], provides a centralized critic for the whole system
and a group of decentralized actors for each agent. COMA
[14] computes a counterfactual baseline to marginalize out a
single agent’s action while the other agents’ actions are fixed.
COMA also provides a centralized critic to estimate the joint
Q-function.

The other spectrum is the value-based method. The chal-
lenge for value-based methods in the framework of CTDE is
how to factorize the joint action-value correctly [20]. VDN
[18] factorizes the joint action-value by summing up the
individual action-values of each agent. QMIX [5] combines
the individual action-values in a non-linear way by a mixing
network whose weights and biases are generated according to
the multi-agent global state. ASN [26] improves the individual
action-value network in VDN and QMIX by considering action
semantics between agents. QTRAN [23] guarantees more gen-
eral factorization by factorizing the joint action-value with a
transformation. Q-DPP [20] introduces DPP into MARL tasks
to increase the diversity of agents’ behaviors. ROMA [19] and
RODE [37] allow agents with a similar role to share similar
behaviors. Qatten [38] designs a multi-head attention network
to approximate joint action-value function. However, such
methods do not consider the problem of unshaped scenarios.
They assume that the number of agents and the size of action
set are fixed, and this assumption limits the applications of
these methods.

C. Organization

This paper is organized as follows. Section II introduces
the background knowledge about multi-agent reinforcement
learning and factorization of the joint action-value. Section III
describes UNMAS from three aspects: joint action-value func-
tion, individual action-value function, and training algorithm.
Section IV shows the experiments and results, and analyzes
the learned strategies. Finally, Section V gives the conclusion.

II. BACKGROUND

A. Multi-Agent Reinforcement Learning

We consider a fully cooperative multi-agent task with
partially observable environment, in which agents observe
and take actions individually. This task is also called the
decentralized partially observable Markov decision process
(Dec-POMDP) [39]. It can be defined as a tuple U =
{D,S,U,T,O, R, γ}. D = {1, ..., n} is the set of agents, the
number of which is n. The Dec-POMDP extends POMDP
by introducing the set of joint actions U and joint obser-
vations O. The multi-agent system takes the joint action
ut = {u1,t, ..., un,t} according to the joint observation
ot = {o1,t, ..., on,t} and gets the immediate reward rt from
environment according to the function R : S × U → R.
Then, the global state of multi-agent system st ⊆ S is pro-
duced according to the transition function T, which specifies
Pr(st+1|st,ut). Finally, γ in tuple U denotes the discount
factor of discounted cumulative reward: Gt =

∑∞
j=0 γ

jrt+j .
In the Dec-POMDP, we consider a joint policy π, which is

composed of the policies πi(ui,t|oi,t) of every agent i ∈ D.
The joint policy has a joint action-value function: Q(ot,ut) =
Eot+1:∞,ut+1:∞ [Gt|ot,ut]. The purpose of fully cooperative
multi-agent task is to maximize this return.

B. Factorization of Joint Action-Value Function

As mentioned before, value-based methods with CTDE
framework need to find an efficient and adaptable way to
factorize the joint action-value. A common requirement in the
field of CTDE is the Individual Global Max (IGM) condition.

Definition 1. For a multi-agent system with n agents, if
the optimal joint action is equivalent to the set of agents’
actions that make the individual action-value functions get
the maximum values, the system is said to satisfy the IGM
condition. This statement is formulated as follows:

arg max
ut

Q(ot,ut) =

 arg maxu1,t Q1(o1,t, u1,t)
...

arg maxun,t
Qn(on,t, un,t)

 . (1)

Since the IGM condition is difficult to be verified in
practice, the following monotonicity condition is mostly used
as its substitute:

∂Q(ot,ut)

∂Qi(oi,t, ui,t)
≥ 0, ∀i ∈ D. (2)

If Q(ot,ut) is factorized monotonically as (2), then this
way of factorization meets the IGM condition. Under the IGM
condition, maximizing the joint action-value is equivalent to

3

maximizing the action-value of each agent. Thus, the multi-
agent system pursues the same goal as every agent and
achieves cooperation.

We propose UNMAS in the next section to adapt to the
number and size changes in the unshaped scenario.

III. UNSHAPED NETWORKS FOR MULTI-AGENT SYSTEMS

In this section, we propose a new method called Unshaped
Networks for Multi-Agent Systems (UNMAS), aiming at
helping agents adapt to the change in the unshaped scenario.
UNMAS uses the self-weighting mixing network, which is
adaptive to the size of input, to factorize the joint action-value.
The individual action-value network of agent is specially
designed with two network streams to evaluate the actions
in the environment-oriented subset and unit-oriented subset
separately. The size of unit-oriented subset is also unshaped.

A. Self-weighting mixing network

Fig. 1 presents the self-weighting mixing network, which
approximates the joint action-value function. Since UNMAS
adopts the CTDE framework, the joint action-value function
is only used in training. The weights and biases of the self-
weighting mixing network are produced by a group of hyper
networks represented by the yellow blocks in the architecture,
and the input of the hyper networks is the global state st.

+

+

+

|·|

|·|

|·|

Self-weighting
mixing network

),(,, titii uoQ tio ,

ts

tskW2
qW

1
qW 0NN sNN

shi
oh

tik ,tiq ,

)(exp 

)(elu 

),(,, titii uoQ tio ,

tv tik ,tiq ,





n

i
ttititt vkq

n 1
,,

1),(uoQ

Fig. 1. Self-weighting mixing network architecture. Specifically, the right
side of the diagram shows the details of the self-weighting mixing network.
Given the observation and action-value of each agent i, it provides q

′
i,t and

ki,t to calculate the joint action-value Q(ot, ut) with its bias vt on the left
side.

Instead of following the original definition of the joint
action-value function that takes joint observations and joint
actions as input, CTDE decomposes it as a mapping from
the individual action-values of each agent. Such way greatly
decouples the complicated interplay between different agents.

The biggest difference between UNMAS and other CTDE
methods lies in the ways of dealing with the input size of joint
action-value function. In the other CTDE methods, the input
size of joint action-value function is determined beforehand
and keeps constant during the whole training and execution
phase. Since they still provide action-values for dead agents,
the joint action-value may be miscalculated and reduce the
performance of agent policies. However, the joint action-value

function represented by self-weighting mixing network can
change its input size with the number of agents. It outputs
two scalars q

′

i,t and ki,t for each agent:

q
′

i,t = W 2
q · elu(W 1

q ·Qi(oi,t, ui,t; θi) + b1q) + b2q

ki,t = Wk · [hio, hs] + bk,
(3)

where q′i,t is the result after nonlinear mapping by self-
weighting mixing network, and ki,t is the individual weight,
which describes the contribution of agent i to the joint action-
value. By dynamically evaluating the contribution of each
agent according to ki,t, the estimation of the joint action-
value could be more accurate. Thus, the cooperation of the
multi-agent system becomes better. Elu [40] is a nonlinear
activation function, which is also used in the mixing network
of QMIX. Qi(oi,t, ui,t; θi) is the action-value of agent i, which
is estimated by the individual action-value network. W 1

q , W 2
q ,

and Wk are weights of the self-weighting mixing network as
shown in Fig. 1, and b1q , b2q , and bk are the corresponding
biases. hio and hs are outputs of networks NNo and NNs,
which take observation oi,t of agent i and the global state st
as input, respectively. Finally, the concatenation of hio and hs
is taken as the input of [Wk, bk] to calculate the weight ki,t.

By employing self-weighting mixing network to evaluate
the contribution of each agent, UNMAS can adapt to the
change in the number of agents in training and improve the
accuracy of the estimation of joint action-value. Taking the
StarCraft II micro-management scenario as an example, the
number of agents decreases due to the death caused by enemies
attack. The weights and biases of the self-weighting mixing
network are obtained through the global state. Therefore, even
if the q

′

i,t of each agent do not take the information of other
agents into account, the self-weighting mixing network can
still estimate the joint action-value accurately. The joint action-
value function is formulated as follows:

Q(ot,ut;θjoint) =
1

n

n∑
i=1

q
′

i,t · ki,t + vt, (4)

where n is the number of agents in the current timestep t,
and vt is a scalar output from the hyper network. It is a bias
of the joint action-value, which is generated from a fully-
connected network with st as input. The ablation result of
QMIX [5] shows that adding vt to the joint action-value is
able to achieve better results, which is also confirmed in our
ablation experiments. In (4), in order to adapt to the change
in the number of agents, we use n to average the weighted
sum

∑n
i=1 q

′

i,t · ki,t. Besides, the weights of self-weighting
mixing network take the absolute values to make sure that
the factorization meets the IGM condition. The proof that the
self-weighting mixing network meets the IGM condition is
provided in Theorem 1.

Theorem 1. In a fully cooperative task, if letting the self-
weighting mixing network shown in Fig. 1 represent the joint
action-value function, then the factorization process meets the
IGM condition.

4

Proof. The joint action-value estimated by the self-weighting
mixing network is written as follows:

Q(ot,ut;θjoint) =
1

n

n∑
i=1

q
′

i,t · ki,t + vt

=
1

n

n∑
i=1

[W 2
q · elu(W 1

q ·Qi + b1q) + b2q]·

exp(Wk · [hio, hs] + bk) + vt.
(5)

The partial derivative of the joint action-value to agent action-
value is shown in (6), where all elements are non-negative.

∂Q
∂Qi

=
2

n
·W 2

q ·
∂elu(W 1

q ·Qi + b1q)

∂Qi
·

exp(Wk · [hio, hs] + bk),∀i ∈ D.
(6)

Since the parameter α of elu function is set to 1, the derivative
∂elu(W 1

q ·Qi+b
1
q)/∂Qi shown in (6) can be written as follows:

∂elu(W 1
q ·Qi + b1q)

∂Qi
=

{
W 1

q · eW
1
q ·Qi+b1q ,W 1

q ·Qi + b1q ≥ 0

W 1
q , otherwise

(7)
As described above, the weights of self-weighting mixing
network take absolute values, so the partial derivative ∂Q/∂Qi

is also non-negative. According to the monotonicity condition,
the factorization meets the IGM condition.

Through the special design of network structure and aver-
aging weighted sum with n, self-weighting mixing network
can adapt to the change in the number of agents. In the next
subsection, we introduce the architecture of the individual
action-value network, which can adapt to the change in the
size of action set.

B. Individual action-value network

The individual action-value network approximates the
action-value function of each agent, and it shares the param-
eters among agents. In the framework of CTDE, an agent
takes an action according to its local observation without
communicating with the other agents.

In order to help agents adapt to the change in the size
of action set, we divide the action set into two subsets.
One is the environment-oriented subset, and the other is
the unit-oriented subset. The first action subset represents
the interactions between the agent and the environment, and
keeps constant during the whole running phase. The second
represents the interactions between the agent and other agents,
and its size varies with the number of agents in the current
environment. Taking StarCraft II micro-management scenario
as an example, the environment-oriented actions include stop
and four movement actions in the directions of up, down, left,
and right, while the unit-oriented action is the attack action
aiming at an enemy unit.

Based on the division of the action set, we propose the
individual action-value network as shown in Fig. 2. Two net-
work streams are constructed for the two action subsets. The
environment-oriented stream takes the environment-oriented
observation as input. It contains three Fully-Connected (FC)

Unit-oriented stream

Environment-oriented stream

e
1FC e

2FCe
1GRUe

tio ,

tio ,

tih ,

1, tih
e
3FC

tjio),( tjiQ),(

e
tiQ ,

),(, tii oQ

unit
2FCunit

1FC
teh ,

tjih),(



),(,, titii uoQ

Fig. 2. Individual action-value network architecture. Specifically, it divides
the action set of an agent into two subsets: environment-oriented and unit-
oriented, and evaluates them through two separate streams.

layers FCe
j , j = 1, 2, 3, and one Gated Recurrent Unit (GRU)

[41] layer GRUe
1.

The GRU layer, employed to solve the problem of POMDP,
can better estimate the current state. At each timestep t,
the GRU layer additionally inputs a hidden state hi,t, which
contains historical information and outputs the next hidden
state. Its outputs are the Q values of the environment-oriented
actions as follows:

Qe
i,t(o

e
i,t, hi,t, ·), hi,t+1 = NNe

i (o
e
i,t, hi,t) (8)

where Qe
i,t are the Q values of agent i executing the

environment-oriented actions. oei,t is the environment-oriented
observation, which describes the information observed by
agent i from the environment. hi,t+1 is the hidden state of the
next timestep t+1. NNe

i is the short form of the environment-
oriented stream.

The unit-oriented stream takes the unit-oriented observa-
tions as input. Its outputs are the Q values of the unit-oriented
actions. The unit-oriented observation o(i→j),t differs from the
environment-oriented observation in the fact that it describes
the information from agent i to the target unit j. Taking the
StarCraft II micro-management scenario as an example, if
there are 3 enemies on the map at timestep t, the unit-oriented
stream takes 3 observations in terms of these enemies to
evaluate the Q values of attacking them. Due to the number of
enemies changes over time in unshaped scenarios, the number
of attack targets also changes. Besides, it should be noted that
if the agent has a healing action, the target units here will be
other agents, not enemies. Furthermore, we concatenate the
first layer’s output of two streams to form a new vector, and
feed it into the second layer of the unit-oriented stream. The
Q values of the unit-oriented actions are calculated as follows:

vector = [he,t, h(i→j),t]

Q(i→j),t(o(i→j),t, u(i→j),t) = FCunit
2 (vector)

(9)

where vector is the concatenation of he,t and h(i→j),t, which
are the output of the first part of environment-oriented stream
and unit-oriented stream. Q(i→j),t(o(i→j),t, u(i→j),t) is the Q
value of agent i executing the unit-oriented action on target
unit j. FCunit

2 is the second layer of the unit-oriented stream.

5

Due to the concat operation, the output of the unit-oriented
stream also contains the historical information provided by
hi,t, so there is no need to provide a GRU layer for it. For
the sake of brevity, the environment-oriented observations and
unit-oriented observations of agent i are simplified into one
variable oi,t = {oei,t, o(i→j),t}. Finally, we concatenate all
Qe

i,t and Q(i→j),t to form the individual action-value function
Qi(oi,t, ·).

It should be noted that the individual action-value networks
of other methods like QMIX fail in adapting to the change in
the size of action set. They use a single network to evaluate
the Q values of all kinds of actions, which include both valid
and invalid actions.

Algorithm 1 Unshaped Networks for Multi-Agent Systems
1: Initialize the replay buffer D and exploration rate ε;
2: Initialize θjoint and θi with random parameters;
3: Initialize the parameters of target networks θ−i and θ−joint:
θ−i = θi,θ

−
joint = θjoint;

4: for episode = 1 to M do
5: for t = 0, ..., T do
6: Collect the global state si,t;
7: for each agent i do
8: Collect the local observation oi,t;
9: Choose a random action with probability ε;

10: Otherwise, estimate action-values Qi(oi,t, ·; θi)
for each agent with the individual action-value network
and choose greedy action following (10);

11: end for
12: Execute the joint action ut and collect the next

joint observation ot+1, next state st+1, and reward rt+1;
13: Store the transition (ot,ut, rt+1,ot+1) into D;
14: Store the state transition (st, st+1) into D;
15: end for
16: if replay buffer D is full then
17: Sample b minibatch from D;
18: Estimate joint action-value Q(ok,uk;θjoint) as

(4) by the self-weighting mixing network;
19: Calculate the update target yjointk in (12) and

update the networks by the loss L(θ) in (11);
20: end if
21: Replace target networks with target update interval;
22: Decay the exploration rate ε;
23: end for

C. Training algorithm of UNMAS

In this subsection, we introduce the training algorithm of
UNMAS. The detail is shown in Algorithm 1. The agents take
ε-greedy policy to explore the environment in training, that is,
choose a random action with probability ε, otherwise choose
the action with the highest Q value:

ui,t = arg max
u

Qi(oi,t, u; θi), (10)

where the exploration rate ε decays along the training steps.
The transitions and rewards generated by the interaction be-
tween the multi-agent system and the environment are stored
into the replay buffer D.

When the replay buffer D is full, we sample a minibatch
from replay buffer D to update the networks. They are trained
by minimizing the loss:

L(θ) =
1

b

b∑
k=1

[(yjointk −Q(ok,uk;θjoint)]
2, (11)

where b is the size of minibatch. θ = {θjoint, θi} is the
parameter of all networks involved in training. θjoint and
θi are the parameters of self-weighting mixing network and
individual action-value network respectively. yjointk is the joint
update target of the multi-agent system, which is defined as
follows:

yjointk = rk+1 + γQ(ok+1, ūk+1;θ−joint)

ūk+1 = [arg max
ui,k+1

Qi(oi,k+1, ui,k+1; θ−i)],
(12)

where the target action ūk+1 is obtained by maximizing the
individual action-value function of agents. θ−joint and θ−i are
parameters of the target network for the self-weighting mixing
network and the individual action-value network. Throughout
the training phase, they are replaced by the current parame-
ters every fixed episodes, which is defined as target update
interval.

The multi-agent system is treated as a whole in the training
phase, so the self-weighting mixing network and individual
action-value network can also be seen as one neural network,
which possesses the parameter θ. At each iteration, θ is
updated by the gradient that is obtained by minimizing the loss
function in (11). Since the self-weighting mixing network only
appears in the training phase, this learning law indicates that
the role of the self-weighting mixing network and its parameter
is to help the update of the individual action-value network.

IV. EXPERIMENTS ON STARCRAFT II
MICRO-MANAGEMENT

A. Experimental Setup

The micro-management scenario is an important aspect of
StarCraft II. It requires the player to control a group of agents
to win a combat against enemies. The micro-management
scenario with a decentralized setting is a proper experimen-
tal scenario to test MARL methods because the agents are
partially observable and can perform decentralized actions.
We use StarCraft Multi-Agent Challenge (SMAC) [42] as the
environment and evaluate our method on various maps.

We consider combats with two groups of units, one of which
is using UNMAS and the other is the enemy. This scenario is
an unshaped scenario, as the number of agents and enemies
will decrease due to the attack. In this scenario, each agent
is partially observable, which means that it could only get
the information within its sight range. The observation mainly
contains the following attributes for both allies and enemies:
distance, relative x, relative y, health, shield, and unit type.
The global state mainly contains the above information for all
units, both agents and enemies. Details of the observation and
state are provided in the Appendix A. Each agent has the fol-
lowing actions: move[direction], stop, and attack[enemy id].
Each enemy is controlled by the built-in StarCraft II AI, which

6

(a) 3m (b) 2s3z (c) 5m vs 6m

(d) 8m (e) 3s5z (f) 3s5z vs 3s6z

Fig. 3. The experimental scenarios to test the methods.

uses hand-crafted scripts. We set the difficulty of built-in AI
as “very difficult”.

We take the scenario in Fig. 3(a) as an example to show
more details about the uncertainty in StarCraft II micro-
management. In this scenario, there are three agents and three
enemies at the beginning. Each agent receives two kinds of
observations. One kind is environment-oriented represented
by a tensor of length 42. It contains the information of
agent self (8), agent allies and enemies (2 ∗ 5 + 3 ∗ 5),
and the one-hot coding of agent last action (9). The other
kind is unit-oriented represented by a collection of 3 ten-
sors of length 5. Each tensor describes the information of
an enemy (5) observed by this agent. Then, agents select
actions from their action sets according to these observations.
Their action sets contain the following actions: move[up],
move[down], move[left], move[right], stop, attack[enemy 0],
attack[enemy 1], and attack[enemy 2].

Each agent evaluates actions by the individual action-value
network described before. This network takes environment-
oriented observations (42) and unit-oriented observations (3∗5)
as input, and outputs the values of actions (6 + 3). The values
of 6 environment-oriented actions and 3 unit-oriented actions
are computed by the separate streams. If an enemy dies in
combats, the size of unit-oriented observations will become
2 ∗ 5, and thus the unit-oriented stream just outputs the values
of attack actions towards the remaining two enemy units. In
this way, the output dimension of the individual action-value
network becomes 6 + 2.

During training, UNMAS samples from the replay buffer
and uses the self-weighting mixing network shown in Fig. 1
to compute the joint action-value of the multi-agent system.
The input dimension of this network is 3, which corresponds to
the number of agents on the map. Furthermore, if an agent dies
later in combat, the individual action-value network provides
only the action-values of the remaining two agents. There-
fore, the input dimension of self-weighting mixing network

becomes 2.
At each timestep, agents perform their actions in the de-

centralized way and receive a global reward from the envi-
ronment. SMAC provides positive rewards by default, that is,
the damage done by agents to enemy units. In addition, the
positive (+10) reward is also provided after an enemy is killed.
We evaluate the method by running 32 episodes every 10000
timesteps to get the test winning rates. The agents use ε-greedy
to choose their action and turn it off in testing. The exploration
rate ε decays from 1 to 0.05.

We compare UNMAS with VDN [18], QMIX [5], QTRAN
[23], and ASN [26]. VDN factorizes the joint action-value
Q(ot,ut) by the summation of the individual action-value
function Qi(oi,t, ui,t; θi):

Q(ot,ut) =

n∑
i=1

Qi(oi,t, ui,t; θi) (13)

where θi is the parameter of the newtork representing the
individual action-value function. QMIX employs a mixing
network to represent the joint action-value function. This
network takes the action-value Qi(oi,t, ui,t; θi) of all agents
as input and the joint action-value Q(ot,ut;θjoint) as output,
where θjoint is its parameter. By being taken absolute values,
the weights of the mixing network keep non-negative. QTRAN
factorizes the joint action-value by designing a special learning
objective. Therefore, it can transform the original joint action-
value function into a new, easily factorizable one with the same
optimal actions in both functions. ASN considers the action
semantics between agents to compute the action-values and
reconstruct the observation of agent i at timestep t as follows:
oi,t = {oenvi,t ,mi,t, o

1
i,t, ..., o

i−1
i,t , o

i+1
i,t , o

n
i,t}, where oenvi,t is the

observation about environment, mi,t is the private information
about agent i itself, and oji,t is the observation of agent i to
other agent j.

Experiments are performed on the following symmetric
maps, where agents and enemies have the same numbers

7

UNMAS UNMAS-ADD UNMAS-NVUNMAS-NCAT

QMIX UNMASVDN QTRANASN

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(a) 3m

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(b) 2s3z

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(c) 5m vs 6m

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(d) 8m

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(e) 3s5z

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(f) 3s5z vs 3s6z

Fig. 4. Winning rates for ASN, VDN, QMIX, QTRAN and UNMAS. UNMAS achieves the highest winning rate in all scenarios, especially the most difficult
scenario 3s5z vs 3s6z.

and types: 3 Marines (3m), 8 Marines (8m), 2 Stalkers and
3 Zealots (2s3z), 3 Stalkers and 5 Zealots (3s5z). Besides,
the asymmetric maps including 5 Marines against 6 Marines
(5m vs 6m), 3 Stalkers and 5 Zealots against 3 Stalkers and 6
Zealots (3s5z vs 3s6z) are also chosen for comparison. The
description of these units is provided in Table I.

TABLE I
DESCRIPTION OF STARCRAFT II UNITS.

Unit Race Type

Marine Terran Long-range
Stalker Protoss Long-range
Zealot Protoss Short-range

These maps are provided by SMAC and could test the
performance of UNMAS on StarCraft II micro-management
scenario. VDN [18], QMIX [5], and QTRAN [23] are com-
monly used for comparison in CTDE methods and have
already been implemented in SMAC. The code of ASN [26]
is also open-source. Besides, the detailed implementation of
networks and hyper parameters are provided in Appendix
Table B.1.

B. Main Results

We apply these methods on the maps, and choose the test
winning rate as the comparison metric. Each experiment is
repeated three times for average results, and the learning
curves are shown in Fig. 4.

1) Symmetric Scenarios: The maps with symmetric setting
include: 3m, 8m, 2s3z and 3s5z.

a) Homogeneous Scenarios: 3m and 8m. In these scenarios,
there is only one type of unit: Marine. Therefore, the
individual action-value network only needs to represent
the policy of one type of unit. As shown in Fig. 4(a) and
Fig. 4(d), all of the methods quickly achieve a winning
rate close to 100%. The curve of UNMAS starts rising
slowly, but still achieves a higher winning rate faster than
other methods.

b) Heterogeneous Scenarios: 2s3z and 3s5z. In these sce-
narios, there are two types of units: Zealot and Stalker,
so the individual action-value network needs to represent
the policies of different types of units. Different types
of units have different roles in combat, so heterogeneous
scenarios are more difficult than homogeneous scenarios.
As shown in Fig. 4(b) and Fig. 4(e), UNMAS achieves
the highest winning rate on these maps, especially 3s5z.
The 3s5z map is more difficult than 2s3z, because the
increase in the number of units makes the multi-agent
system harder to control. In the 3s5z experiment, VDN
and ASN can not perform well, and QTRAN fails to win.
Only UNMAS and QMIX can win combats stably.

2) Asymmetric Scenarios: The maps with asymmetric setting
include: 5m vs 6m and 3s5z vs 3s6z. It means that the
number of enemies is greater than that of own agents.

a) Homogeneous Scenarios: 5m vs 6m. In this scenario,
5 Marines controlled by the algorithms have to combat
against 6 enemy Marines. Even if there is only one differ-
ence in the number, the control difficulty in order to win

8

TABLE II
THE TEST WINNING RATES OF VDN, QMIX, QTRAN, ASN, UNMAS, AND OTHER STATE-OF-THE-ART METHODS.

Map VDN† QMIX† QTRAN† ASN† RODE† QPD‡ MADDPG‡ Qatten‡ QPLEX‡ UNMAS

3m 98 99 99 98 99 92 98 - - 99
8m 97 98 97 98 98 93 98 - - 97

2s3z 92 98 81 99 99 99 94 96 97 96
3s5z 63 95 2 95 92 91 72 94 92 98

5m vs 6m 73 72 55 72 75 - - 74 - 82
3s5z vs 3s6z 1 1 0 5 1 10 - 16 - 28

† Obtained by the experiments that we conduct.
‡ Obtained by the results provided in literature.

increases considerably. Therefore, the policies of agents
are required to be more elaborate in order to win. A
more elaborate policy means that the agents make fewer
mistakes. As shown in Fig. 4(c), no method achieves
100% winning rate. Among the tested methods, UNMAS
achieves the highest winning rate, which means that the
multi-agent system using UNMAS is more possible to
achieve cooperation and choose correct actions.

b) Heterogeneous Scenarios: 3s5z vs 3s6z. It is an asym-
metric and heterogeneous scenario, the most difficult
of all. With an extra Zealot, the enemy is better able
to block our Zealots and attack our important damage
dealer Stalkers. Therefore, the multi-agent system not
only needs to ensure the stability of its policy but also
explores a better policy to win. As shown in Fig. 4(f),
UNMAS achieves the highest winning rate.

Throughout the plot in Fig. 4, it is shown that UNMAS
achieves uniform convergence on all experimental maps,
and is especially superior on the most difficult scenario
3s5z vs 3s6z. The final winning rates of different methods are
listed in Table II. Compared with QMIX and other methods,
we provide a more flexible network structure to represent the
joint action-value function, so it is more suitable for training on
unshaped scenarios. As for the design of the individual action-
value network, ASN uses the GRU layer in unit-oriented
stream, while we remove it. Since we are considering a Dec-
POMDP especially with limited sight range, a unit wandering
close to an agent’s sight range will cause it to receive the unit’s
observations intermittently. Therefore, it may lead to a wrong
computation of the hidden state for GRU layer and have a
negative effect on the strategy of agent.

Besides, for other state-of-the-art MARL methods, due to
the limits of reproduction, we only compare with the results
provided in their literature, and show them in Table II. MAD-
DPG [35] provides a centralized critic for the whole system
and a group of decentralized actors for each agent. Qatten
[38] designs a multi-head attention network to approximate
joint action-value function. RODE [37] allows agents with
a similar role to share similar behaviors. QPD [22] employs
integrated gradients method to factorize the joint action-value
of multi-agent system into individual action-values of agents.
QPLEX [21] takes a duplex dueling network to factorize the
joint action-value.

The results shown in Table II are the average winning

rates after 2 million timesteps. In the article of RODE, the
experiment on most maps is the result of training 5 million
timesteps, we run RODE on each map and test its winning rate
at 2 million timesteps. Since MADDPG does not experiment
on StarCraft II micro-management scenarios, we compare with
the results provided by [43], in which the authors implement
several MARL methods. Although these methods achieve sim-
ilar performance to us in symmetric maps, UNMAS still has
obvious advantage in the most difficult scenario 3s5z vs 3s6z.
These results indicate that UNMAS is still competitive among
those state-of-the-art methods.

C. Ablation Results

In order to investigate the effect of (i) the weight ki,t,
(ii) the value vt in the self-weighting mixing network, and
(iii) the concat operation in the individual action-value net-
work, we conduct ablation experiments on three maps: 3s5z,
5m vs 6m and 3s5z vs 3s6z.

1) The effect of weight ki,t. We remove the weight ki,t in
the self-weighting mixing network and replace the joint
action-value with the following equation:

Q(ot,ut;θjoint) =
1

n

n∑
i=1

q
′

i,t + vt, (14)

which denotes that the weight ki,t of each agent is set
to 1 in any case. We refer to this method as UNMAS-
ADD. Fig. 5 shows that the winning rate of self-weighting
mixing network decreases under the condition of fixed
weights ki,t. One possible explanation is that because
the weights are fixed, the self-weighting mixing network
cannot correctly estimate the true joint action-value based
on the contribution of each agent to the joint action-value.
In order to illustrate the effect of ki,t specifically, we pro-
vide two screenshots of the combat on the 3s5z vs 3s6z
map and mark the weight ratio ki,t/

∑
j kj,t of each

agent as shown in Fig. 6. The screenshots indicate that
agents have different contribution to the joint action-
value. When there is no close combat between two sides
as shown in Fig. 6(a), the long-range unit Stalker is more
important. Its average weight of 0.186 is larger than
Zealot’s 0.073. Once they are fighting hand-to-hand as
shown in Fig. 6(b), the short-range unit Zealot becomes
vital. Its average weight of 0.120 is larger than Zealot’s

9
QMIX UNMASVDN QTRAN

UNMAS UNMAS-ADD UNMAS-NVUNMAS-NCAT

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(a) 3s5z

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(b) 5m vs 6m

0.5m 1.0m 1.5m 2.0m
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

(c) 3s5z vs 3s6z

Fig. 5. Winning rates of ablation experiments. The ablation results demonstrate the effect of three elements.

(a) Before Fighting (b) Fighting Hand-to-hand

Fig. 6. Two screenshots of the combat on the 3s5z vs 3s6z map. The
weight ratio ki,t/

∑
j kj,t is marked on the position of each agent i.

0.092. Besides, within the same type of units, agents get
larger weights if there are more enemies around them.
Taking the Zealots in Fig. 6(b) as an example, the unit
surrounded by enemies has larger weight (0.162) than the
one that is alone (0.095).

2) The effect of value vt. In the second experiment, we
remove the value vt in the joint action-value. Therefore,
the joint action-value can be calculated by the following
formula:

Q(ot,ut;θjoint) =
1

n

n∑
i=1

q
′

i,t · ki,t. (15)

We refer to this method as UNMAS-NV. Fig. 5 shows that
the introduction of vt increases the efficiency of approx-
imation, which leads to higher winning rate. It indicates
that the lack of a bias term makes it more difficult for the
self-weighting mixing network to approximate the joint
action-value function.

3) The effect of the concat operation. In the third experiment,
we remove the concat operation in the individual action-
value network. It means that the Q values used to evaluate
unit-oriented actions only depend on the observations of
target units rather than the observation history. We refer
to this method as UNMAS-NCAT. Fig. 5 shows that the
concat operation is critical to the performance of the
agent. The winning rate of UNMAS-NCAT in ablation
experiments is much lower than UNMAS.

According to the ablation experiments, we figure out the
importance of the weight ki,t, value vt, and the concat oper-
ation. The reason that UNMAS achieves the highest winning
rate becomes clear. In the factorization of joint action-value,
UNMAS provides the weights for each alive agent and ignores
the agents that are killed by enemies, which leads to a more
proper factorization. The bias term also helps approximate the
joint action-value function. In estimating the action-value of an
agent, UNMAS evaluates the actions in two different subsets
respectively with the help of the concat operation, making the
evaluation more accurate.

D. Strategy Analysis

To understand what UNMAS has learned to achieve the per-
formance, we analyze the strategies of agents using UNMAS
according to the combat replay in this subsection.

1) Homogeneous Scenarios: 3m, 8m and 5m vs 6m. In
these scenarios, the combat is conducted between Marines.
Next is the analysis of the strategies executed by the multi-
agent system.

a) More to Fight Less: The multi-agent system adjusts the
formation to form a situation where more agents attack
fewer enemies in the combat. It is a basic strategy
for micro-management scenario. Taking an example, as
shown in Fig. 7(a), agents try to concentrate on attacking
an enemy Marine. The red line indicates that the agent
is attacking. By adopting this strategy, the multi-agent
system is able to eliminate the enemies as quickly as
possible to reduce the damage caused by them.

b) Damage Sharing: The agents with higher health share the
damage for agents with lower health. Since only alive
agents can cause damage to enemies, it is important to
ensure the survival of agents who is in danger. As shown
in Fig. 7(b), when the health of the agent is low, it retreats
a distance from the enemies to allow the other agents
to share the damage. The white line indicates that the
agent is moving. At the same time, the agents around it
step forward in the enemy’s direction to ensure successful
damage sharing. By adopting this strategy, the agents
are able to survive longer to maximize the damage they
cause.

10

(a) More to Fight Less (b) Damage Sharing (c) Block Enemies (d) Defensive Counterattack

Fig. 7. Strategies learned by the agents using UNMAS. There are two basic strategies more to fight less and damage sharing, and two advanced strategies
block enemies and defensive counterattack to address more difficult scenarios.

In the homogeneous scenarios, the multi-agent system per-
forms the above strategies to defeat the enemies. Although
other methods like QMIX can also learn these strategies, the
agents using UNMAS make fewer mistakes.

2) Heterogeneous Scenarios: 2s3z, 3s5z and the most dif-
ficult map 3s5z vs 3s6z. In these scenarios, the combat is
conducted between two types of units: Zealot and Stalker. The
former is short-range and the latter is long-range. For scenarios
where units have different roles, the multi-agent system not
only needs to execute the strategies analyzed above but also
needs new strategies to accommodate the change. Next is the
analysis of the strategies executed by the multi-agent system.

a) Block Enemies: The Zealots try to block the enemy
Zealots to protect the Stalkers. Since the Stalker is a
long-range unit, it is able to cause damage to the enemies
without being attacked. As shown in Fig. 7(c), the multi-
agent system using UNMAS learns the strategy of placing
the Zealots between Stalkers and enemies to ensure the
safety of Stalkers. The yellow line is the defensive line
formed by Zealots. Through this strategy, the multi-agent
system can maximize its damage as much as possible.

b) Defensive Counterattack: Agents focus on eliminating
enemy Zealots who break through the defensive line as
a defense, and then continue their previous attack as a
counterattack. In the actual combat, the defensive line
may not completely separate the enemies from Stalkers.
As shown in Fig. 7(d), the multi-agent system using
UNMAS learns to attack the enemy who breaks through
the defensive line. They also perform a more to fight
less strategy to eliminate enemies as quickly as possible.
In addition, sometimes one Stalker chooses to attack the
enemies at the edge of the battlefield to disperse pressure
from other allies.

It should be noted that, in the heterogeneous scenarios, the
multi-agent system not only learns the strategies mentioned
above, but also learns more to fight less and damage shar-
ing as in homogeneous scenarios. Other methods all fail in
3s5z vs 3s6z because they just perform the more to fight less
strategy as in homogeneous scenarios, while UNMAS achieves
28% winning rate because of the above strategies.

V. CONCLUSION

This paper proposes UNMAS, a novel multi-agent rein-
forcement learning method that is more adaptable to the
unshaped scenario, in which the number of agents and the size
of action set change over time. UNMAS factorizes the joint
action-value by mapping Q values nonlinearly and calculating
its weights in the joint action-value for each agent. We
theoretically analyze that the value factorization of UNMAS
meets the IGM condition. In order to adapt to the change in
the size of action set, the individual action-value network uses
two network streams to evaluate the actions in environment-
oriented subset and unit-oriented subset.

We compare UNMAS with VDN, QMIX, QTRAN, and
ASN in StarCraft II micro-management scenario. Our re-
sults show that UNMAS achieves state-of-the-art performance
among tested algorithms and also learns effective strategies in
the most difficult scenario 3s5z vs 3s6z that other algorithms
fail in.

ACKNOWLEDGMENT

The authors would like to thank Professor Hongbin Sun of
Xi’an Jiaotong University for his suggestions.

APPENDIX A
ENVIRONMENTAL SETTINGS

We use SMAC as the experimental environment. Alive
agents obtain their local observations from environment and
execute their actions. The observation provided by SMAC
consists of the information about agent self, other agents,
and the enemies within sight range. In detail, the information
contains the following elements:

1) Distance: the distance between agent and other units;
2) Relative coordinates: the relative coordinates of x and y

between agent and other units;
3) Health: the health percentage of agent and other units;
4) Shield: the shield percentage of agent and other units;
5) Unit type: the one-hot coding for the unit type of agent

and other units;
6) Last action: the action executed by agent at last timestep;
7) Agent Index: the index used to distinguish agents.
Similarly, the global state also provides the above informa-

tion. However, the difference is that the relative information
takes the center point of the map as the reference point. The

11

information included in the state contains all the alive agents
on the map instead of those only within the sight range.

APPENDIX B
PARAMETER SETTINGS

In the experiments, all methods adopt the same hyper
parameters, which are shown in Table B.1, and are the default
values in PyMARL.

TABLE B.1
HYPER-PARAMETERS OF EXPERIMENTAL METHODS, INCLUDING ASN,

VDN, QMIX, QTRAN, RODE, AND UNMAS.

Setting Name Value

Training Settings

Size of Replay buffer D 5000 episodes
Batch size b 32 episodes

Testing interval 10000 timesteps
Target update interval 200 episodes
Maximum timesteps 2 million timesteps
Exploration rate ε 1.0 to 0.05
Discount factor γ 0.99

Network Settings

Self-weighting mixing
network unit 32

Hyper network unit 64
GRU layer unit 64

Optimizer RMSProp
RMSProp αR 0.99
RMSProp εR 0.00001

Learning rate α 0.0005

The hypernetwork of UNMAS, which is used to calculate
the weights and biases of self-weighting mixing network,
adopts the same settings as QMIX. vt, the final element of
self-weighting mixing network, is the output of a network with
two layers and one ReLU activation. Other parameters related
to the networks are also shown in Table B.1.

REFERENCES

[1] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress
in the study of distributed multi-agent coordination,” IEEE Transactions
on Industrial informatics, vol. 9, no. 1, pp. 427–438, 2013.

[2] W. Jiang, G. Feng, S. Qin, T. S. P. Yum, and G. Cao, “Multi-agent
reinforcement learning for efficient content caching in mobile D2D
networks,” IEEE Transactions on Wireless Communications, vol. 18,
no. 3, pp. 1610–1622, 2019.

[3] Z. Tang, D. Zhao, Y. Zhu, and P. Guo, “Reinforcement learning for
build-order production in StarCraft II,” in International Conference on
Information Science and Technology, 2018, pp. 153–158.

[4] K. Shao, Y. Zhu, and D. Zhao, “StarCraft micromanagement with rein-
forcement learning and curriculum transfer learning,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 3, no. 1, pp. 73–
84, 2019.

[5] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning, 2018, pp. 4295–4304.

[6] Z. Tang, K. Shao, Y. Zhu, D. Li, D. Zhao, and T. Huang, “A review of
computational intelligence for StarCraft AI,” in 2018 IEEE Symposium
Series on Computational Intelligence, 2018, pp. 1167–1173.

[7] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye,
“Efficient ridesharing order dispatching with mean field multi-agent
reinforcement learning,” in The World Wide Web Conference, 2019, pp.
983–994.

[8] Y. Zhu, D. Zhao, and Z. Zhong, “Adaptive optimal control of heteroge-
neous CACC system with uncertain dynamics,” IEEE Transactions on
Control Systems Technology, vol. 27, no. 4, pp. 1772–1779, 2019.

[9] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks
based on multi-agent reinforcement learning,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 10, pp. 2282–2292, 2019.

[10] H. Li, Q. Zhang, and D. Zhao, “Deep reinforcement learning-based
automatic exploration for navigation in unknown environment,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 6,
pp. 2064–2076, 2020.

[11] G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani, “Lenient multi-
agent deep reinforcement learning,” in International Foundation for
Autonomous Agents and Multiagent Systems, 2018, pp. 443–451.

[12] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS One, vol. 12, no. 4, pp. 1–15, 2017.

[13] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in International Conference
on Autonomous Agents and Multiagent Systems, 2017, pp. 66–83.

[14] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
32nd AAAI Conference on Artificial Intelligence, 2018.

[15] K. Shao, Y. Zhu, and D. Zhao, “Cooperative reinforcement learning for
multiple units combat in StarCraft,” in 2017 IEEE Symposium Series on
Computational Intelligence, 2017, pp. 1–6.

[16] Z. Zhang, D. Zhao, J. Gao, D. Wang, and Y. Dai, “FMRQ—A multiagent
reinforcement learning algorithm for fully cooperative tasks,” IEEE
Transactions on Cybernetics, vol. 47, no. 6, pp. 1367–1379, 2017.

[17] Q. Zhang, D. Zhao, and F. L. Lewis, “Model-free reinforcement learning
for fully cooperative multi-agent graphical games,” in International Joint
Conference on Neural Networks, 2018, pp. 1–6.

[18] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning
based on team reward,” in International Foundation for Autonomous
Agents and Multiagent Systems, 2018, pp. 2085–2087.

[19] T. Wang, H. Dong, V. Lesser, and C. Zhang, “ROMA: Multi-agent
reinforcement learning with emergent roles,” in Proceedings of the 37th
International Conference on Machine Learning, 2020.

[20] Y. Yang, Y. Wen, L. Chen, J. Wang, K. Shao, D. Mguni, and
W. Zhang, “Multi-agent determinantal Q-learning,” arXiv preprint
arXiv:2006.01482, 2020.

[21] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “QPLEX: Duplex dueling
multi-agent Q-learning,” arXiv preprint arXiv:2008.01062, 2020.

[22] Y. Yang, J. Hao, G. Chen, H. Tang, Y. Chen, Y. Hu, C. Fan, and
Z. Wei, “Q-value path decomposition for deep multiagent reinforcement
learning,” arXiv preprint arXiv:2002.03950, 2020.

[23] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “QTRAN:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” in International Conference on Machine Learn-
ing, 2019, pp. 5887–5896.

[24] Z. Sui, Z. Pu, J. Yi, and S. Wu, “Formation control with collision
avoidance through deep reinforcement learning using model-guided
demonstration,” IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[25] W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan,
and Y. Gao, “From few to more: Large-scale dynamic multiagent cur-
riculum learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 05, 2020, pp. 7293–7300.

[26] ——, “Action semantics network: Considering the effects of actions in
multiagent systems,” in International Conference on Learning Repre-
sentations, 2020.

[27] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” in Proceedings of the International Conference on Machine
Learning, 1993, pp. 330–337.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[29] M. Zhou, Y. Chen, Y. Wen, Y. Yang, Y. Su, W. Zhang, D. Zhang, and
J. Wang, “Factorized Q-learning for large-scale multi-agent systems,”
in Proceedings of the First International Conference on Distributed
Artificial Intelligence, 2019, pp. 1–7.

[30] Y. Zhu and D. Zhao, “Online minimax Q network learning for two-player
zero-sum markov games,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[31] L. Han, P. Sun, Y. Du, J. Xiong, Q. Wang, X. Sun, H. Liu, and T. Zhang,
“Grid-wise control for multi-agent reinforcement learning in video game
ai,” in International Conference on Machine Learning, 2019, pp. 2576–
2585.

12

[32] P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang,
“Multiagent bidirectionally-coordinated nets: Emergence of human-level
coordination in learning to play StarCraft combat games,” arXiv preprint
arXiv:1703.10069, 2017.

[33] J. Qin, M. Li, Y. Shi, Q. Ma, and W. X. Zheng, “Optimal synchroniza-
tion control of multiagent systems with input saturation via off-policy
reinforcement learning,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 1, pp. 85–96, 2019.

[34] C. Sun, W. Liu, and L. Dong, “Reinforcement learning with task
decomposition for cooperative multiagent systems,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[35] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 6382–6393.

[36] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations,
2016.

[37] T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang,
“RODE: Learning roles to decompose multi-agent tasks,” in Interna-
tional Conference on Learning Representations, 2021.

[38] Y. Yang, J. Hao, B. Liao, K. Shao, G. Chen, W. Liu, and H. Tang,
“Qatten: A general framework for cooperative multiagent reinforcement
learning,” arXiv preprint arXiv:2002.03939, 2020.

[39] F. A. Oliehoek, C. Amato et al., A Concise Introduction to Decentralized
POMDPs. Springer, 2016, vol. 1.

[40] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units,” in International
Conference on Learning Representations, 2016.

[41] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
in Workshop on Syntax, Semantics and Structure in Statistical Transla-
tion, 2014.

[42] M. Samvelyan, T. Rashid, C. Schroeder de Witt, G. Farquhar,
N. Nardelli, T. G. Rudner, C.-M. Hung, P. H. Torr, J. Foerster, and
S. Whiteson, “The StarCraft multi-agent challenge,” in Proceedings of
the 18th International Conference on Autonomous Agents and MultiA-
gent Systems, 2019, pp. 2186–2188.

[43] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht, “Compar-
ative evaluation of multi-agent deep reinforcement learning algorithms,”
arXiv preprint arXiv:2006.07869, 2020.

Jiajun Chai received the B.S degree from the
Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University, Xi’an, China, in 2020. He
is currently pursuing the Ph.D. degree with the State
Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing, China.

His current research interests include multi-agent
reinforcement learning, deep learning, and game AI.

Weifan Li received the M.E degree in the Mechani-
cal engineering and automation, Fuzhou University,
Fuzhou, China, in 2018. He is currently pursuing the
Ph.D. degree in control theory and control engineer-
ing at the State Key Laboratory of Management and
Control for Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China.

His current research interest is deep reinforcement
learning.

Yuanheng Zhu (M’15) received the B.S. degree
in automation from Nanjing University, Nanjing,
China, in 2010, and the Ph.D. degree in control
theory and control engineering from the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 2015. He is currently an Associate Pro-
fessor with the State Key Laboratory of Manage-
ment and Control for Complex Systems, Institute
of Automation, Chinese Academy of Sciences. His
research interests include optimal control, adaptive
dynamic programming, reinforcement learning, au-

tomatic driving, and game intelligence.

Dongbin Zhao (M’06-SM’10-F’20) received the
B.S., M.S., Ph.D. degrees from Harbin Institute of
Technology, Harbin, China, in 1994, 1996, and 2000
respectively. He is now a professor with Institute
of Automation, Chinese Academy of Sciences, and
also with the University of Chinese Academy of
Sciences, China. He has published 6 books, and over
100 international journal papers. His current research
interests are in the area of deep reinforcement learn-
ing, computational intelligence, autonomous driving,
game artificial intelligence, robotics, etc.

Dr. Zhao serves as the Associate Editor of IEEE Transactions on Neural
Networks and Learning Systems, IEEE Transactions on Cybernetics, IEEE
Transactions on Artificial Intelligence, etc. He is the chair of Distinguished
Lecture Program of IEEE Computational Intelligence Society (CIS). He is
involved in organizing many international conferences. He is an IEEE Fellow.

Zhe Ma has received his Ph.D. degree. He is cur-
rently a researcher at X-Lab in the Second Academy
of CASIC.

His current research interests include artificial
intelligence and SoS.

Kewu Sun has received her B.S. and M.S. degree.
She is currently a senior engineer at X-Lab in the
Second Academy of CASIC.

Her current research interests include multi-agent
reinforcement learning and SoS.

Jishiyu Ding received the B.S. degree from Beijing
Jiaotong University in 2015 and Ph.D. degree from
Tsinghua University in 2020. He is currently an en-
gineer at X-Lab in The Second Academy of CASIC.

His current research interest is multi-agent rein-
forcement learning.

	I Introduction
	I-A Contribution
	I-B Related Work
	I-C Organization

	II Background
	II-A Multi-Agent Reinforcement Learning
	II-B Factorization of Joint Action-Value Function

	III Unshaped Networks for Multi-Agent Systems
	III-A Self-weighting mixing network
	III-B Individual action-value network
	III-C Training algorithm of UNMAS

	IV Experiments on StarCraft II Micro-Management
	IV-A Experimental Setup
	IV-B Main Results
	IV-C Ablation Results
	IV-D Strategy Analysis

	V Conclusion
	Appendix A: Environmental Settings
	Appendix B: Parameter Settings
	References
	Biographies
	Jiajun Chai
	Weifan Li
	Yuanheng Zhu
	Dongbin Zhao
	Zhe Ma
	Kewu Sun
	Jishiyu Ding

